
Creating Spatially-Shaped Defense Models
Using DEVS and Cell-DEVS
Gabriel Wainer

Rami Madhoun

Department of Systems
and Computer Engineering
Carleton University
Ottawa, ON K1S-5B6 Canada
gwainer, rmadhoun @sce.carleton.ca

JDMS, Volume 2, Issue 3, July 2005 Pages 121–143
© 2005 The Society for Modeling and Simulation International

In recent years, new techniques for military modeling and simulation provided the practitioner with advanced
mechanisms to describe complex applications. Some of the recent efforts in the field tried to address important issues
in open research areas, ranging from agent-based modeling, multiresolution/hierarchical models, hybrid models, and
composability. We show how to address some of these issues through the application of a formal modeling and simulation
technique and its application to the domain of defense applications. Our efforts consider the construction of multimodels,
including components that can be defined as spatially-shaped models, using the Cell-DEVS and DEVS formalisms. DEVS
is a mathematically sound framework in which a system is modeled by dividing it into a number of components (each of
them having a discrete state and interacting with the environment via input/output ports). Cell-DEVS is an extension to
DEVS that formulates the execution of cellular models with explicit timing delays. We show how these concepts can be
applied to different defense-related spatial models, including a radar transmitter/receiver, a target-seeking device, and
land battlefield models.

Keywords: DEVS, Cell-DEVS, cellular models, spatial models

1. Introduction

In recent years, a wide range of novel techniques
became popular for developing defense modeling
and simulation (M&S) applications. As discussed
by Palmore [1], there are obvious reasons for using
simulation in this area: although warfare is common,
we cannot just generate conflicts to study the results of
different combat strategies, weapons, new equipment,
or advanced technologies. In addition, during warfare
it is complex to obtain real data and make accurate
observations. Likewise, making deliberate changes in
the face of combat is extremely difficult [1]. Traditional
analytical models cannot cope with the level of
complexity of the systems of interest in this field,
making M&S a useful tool, as it provides means for
better understanding and analyzing the underlying
phenomena, permitting evaluation of combat

situations, equipment, training, and logistics. Using
simulation, users can make decisions by observing
simulated results using realistic scenarios, examining
the implications of change [2].
	 Current approaches do not suffice to achieve success
in the complex models needed for defense applications.
The feasibility of applying existing techniques,
methodologies, and tools for modeling of information
operations and C4ISR can be very mixed, mostly due to
the lack of common, clear definitions and language to
communicate ideas and concepts [1]. One of the main
problems is derived from the advent of distributed
simulation techniques and middleware (HLA, DIS,
CORBA, SOA, etc.), which made possible reusing
and integrating simulation artifacts in geographically
remote areas. Consequently, in recent years we have
witnessed a tremendous amount of research focused
on advancing the theoretical foundations of simulation
science to achieve these goals [3].
	 As discussed by Davis and Zeigler [4], we still lack the
ability to apply the necessary theory, tools, and primers
for building defense applications, although there are

JDMS vol 2 no 3 Jul 2005 reg.ind121   121 3/14/2006   1:29:26 PM

Volume 2, Number 3	122 JDMS

Wainer and Madhoun

insights in the literature that provide a foundation.
Some of the recent efforts in the field tried to address
important issues in the following open research areas
for defense applications: agent-based modeling,
advanced visualization methods, multiresolution
modeling, model abstraction, hierarchical modeling,
advanced simulation paradigms, automated model
verification, dynamic structure M&S, multimodeling/
hybrid modeling, and composability. In this article,
we show how to address some of these issues through
the application of a formal modeling mechanism and
its application into the domain of defense M&S. The
proposal is based on sound theoretical techniques,
which involve mathematics and software engineering.
We show a development of these ideas and we use
them in implementing different military models.
	 Our efforts consider the construction of multimodels,
including components that can be defined as cell
spaces. The Cellular Automata (CA) formalism [5] is
one of the techniques that have been widely used to
describe complex systems with these characteristics.
CA evolve by updating the state of every cell in the
space synchronously and in parallel, by using a
function that executes locally in each cell. The discrete-
time nature of this formalism constrains the precision
and efficiency of the simulated models. Likewise, CA
cannot be easily composed or hierarchically integrated
into a multimodel, or dynamically change their
structure or behavior. Instead, Cell-DEVS [6] allows
addressing of these issues. Cell-DEVS models are
defined as a space composed of individual cells that
can be coupled to form a complete cell space. Each
cell is specified using DEVS [2], and it is defined by
very simple rules and explicit timing delays. Atomic
cellular models can be coupled with others defined in
different specification languages/formalisms, forming
a multicomponent model. DEVS is a hierarchical and
modular M&S framework, based on systems theory.
	 DEVS relies on dividing the system under study
into atomic models; each of which can exist in specific
state at any point of time and has input/output ports
to interact with other models and with the external
world. This allows for building very complex models
by connecting different atomic models in a hierarchical
manner.
	 These techniques were successfully applied to
address the open questions discussed early in other
fields of application. Using DEVS and Cell-DEVS,
we can construct agent-based models of a spatial
nature (which are easily integrated in advanced
visualization environments). We use a hierarchical
modeling mechanism, which showed that it could
be applied for multiresolution modeling, and define
multiple submodels at different levels of abstraction.
Integration of multiple views for each submodel is

possible, allowing the combination of different models
in an efficient fashion. As the models are built as
mathematical entities, we can prove basic properties
regarding the structure and behavior of the models,
while having a sound basis to build simulation tools
according to the formal specifications. Models can
be integrated into multiparadigm simulations (as
different authors have mapped different discrete-
event formalisms into DEVS, including Petri nets, state
machines, state charts, queuing models, etc.). Thanks
to recent advances in the field, we can also build
hybrid multicomponent models, including continuous
subcomponents defined by varied techniques that
showed that they could be mapped into DEVS (ODEs,
PDEs, bond graphs, Modelica, etc.). Because of the
modularity of the approach, a wide variety of on-
line control elements—including not only classic
control mechanisms, but also neural networks, fuzzy
logic, or expert systems—can be utilized. Cell-DEVS
simulations are also more efficient than CA in terms
of the memory use and computational power, as each
cell in Cell-DEVS is only activated when it receives an
input from its neighbor that is supposed to change its
current state.
	 We carried out different experiments using the
CD++ toolkit [7], a simulation engine that can be used
to execute DEVS/Cell-DEVS models, which is a reliable
engine that supports different platforms such as stand-
alone, real-time, and parallel environments. In the
following sections, we will discuss how this tool has
been used to build different defense applications based
on earlier successful efforts, and we will discuss how
these methods and tools can be applied to address the
different aspects introduced in this section.

2. Background

As mentioned in section 1, current military applications
need further advances and research in numerous
important fields.

Agent-based modeling: This approach is based on
the M&S of very complex systems as integrated
by multiple agents that interact with each other
(and with the surrounding environment) using
very simple local rules. In the context of military
applications, agents can include explicit decision
mechanisms to make adaptive choices, instead of
just following predetermined courses of action.
Agents provide alternative approaches, ranging
from extreme decentralization (small units with
clear mission objectives) to more traditional
centralized control [8].
Advanced visualization methods: The goal is to
provide a deeper real-world understanding and
to help in exploring the large set of numerical

•

•

JDMS vol 2 no 3 Jul 2005 reg.ind122   122 3/14/2006   1:29:26 PM

Volume 2, Number 3	 JDMS 123

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

data produced in the simulation execution, which
is a concern for model validation. It also allows
the creation of mechanisms to exploit human
capabilities.
Multiresolution modeling: This technique, which
permits combining models at different levels of
resolution, proved to be very useful as it allows us
to model the fact that we interact with the world
at many different levels. As computing power
has increased, multiresolution modeling allows
analysis with models at one level of resolution, but
occasionally calls to higher-resolution modules
[3]. In general, low-resolution models are useful
to understand the system as a whole, permitting
the consideration of general problems and
analysis of different choices available in a more
abstract way. We also need these models when
there is not enough detailed information, or when
computational costs are extremely expensive
for a higher resolution model. High-resolution
models, instead, are useful for understanding the
underlying phenomena in detail and reasoning
about them with detailed knowledge. This allows
the represention of varied fidelity, ranging from
detailed (engineering level) to more aggregated
models (theater/campaign level) [8]. This also
allows the use of high-resolution information,
and analysis of detailed behavior with the right
level of accuracy. It has been suggested that it
is crucial to design military models to produce
integrated families crossing levels of resolution
[4].
Model abstraction: The concept of model abstraction
is closely related with the idea of multiresolution
modeling. We need to provide mechanisms for
describing the basic behavior of a model without
all the details. A model must capture the essence
of the behavior of the real system of interest at the
right level of detail (abstraction) [3].
Hierarchical modeling: These techniques, in which
you can replace a model by an equivalent one
constructed as a multicomponent, have shown
to be able to link the concepts of multiresolution
modeling and model abstraction [2]. In many
cases, we need a detailed model of the system
of interest, which results in a simulation with
thousands of entities. In those cases, model
execution can be unfeasible; therefore, it is useful
to aggregate the submodels, integrating detailed
subcomponents into a higher level entity with
fewer details. This hierarchical composition
should allow keeping consistency when
compared with the multimodel component.
On the other hand, sometimes it is necessary to

•

•

•

replace a coarsely modeled entity with a more
detailed version. This requires mapping all the
input/output associated with each version so that
their interconnections to the rest of the system
can be still resolved [8].
Advanced simulation paradigms: Traditional
modeling paradigms (discrete-event, continuous
system, Monte Carlo, etc.) are being slowly
replaced by new modeling techniques. Gore [8]
presented a non-comprehensive list of advanced
techniques that includes object-oriented
simulation, qualitative/fuzzy simulation,
generative analysis, multimodeling/multifaceted
modeling, Petri nets, neural nets, parallel/
distributed simulation, concurrent simulation,
web-based simulation, system dynamics
modeling, adaptive/heuristic simulation, and
man/hardware-in-the-loop simulation. Models
and approaches such as CA, fuzzy logic, and
neural networks are seen as useful paradigms
for this field of application, as they can generate
complex behavior from sets of relatively simple
underlying rules. Using these techniques, we can
find emergent behavior in a complex adaptive
system without the need to include central control
mechanisms/equations. Instead, basic bottom-up
rules will define the higher level interactions of
the components [8].
Automatic model verification: The use of formal
modeling techniques permits automating
model verification. Kim et al. [9] presented an
approach for discrete-event modeling based
on an operational specification for the behavior
of a model and an assertional specification for
its temporal properties. A model’s verification
is based on a language acceptance checking
mechanism. In Wainer et al. [10], we presented
an attempt at adding automated verification
capabilities to the CD++ toolkit. Specifically,
automated rule verification, based on meeting
basic logical properties in cellular models and
coupled model definitions, were included. We
also created a mechanism for automating the
verification of multicomponent model coupling.
Finally, we automated the creation of test case data
to generate test inputs and collect the outputs.
Experiments did show that such infrastructure
could indeed help the designer to find defects in
the models.
Experimental Framework: The idea of the
experimental framework (EF) [2] can be regarded
as a vital component of the simulation setup
phase. An EF permits documenting of objectives
and issues to be addressed by the modeler

•

•

•

JDMS vol 2 no 3 Jul 2005 reg.ind123   123 3/14/2006   1:29:27 PM

Volume 2, Number 3	124 JDMS

Wainer and Madhoun

into conditions to run the experiments [11].
This allows the user to set up completely an
experiment involving multiple executions of a
single simulation with parameters changed for
each run, or execution of multiple simulations
with varying parameters [3]. EFs permit
automating and documenting any choices made
by the simulationist (e.g., the level of resolution
and accuracy used). In Wainer et al. [10] and
Labiche and Wainer [12], we discussed how to
relate the concept of EF to software engineering
techniques. We proposed a mechanism for
integrating software testing techniques with
EFs for the verification and validation of DEVS
models, discussing open research paths for this
field.
Dynamic structure M&S: In many cases, system
structure changes in the course of time. For
example, a battle communication system might
experience failures, upgrades on the equipment
used for each of the nodes, variations in the
bandwidth, etc. Such dynamic behavior is crucial
for a military organization. Although significant
research has been done on such techniques
[13], most existing simulation languages do not
support them [4].
Multimodeling/Hybrid modeling: simulations
should be able to include both continuous
and discrete-event model components (hybrid
models). For instance, the behavior governing the
physics of a missile is described with differential
equations (continuous modeling technique),
while the missile digital control system might be
better modeled using a discrete-event formalism.
In the last few years, different approaches
developed tried to simulate continuous systems
under the discrete-event paradigm. This presents
some advantages over discrete-time simulation,
including reduction of the number of calculations
for a given accuracy [14] and seamless integration
of complex systems composed by both continuous
time and discrete-event paradigms. The idea of
this method, called quantized systems theory, is
based on the DEVS formalism combined with
quantization of the state variables obtaining a
discrete-event approximation of the continuous
system [15]. Spatial notions can provide extra
facilities for understanding and visualizing the
resulting simulation. For example, it would be
possible to incorporate terrain models using GIS
information.
Composability: This is related to the fact that
multiple models, simulations, and equipment
might need to be put together in (both locally and

•

•

•

distributed) integrating a variety of components.
Davis and Anderson [16] discussed exhaustively
why we still could not answer the basic question
of what factors determine what can be composed
when, with how much expense and risk. They
claim that composing very large models often
requires lengthy and expensive efforts, most
of which go into understanding and modifying
components and interfaces to ensure validity.
They show that the ability to develop composable
systems for modern military operations will
depend on advances on many fronts (including
those presented in the previous bullets in
this article): formal languages for describing
models, representations suitable to effective
communication and transfer while permitting
the composition of models developed in different
formalisms or representations, means for model
abstraction and multiresolution modeling, the
ability to create hybrid simulation models,
explanation mechanisms (including agent-based
models), and advanced means for human-
computer interaction, including human behavior
in virtual reality [16].

Our current research efforts are focused on how
to achieve these goals, which would improve the
construction of military M&S applications. We want
to provide means for formal model construction,
including multimodel applications in which spatial
models can be defined and integrated with non-spatial
components. Previous efforts have focused on solving
these problems by using the Cellular Automata (CA)
formalism, a widely used technique to describe
complex cell spaces. CA evolve by executing a local
transition function that updates the state locally in each
cell, based on the current state values of the present cell
and its neighbors. Conceptually, these local functions
are computed synchronously and in parallel.

Figure 1. Sketch of a cellular automaton

JDMS vol 2 no 3 Jul 2005 reg.ind124   124 3/14/2006   1:29:27 PM

Volume 2, Number 3	 JDMS 125

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

	 CA have shown some success in modeling defense
applications. An early effort in this field [17] showed
how to build an agent-based combat simulation using
CA to show tactics as an emergent behavior. There have
been other similar efforts, including the U.S. Marine
Corps’ Project Albert [18], which explored how to build
highly realistic models only considering the simplest
dynamical variables. Champagne [19] presented a
CA simulation of the U-boat war in the Bay of Biscay
(between German U-boats and Allied aircrafts). He
presented the results from two 6-month intervals of the
operations and compared them to historical outcomes.
The results indicate that the model was capable of
reproducing historical outcomes for the two scenarios.
	 Different authors have used CA to model land
battlefields. The idea is to model the interaction
between two armies while each one is trying to achieve
its goal (i.e., attacking the enemy’s base or defending
its own). The model presented by Woodcock et al.
[17] introduced the idea of using CA to understand
the complexity of a battlefield model. Ilachinski
[18] presented the use of ISAAC (irreducible semi-
autonomous adaptive combat agent) to create a model
of software agents, each of which tried to mimic the
behavior of a primitive combat element (soldier, tank,
transport vehicle, etc.). ISAAC is a modular agent-
based modeling system for experimentation using CA.
Each agent includes specific characteristics: i) doctrine (a
default local-rule set specifying how to act in a generic
environment), ii) mission (goals directing behavior),
iii) situational awareness (sensors generating an internal
map of environment), and iv) adaptability (an internal
mechanism to alter behavior and/or rules).
	 Das [20] presented a CA dealing with two opposing
enemies: Α (the friendly side) and Κ (the adversary).
The CA models the evolution of an adopted scenario
where Α’s strategy is to neutralize Κ’s offensive. An
effects-based strategy is formulated: instead of seeking
the traditional purely militaristic solution, Α responds
to Κ’s actions on all fronts using military, diplomatic,
and socio-economic means [20]. Α imparts a large
number of small disturbances to Κ’s military, political,
and socio-economic establishments (randomly),
producing minor effects. However, higher-order effects
of these small disturbances accumulate to produce
large-scale, cascading avalanches in an unpredictable
fashion. Ilachinski [21] presented new techniques for
building a behavioral military simulation, showing
that equation-based models are not well suited to
capturing the individual evolution of entities in these
complex scenarios. He used entity-based models based
on CA achieving much more realistic results, because
CA makes computational complexity treatable, as the
model rules are relatively simple. His environment is
sufficient to capture much of the complexity of warfare.

Analysis of warfare data done by Lauren [22] provides
evidence that intensity of conflicts obeys a fractal
dependence on frequency. He showed how a CA used to
describe modern maneuver warfare produces casualty
distributions with fractal properties. He quantified the
difference between CA and more traditional combat
models (based on the physics of military equipment)
[22].
	 Although these results are promising, CA have
several problems. As shown in Wainer and Giambiasi
[23], the discrete-time nature of the formalism
constrains the precision and efficiency of the simulated
models. Furthermore, it is usual that several cells
do not need to be updated in every step, wasting
computation time. These problems can be solved
using a continuous time base, providing instantaneous
events that can occur asynchronously at unpredictable
times. In addition, CA cannot be easily composed with
models defined in other formalisms, and they cannot
be dynamically changed. Instead, Cell-DEVS [6] can
address these issues. CA models are defined as a space
composed of individual cells that can be lately coupled
to form a complete cell space. Each cell is a continuous
time model, defined by very simple rules and a few
parameters. Complex timing definition is overruled
due to the use of different delay functions. The atomic
cell models can be easily coupled with others, forming
a multicomponent hierarchical model. Cell-DEVS
atomic models can be described as in Figure 2.
	 Each cell uses N inputs (from its neighborhood or
from other DEVS models) to compute its next state.
These inputs, which are received through the model’s
interface, activate a local computing function (τ). A
delay (d) can be associated with each cell. The state
(S) changes can be transmitted to other models, but
only after the consumption of this delay. Two kinds
of delays can be defined: transport delays model a
variable commuting time; and inertial delays, which
have preemptive semantics.

Figure 2. Cell-DEVS atomic model

JDMS vol 2 no 3 Jul 2005 reg.ind125   125 3/14/2006   1:29:27 PM

Volume 2, Number 3	126 JDMS

Wainer and Madhoun

	 Once the cell’s behavior is defined, a coupled Cell-
DEVS can be created by putting together a number
of cells interconnected. A sample Cell-DEVS coupled
model is presented in Figure 3. A coupled Cell-DEVS
is composed of an array of atomic cells, with given
size and dimensions. Each cell is connected to its
neighborhood through standard DEVS input/output
ports.
	 Cell-DEVS models are based on the DEVS formalism
[2], a framework for M&S of discrete-event systems.
DEVS provides an abstract approach of modeling
by separating the modeling from the simulation
aspects and hence facilitating the model usability and
interoperability. The basic building block of any DEVS
model is the atomic model, which can be connected to
other atomic models to form what is called a coupled
model. A DEVS atomic model can be informally
described as in Figure 4.
	 Each atomic model has an interface consisting of
input (X) and output (Y) ports to communicate with
other models. In addition, the state (S) of the model
is associated with a time advance (ta) function, which
determines the duration of the state. Once the time
assigned to the state is consumed, an internal transition
is triggered. At that moment, the model execution
results are spread through the model’s output ports
by activating an output function (λ). Then, an internal
transition function (δint ) is fired, producing a local state
change. External input events (events received from
other models) are collected through the input ports.
An external transition function (δext ) specifies how to
react to those inputs.
	 A DEVS coupled model is composed of several
atomic or coupled sub-models, as shown in Figure 5.
	 Coupled models are defined as a set of basic
components (atomic or coupled), which are
interconnected through the model interfaces. The
model’s coupling scheme defines the interconnectivity

between models and the interface with the external
world.
	 CD++ [7] is an M&S environment developed in
C++ following the formal specifications of DEVS and
Cell-DEVS. It is used to build and execute DEVS
and Cell-DEVS models. DEVS atomic models are
programmed in C++ and incorporated into CD++
class hierarchy. Once an atomic model is defined, it
can be combined with others into a multicomponent
model using a specification language specially defined
for this purpose. In addition, different versions have
been developed for different platforms: a stand-alone
version, a real-time simulator [24], and a parallel
simulator [25].
	 Defining models in C++ provides the users with
flexibility to define the model’s behavior. Nevertheless,
a non-experienced user can have difficulties in
defining models using this approach. Graphical
model specification also improves the interaction with
stakeholders and users, while allowing the modeler
to think about the problem in a more abstract way.
Therefore, we have used an extended graphical notation
to allow definition of an atomic model’s behavior. Each

Figure 3. Cell-DEVS coupled model Figure 4. Informal definition of an atomic model

Figure 5. Informal description of a coupled model

JDMS vol 2 no 3 Jul 2005 reg.ind126   126 3/14/2006   1:29:27 PM

Volume 2, Number 3	 JDMS 127

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

model is defined by a unique identifier, and states are
represented by vertices (bubbles) in a directed graph.
Each bubble includes an identifier and a state lifetime.
	 Figure 6 shows a simple atomic model including
three states: A, B, and C. Dotted lines represent internal
transitions, while full lines define external transitions.
In this case, if the model is in state A and it receives
an external event through the rep input port (shown
in the left panel) the any function is evaluated. If the
result of this evaluation is 1, the model changes to the
state B. While in B, the model waits its lifetime to be
consumed. It then executes the output function, which
will send the value of the intermediate state variable
counter through the output port ok. After that, the
internal transition function executes, and the model
changes to the state C.
	 In the case of Cell-DEVS models, the model
specification includes the size, dimension of the cell
space, the shape of the neighborhood and the borders.
The cell’s local computing function is defined using a
set of rules with the following format:

POSTCONDITION DELAY { PRECONDITION }.

This indicates that when the PRECONDITION is
satisfied, the state of the cell will change to the
designated POSTCONDITION, which computed value
will be transmitted to the other cells after the DELAY.
If the precondition is false, the next rule in the list is
evaluated until a rule is satisfied or there are no more

rules. If no rules are evaluated for a certain cell or more
than one has a condition evaluated to true, CD++ will
generate an error in order for the modeler to crosscheck
the rule definition.

3. Defining Defense Applications

In this section, we discuss how to create a few simple
models that address the creation of DEVS and Cell-
DEVS models in CD++. The first model represents
an unmanned aerial vehicle (UAV) built using Cell-
DEVS. The UAV traverses a specific area searching for
a target, and avoiding static and moving obstacles in
its way. The model deals with multiple UAVs moving
and avoiding multiple obstacles. In order to model the
behavior of UAVs and obstacles, each entity is assigned
a state value as follows.
	 As we can see, we have four different valid states for
a cell: empty, a UAV is occupying the cell, or the cell
contains a static/moving obstacle (each represented
with a different discrete value). Each agent has
different movement rules (the UAVs move in north/
south/east/west directions, while the moving obstacles
only move to the north). In order to specify the model
in CD++, we need to define the cell space shape, size,
and the rules governing the model execution. The first
portion of the coupled model defines the cell-space
geometry and initial values as shown in Figure 8.
	 As shown in Figure 8, the cell space is composed of
20  × 20 cells with a transport delay of 100 time units
and initial values as defined by the InitialRowValue
statement. These initial values show the states on each
of the cells, according to Figure 7. The neighborhood
shape covers the direction in which the UAV is
moving.
	 Figure 9 shows part of the rule definition of the
static obstacles, UAVs, and moving obstacles. The
noFlyZone9-rule implements the static obstacle rule
(state value = 9), which is constant all the time due to the
static nature of the obstacles. The uav-rule implements
the UAV movement avoiding the static and moving
obstacles. Finally, the MovingTargetRule implements a
moving obstacle from south to north.

Figure 6. An atomic model defined as a DEVS graph

Figure 7. UAV state values

JDMS vol 2 no 3 Jul 2005 reg.ind127   127 3/14/2006   1:29:27 PM

Volume 2, Number 3	128 JDMS

Wainer and Madhoun

Figure 8. UAV coupled model specification

Figure 9. UAV rule definition

Figure 10. Initial allocations of UAVs and obstacles

JDMS vol 2 no 3 Jul 2005 reg.ind128   128 3/14/2006   1:29:28 PM

Volume 2, Number 3	 JDMS 129

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

	 Figure 10 shows a snapshot of the execution of this
model with initial allocations of UAVs and obstacles.
The UAVs (shown in red/dark gray) try to move from
north to south facing static obstacles (shown in black)
as well as moving obstacles (shown in yellow/light
gray).
	 This example shows some of the basic aspects that
we can cover with respect to the goals defined in section
2. We can build agent-based models with ease using a
spatial approach (which runs with high performance
using a discrete-event simulation engine). The spatial
nature of the model permits easy integration with
visualization engines. The application is built using an
advanced simulation paradigm that can be combined
with basic automated facilities for model verification.
For instance, we can guarantee that the simulator
execution is correct, as it has been built using DEVS
and Cell-DEVS simulation algorithms, which were
proven to be correct. Likewise, we can use basic logic
results applied to the model’s rules in order to be
able to verify correctness (in terms of completeness
of the rules defined, existence of ambiguous rules, or
undefined status, as shown in [10]).
	 A second example we will introduce presents
a transmitter/receiver model for a radar system
[26]. The model was developed in [7] to model the
synchronization effect between radar transmitter and
receiver. When using scanning radar receiver, the
interception of radar signals can be severely limited if
the scan rate of the receiver becomes synchronized with
a radar transmitter. The goal is to generate a receiver
scan pattern that limits this effect, as it seriously
degrades the probability of interception (POI) for the
receiver. Synchronization occurs when a particular
transmitter sends out radar pulses periodically, with
the receiver scheduled to scan periodically in such a
manner that the receiver is never “listening” when the
transmitter is transmitting. Radar transmitters transmit
on a particular frequency (for specified duration), with
a particular pulse rate, azimuth, and beam width.
Scanning radar receivers receive on a tuned frequency
(for a specified duration), with a particular azimuth
and beam width, and have a “tuning time” associated
with the change from one listening frequency to
another. The sequential operation of the receiver that
defines the tuned frequency, listening time, azimuth,
and beam width is specified by a “scan pattern.”
	 Receivers can communicate with each other, with
each receiver notifying the other receivers about radar
transmitters that have been detected. Each receiver
is connected to a simple communications bus, and it
maintains a tracking table containing all the information
about the currently known transmitters.
	 This model allows us to show how to address some
of the remaining aspects discussed in section 2. The

model is defined using a hierarchical specification, in
which we can construct submodels at different levels
of abstraction; i.e., we can be interested in studying the
behavior of Radar Transmitter 3 in detail, or we can
ignore such level of detail and deal with the external
inputs/outputs only. If needed, the radar transmitters
could be specified at different levels of resolution. (If
the input/output interfaces remain unchanged, the
resolution of the data transmitted and the amount
of computation of each transmitted can be easily
modified.) By connecting an EF to this model (for
instance, creating transmission/reception parameters
and studying the receiver’s outputs for each of the
inputs), we can automate the experimentation phase
(creating multiple executions of a single simulation
with parameters changed for each run, or execution of
multiple simulations with varying parameters). Such
an EF can be also used to document objectives and
issues to be addressed by the modeler. If the dynamic
structure DEVS modeling formalism [13] is used, we
can change the structure and behavior of the submodels
in runtime.
	 In order to create and execute this model, the first
step was to identify and define each one of the model
components. Once identified, a DEVS atomic model
was built for each subcomponent. As an example, the
tracking model is presented, which is responsible for
maintaining the list of transmitters that are known to
the local receiver.

Scanning Receiver = < S, X, Y, δint , δext , ta, λ >

	 S =	 {Scan, Signal_Detected, Process_Signal, Notify}

	 X =	 { ext_signal }

	 Y =	 { notify, detected_signal_properties }

Figure 11. Structure of the radar transmitter/receiver model
[26]

JDMS vol 2 no 3 Jul 2005 reg.ind129   129 3/14/2006   1:29:28 PM

Volume 2, Number 3	130 JDMS

Wainer and Madhoun

	 δint =	 {	δint(Signal_Detected) = Process_Signal,
			 δint(Process_Signal) = Notify,
			 δint(Notify) = Scan	 }

	 δext =	 {	δext(Scan, ext_signal) = Signal_Detected	 }

	 ta =	 {	 ta(Scan) = ∞,
			 ta(Signal_Detected) = DETECTION_TIME,
			 ta(Process_Signal) = PROCESS_TIME,
			 ta(Notify) = NOTIFY_TIME	 }

	 λ =	 {	λ(Signal_Detected) = notify,
			 λ(Process_Signal) = detected_signal_properties	}

	 This model evolves through different states (S):
scan for signals, a signal has been detected, a signal
is being processed, notify about the signal reception.
The model changes from one state to the other by
executing the transition functions. As seen in the
external transition (δext ), when the scanning receiver
detects a signal (ext_signal ∈ X) it changes its state
from Scan to Signal_Detected. As we can see in the
definition of the ta function, after the DETECTION_
TIME is consumed, the model executes the output
function (λ) and, in this case, a notify output is issued.
Then, the internal transition (δint ) is activated, and the

model changes to the Process_Signal state (which is
held during PROCESS_TIME time units, as defined
in ta). At this point, the detected_signal_properties are
outputted, and the internal transition function makes
the model change to the Notify state. After NOTIFY_
TIME time units, the internal transition executes, and
the model returns to the Scan state (a passive state, as
its ta function is infinity).
	 The model was subsequently built in CD++ using
the state machine specification presented in Figure 12.
The four states of the model are immediately apparent.
External transitions are displayed as dashed lines, with
internal transitions as solid lines. The input and output
ports are visible in the tree diagram.
	 A different model, built using Cell-DEVS, describes
the behavior of a simple vehicle, which seeks a target
[27]. As shown in Figure 13, the seeker steers a vehicle
toward a specified position in global space. This
behavior adjusts the vehicle so that its velocity is radially
aligned toward the target. This model permits us to
show how to build a model with continuous elements
(speed, acceleration, and the equations relating them)
combined with a spatial-based approach. It also permits
showing the definition of a model at different levels of
abstraction.

Figure 12. Specification of the tracking table model

JDMS vol 2 no 3 Jul 2005 reg.ind130   130 3/14/2006   1:29:28 PM

Volume 2, Number 3	 JDMS 131

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

	 Using the hierarchy of motion behaviors defined
by Reynolds [27], the “action selection” of the seeker
is specified by dictating the destination location. The
simple vehicle model has the following attributes:

{mass (scalar), position (vector), velocity (vector), max_
force (scalar), max_speed (scalar), orientation (N basis
vectors)}, where N = 2.

The motion of the model is defined by
steering_force = truncate (steering_direction, max_force),
acceleration = steering_force / mass,
velocity = truncate (velocity + acceleration, max_speed),
position = position + velocity;

and the new basis vectors by
new_forward = normalize (velocity),
approximate_up=normalize (approximate_up) // if needed
new_side = cross (new_forward, approximate_up),
new_up = cross (new_forward, new_side).

The seek behavior motion is defined by
desired_velocity=normalize (position-target)*max_speed,
steering = desired_velocity - velocity.

To model the seek behavior using Cell-DEVS, it was
necessary to create discrete states to represent the
‘current’ state of the simple vehicle. The following state
variable was used (Table 1):

	 The model uses the following neighborhood
definition:

	 N = { (-2,-2), (-2,-1), (-2, 0), (-2,1), (-2,2), (-1,-2),
		 (-1,-1), (-1,0), (-1,1), (-1,2), (0,-2), (0,-1), (0, 0),
		 (0,1), (0,2), (1,-2), (1,-1), (1, 0), (1,1), (1,2),
		 (2,-2), (2,-1), (2, 0), (2,1), (2,2) }

Figure 13. Informal behavior of the Seek model

Table 1. Vehicle state assignment

State Description

Current
Velocity

A state indicating a vehicle with no velocity, or motion in one of 8 directions: moving diagonally up and left
(value = 1), up (2), diagonally up and right (3), left (4), stationary (5), right (6), diagonally down and left (7),
down (8), diagonally down and right (9)

	 An input was provided to each cell to specify the
desired velocity of the vehicle. The model rules detail
the discrete motion that was implemented to simulate
the effect of a desired velocity on a vehicle. Multiple
combinations of actual and desired velocity could
result in the same destination cell for a vehicle.
	 With the many combinations of velocities, the
possibility for collisions is great. The neighborhood for
each cell is dependent on its velocity. A simple priority
is used to resolve any conflict when multiple vehicles
want to move into the same cell. Stationary vehicles
have the highest priority, “up and left” have the lowest,
and “down and right” have the second highest.
	 The model was completely implemented in CD++
following the Cell-DEVS rule specifications, and it was
tested initially using a single vehicle, with different
initial velocities and different desired velocities. After
all the rules were implemented, all possible velocities
were tested in all possible desired velocities. Following
that, different vehicles were used to simulate the
collision avoidance scheme.
	 The following figures display the two state variables
employed in the definition of the Cell-DEVS model
(displayed side-by-side). The left-hand plane (mostly
white) displays the current location and velocity of
the three vehicles. The right-hand plane describes
the “desired velocity vector field” of the vehicles. The
“desired location” for all three vehicles is the center
of the plane, and the “desired velocity vectors” steer
them to that point. We can see how to include different
levels of abstraction in the model. The right-hand

Figure 14. Definition of update rules

JDMS vol 2 no 3 Jul 2005 reg.ind131   131 3/14/2006   1:29:28 PM

Volume 2, Number 3	132 JDMS

Wainer and Madhoun

plane contains detailed information about the desired
velocity field and computes the related equations
with a high level of precision, whereas the left-hand
plane shows the current location of the vehicle using a
discrete notation, including less information.
	 In Figure 15, three vehicles enter from the top-right
corner of the plane, and they stop when they cannot
move any closer to the “desired location.” The vehicles
enter (at time 0, 500, and 900 ms) with a velocity
different from the desired velocity, and each acts in
accordance with the state transitions to “turn” to the
desired velocity. At 1.2 seconds, the first vehicle enters
a region with a different desired velocity. Note that the
vehicle (and each subsequent vehicle) “turns” to the
desired velocity.

4. Modeling a Land Battlefield

In this section, we will present an advanced model
of land battlefield between two armies. The idea is
to model the interaction between two armies in a
battlefield while each one is trying to achieve its goal;
this can be attacking the enemy’s base or defending
its own base. This example will allow us to show how
to represent advanced defense models with multiple
resolutions, and how to use the available tools to
achieve varied levels of abstraction.
	 We created a Cell-DEVS model representing a

combat battlefield, which is based on the ISAAC model
presented in section 2 [28]. The model is represented
by a 2-D CA. Each cell can be occupied by one of two
kinds of troops: red or blue. Red and blue “flags” are
also typically (but not always) positioned in diagonally
opposite corners: a red flag in the red corner and a
blue flag in the blue corner. A typical goal is to reach
successfully the flag positioned in the diagonally
opposite corner. Each soldier can be in one of three
states: alive, injured, or killed. Injured troops can (but are
not required to) have different personalities from when
they were alive. By default, an injured soldier’s ability
to shoot an enemy is equal to half of its ability when
alive. In addition, if the soldier chooses its moves from
among lattice sites within a distance of two or more
from its current position, an injured soldier’s moving
range is reduced to the minimum possible range of one
unit. Up to 15 distinct groups of personalities, of varying
sizes, can be defined. Each soldier has associated
with it a set of ranges (sensor range, fire range,
communications range, etc.), within which it senses
and assimilates simple forms of local information, and
a personality, which determines the general manner in
which it responds to its environment.
	 We followed these ideas in order to model and
simulate a land battlefield using Cell-DEVS. The model
accounts for the major aspects in a modern battlefield
(with some assumptions) in terms of the soldier state,

Figure 15. Three vehicles seeking the desired location [26]

JDMS vol 2 no 3 Jul 2005 reg.ind132   132 3/14/2006   1:29:29 PM

Volume 2, Number 3	 JDMS 133

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

personality factor, situation awareness range, etc.
	 The model we built consists of a land battlefield
between two armies; each one is composed of different
soldiers and a flag. The goal of each army is to capture
the enemy’s flag or to defend its own. The characteristics
of the system can be summarized as follows:

A 2-D battlefield is considered without any
airplanes or missiles.
Each soldier can exist in one of three states: alive,
injured, dead.
The situation awareness of the soldier is limited
to his neighborhood (no telecommunication
equipment are used).
If a soldier is in state alive, and attacked by an
enemy soldier, his state changes to injured.
If a soldier is in state injured and is attacked by an
enemy soldier, he becomes dead.
The soldier’s ability to fight is dependent on a
randomly assigned factor (fighting ability (FA)).
In addition, the injured soldier will have less
fighting ability than the alive one.
Injured soldiers recover to alive state if not
surrounded by enemy soldiers.
If a soldier is not surrounded by enemy soldiers,
he tends to move toward the enemy’s flag.
If a soldier is surrounded by an enemy soldier/s,
he engages in a fight. The outcome of this fight
depends on the fighting ability (FA) of the soldiers
engaged in the fight.
The flag is acquired once an enemy soldier moves
to its neighborhood.

	 The status of the soldier is represented by a signed
integer to distinguish between the two armies. One of
the armies has positive values (army A) and the other
has negative values (army B). Table 2 describes this
representation.
	 The fighting ability of each soldier is represented
by a randomly assigned real number ranging from 0
to 1. Zero represents no fighting ability at all (in the
case of the flag and dead soldiers), while 1 represents

•

•

•

•

•

•

•

•

•

•

a very high fighting ability. In addition, the soldier will
have an effect on the enemy soldier only if his fighting
ability is greater than 0.5. The assignment is done using
random function with a uniform distribution and is
executed at two points:

At the beginning of the battle
After engaging in a fight with an enemy soldier

	 Table 3 describes the fighting ability factor.

Table 3. Fighting ability states

Status Fighting Ability (FA)

2 Uniformly distributed number in
the range [0.45, 1]

1 Uniformly distributed number in
the range [0, 0.55]

0 Fighter is dead and cell is empty 0.0

-1 Uniformly distributed number in
the range [0, 0.55]

-2 Uniformly distributed number in
the range [0.45, 1]

5 Does not engage in fights 0.0

-5 Does not engage in fights 0.0

As we can see in Figure 17, when two or more soldiers
engage in a fight, the outcome depends on the
difference between their fighting abilities.
	 If a soldier is not surrounded by the enemy, he tends
to move toward enemy’s flag. To do so, the soldier needs
to calculate his direction in the next step to come closer
to his target. This is done by comparing the current cell
position of the soldier with the enemy’s flag position.
For example, if the soldier is standing at cell (1, 1) and
the enemy’s flag position is at cell (3, 6); he will have

•
•

Figure 16. Possible troop allocations

Table 2. Fighter state assignment

Status Description

2 Fighter of army A alive

1 Fighter of army A injured

0 Fighter is dead and cell is empty

-1 Fighter of army B injured

-2 Fighter of army B alive

5 Flag of army A

-5 Flag of army B

JDMS vol 2 no 3 Jul 2005 reg.ind133   133 3/14/2006   1:29:29 PM

Volume 2, Number 3	134 JDMS

Wainer and Madhoun

two options, either to move to the east or to the south,
as shown in Figure 18.
	 After deciding on the direction of the next step, the
directions are assigned integer values according to
Table 4.
	 The free-cell move-in factor is an integer number
that is calculated for every free cell to resolve any

conflict if two or more soldiers want to move to the
same free cell.
	 In one of our implementations, this factor is
evaluated as the maximum fighting ability of the
soldiers surrounding the free cell. Figure 19 illustrates
this point.
	 A different implementation computes the free-
cell move-in factor by checking the fighting ability
of the soldiers in the neighborhood who intend to
move to the cell. Only the one with the maximum
FA will be allowed to move to the free cell. In this
scenario, the free-cell move-in factor will be the
direction of that soldier (the one with maximum FA)
with an opposite sign to indicate that the cell will be
occupied by the soldier coming from that direction.
Figure 20 illustrates this point.
	 The model was implemented using CD++ (a detailed
definition of the specification can be found in Madhoun
and Wainer [28]. Each piece of information was
implemented using a different layer, which resulted
in a 3-D cell space. Each of the layers can address
the submodel at different resolution and abstraction
levels. The layers used to implement the model are as
follows:

Layer 0: soldier’s status and allocation in the
battlefield.
Layer 1: fighting ability (FA) factor, used for
movement and fighting rules evaluation.

•

•

Figure 17. The effect of different FAs in a fight

Figure 18. Movement directions

Figure 19. Free-cell move-in factor evaluation

Table 4. Direction values

Direction Value

North 10

East 20

South 30

West 40

JDMS vol 2 no 3 Jul 2005 reg.ind134   134 3/14/2006   1:29:29 PM

Volume 2, Number 3	 JDMS 135

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

Layer 2: flag position of army B. This information
is needed for all the soldiers of army A to calculate
the next movement direction.
Layer 3: flag position of army A. This information
is needed for all the soldiers of army B to calculate
the next movement direction.
Layer 4: movement directions of each soldier.
Layer 5: move-in factor associated with each free
cell.

	 The model was executed with different test scenarios.
The first one we present here is devoted to analyze only
the movement rules of the fighters toward the enemy’s

•

•

•
•

flag. Figure 22 shows the initial and final configuration
of the army (one fighter of each army was killed in the
battle; both armies eventually reached the flags).
	 Different tests were carried out, including several
overall executions of the model. Figure 23 shows a 3-D
visual result of the execution of the model, in which
each of the layers previously discussed, is depicted.
	 Using advanced VR environments, as the one

Figure 20. Free-cell move-in factor with intention

Figure 21. Cell space definition

Figure 22. Testing movement rules

Figure 23. Multilayer display: execution results

Figure 24. Displaying 3-D models in CD++/Maya

JDMS vol 2 no 3 Jul 2005 reg.ind135   135 3/14/2006   1:29:30 PM

Volume 2, Number 3	136 JDMS

Wainer and Madhoun

depicted in the Figure 24, we can build advanced
realistic representations of the models of interest,
allowing both better analysis capabilities and training
facilities
	 The battlefield model was extended using new
advanced facilities available in a recently developed
version of CD++ [29]. This new CD++ extensions
include the ability to define multiple input/output
ports for each cell in the cell space and the ability to
define multiple state variables per cell, as shown in
Figure 25.
	 The input/output ports connect each cell to all
of its neighboring cells, so it is useful to represent
information that needs to be transferable between
different cells. However, the state variables are local
to the cell and are used to represent any variable
that does not need to be referenced from outside
the cell. Both features are used to re-implement the
original battlefield model dispensing with the need to
define extra layers of cells to represent new pieces of
information.
	 The original battlefield model was implemented
using these new services, as a 2-D cell space with the
following input/output ports:

FS is used to represent the soldier status (i.e. alive,
injured, dead);
FA is used to represent the fighting ability of the
soldier;
Enemy_Flag is the location of the enemy flag;
Direction is used to represent the direction of the
next move of the soldier.

	 In order to implement the model using the new
version of CD++, different rules were defined to mimic
the behavior of soldiers in a battlefield. These rules
include the following:

Initialization rules: they initialize the cell ports to
their initial values.
Fighting rules: they define the behavior of soldiers
when engaged in a fight.
Flags-under-attack rules: they define the behavior
of the flag when attacked by an enemy soldier.
Flags-not-attacked rules: they define the behavior
of the flag when not attacked.
Movement-direction rules: they define the
direction of the next step for each soldier to come
closer to the enemy flag.

•

•

•
•

•

•

•

•

•

Figure 25. Multi-port cell Figure 26. Multi-port connectivity between two cells

Figure 27. Sample free-cell move-in factor rule

JDMS vol 2 no 3 Jul 2005 reg.ind136   136 3/14/2006   1:29:30 PM

Volume 2, Number 3	 JDMS 137

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

Movement rules: they define the behavior of the
soldiers when moving in the battlefield.

	 As an example of these rules, we present the
new implementation of the free-cell move-in factor
discussed earlier. Figure 27 shows the CD++ rule
definition of one of the rules used to calculate the
free-cell move-in factor. In this rule, the soldier from
the west is examined to check if he intends to move
to the cell and if his fighting ability is higher than all
the soldiers in the cell’s neighborhood who intend to
move to that cell. In this case, the move-in factor is
equal to (-20) to indicate that the cell will be occupied
by a soldier coming from the west. After evaluating
the move-in factor for the free cell, the next step would
be the actual move of the concerned soldier from his
original cell to the empty one. This is accomplished by
a set of rules similar to the one shown in Figure 28.
The move_from_west rules have two parts: the first part
copies the soldier state (fighter status, fighting ability,
etc.) from his original cell to the free cell and the second
part clears the soldier state in the original cell.
	 Another set of rules used in the definition of the
battlefield model, is the fighting rule shown in Figure
29.
	 The macro fight_rule_1 in Figure 29 checks if the
soldier (from army A) is in the neighborhood of an
enemy soldier (from army B). Then, it checks if the
soldier (from army B) has a higher fighting ability, and

• in that case adds (-1) to the overall value of the macro
for each such soldier.
	 The number generated by fight_rule_1 is used in
the main body of the rule (presented in Figure 30) to
evaluate the following conditions:

If a soldier in army A is injured (FS = 1) and is
surrounded by enemy soldiers whose fighting
abilities are less than his, he will remain injured
but will be assigned a new fighting ability factor.
If a soldier in army A is injured (FS = 1) and is
surrounded by enemy soldiers whose fighting
abilities are higher than his, he will be dead, and
his fighting ability will be assigned the value 0.
If a soldier in army A is alive (FS = 2 ) and is
surrounded by enemy soldiers whose fighting
abilities are less than his, he will remain alive and
will be assigned a new fighting ability factor.
If a soldier in army A is alive (FS = 2 ) and is
surrounded by enemy soldiers, and only one
of them has a higher fighting ability, he will
be injured and assigned a new fighting ability
factor.
If a soldier in army A is alive (FS = 2 ) and is
surrounded by enemy soldiers, and more than
one of them has a higher fighting ability, he
will be dead and his fighting ability factor
becomes 0.

•

•

•

•

•

Figure 28. Move from west rule

Figure 29. Fighting rules macros

JDMS vol 2 no 3 Jul 2005 reg.ind137   137 3/14/2006   1:29:30 PM

Volume 2, Number 3	138 JDMS

Wainer and Madhoun

	 The same rule is used for B soldiers when
surrounded by A army soldiers by changing the
corresponding soldier status values. The following
figures show different scenarios for testing, each
activating some specific rule/s and then testing the
overall model with a scenario that activates all of the
rules simultaneously. Three scenarios were used to test
the model behavior:

Figure 30. Fighting rules

Figure 31. Testing movement rules

Figure 32. Testing fighting rules

Figure 33. Overall test of the model

Movement rules: In this scenario, only the
movement rules are activated as the soldiers of
army A move towards and acquire the B flag; see
Figure 31.
Fighting rules: In this scenario, the fighting rules
are activated when the soldiers of both armies
engage in a fight; see Figure 32.
Global test: All of the rules are activated to test the
overall behavior of the model; see Figure 33.

	 After implementing the original model using the
new CD++ version, some extra features were added to
the model to improve its behavior. These features are
the following:

Situation awareness of the soldier (neighborhood)
was extended to include the eight surrounding
cells. Hence, the soldier is able to attack and move
diagonally as well as horizontally or vertically;
see Figure 34.

•

•

•

•

JDMS vol 2 no 3 Jul 2005 reg.ind138   138 3/14/2006   1:29:30 PM

Volume 2, Number 3	 JDMS 139

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

Obstacle avoidance: The soldiers are able to
avoid obstacles (FS = 50) while moving toward
the enemy’s flag; see Figure 35.
Courage factor (CF): This factor is used to
simulate that not all the soldiers in a battlefield
will have the same courage to fight the enemy.
Hence, this factor will determine if the soldier is
going to attack the enemy or retreat toward his
own base/flag; see Figure 36.

	 In order to test the new features incorporated in the
model, two scenarios are considered here:

The first one tests the diagonal movement and
obstacle avoidance of the soldiers; and
The second one tests the overall behavior of the
model after incorporating the courage factor
(CF).

	 The results of these tests are shown in Figures 37
and 38:
	 The definition of these extended rules for the
newly defined behavior took less than 3 person-hours,
showing the adequacy of the tools to improve the
models being created at a low cost in terms of modeling
effort. We can see that changing the behavior of the
agents involved can be done with little effort.

5. Multimodel Composition

In this section, we show how to compose some of
the previously developed models (radar transmitter/
receiver and seeker models) in order to show how to
address some of the remaining issues discussed in
section 2: how to build a multimodel integrating varied
paradigms, and how to address basic composability
issues. Integrating the models presented here with
the battlefield models introduced in section 4 is
straightforward (and is done in the same way as the
rest of the examples in this section). This interaction
is implemented at the model level, and no changes

•

•

•

•

Figure 34. Extending the soldier’s neighborhood to Moore’s
neighborhood

Figure 35. Obstacle avoidance example

Figure 36. Effect of the courage factor (CF) on the soldier’s
behavior

Figure 37. Testing the obstacle avoidance feature Figure 38. Testing the overall behavior of the model

JDMS vol 2 no 3 Jul 2005 reg.ind139   139 3/14/2006   1:29:31 PM

Volume 2, Number 3	140 JDMS

Wainer and Madhoun

were done to the simulation engine, as the models
only communicate at the level of their interfaces. Let
us consider, for instance, the existence of a new model,
Radar. The radar model is prepared to scan a cell space
according to a given frequency. Figure 39 shows how
to integrate this new model with the two other models
defined earlier in this section. These three models were
built independently, but they can be easily integrated
due to the modular nature of the DEVS interfaces.
	 The Transmitter/Receiver model is used to start radar
scanning activities. Upon activation, the Radar will
scan the field defined by the Seek Cell-DEVS model,
and will generate two outputs: a reception signal for
the Transmitter/Receiver, and a number of operator
messages according to the values received in the
field. The Seek model advances independently of the
execution of the radar, because these models are built as
discrete-event specifications, and each subcomponent
progresses according to its own internal time base. In
CD++, the coupled model defining the composition of
the submodels can be defined as in Figure 40.
	 As seen in Figure 40, the top model is now integrated
with the three original components. The coupling of
the model was initially defined. Then, the definition of
the Seek model is shown. The model produces outputs
that can be used by the Radar model.
	 A zone in which the cells will generate outputs was
defined (by using the out-rule definition). Finally, the
Transmitter/Receiver model (Tx-Rx) included two new
input/output ports in order to provide interaction with
the Radar model. The Radar model is not defined in

the file, as it has been defined as a DEVS atomic model,
and only the coupling with the other models needed to
be defined.

6. Conclusion

We have shown how DEVS and Cell-DEVS techniques
can be used to address fundamental problems
existing when modeling and simulating space-shaped
military applications. Both techniques are based on
sound mathematical foundations that offer better
interoperability capabilities between different models.
One can use an existing model of any system and start
building on top of it or connect different modules
to it if one follows DEVS or Cell-DEVS modular
specifications. We have shown how different models
can be easily integrated, while the separation of
concerns between the model definition and simulation
engine enables the modeler to concentrate on building
the model without studying the internals of the
simulator.
	 The methods presented allow automatic definition
of cell spaces using the DEVS formalism. Integration
of multiple views for each submodel is possible,
allowing the combination of different models in an
efficient fashion. The use of a formal approach allowed
proving properties regarding the cellular models.
It also provided a sound basis upon which to build
simulation tools related with the formal specifications.
Simultaneously, Cell-DEVS is more efficient than
CA in terms of the memory use and computational

Figure 39. Multimodel composition

JDMS vol 2 no 3 Jul 2005 reg.ind140   140 3/14/2006   1:29:31 PM

Volume 2, Number 3	 JDMS 141

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

power needed, and we were able to reproduce well-
known applications with ease, showing that we can
build advanced models based on existing applications
effortlessly. As DEVS is a modular and hierarchal
approach to modeling, it provides the means to easily
connect the battlefield model to components in a model
library. In addition, as each cell is activated only when
it receives an input from an active neighbor, the level
of activity is reduced and the model executes faster.
	 The examples presented show different aspects
to consider when building DEVS and Cell-DEVS
models for defense simulations. These techniques
address several of the aspects discussed: we can
construct agent-based spatial models (which are easily
integrated in advanced visualization environments).
The models are built using a hierarchical modeling
mechanism, which showed that it could be applied
to multiresolution modeling and to define multiple
submodels at different levels of abstraction. Integration

of multiple views for each submodel is possible,
allowing the combination of different models in an
efficient fashion. The use of a formal approach allowed
proving properties regarding the cellular models. It
also provided a sound basis to build simulation tools
related with the formal specifications. Models can be
integrated in multiparadigm simulations and hybrid
multicomponent models. This provides the basis for
future exercises in advanced modeling and simulation
efforts using these techniques.

7. References

[1] Palmore, J. (Chair) “Mini-Symposium/Workshop Report.
Warfare Analysis and Complexity.” Military Operations
Research Society. September 15–17, 1997. JHU/APL. Laurel,
MD. <http://www.mors.org>.

[2] Zeigler, B., T. Kim, and H. Praehofer. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press, 2000.

Figure 40. Defining a multimodel in CD++

JDMS vol 2 no 3 Jul 2005 reg.ind141   141 3/14/2006   1:29:31 PM

Volume 2, Number 3	142 JDMS

Wainer and Madhoun

[3] Sisti, A., and S. Farr. “Modeling and Simulation Enabling
Technologies for Military Applications.” In Proceedings of the
1996 Winter Simulation Conference. Coronado, CA. 1996.

[4] Davis, P., and B. Zeigler. “Technology for the United States
Navy and Marine Corps, 2000–2035. Becoming a 21st-
Century Force” Vol. 9. “Modeling and Simulation.” National
Academy of Sciences. <http://www.nap.edu/html/tech_21st/
msindex.htm> 1997.

[5] Wolfram, S. A New Kind of Science. Wolfram Media. 2002.
[6] Wainer, G., and N. Giambiasi. “N-Dimensional Cell-DEVS.”

Discrete Events Systems: Theory and Applications 12, no. 1
(January 2002): 135–157 (Kluwer).

[7] Wainer, G. “CD++: A Toolkit to Define Discrete-Event Models.”
Software, Practice and Experience 32, no 3 (November 2002):
1261–1306.

[8] Gore, J. “Chaos, Complexity and the Military.” National
Defense University, National War College, Military Strategy
and Operation Seminar D. Technical Report 96-E-61.<http://
www.ndu.edu/library/n1/96-E-61.pdf> 1996.

[9] Kim, t.g., S. M. Cho, and W. B. Lee. “DEVS Framework for
Systems Development.” In Discrete Event Modeling &
Simulation: Enabling Future Technologies. Springer-Verlag,
2001.

[10] Wainer, G., L. Morihama, and V. Passuello. “Automatic
Verification of DEVS Models.” In Proceedings of the SISO
Spring Interoperability Workshop, 2002.

[11] Zeigler, B. P., D. Fulton, J. Nutaro, and P. Hammonds.
“M&S Enabled Testing of Distributed Systems: Beyond
Interoperability to Combat Effectiveness Assessment.” 9th
Annual M&S Workshop, ITEA White Sands Chapter, 2003.

[12] Labiche, Y., and G. Wainer. “Towards the Verification and
Validation of DEVS Models.” In: Proceedings of the 1st Open
International Conference on Modeling & Simulation, Clermont-
Ferrand, France, 2005.

[13] Barros, F. J. “Modeling Formalisms for Dynamic Structure
Systems.” ACM Transactions on Modeling and Computer
Simulation 7, no. 4 (October 1997): 501–515.

[14] Zeigler, B. P. “Continuity and Change (Activity) Are
Fundamentally Related in DEVS Simulation of Continuous
Systems.” LNCS 3397/2005, 1–17. New York: Springer-Verlag,
2005.

[15] Zeigler, B. “DEVS. Theory of Quantization.” DARPA Contract
N6133997K-007, ECE Dept., University of Arizona, Tucson,
AZ, 1998.

[16] Davis, P., and R. Anderson. “Improving the Composability of
Department of Defense Models and Simulations.” RAND
National Defense Research Institute, 2003.

[17] Woodcock, A. E. R., L. Cobb, and J. Dockery. “CA: A New
Method for Battlefield Simulation.” Signal 42 (January 1988):
41–50.

[18] Ilachinski, A. “Irreducible Semi-Autonomous Adaptive
Combat (ISAAC): An Artificial Life Approach to Land
Combat.” Military Operations Research 5, no. 3 (2000): 29–46.

[19] Champagne, L. “Bay of Biscay: Extensions into Modern
Military Issues.” In Proceedings of the 2003 Winter Simulation
Conference, New Orleans, LA, 2003.

[20] Das, B. “Effects-Based Operations: Simulations with CA.”
Technical Report DSTO-RR-0275, Command and Control
Division, Information Sciences Laboratory, Australian
Government, Department of Defence, Defence Science and
Technology Organisation, AR-012-980, June 2004.

[21] Ilachinski A. Artificial War: Multiagent-Based Simulation of
Combat. World Scientific Press, 2004.

[22] Lauren, M. “Fractal Methods Applied to Describe Cellular
Automaton Combat Models.” Fractals 9, no 2 (2001): 177–185.

[23] Wainer, G., and N. Giambiasi. “Application of the Cell-DEVS
Paradigm for Cell Spaces Modeling and Simulation.”
Simulation 71, no. 1 (January 2001): 22–39.

[24] Glinsky, E., and G. Wainer. “Performance Analysis of Real-
Time DEVS Models.” In Proceedings of 2002 Winter Simulation
Conference, San Diego, CA, 2002.

[25] Troccoli, A., and G. Wainer. “Implementing Parallel Cell-
DEVS.” In Proceedings of the Annual Simulation Symposium,
Orlando, FL, 2003.

[26] MacSween, P., and G. Wainer. “On the Construction of
Complex Models Using Reusable Components.” In
Proceedings of the 2004 Spring Simulation Interoperability
Workshop, Arlington, VA, 2004.

[27] Reynolds, C. W. “Steering Behaviors for Autonomous
Characters.” <http://www.red3d.com/cwr/papers/1999/
gdc99steer.html> (Checked February 2006).

[28] Madhoun, R., and G. Wainer. “Modeling a Battlefield Using
Cell-DEVS.” In Proceedings of SISO Spring SIW, San Diego,
CA, 2005.

[29] López, A., and G. Wainer. “Improved Cell-DEVS Model
Definition in CD++.” LNCS 3305 Edited by P. M. A. Sloot, B.
Chopard, and A. G. Hoekstra. ACRI 2004, Springer-Verlag,
2004.

Acknowledgements

This work has been partially funded by NSERC, the
Canadian Foundation for Innovation, the Ontario
Innovation Fund, and Precarn.

JDMS vol 2 no 3 Jul 2005 reg.ind142   142 3/14/2006   1:29:31 PM

Volume 2, Number 3	 JDMS 143

Creating Spatially-Shaped Defense Models Using DEVS and Cell-DEVS

Author Biographies

Gabriel Wainer received M.Sc. (1993) and Ph.D. degrees
(1998, with highest honors) from the Universidad de Buenos
Aires, Argentina, and Université d’Aix-Marseille III,
France. In July 2000, he joined the Department of Systems
and Computer Engineering, Carleton University (Ottawa,
ON, Canada), where he is now an Associate Professor.
Previously, he was Assistant Professor at the Computer
Sciences Department of the Universidad de Buenos Aires,
and a visiting research scholar at the University of Arizona
and LSIS, CNRS, France. He is author of a book on real-
time systems, another on discrete-event simulation, and
over 110 research articles. He was PI of several research
projects (NSERC, Precarn IRIS, IBM Scholars, Usenix,
CFI, CONICET, ANPCYT). Dr. Wainer is an Associate
Editor of Simulation: Transactions of the SCS, and
the International Journal of Simulation and Process
Modeling. He is a member of the Board of Directors of
the SCS, a chair of the DEVS standardization study group
(SISO), Associate Director of the Ottawa Center of The
McLeod Institute of Simulation Sciences, and chair of the
Ottawa M&SNet. His current research interests are related
to modeling methodologies and tools, parallel/distributed
simulation, and real-time systems. Dr. Wainer’s web addresses
is <http://www.sce.carleton.ca/faculty/wainer>.

Rami Madhoun received a Bachelor’s degree in Electrical
and Computer Engineering from the University of Qatar,
2000. He worked at Qatar Telecom in positions related to
software development and network/system administration.
He also worked at Convergys (Canada) as a technical
support engineer before joining the Department of Systems
and Computer Engineering at Carleton University, Canada,
as an M.A.Sc. student. Mr. Madhoun holds scholarships
including the Ontario Graduate Scholarship (OGS), Ontario
Graduate Scholarship for Science and Technology (OGSST),
HPCVL (Sun Microsystems), and Precarn Scholarship.
He is second year master’s student working in the area of
parallel/distributed simulation.

JDMS vol 2 no 3 Jul 2005 reg.ind143   143 3/14/2006   1:29:32 PM

