
On the use of CD++/Maya for visualization of discrete-event models

Ayesha Khan
Gabriel A. Wainer

Wilson Venhola

Department of Systems and Computer
Engineering

Michael Jemtrud

Carleton Immersive Media
Studio

Carleton University

1125 Colonel By Drive
Ottawa, Ontario, K1S 5B6, Canada

{amkhan2@connect, gwainer@sce, wvenhola@connect, michael_jemtrud@}carleton.ca

Abstract – The CD++ modeling tool was created to study
complex systems by using DEVS and Cell-DEVS
formalisms. Although CD++ was successfully employed
to define a wide variety of models for complex
applications, visualization facilities were limited. We have
introduced a 3D visualization engine, which creates
virtual worlds using the Maya visualization environment
with simulations running in CD++, to permit interaction
with DEVS models. These tools are able to run in
advanced environments based on OpenGL. We show
different examples, and discuss current developments on
the creation of a new visual environment based on open
source OpenGL tools.

Keywords: DEVS, Cell-DEVS, Maya, OpenGL, 3D
visualization.

1. INTRODUCTION

In recent years, the Discrete Event Systems
Specification (DEVS) formalism [Zei, 00] has gained
popularity to model a variety of problems. DEVS is a
framework for the construction of discrete-event
hierarchical modular models, in which behavioral
models (atomic) can be integrated together forming a
hierarchical structural model (coupled). The Cell-
DEVS formalism [Wai, 01] extended the DEVS
formalism allowing the simulation of discrete-event
cellular models. The approach extends traditional
Cellular Automata [Wol, 02] defining each cell as a
DEVS atomic model and the space as a DEVS coupled
model, including a flexible way of defining the timing
of each cell.

The CD++ tool [Wai, 02] implements DEVS and Cell-
DEVS theories. CD++ enabled us to solve successfully
over 150 models of complex systems [Wai, 04; Wai,
05; Ame, 04, Ame, 01, Ame, 03]. CD++ also provides
remote access to a high performance DEVS simulation
server [Wai, 03]. The end user tools were organized as
a simulation client applied to the CD++ simulator.
Using these facilities, the users can now develop and
test their models in local workstations, and submit
them to be simulated in a remote CD++ server

executing in a high performance platform. Then, they
can receive, visualize and analyze the results on a local
computer, improving model definition and execution.

Visualization tools are crucial in helping to understand
better the behavior of these systems. Originally, CD++
only provided results on text files, and different
visualization engines were incorporated. CD++ was
recently provided with facilities for 2D and 3D
visualization using VRML and Java [Wai, 03]. This 3D
GUI enables sophisticated visualization of Cell-DEVS
models only. These facilities were built on VRML, a
technology becoming obsolete. These methods have
some limitations. The Java applets use Java3D
libraries and the VRML specification, both which are
no longer actively developed. The current VRML
viewers also lack functionality and ease of use. Hence,
we have recently focused on new extensions that can be
applied to both DEVS and Cell-DEVS, and which are
able to run on OpenGL-based environments [Seg, 05].
The interface here presented was first introduced in
[Kha, 05], and it is based on the Maya modeling
environment [Ali, 05]. We will show how advanced
DEVS models can be visualized using Maya facilities,
giving a few examples of application, which permit
discussing interoperability of a modeling and
simulation tool based on DEVS and an advanced
generic visualization environment like Maya.

2. BACKGROUND

DEVS is a systems theoretical approach that allows the
definition of hierarchical modular models [Zei, 00]. A
real system modeled using DEVS can be described as a
set of atomic or coupled submodels. The atomic model
is the lowest level and defines dynamics, while the
coupled are structural models composed of one or
more atomic and/or coupled models. An atomic DEVS
model is defined as:

M = < X, S, Y, dint, dext, ?, ta >

Each atomic model can be seen as having an interface
consisting of input (X) and output (Y) ports to

communicate with other models. Every state (S) in the
model is associated with a time advance (ta) function,
which determines the duration of the state. Once the
time assigned to the state is consumed, an internal
transition is triggered. At that moment, the model
execution results are spread through the model’s
output ports by activating an output function (λ). Then,
an internal transition function (δint) is fired,
producing a local state change. Input external events
are collected in the input ports. An external transition
function (δext) specifies how to react to those inputs.

A coupled DEVS model is defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select >

Coupled models are defined as a set of basic
components (atomic or coupled), which are
interconnected through the models’ interfaces. The
models’ coupling defines how to convert the outputs of
a model into inputs for the others, and how to handle
inputs/outputs from/to external models

Cell-DEVS has extended the DEVS formalism,
allowing the implementation of cellular models with
timing delays. A Cell-DEVS model is informally
presented in Figure 1.

Figure 1: Description of a Cell-DEVS coupled model.

Once the cell behavior is defined, a coupled Cell-
DEVS can be created by putting together a number of
cells interconnected with their neighbors.

A cellular model is a lattice of cells holding state
variables and a computing apparatus, which is in charge
of updating the cell state according to a local rule. This
is done using the present cell state and those of a finite
set of nearby cells (called its neighborhood). Each cell
is defined as a DEVS atomic model, and it can be later

integrated to a coupled model representing the cell
space. Each cell uses N inputs to compute its next
state. These inputs, which are received through the
model's interface, activate a local computing function
(τ). A delay (d) can be associated with each cell. The
state (s) changes can be transmitted to other models,
but only after the consumption of this delay.

CD++ [Wai, 02] is a modeling and simulation toolkit
that implements DEVS and Cell-DEVS theory. Atomic
models can be defined using a state-based approach
(coded in C++ or an interpreted graphical notation),
while coupled and Cell-DEVS models are defined
using a built-in specification language. We will show
the basic features of the tool through an example of
application. CD++ also includes an interpreter for
Cell-DEVS models. The model specification includes
the definition of the size and dimension of the cell
space, the shape of the neighborhood and borders. The
cell’s local computing function is defined using a set
of rules with the form: POSTCONDITION DELAY
{PRECONDITION}. These indicate that when the
PRECONDITION is satisfied, the state of the cell will
change to the designated POSTCONDITION, whose
computed value will be transmitted to other
components after consuming the DELAY. Figure 2
shows the definition of a very simple example of the
definition of such models.

[life]
size:(20,20) delay:transport border:wrapped
neighbors : (-1,-1)(-1,0)(-1,1)(0,-1) (0,0)

 (0,1) (1,-1) (1,0) (1,1)
localtransition : life-rule

[life-rule]
Rule: 1 10 {(0,0)=1 and (truecount=3 or
 truecount=4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

Figure 2: Definition of the Life game.

The rules in this example say that a cell remains active
when the number of active neighbors is 3 or 4
(truecount indicates the number of active neighbors)
using a transport delay of 10 ms. If the cell is inactive
((0,0) = 0) and the neighborhood has 3 active cells,
the cell activated (represented by a value of 1 in the
cell). In every other case, the cell remains inactive (t
indicates that whenever the rule is evaluated, a True
value is returned).

Time: 00:00:10:000

+--------------------+
| * |
| * |
| * * |
| * * * * * |
| * * * * * * |
| * * * * * |
| * * |
| * |
| * |
| |

Time: 00:00:20:000
+--------------------+
| |
| * * * |
| * * |
| * * |
| * * |
| * * |
| * * |
| * * * |
| |
| |

Time: 00:00:30:000
+--------------------+
| * |
| * * * |
| * * * * * |
| * * * * |
| * * * * * * |
| * * * * |
| * * * * * |
| * * * |
| * |
| |

+--------------------+ +--------------------+ +--------------------+
Figure 3: Executing the Life game.

Figure 3 shows an excerpt from the execution of the Life
game. As we can see, studying the simulation results
based on these notations can be error-prone and
cumbersome, and its use for training or on-line
simulation is not adequate. Instead, the provision of a
graphical environment can improve the results obtained,
as discussed in the following sections

3. VISUALIZATION OF 3D MODELS IN MAYA

As mentioned earlier, we decided to expand our visual
environment using Open-GL based tools. Maya [Ali, 04]
is a powerful application for three dimensional modeling
and animation, using special effects and rendering. It
allows one to create digital imagery, three dimensional
animation and visual effects. The Maya software
interface can be extended by providing access to the
Maya Embedded Language (MEL). Maya’s modeling and
animation tools were used to create three-dimensional
environments for Cell-DEVS and DEVS models. To do
that, a team with expertise in visualization can use Maya
facilities to create visual scene files, while a modeler can
create advanced models of the system. CD++/Maya is an
application written in MEL that provides a graphical user
interface that allows CD++ log files to interact with
Maya, and to visualize the corresponding model in a 3D
visual environment. This instantiates a MEL script
specific to a particular model, and animates the three-
dimensional world (scene file) in accordance with the
CD++ log file [Kha, 05]. Figure 4 shows the
relationships between these procedures.

Figure 4: Architecture of CD++/Maya [Kha, 05]

This facility was first introduced in [Kha, 05]. As
explained there, the logFileAnimator method acts as an
interface requesting the user to select a particular model.
The readFile method locates and opens the file
corresponding to the file name provided and prints the
contents to the Script Editor Window in Maya (allowing
advanced users to analyze the detailed results found in
the log files).

The animator method, instead, instantiates the animation
procedure for that particular model, associating CD++
simulation results with graphic scenes defined in Maya.
Each instance of the animation procedure opens the log
File, reads it and stores pertinent information, which is

then used to animate the objects in the three dimensional
scene opened. All the information pertaining to a
particular object from the log file is used to animate that
same object in the scene file.

Finally, the translateTime method is in charge of
accurately following the log File, and making the
animation to match time with the time present in the
simulation log. The maFileReader method is called to
obtain the initial state values of each cell for Cell-DEVS
models. This procedure parses the coupled model files
and stores the initial state values of each cell. Then it
animates the scene file for time 00:00:00:000
accordingly.

In the following sections, we will show how to use these
facilities to visualize complex simulation models.

4. VISUALIZING FOREST FIRE SPREADING

Forest fires destroys important resources, hence,
enormous efforts have been made to prevent them. Many
forest fires models have been developed to study how the
fire spreads under different environmental conditions,
while one of the most popular ones is due to Rothermel
[Rot, 72]. This model uses environmental and vegetation
conditions to compute the ratio of spread and intensity of
fire. When Rothermel's rules are applied to a given fuel
model and environmental parameters, it can determine
the spread ratio (i.e. the distance and direction the fire
moves in a minute).

[ForestFire]
type : cell dim : (20,20)
delay : inertial border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0)
(0,1) (1,-1) (1,0) (1,1)
localtransition : FireBehavior

[FireBehavior]
rule : {(1,-1)+(21.552615/17.967136)}
 {(21.552615 / 17.967136)*60000} {(0,0)=0
 and 0<(1,-1)}
rule : {(1,0)+(15.24/5.106976)} {(15.24 /
 5.106976)*60000} {(0,0)=0 and 0<(1,0)}
rule : {(0,-1)+(15.24/5.106976)} {(15.24 /
 5.106976)*60000} {(0,0)=0 and 0<(0,-1)}
rule : {(-1,-1)+(21.552615/1.872060)}
 {(21.552615 / 1.872060)*60000}
 {(0,0)=0 and 0<(-1,-1)}
rule : {(1,1)+(21.552615/1.872060)}
 {(21.552615/1.872060)*60000} {(0,0)=0 and
 0<(1,1)}
rule : {(-1,0)+(15.24/1.146091)} {(15.24 /
 1.146091)*60000} {(0,0)=0 and 0<(-1,0)}
rule : {(0,1)+(15.24/1.146091)} {(15.24 /
 1.146091)*60000} {(0,0)=0 and 0<(0,1)}
rule : {(-1,1)+(21.552615/0.987474)}
{(21.552615/0.987474)*60000} {(0,0)=0 and
 0<(-1,1)}
rule : {(0,0)} 0 { t }

Figure 5: Rothermel’s model in CD++ [Ame, 01]

In [Ame, 01], we presented the construction of a fire
spreading model based on Rothermel’s rules. The
following figure shows the implementation of such
model using CD++. This definition considers a fuel
model group number 9 (based on the NFFL model, which
classifies 13 different vegetation groups as fuel for fire),
a SE wind of 24.135 km/h and a cell size of 15.24 x
15.24 m.

Figure 5 shows a 20 by 20 Cell-DEVS representing the
terrain and vegetation. Every parameter defined
corresponds to the specification of the coupled Cell-
DEVS presented in section 2. In this case, the state
variables use a 0 value to indicate the absence of fire and
a value different to 0 indicates the time the fire has
started on that cell. The rules define the behavior of the
local computing function: if there is fire on a neighbor,
the cell will burn. For instance, the first rule checks if
the current cell is not burning ((0,0) = 0) and if the SW
neighbor has started to burn (0 < (1,-1)). If this condition
holds, the value will be (1,-1) + (21.552615/17.967136),
which is the time the fire will start in the cell. As the
spread ratio is 17.967136 mpm and a cell has a diagonal
of 21.552615 m, it will take (21.552615/17.967136)
minutes for the fire to reach the a cell once it has started
in its SW neighbor. Therefore, we use a delay of
(21.552615/17.967136)* 60000 ms after which the
present cell state will spread to the neighbors.

In [Ame, 01], we showed the results of this model using a
simple graphical tool, presented below.

Figure 6: Execution Rothermel’s CD++ [Ame, 01]

The following figure shows a 3D version of the
execution results for this model using CD++/Maya.
These visualizations are more realistic, and they can be
easily expanded to include terrain and climate
information, which could result in excellent facilities for
training and online visualization under decision-making
situations.

(a) Ignition cell at 00:00:00:000

(b) Fire spreading at 00:02:23:946

(c) Fire spreading at 00:02:59:049.

Figure 7: Visualization of the model in CD++/Maya

As we can see in Figure 7, at time 00:00:00:000 there is
an ignition on a cell in the border. The fire spreads
according to the rules defined in Figure 5, and in time
00:02:59:049 fire starts spreading in other directions,
following the spread rules.

5. VISUALIZING EVACUATION PROCESSES

In [Ame, 04] we defined an evacuation model based on
the rules introduced in [Wei, 04], which represents

people moving through a room or group of rooms.
People try to gather their belongings or related persons
and to get out through an exit door. The goal is to
understand where the bottlenecks can occur, and which
solutions are effective to prevent congestion.
Every person involved in the evacuation process is
modeled using Cell-DEVS, with a minimum set of rules
to characterize their behavior:
• Persons normally go to the closest exit.
• A person in panic goes in opposite direction.
• People move at different speeds.
• If the way is blocked, people can decide to move away

and look for another way.

The main rules of evacuation model can be found in
[Ame, 04] and [Wai, 05]. We used two different layers to
separate the rules that govern the people moving among
walls or isles from the orientation guide to an exit. Each
cell in the grid represents 0.4 m2 (one person per cell).
The orientation layer contains information that serves to
guide persons towards emergency exits. We assigned a
potential distance to an exit to every cell of this layer.
People will move in the room trying to minimize this
potential, which will quickly allow them to move to the
closer exit.

In Figure 8, the state value “1” represents walls or
obstacles, and the state value “2” represents exits. The
even state values are occupied cells and the odd ones are
empty cells. Each state value also represents the shortest
direction to the exit [Kha, 04; Ame, 04].

Figure 8. Orientation layer [Kha, 04; Ame, 04].

The second layer is used to describe the movement of
people being evacuated. The different values used to
represent the movement of people are summarized as
follows:
- Next movement direction. 1:W; 2:SW; 3:S; 4:SE; 5:E;
6:NE; 7:N; 8:NW
- Speed (cells per second: 1 to 5)
- Last movement direction (similar to the next
movement)

- Emotional state: the higher this value is the lower the
probability that a person gets in panic and finds a wrong
path.
- Number of Movement that increase the potential of a
cell
- Panic Level, represent the number of cells that a person
will move increasing the cell potential.

The model uses different rules define the person’s
behavior. We first define the path to follow using the
information found on the orientation plane. The basic
idea is to take the direction that decreases the potential
of a cell, building a path following the lower value of the
neighbors. The rules to control the people’s movement in
every direction. In all cases, the rule analyzes the eight
near neighbors to understand what direction the person
should take. The second set of rules governs the panic
behavior: a person will take a wrong path or will not
follow the orientation path. Figure 9 shows the
simulation results for the model.

Figure 9. Simulation results [Ame, 04].

As in the previous cases, the results we can find in Figure
8 and Figure 9 are complex to interpret and understand.
3D visualization results for these problems can help in
training, analysis of the evacuation problems, design
upgraded solutions to improve the evacuation, while
permitting online interaction with the simulation models.

In order to achieve these goals, we also defined an
advanced visualization model of evacuation. Figure 10
shows different instances and visualization angles for the
evacuation model. We have integrated two floors (each
of them represented as explained before), interconnected
through a stairway, which permits people moving from
one floor to the next one.

The figure illustrates the results in our 3D visualization
using CD++/Maya. Initially (Figure 10 a), we show the
state at time 00:00:08:000, in which people is
concentrating in the two exits of the house (the figure is
focused on the front door). Figure 10 b) shows a rotated
version, in which we see the back door at 00:00:09:000.

Maya permits such rotations and close-ups, such as the
one showed in Figure 10c). We finally see a close up
view of the last person left in the building.

Currently, we are exploring the integration between Cell-
DEVS models and advanced visualization models in
Maya, like the two figures presented in the Appendix
[Jem, 05]. This model represents a digital reconstruction
of a high-resolution, accurate, and interactive model of

the Chapel of the Convent of Our Lady of the Sacred
Heart in Ottawa, Canada, using Maya for visualization.
We will explore the definition of advanced behavioral
models using CD++/Maya, in which we will analyze
structural changes and its results under this highly
advanced visual environment. Likewise, we will study
advanced traffic models using exterior models like the
one on the Appendix.

(a)

(c)

(d)

Figure 10. (a) View of exit1 (time: 00:00:08); (b) view of Exit2 (time: 00:00:09), (c) close-up and different angle at
Exit1, (time: 00:00:08:500); (d) last person in the house (time: 00:00:08:500).

6. DEVSVIEW

Although Alias Maya is an excellent tool for creating
environments and objects to visualize simulations, the
installation size, workstation requirements, and licensing
issues of the Maya software prevent it from being the
optimal viewer for many projects. CD++/Maya can be
used in larger scale applications, in which the licensing
costs of the software and the hardware needs can be
justified, while being able to obtain very advanced and
highly precise results.

Nevertheless, we need to be able to provide alternative
solutions for projects in which such costs cannot be
justified. To permit increasing the potential base of users
of DEVS models with advanced visualization, we
developed DEVSView, an open-source visual engine also
running on OpenGL.

DEVSView, allows users to create visualizations from
the simulation log files outputted by CD++. DEVSView
has implicit support for Cell-DEVS models and uses
OpenGL and the OpenGL Utility Toolkit for hardware
accelerated rendering. DEVSView provides a graphical

user interface and a text file format for the creation of
visualizations.

Visualizations in DEVSView, consist of visual models
that translate CD++ log files into animations. Each visual
model corresponds directly to an atomic or coupled
model from a CD++ simulation. These visual models
contain visual states and event animations, which are used
to represent the simulation graphically. The user can set
up rules to trigger state changes and event animations,
within the GUI or in the visualization file, and the user
can use the GUI to playback the visualization.

The DEVSView visualization tool provides basic services
that enable simple visualizations, including:

- Design and Implementation of a windowing system
based on the OpenGL Utility Toolkit
- A windowing system with buttons, text fields, list
boxes, resizable windows, and other controls necessary
for a GUI. The rendering of the controls is accelerated by
OpenGL.
- Visual state transition, and event animation systems: a
collection of visual states and transition rules defining
what simulation events trigger state changes. The event
animation system is a collection of rules to define which
events trigger certain animations.
- Design and Implementation of an octtree scene
database to enable efficient view culling: visual models
are stored in an octary space partitioning tree. This data
structure recursively divides the scene extents into eight
regions, which enables efficient algorithms for rendering
scenes, object selection, and other frequently used scene
operations.
- Flexible file format allowing backwards compatibility
with older versions: the file format is a hierarchical
organization of information blocks. The parsing
mechanism allows a program to skip blocks that it does
not recognize.
- User Interface and Functionality to load, save, modify,
and playback visualizations

The following figure shows the 3D visualization results
of a model representing three balls that bounce of the
walls. The image shows the motion of the balls in the
grid.

Figure 11: A bouncing ball simulation.

7. CONCLUSION

The CD++ tool allows the simulation of complex
physical based on the DEVS and Cell-DEVS formalism.
To facilitate the users to use the CD++ simulator, we
extended its design to provide a number of services. The
3D visualization GUI enables sophisticated visualization
to better understand the results. The current facilities
have highly improved the use of the previously existing
tools, thus enhancing the analysis experience of the
modelers using the toolkit. The DEVSView tool provides
facilities for creating visualizations within an open-
source environment. The visual models have visual state
transition systems, which define how the simulation
models are graphically represented during visualization.
The visual models also have event animation rules to
create animations when certain events occur. Future work
will include loading Maya model files for complex
objects (like the figures in the Apendix), and more
advanced model positioning capabilities. DEVSView
could also benefit from many user interface
improvements. The visualization facilities of the
DEVSView tool are quite basic, but provide the
beginnings of a powerful tool. The tools are open source
and can be found in
http://www.sce.carleton.ca/faculty/wainer.

ACKNOWLEDGMENTS

This work has been partially supported by NSERC
(National Science and Engineering Research Council of
Canada), the Canadian Foundation for Innovation, Ontario
Innovation Trust and HP Canada.

REFERENCES

[Ali, 04] ALIAS Corp. "Maya 6 Features in Detail,” [Online
document accessed Oct. 2004], Available: http://www.alias.com/
eng/products-services/maya/file/maya6_features_in_detail.pdf.

[Ame, 01] J. Ameghino; A. Troccoli; G. Wainer. "Modeling and
simulation of complex physical systems using Cell-DEVS". In

Proceedings of 34th IEEE/SCS Annual Simulation Symposium,.
Seattle, U.S.A., 2001.

[Ame, 03] J. Ameghino, E. Glinsky, G. Wainer. "Applying Cell-
DEVS in models of complex systems". In Proceedings of the
2003 SCS Summer Computer Simulation Conference.
Montreal, QC. Canada. 2003.

[Ame, 04] J. Ameghino; G. Wainer: “Application of the Cell-
DEVS formalism for modeling cell spaces” In Proceedings of
AIS’2004, Jeju Island, Korea, Lecture Notes in Computer
Science, LNCS Vol. 3397. 2004.

[Jem, 05] M. Jemtrud et al. “An interactive model of the Chapel
of the Convent of Our Lady the Sacred Heart”.
http://www.cims.carleton.ca/research. [Accessed: April 2005]

[Kha, 05] A. Khan, G. Wainer. “A visualization engine based on
Maya for DEVS models”. In Proceedings of SISO Fall
Interoperability Workshop. San Diego, CA. U.S.A. 2005.

[Rot, 72] ROTHERMEL, R. “A mathematical model for
predicting fire spread in wildland fuels”. Research Paper INT-
115. Ogden, UT: U.S. Department of Agriculture, Forest Service;
1972. 40 p.

[Seg, 05] Segal, M.; Akeley, K., “Open GL 2.0 spec”, [Online
document], Available: http://www.opengl.org/ documentation/
specs/version2.0/glspec20.pdf [accessed 2005, Apr. 22]

[Wai, 01] G. Wainer; N. Giambiasi: "Timed Cell-DEVS: modeling
and simulation of cell spaces " In "Discrete Event Modeling &
Simulation: Enabling Future Technologies" Springer-Verlag, 2001.

[Wai, 02] G. Wainer. "CD++: a toolkit to define discrete-event
models" Software, Practice and Experience, Wiley, Vol. 32, No.3.
pp. 1261-1306, November 2002.

[Wai, 03] G. Wainer and W. Chen. "A framework for remote
execution and visualization of Cell-DEVS models". Simulation.
Vol. 79, pp. 626-647. November 2003.

[Wai, 04] G. Wainer. “Modeling and simulation of complex
systems with Cell-DEVS” In Proceedings of the Winter
Simulation Conference, Washington, DC. IEEE Press, 2004.
[Wai, 05] G. Wainer. “On-line repository of DEVS and Cell-
DEVS models”. [Last checked: Apr 22, 2005.]
http://www.sce.carleton.ca/faculty/wainer/wbgraf/.

[Wei, 04] J. R. Weimar. “Cellular automata model for ship
evacuation” [Online document, accessed 2004, Oct. 19], Available
on: http://www.jweimar.de/jcasim/schiff1.html).

[Wol, 02] Wolfram, S. "A new kind of science". Wolfram Media,
Inc. 2002.

[Zei, 00] B. Zeigler; T. Kim; H. Praehofer: "Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems" Academic Press, 2000.

APPENDIX

Figure 12: An interactive model of the Chapel of the Convent of Our Lady the Sacred Heart.

