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ABSTRACT: CD++ is a modeling and simulation tool that was created to study complex systems by using a discrete-
event cell-based approach. It was successfully employed to define a variety of models for complex applications using a 
cell-based approach. In order to improve model validation and analysis, we introduced a 3D visualization engine, 
which is based on the Maya 3D visualization tool and its scripting language. The application allows virtual worlds to 
be developed using the Maya visualization environment, and permits interaction with DEVS models built in CD++. The 
result is an enhanced simulation environment, which permits improved experimentation. We discuss how these two 
applications interact, and how models defined earlier in CD++ can interoperate with advanced visualizations built 
based on Maya 3D models. 
 
1. Introduction 
 
At present, a large number of modeling and simulation 
techniques and tools have been developed to deal with 
complex systems. A technique that is gaining popularity 
in recent years is called Discrete Event Systems 
Specification (DEVS) [1], a framework for the 
construction of discrete-event hierarchical modular 
models, allowing for model reusing. In DEVS, basic 
models (atomic) are specified as black boxes, and they 
can be integrated together forming a hierarchical 
structural model (coupled). Cell-DEVS [2] extended the 
DEVS formalism allowing the simulation of discrete-
event cellular models. The approach extends traditional 
Cellular Automata (CA) [3] defining each cell in a cell 
space as a DEVS atomic model and the space as a DEVS 
coupled model, including a flexible way of defining the 
timing of each cell.  
 
We developed an environment, called CD++ [4], which 
implements DEVS and Cell-DEVS theories. CD++ 
enabled us to solve successfully a variety of complex 
problems [5, 6, 7]. CD++ also provides remote access to a 
high performance DEVS simulation server. The end user 
tools were organized as a simulation client applied to the 
CD++ simulator. Using these facilities, the users can now 
develop and test their models in local workstations, and 
submit them to be simulated in a remote CD++ server 
executing in a high performance platform. Then, they can 
receive, visualize and analyze the results on a local 
computer, improving model definition and execution.  
 
Visualization tools are crucial in helping to understand 
better the behavior of these systems. CD++ was recently 
provided with facilities for 2D and 3D visualization using 

VRML and Java [8]. This 3D GUI enables sophisticated 
visualization of Cell-DEVS models only, and DEVS 
models can only be visualized in 3D; thus we have 
focused on new extensions that can be applied to both 
DEVS and Cell-DEVS. The interface here presented is 
based on the Maya modeling environment [9]. We will 
show how advanced DEVS models can be visualized 
using Maya facilities, giving a few examples of 
application, which permit discussing interoperability of a 
M&S tool based on DEVS and an advanced generic 
visualization environment like Maya. 
 

 

 
Figure 1: CD++ server architecture 

 
2.  DEVS, Cell-DEVS and CD++  
 
A real system modeled with DEVS is described as a 
composite of sub-models, each of them being behavioral 



atomic) or structural (coupled). A DEVS atomic model 
can be informally described as in Figure 2.  
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Figure 2: Informal Description of an Atomic Model 
 
Each atomic model can be seen as having an interface 
consisting of input (x) and output (y) ports to 
communicate with other models. Every state (s) in the 
model is associated with a time advance (ta) function, 
which determines the duration of the state. Once the time 
assigned to the state is consumed, an internal transition is 
triggered. At that moment, the model execution results are 
spread through the model’s output ports by activating an 
output function (λλλλ). Then, an internal transition function 
(δδδδint) is fired, producing a local state change. Input 
external events (those events received from other models) 
are collected in the input ports. An external transition 
function (δδδδext) specifies how to react to those inputs, using 
the current state (s), the elapsed time since the last event 
(e) and the input value (x).  
 
A DEVS coupled model is composed of several atomic or 
coupled sub-models, as in Figure 3. 

 
Figure 3: Informal Description of a Coupled Model 

 
Coupled models are defined as a set of basic components 
(atomic or coupled), which are interconnected through the 
models’ interfaces. The models’ coupling defines how to 
convert the outputs of a model into inputs for the others, 
and how to handle inputs/outputs from/to external models. 
 
Cell-DEVS has extended the DEVS formalism, allowing 
the implementation of cellular models with timing delays. 
A cellular model is a lattice of cells holding state 
variables and a computing apparatus, which is in charge 
of updating the cell state according to a local rule. This is 
done using the present cell state and those of a finite set of 

nearby cells (called its neighborhood). Each cell is 
defined as a DEVS atomic model, and it can be later 
integrated to a coupled model representing the cell space. 
Each cell uses N inputs to compute its next state. These 
inputs, which are received through the model's interface, 
activate a local computing function (ττττ). A delay (d) can 
be associated with each cell. The state (s) changes can be 
transmitted to other models, but only after the 
consumption of this delay.  
 
Once the cell behavior is defined, a coupled Cell-DEVS 
can be created by putting together a number of cells 
interconnected with their neighbors. A Cell-DEVS model 
is informally presented in Figure 4. 
 

 
Figure 4: Description of a Cell-DEVS coupled model. 

 
CD++ [4] is an M&S toolkit that implements DEVS and 
Cell-DEVS theory. Atomic models can be defined using a 
state-based approach (coded in C++ or an interpreted 
graphical notation), while coupled and Cell-DEVS 
models are defined using a built-in specification language. 
We will show the basic features of the tool through an 
example of application: a model of a car factory, which 
tries to coordinate different warehouses and assembly 
lines to make sure their productivity levels are suitable. 
The factory only manufactures one type of car and each 
sub-factory manufactures only one type of auto part. Each 
sub-factory sends its completed component to the Final 
Assembly Sub-factory where the automobile is assembled 
[10]. 
 
The model is defined as a DEVS coupled model, using all 
of the different components in the factory: four sub-
factories devoted to manufacture different parts of a car 
(Chassis, Body, Transmission Case and Engine), and a 
warehouse devoted to the final Assembly. To make an 
automobile, only one of each component is needed (i.e. 1 
Chassis + 1 Body + 1 Transmission Case + 1 Engine). To 
make an Engine we need four Pistons and one Engine 
Body (i.e. 4 Piston + 1 Engine Body = 1 Engine) [10]. 
The structure of this model is depicted in Figure 5. In 
order to build this application, we need to define and 
develop each of the atomic models depicted in Figure 5. 
 



 

 
Figure 5: The auto factory layout [10]. 

 
Model EngineAssem::EngineAssem(const string 
&name):Atomic(name), in_piston(addInputPort( 
"in_piston") ), in_engineBody(addInputPort( 
"in_engineBody") ), done(addInputPort("done") ), 
out( addOutputPort("out")), manufacturingTime( 
0, 0, 10, 0 ) { } // Model constructor 
 
Model &EngineAssem::externalFunction( const 
ExternalMessage &msg ) { 
 if( msg.port() == in_piston ) {  

// parts received one by one 
 elements_piston.push_back( 1 ) ; 
 if( elements_piston.size() == 1 &&    

   elements_engineBody.size()>=1) 
       holdIn(active, manufacturingTime ); 
 //pushback if more than 1 received 
 for(int i=2;i<=msg.value;i++)  
            elements_piston.push_back( 1 ) ; 
 } 
 
 if( msg.port() == in_engineBody )  {
 elements_engineBody.push_back( 1 ) ; 
 if( elements_engineBody.size() == 1 &&  
           elements_piston.size()>=1) 
 holdIn(active, manufacturingTime ); 
 //pushback if more than 1 received 
 for(int i=2;i<=msg.value;i++)  
            elements_engineBody.push_back( 1 ) ; 
 } 
 
 if( msg.port() == done ) { 
    elements_piston.pop_front() ; 
 elements_engineBody.pop_front() ; 
 if(!elements_piston.empty() &&   
              !elements_engineBody.empty()) 
 holdIn(active, manufacturingTime ); 
 } 
} 
 
Model &EngineAssem::internalFunction( const 
InternalMessage & ) {  passivate(); } 
 
Model &EngineAssem::outputFunction( const 
InternalMessage &msg ) { 
 sendOutput( msg.time(), out, elements.front());  
} 

Figure 6: Engine Assembly Line in CD++ 

As showed in Figure 6, we have defined each component 
as a DEVS atomic model, and implemented it using 
CD++. The model in Figure 6 represents the behavior of 
the Engine Assembly warehouse model. We start by 
defining EngineAssem as a subclass of the Atomic model 
class, and we also include the definition of the I/O ports 
needed by the model (in_piston and in_engineBody, 
which are used to receive the required parts). The out port 
is an output port used for assembled engines, while done 
is a feedback port we use when an engine is ready (in that 
way, we can check if there are enough stock of 
components, and we can start building a new engine as 
soon as one of them leaves the warehouse).  
 
Most of the logic of the model is located in the external 
transition (δext). This function determines what to do with 
the incoming parts. If a piston is received, is stocked until 
the number of pistons needed is available. The next 
internal event (δint) is scheduled by the holdIn method, 
which implements the time advance function (ta). When 
the time indicated by the variable manufacturingTime 
expires, the output function (λ) generates a ready part. 
The internal transition function simply passivates the 
model (i.e., sets the next internal transition time to 
infinity), waiting for the next part to come from other 
parts of the factory. 
 
Once every atomic model in the hierarchy is defined (as 
in Figure 6), we can build a coupled model following the 
model architecture presented in Figure 5. Figure 7 
presents the definition of such a model in CD++. The top 
model here is composed of one coupled models 
(engineSubFact) and four atomic components (chassis, an 
instance of the Chassis atomic model; body an instance of 
the Body atomic model; trans, an instance of the 
Trans[mission] model, and finalAssem[bly]). The 
engineSubFact contains three components, as showed in 
Figure 5. The input and output ports define the model’s 



interface, and the links between components define the 
model’s coupling, following the structural description in 
Figure 5. 
 
[top] 
components : chassis@Chassis body@Body 
trans@Trans finalAssem@FinalAssem engineSubFact 
out : out  
in : in 
Link : in in@chassis 
Link : in in@body 
Link : in in@trans 
Link : in in@engineSubFact 
Link : out@finalAssem out 
Link : out@finalAssem done@finalAssem 
Link : out@chassis in_chassis@finalAssem 
Link : out@chassis done@chassis 
Link : out@body in_body@finalAssem 
Link : out@body done@body 
Link : out@trans in_trans@finalAssem 
Link : out@trans done@trans 
Link : out@engineSubFact in_engine@finalAssem 
 
[engineSubFact] 
components : piston@Piston engineBody@EngineBody 
engineAssem@EngineAssem 
out : out 
in : in 
Link : in in@piston 
Link : in in@engineBody 
Link : out@piston in_piston@engineAssem 
Link : out@piston done@piston 
Link : out@engineBody in_engineBody@engineAssem 
Link : out@engineBody done@engineBody 
Link : out@engineAssem out 
Link : out@engineAssem done@engineAssem 

Figure 7: Specification of a Coupled Model in CD++ 
 
Once this model is completely defined, we can execute it 
within a given experimental framework, and analyze the 
simulation results, which are provided in a log file with 
the format shown in Figure 8. 
 
X/00:000/top/in/2 to chassis 
X/00:000/top/in/2 to body 
X/00:000/top/in/2 to trans 
X/00:000/top/in/2 to enginesubfact 
D/00:000/chassis/02:000 to top 
D/00:000/body/02:000 to top 
D/00:000/trans/02:000 to top 
X/00:000/enginesubfact/ in/2 to piston 
X/00:000/enginesubfact/ in/2 to enginebody  ... 
Y/02:000/chassis/out/1 to top 
D/02:000/chassis/... to top 
X/02:000/top/done/1 to chassis 
X/02:000/top/in_chassis/1 to finalass ... 
*/02:000/top to enginesubfact 
*/02:000/enginesubfact to enginebody 
Y/02:000/enginebody/out/1 to enginesubfact 
D/02:000/enginebody/... to enginesubfact 
X/02:000/enginesubfact/done/1 to enginebody 
X/02:000/in_enginebody/1 to engineassem 
D/02:000/enginebody/02:000 to enginesubfact 
D/02:000/engineassem/02:000 to enginesubfact ... 

Figure 8: Excerpt from the auto factory log file. 
 

In this figure, we can see that at 01:000, a purchase order 
arrives, and it is transmitted to the factory (X-messages). 
According to the manufacturing time, we receive outputs 
(Y-messages) from each of the components. By analyzing 
the log file, we can see the activation of the different parts 
in the plant, and each of the elements involved in the 
manufacturing simulation. 
 
CD++ also includes an interpreter for Cell-DEVS models. 
The model specification includes the definition of the size 
and dimension of the cell space, the shape of the 
neighborhood and borders, as presented in figure 3. The 
cell’s local computing function is defined using a set of 
rules with the form: POSTCONDITION DELAY 
{PRECONDITION}. These indicate that when the 
PRECONDITION is satisfied, the state of the cell will 
change to the designated POSTCONDITION, whose 
computed value will be transmitted to other components 
after consuming the DELAY. If the precondition is false, 
the next rule in the list is evaluated until a rule is satisfied 
or there are no more rules. Figure 9 shows the definition 
of a very simple example.  
 
[life] 
size: (20,20) delay : transport border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) 
(0,1) (1,-1)  (1,0)  (1,1) 
localtransition : new-life-rule 
 
[new-life-rule] 
Rule: 1 10 {(0,0)=1 and (truecount=3 or 

truecount=4) } 
Rule: 1 10 { (0,0) = 0 and truecount = 3 } 
Rule: 0 10 { t } 

Figure 9: Definition of the Life game. 
 
The rules in this example say that a cell remains active 
when the number of active neighbors is 3 or 4 (truecount 
indicates the number of active neighbors) using a 
transport delay of 10 ms .  If the cell is inactive ((0,0) = 
0) and the neighborhood has 3 active cells, the cell 
activated (represented by a value of 1 in the cell). In every 
other case, the cell remains inactive (t indicates that 
whenever the rule is evaluated, a True value is returned). 
 
In [11], we presented a definition of maze-solving 
algorithms using Cell-DEVS and their implementation 
using CD++. When these rules are processed, the 
simulation results show the algorithm effectively blocking 
off every dead-end path in the maze.  Every free cell that 
is accessible from only one direction must be a dead end, 
therefore cannot be part of the solution, and is therefore 
turned into a wall cell. The simulation repeats this 
procedure until the system is stable and all the cells are 
wall cells except for the cells that form the solution to the 
maze. In the case where there is no solution to the maze, 
all the cells become wall cells [11]. 
 



Figure 10 shows an excerpt from a draw file generated 
from CD++ log files, showing a simple maze in a 20x20 
cellular array solving itself. As we can see, studying the 
simulation results based on these notations can be error-

prone and cumbersome, more so for a specialist without 
much experience in computer programming. Instead, the 
provision of a graphical environment can improve the 
results obtained, as discussed in the following sections. 

  

Figure 10: Three instances from the maze model draw file. 
 
3. Visualization of 3D Models in MAYA 
 
Maya [9] is a powerful application for three dimensional 
modeling and animation, using special effects and 
rendering. It allows one to create digital imagery, three 
dimensional animation and visual effects. The Maya 
software interface is fully customizable and it allows 
users to extend their functionality within Maya by 
providing access to the Maya Embedded Language 
(MEL). Using MEL, programmers can tailor the user 
interface to their needs and to add in-house tools. Since 
MEL is recognized by embedded web browsers, MEL 
commands can also be issued form a webpage. Maya’s 
modeling and animation tools were used to create three-
dimensional environments for Cell-DEVS and DEVS 
models. To do that, the user must use Maya facilities to 
create visual scene files, while an application written in 
MEL permits to create a user interface that allows CD++ 
log files to interact with Maya, and to visualize the 
corresponding model in a 3D visual environment. This 
instantiates a MEL script specific to a particular model, 
and animates the three-dimensional world (scene file) in 
accordance with the CD++ log file. Figure 11 shows the 
relationships between these procedures. 
 
The logFileAnimator method acts as an interface 
requesting the user to select a particular model, as showed 
in Figure 12. The user has two choices after providing the 
required information, the “Print File Contents” button will 
instantiate readFile and the “Animate” button will 
instantiate animator. The readFile method locates and 
opens the file corresponding to the file name provided for 

the express purpose of reading it and printing the contents 
to the Script Editor Window in Maya, as showed in 
Figure 13. In this way, the user can analyze the detailed 
results found in the log files. 
 

 
Figure 11: Architecture of the visualization environment 

 
The animator method instantiates the animation 
procedure for that particular model, associating CD++ 
simulation results with graphic scenes defined in Maya. 
Each instance of the animation procedure opens the log 
File, reads it and stores pertinent information, which is 
then used to animate the objects in the three dimensional 
scene opened. All the information pertaining to a 
particular object from the log file is used to animate that 
same object in the scene file.  
 
The translateTime method is in charge of accurately 
following the log File, and making the animation to match 
time with the time present in the simulation log.  
 
 



 

Figure 12: The logFileAnimator dialogue box. 
 

Figure 13: The Script Editor Window displays the contents of the log file. 



The maFileReader method is called by MEL to obtain the 
initial state values of each cell for Cell-DEVS models. 
This procedure parses the coupled model files and stores 
the initial state values of each cell. Then it animates the 
scene file for time 00:00:00:000 accordingly. 
 

We have applied the toolkit to different modeling 
examples, including the two presented in the previous 
section. Figure 14 shows the visual results of the Maze 
model, when we apply our new visualization 
environment. As we can see, the visual results impact the 
understanding of the maze-solving technique when 
compared with the previous results. 

 

        
 

        
Figure 14: Perspective View of the maze model. 

 
Likewise, Figure 15 shows an animation snapshot 
obtained when executing a 3D version of the Factory 
model Figure 15 a) shows the visual results of the model 
at time 02:000, in which the log file presented in Figure 8 
shows that the three sub-factories have generated outputs 
(chassis, body and transmission). Reviewing Figure 8, we 
can see Y-messages (representing outputs) from the 

chassis and body models. These are represented as parts 
leaving the warehouses, and being directed to the 
assembly factory. At time 02:000 all three outputs start 
moving towards the Final Assembly sub-factory. Figure 
15 b) shows the result at 04:000 (when three more parts 
are ready to be assembled, and the parts previously 
arrived at 02:000. 

 



 
(a) 

 

 
(b) 

Figure 15: Rendered View of the auto factory animation (a) 02:000 (b) 04:000. 
 
We also employed these facilities for the visualization of 
models of virtual cells. In [12], we developed a model of 
glycolysis, the sequence of reactions occurring in the cells 
that permit to break down one glucose molecule into two 
molecules of pyruvate. There are ten steps in glycolysis 
that result in the production of Nicotinamide adenine 
dinucleotide (NADH) and Adenosine TriPhosphate (ATP) 
[13]. Each step in the sequence is controlled by a specific 
enzyme. The glycolysis sequence can be divided into two 
phases, where in the first phase glucose is converted into 
two Glyceraldehyde-3-Phosphate molecules (GDP), and 
in the second phase two pyruvate molecules.  

 
Each step in the glycolysis pathway was defined as a 
DEVS atomic model specification, which was used to 

analyze basic properties of the models. Afterwards, each 
model was implemented in CD++, and tested separately. 
Once every model was thoroughly tested, a coupled 
model was built, connecting all the sub-models previously 
defined, each representing a step. Different simulation 
experiments were conducted [12]. Figure 16 shows the 
visual results of the execution of two of the steps.  Figure 
16 a) shows the end of Glycolysis step 1, where two 
Alpha-Gluco-Phospate (G-6-P) and two Adenosine 
DiPhosphate (ADP) are formed. Figure 16 b) shows step 
6, which begins at the appearance of 3 molecules of 
Nicotinamide Adenine Dinucleotide (NAD+). 
 



 

 
(a) 

 
 

 
(b) 

Figure 16: Glycolisis model (a) step 1 (b) step 6. 
 
A related model was focused on the Krebs Cycle, a 
sequence of enzyme-catalyzed reactions in the cell. 
Glycolysis and Krebs cycle are two major stages in the 
process of the metabolism of glucose. Glycolysis is the 
first stage and breaks down glucose to Pyruvate, where as 
the Krebs Cycle is the second stage. Each turn of this 
cycle produces two molecules of carbon dioxide and eight 
atoms of hydrogen [12]. 

 In this case, we also defined the behavior of each stage as 
a DEVS atomic model specification, reproducing the 
behavior of inputs and outputs observed for each step. 
Figure 17 shows a snapshot one of the reactions in the 
Krebs Cycle Animation done in CD++/Maya: the 
formation of Acetyl CoA, and the production of Carbon 
dioxide and NADH as byproducts. 

 



 

 
Figure 17: The Krebs Cycle: Acetyl CoA is formed. 

 
We also defined an advanced visualization model of 
evacuation. These models that could predict and present 
the results of human beings evacuating structures, such as 
buildings, ships and houses etc, during an emergency 
[14]. This model is based on a cellular automata model 
for ship evacuation [15].  We will show how the results of 
our visualization environment facilitate and ease the 
interpretation of the simulation results. 
 
In this model, the rules calculate the shortest distance of 
each cell to the nearest exit and assign people randomly to 
the cells. The basic idea was to simulate the behavior and 
movement of every single person involved in the 
evacuation process. We used two planes: one for the floor 
plan of the structure and the people moving, and the other 
for orientation to an exit. Each cell in the grid represents 
0.4 m2 (one person per cell). The orientation layer 
contains information that serves to guide persons towards 
emergency exits. We assigned a potential distance to an 
exit to every cell of this layer. The persons will move for 
the room trying to minimize the potential of the cell in 
which they are. The Cell-DEVS model characterizes a 
person's behavior: a normal person goes to the closest 
exit; a person in panic goes in opposite direction to the 
exit. People move at different speeds; if the way is 
blocked, people can decide to move away and look for 
another way. 

 
In figure 18 the state value “1” represents walls or 
obstacles, and the state value “2” represents exits.  The 
even state values are occupied cells and the odd ones are 
empty cells. Each state value also represents the shortest 

direction to the exit. Eventually all cells become empty as 
people leave the structure. 
 

 
Figure 18: An Excerpt from a Ship Evacuation draw file. 

 
As seen in figure 18 this visualization of the simulation 
results is complex to interpret and understand. When 
these results are integrated into the new visualization 
engine, the results become easier to observe. Figure 19 
illustrates the results obtained through Maya. Compare 
figure 18 with Figure 19 a), which shows the same state 
than the one presented in Figure 18, and the beginning of 
the animation at time 00:00:00:000. Figure 19 b) shows 
people moving towards the exits and evacuating the 
building at time 00:00:03:000.Then in figure 19 c) we 
observe the animation at time 00:00:03:200, and finally in 
figure 19 d) at time 00:00:06:000 the building is empty. 
 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19: The Ship Evacuation Model at time (a) 00:00:00:000 (b) 00:00:03:000 (c)00:00:03:200 and (d) 00:00:06:00  
 

 
Figure 20: A close up at time 00:00:05:240  

 
 



In Figure 20 we show a close up  view of the ship 
evacuation animation at time 00:00:05:240 when only 
four people are left in the building. 
 
4. Conclusion 
 
Simulation is becoming increasingly important in the 
analysis and design of complex systems. CD++ is a tool 
for the simulation of complex physical systems that can 
be used to simulate a variety of models. To facilitate the 
users to use the CD++ simulator, we extended its design 
to provide a number of services. The 3D visualization 
GUI enables sophisticated visualization of DEVS and 
Cell-DEVS models. To better understand the results, the 
user can select shapes to represent a node in the 3D space, 
select different colors, shapes, edit scenes, etc. The 
current facilities have highly improved the use of the 
previously existing tools, thus enhancing the analysis 
experience of the modelers using the toolkit. 
 
The approach relies on the use of DEVS methodology and 
it is supported by the use of CD++, a DEVS tool that has 
been built following the formal definitions of DEVS 
models. The use of DEVS enables proving the correctness 
of the simulation engines and permits to model the 
problem even by a non-computer science specialist.  The 
high level language of CD++ reduces the algorithmic 
complexity for the modeler while allowing complex 
cellular timing behaviors. DEVS allows independence of 
the simulator, the models developed, the experiment 
conducted and the visual engine, while maintaining unity 
in the model specification and tool interoperation.  
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