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Abstract.  We show how to build generic DEVS models to 
facilitate simulation of mixed signal Hardware Description 
Language models within a DEVS simulator. We present the 
models required, and the conversion procedures for a subset 
of VHDL called sAMS-VHLD. Hierarchical models written 
in sAMS-VHDL that utilize Processes, Signals and Simulta-
neous Statements are be simulated in the CD++ toolkit by 
elaborating the model, and converting the model hierarchy 
into an equivalent CD++ coupled model. These Process, 
Signal and Integrator models and their associated conver-
sion procedures were designed and then tested in CD++ us-
ing a number of characteristic sAMS-VHDL models.  
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1. INTRODUCTION 

Today’s technology business climate requires hardware 
designers be fast; not only when designing new technology, 
but throughout the design and maintenance cycle [1]. Digital 
designers have known for some time, that thorough model-
ing and simulation of designs reduces the number of design 
and integration errors, eases product maintenance and re-
duces costs. Design and simulation of digital logic with 
HDLs (Hardware Description Languages) is a well-proven 
methodology; digital designers have a rich toolset available 
for defining and verifying logic before manufacturing. Such 
robust toolsets for analog and mixed signal design and simu-
lation have yet to be developed, and those currently avail-
able have many limitations and do not exhibit the desired 
performance. A suitable mixed signal simulator would give 
the designer the ability to optimize, debug, and verify de-
signs with lower simulation costs, lower risk on manufactur-
ing investment and faster turnaround time. 

A key design challenge for a mixed signal simulator is to 
provide high performance while maintaining the accuracy of 
continuous time signals. We also need to provide concurrent 
execution of the simulations of the digital and analog mo d-
els. A proposed solution to these challenges presented in [2], 
is to simulate mixed signal HDL models in DEVS (Discrete 
EVent Systems Specification) [3]. In order to simulate a 

mixed signal HDL model within a DEVS simulator, generic 
models that capture the semantics of the constructs within 
the HDL must be developed within the DEVS simulator us-
ing the developed generic models .  We present a proposal 
for a subset of VHDL-AMS (Very High Speed Integrated 
Circuit Hardware Description Language -  Analog Mixed 
Signal) [4], which permits defining digital and analog com-
ponents. We designed a set of generic DEVS models and 
presented conversion procedures to simulate designs utiliz-
ing these constructs in the CD++ toolset [5], which imple-
ments the DEVS formalism. This set of VHDL constructs 
[6] with analog extensions will be referred to as sAMS -
VHDL (simple Analog Mixed Signal VHDL).  

DEVS theory evolved and it was recently upgraded in 
order to permit modeling of continuous and hybrid systems 
[7]. This presents some advantages, including greater accu-
racy in modeling continuous systems and the ability to de-
velop a uniform approach to model hybrid systems, i.e. 
composed of both continuous and discrete components. The 
idea beyond this method is to provide quantization of the 
state variables obtaining a discrete event approximation of 
the continuous system.  

In the long term, we want to attack the development of 
hybrid systems based on the DEVS formalism and its exten-
sions, building libraries to make easy to use components de-
veloped on top of DEVS modeling tools. Here, we show 
how to build a sAMS-VHDL interpreter using DEVS-based 
models. One of the benefits is that for a given accuracy, the 
number of transitions can be reduced, decreasing the execu-
tion time of simulations. Discrete time models can be simu-
lated under the discrete event paradigm, thus allowing the 
development of a simulation environment for complex sys-
tems, modeled as hybrid systems, where all techniques (con-
tinuous time, discrete time, discrete event) merge together.  

 
2. THE DEVS FORMALISM AND CD++ 

DEVS is a theoretical approach, which allows the defini-
tion of hierarchical modular models. DEVS models may be 
described as a set of communicating atomic or coupled 
submodels.  A real system mo deled with DEVS is described 



as a composite of submodels, each of them being behavioral 
(atomic) or structural (coupled). A DEVS atomic model is 
can be informally described as in Figure 1.  
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 Figure 1. Informal description of an atomic model. 
 
Each atomic model can be seen as having an interface 

consisting of input (x) and output (y) ports to commu nicate 
with other models. Every state (s) in the model is associated 
with a time advance (ta) function, which determines the du-
ration of the state. Once the time assigned to the state is 
consumed, an internal transition is triggered. At that mo-
ment, the mo del execution results are spread through the 
model’s output ports by activating an output function (λ). 
Then, an internal transition function (δint) is fired, produc-
ing a local state change. Input external events (those events 
received from other models) are collected in the input ports. 
An external transition function (δext) specifies how to react 
to those inputs.  

A DEVS coupled model is composed by several atomic 
or coupled submodels, as seen in Figure 2.  

 
Figure 2. Informal description of a coupled model. 
 
Coupled models are defined as a set of basic comp onents 

(atomic or coupled), which are interconnected through the 
model's interfaces. The model’s coupling defines how to 
convert the outputs of a model into inputs for the others, and 
to inputs/outputs to the exterior of the model.  

CD++ [5] is a modeling tool that was defined using 
DEVS specifications. DEVS Atomic models can be pro-
grammed and incorporated onto a class hierarchy pro-
grammed in C++. Coupled models can be defined using a 
built-in specification language. CD++ makes use of the in-
dependence between modeling and simulation provided by 

DEVS, and different simulation engines have been defined 
for the platform: a stand-alone version, a Real-Time simula-
tor, and a Parallel simulator.  

CD++ is built as a class hierarchy of models related with 
simulation processing entities. DEVS Atomic models can be 
programmed and incorporated onto the Model basic class 
hierarchy using C++.  

 
class Atomic : public Model  { 
public: 
virtual ~Atomic(); // Destructor 

 
protected: 

//Kernel services 
Time nextChange(); 
Time lastChange(); 
holdIn(AtomicState::State &, Time &); 
passivate(); 
ModelState* getCurrentState() ; 
sendOutput(Time &time,Port &port, Value value); 
 
//User defined functions. 
initFunction(); 
externalFunction(ExternalMessage & ); 
internalFunction(InternalMessage & ); 
outputFunction(CollectMessage & ); 
string className() const 
}; // class Atomic 

Figure 3. The Atomic Class 

Once an atomic model is defined, it can be combined 
with others into a multicomponent model using a specifica-
tion language specially defined with this purpose. Four 
properties must be configured: components, output ports, 
input ports and links between models. The syntax is: 

Components: name1[@atomicClass1] name2 ... 
Lists the components of the coupled model (atomic or 

coupled). For atomic models, an instance and a class name 
must be specified, allowing a coupled model to use more 
than one instance of a given atomic class. For coupled mod-
els, only the model name must be given. 

Out: portname1 portname2 ... 
Enumerates the model’s output ports (optional clause). 
In: portname1 portname2 ... 
Enumerates the input ports (optional clause). 
Link: source[@model] destination[@model]. 
It describes the internal and external coupling scheme. If 

the name of the model is not included, the default will be the 
coupled model being defined currently. 
 

3. SAMS VHDL 
sAMS VHDL is targeted toward register transfer level 

modeling of digital circuits with limited behavioral model-
ing and analog constructs. sAMS VHDL integrates many of 
the features of VHDL-AMS [4] and explicitly includes 
some of the types and functions defined by the IEEE 1164 
standard logic package [6]. The basic component is the de-
sign entity declaration, which describes the interface to a 
sAMS VHDL design unit.  



entity entity_name is 
  { port ( [signal | terminal | quantity]   
  identifier{, identifier}: [mode | signal_type  
      | electrical]; }+ 
 end [entity] [entity_name] ;   
 
The entity declaration contains a list of ports, each of 

which is assigned a type and an optional mode. Ports of type 
std_logic or std_logic_vector (a standardized type for digital 
logic) are used for digital signals, while ports of type elec-
trical are used for analog signals. In the case of digital sig-
nals, ports will have mode in, out, inout or buffer. Analog 
ports do not require a mode.  

Figure 4 shows the entity declaration of a digital flip-
flop and an analog circuit (low-pass filter). In the flip-flop 
declaration, d and clk are input ports of type std_logic, and q 
is an output port of type std_logic. In addition to the basic 
std_logic type, vectors of std_logic signals may be declared 
using the std_logic_vector type. This allows digital signals 
to be operated on by only referencing one signal name. In 
the declaration for the analog low-pass filter, tout, tin and 
tgnd are electrical ports. 

 
entity d_flip_flop is       
   port( d, clk : in std_logic;         
     q : out std_logic; ) ; 
end entity d_flip_flop ; 
 
entity LPF is  
  port (terminal tout, tin, tgnd: electrical); 
end entity LFP; 

tin tout

tgnd

R

C

vin

vout

 
Figure 4. Low-pass Filter 

  
A design architecture describes the functionality of a 

design unit (it may be a structural, dataflow or behavioral 
description). A single architecture is associated with exactly 
one entity, whose syntax is:  

 
architecture architecture_name of entity_n is 
     signal_declaration 
     | constant_declaration 
     | component_declaration 
begin  
     {process_statement 
     | concurrent_signal_assignment_statement 
     | component_instantiation_statement 
     | simultaneous_statement}  
end [architecture] [architecture_name] ; 
 
The body of an architecture is made up of statements 

that may be categorized as concurrent, sequential or si-
multaneous . These statements operate on signals/quantities 

declared within the scope of the architecture, and ports that 
are declared in the entity the architecture is associated with.  

Signals and quantities are declared in the declarative 
region of an architecture. They belong to the scope of the 
architecture in which they are declared, and may only be 
referenced within that architecture. Signals and quantities 
have types (similar to ports in the entities). Types std_logic 
and std_logic_vector are used for digital logic. Signals and 
quantities are defined as below:    

signal signal_name : std_logic_vector  
(upper_bound downto lower_bound) | std_logic ;   
quantity identifier: REAL | Voltage | Current | 

Charge ; 
Quantities can also be declared as relative to terminals in 

an entity, defined as across or through quantities. Across 
quantities represent the voltage at the free terminal relative 
to the reference terminal. Through quantities represent the 
current from the free terminal into the reference terminal.  

quantity identifier {, identifier} across iden-
tifier {, identifier} through free_terminal to 
reference_terminal ; 

Concurrent statements within an architecture body exe-
cute concurrently. They include statements for Process, Si-
multaneous, Concurrent Assignment and Conditional Con-
current Assignments. The conditional concurrent assignment 
assigns a target signal using a condition. Instead, the uncon-
ditional concurrent assignment always assigns the value of 
the source signal to the target signal. 

target_signal <= expression1 when condition  
 else expression2; // conditional 
target_signal <= source_signal; //unconditional 
A process executes the statements between begin and 

end process when an event occurs on a signal in its sensitiv-
ity list. All signals modified by the process are updated only 
when the process body is completed. The statements be-
tween begin and end (sequential statements) are executed in 
sequence.   

[process_name:] 
process (sensitivity_list) { type_declaration } 
begin  
  {signal_assignment_statement | if_statement 
  | case_statement 
end process [process_name] ; 
The if-then-else statement has the same semantic found 

in most programming languages. 
 
[ if_name: ] if  condition  then 
                 sequence_of_statements 
            {elsif  condition2  then      
                 sequence_of_statements  } 
            [else sequence_of_statements ] 
            end if [ if_name ] ; 
The case-when statement runs the sequence of state-

ments lis ted under the when clause whose expression 
matches that of the expression in the case statement. 
 

[ case_name: ] case  expression  is 
 {when identifier | expression | discrete_range     
    | others => sequence_of_statements}+ 
end case [ case_name ] ;  



The sequential assignment assigns the value of the 
driver signal to the target signal. When executed from 
within a process, the target will not get the value of the 
driver until the end of the process.  

[ label: ] target <= driver ; 
Simultaneous statements are used for describing Differ-

ential Algebraic Equations, and may consist of quantities or 
signals, including a minimum of one quantity per simulta-
neous statement (we only support Ordinary Differential 
Equations). Simultaneous statements may appear anywhere 
a concurrent statement may, and they have no order.  

x1’dot’dot == -f*(x1 – x2) / m1; 
x2’dot’dot == -f*(x2 – x1) / m2; 
In the previous example, the ‘dot notation denotes the 

derivative with respect to time of the quantity. For example, 
signal’dot is the first derivative with respect to the time of 
the signal, while signal’dot’dot is the second derivative.   

Components facilitate hierarchical design within 
sAMS-VHDL. A component instance is a copy of the 
named entity and its associated architecture that interacts 
with the architecture it is instantiated within. The port map 
clause specifies which ports of the entity are connected to 
which signals in the enclosing architecture body.  

Instantiation_label :  
entity entity_name   
port map ( 
  {port_name => signal_name | expression |  
    variable_name | open }+    ); 

 
4. MAPPING SAMS VHDL TO DEVS 

Each of the sAMS-VHDL constructions presented in the 
previous section must be converted into a DEVS model, and 
made it available for execution in CD++. Process models 
are translated into CD++ by converting its sequential state-
ments to C++ code, and instantiating ports for every signal 
that is read or driven from within the process and for every 
signal in the processes sensitivity list. Figure 5 illustrates an 
example of a DEVS model generated from a flip-flop. 

 
flipflop: process (clk) 
begin   
    if( rising_edge(clk) ) 
        q<=d; 
    end if; 
end process my_proc; 

 
Figure 5. CD++ Process Model. 

The process body is implemented within the external 
transition function. The values received from all external 
events generated on the input ports (representing read and 
sensitivity list signals) are buffered within the model. If the 
process body contains a reference to ris-
ing_edge(signal_name) or falling_edge(signal_name) 
operations, the values received from the external events are 
stored on a buffer of length two within the model (keeping 
the previous and current values of the signal). 

The sequential statements in the process body are con-
verted directly to C++ and inserted into the external transi-
tion function since they are sequential and semantically 
equivalent to C++ statements. sAMS VHDL If, case and as-
signment statements are converted directly into C++ if, 
switch and assignment statements. The boolean expression 
that refers to read and sensitivity list signals in the sAMS 
VHDL if statement is replaced with an equivalent boolean 
expression that refers to port buffers for those signals.  

If the condition within an if statement contains a sensi-
tivity list signal, the last piece of code within the C++ if 
condition should instruct the process model to change to the 
active state in 0-time (causing an instantaneous output event 
and internal transition). The output event will update all 
driven signals (by sending the value of each output port 
buffer), while the internal transition will cause the model to 
return to the active state. The following figure shows sAMS 
VHDL code for a process used in a four bit counter and its 
translation into CD++.  

This process has one sensitivity list signal (clk), four 
read signals (d1...d4) and four driven signals (q1…q4). The 
process body contains an if sequential statement with a boo-
lean expression that contains the rising_edge operation act-
ing on signal clk , and four sequential assignment operations. 

 
Counter: process (clk) is 
begin 
     if(rising_edge(clk)) 
 q1<=not d1; 
 q2<=d1 xor d2; 
 q3<= d3 xor (d1 and d2); 
 q4<=d4 xor (d1 and d2 and d3);  
     end if; 
end Counter; 
if (msg.port()==clk) {   
         // clk is in the trigger list 
 o_clk=n_clk; 
 n_clk=msg.value(); 
}   
... 
//port buffer code for d1 d2 d3 d4          
if(o_clk==0 && n_clk==1) {  
   // if rising_edge(clk)            
   _q1=_1164not(_d1);  q2=_1164xor(_d2,_d1); 
   _q3=_1164xor(_d3,_1164and(_d1,_d2));                           
   _q4=_1164xor(_d4,_1164and(_d3,_1164and 
         (_d1,_d2))); 
   holdIn(active,0); 
} 

Figure 6. Translating Process Models 



We show a fragment of the C++ code generated, in 
which o_clk, n_clk, _d1, _d2, _d3 and _d4 are input port 
buffers; _q1, _q2, _q3 and _q4 are output port buffers, and 
_1164and , _1164not and _1164xor are functions that im-
plement and, not and xor operators in CD++.     

 
signal my_signal, x, y, z: std_logic; 
… 
my_signal<=x after 5ns; 

 

 
Figure 7. CD++ Signal Model. 

 
Signals are used to determine how to interconnect the 

ports on the many process model instances for each comp o-
nent. This information is then used during model file gen-
eration to create links between the models. As DEVS links 
provides instantaneous communication between the comp o-
nents, a signal model is created to implement transport delay 
on messages sent between process model ports. The signal 
model receives and buffers data on its input port, enters the 
active state for the time specified by the assignment state-
ment transport delay, then outputs the buffered data on its 
output port, as showed in Figure 7.   

Simultaneous statements in sAMS VHDL allow the 
definition of ordinary differential equation systems with ini-
tial conditions. The problem of simulating an nth ordinary 
differential equation is solved by reducing the nth order or-
dinary differential equation into a set of first order differen-

tial equations. For example, )()(2

2
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written as two first-order differential equations: 
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dinary differential equation of form:  
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of first order differential equations: 
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is known. A solution for each yi(t) is obtained for some t >0 

and yi(0) set by integrating each 
dt

tdyi )( .We have used both 

Euler’s and Fourth-order Runge-Kutta methods (which is 
more accurate and stable) for the numerical integration [8]. 
The Runge-Kutta method does not rely only on the deriva-

tive at the beginning of the interval only, but also uses the 
derivative at two trial midpoints and the derivative at a trial 
end point, as showed in Figure 8.  

 

 
Figure 8.  Runge-Kutta Integration 

 
Finally, a weighted sum of k1, k2, k3 and k4 is added to yn to 
determine yn+1. 
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Continuous time ODE systems with initial conditions 

have traditionally been simulated by discretizing the time 
domain, and solving the ODE over each discrete time inter-
val. An alternative approach introduced in [7] suggests dis-
cretizing the state space of the solution rather than the time 
domain. Instead of determining what value a dependant 
variable will have at a given time, we must determine at 
what time the variable will enter a given state. These sys-
tems are termed quantized state systems, and its use may 
yield results as accurate as a discrete time approach. 

 

 
Figure 9. Signal Quantization 

 
In order to use the Fourth-order Runge-Kutta method in 

a quantized state system, equation (3) must be modified to 
determine h when yn+.- yn = Q/2 (Q is the quantum size). Let 
Q be the quantum size. Then, substitute 
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Equation (4) determines at what time relative to the pre-

sent time the integral of the first order differential equation 
will enter the quantum state above or below its current 
quantum state. In order to simulate an ODE system written 
in sAMS VHDL simultaneous statements, the ODE is first 
decomposed into a set of first order differential equations. 
Each of these is then be converted into a Fourth-order 
Runge-Kutta Quantized Integrator model during Model 
Code and Netlist Generation, and it is instantiated and 
linked to other Fourth-order Runge-Kutta Quantized Inte-
grators during the coupled model generation (outlined in 
Section 5).  

The conversion process must first determine which 
quantities and signals are exogenous and endogenous to the 
ODE system. Endogenous quantities will be the quantity on 
the left hand side of the simultaneous statement as well as 
all quantities on the right hand side of the simultaneous 
statement with the same quantity name as the left hand side 
quantity. All other quantities or signals will be exogenous. 
For example, the following simultaneous statement de-
scribes a first order low-pass filter with input voltage vin 
and output voltage vout: 

vout’dot = (1/(R*C))*(vin-vout); 
In this statement, vin is an exogenous quantity, while 

vout and vout’dot are endogenous quantities. Once all 
endogenous and exogenous quantities and signals have been 
identified, the ODE specified in the simultaneous statement 
must be decomposed into a set of first order differential 
equations as outlined in (2). Each of these first order differ-
ential equations is then converted directly into a Fourth-
order Runge-Kutta Quantized Integrator. Each Integrator 
must have an input port for each exogenous and endogenous 
quantity or signal on the right hand side of its first order dif-
ferential equation, and an output port for the integral of the 
left hand side of its first order differential equation. For ex-
ample, the low-pass filter above requires only a single inte-

grator, and this integrator has input ports for vin and vout, as 
well as an output port for vout. 

Following all port buffer code in the integrators external 
transition function, the model executes the Fourth-order 
Runge-Kutta method for a quantized state system if the 
model is in the passive state. The right hand side of the first 
order differential equation is converted to C++, substituting 
the signal buffer name for the signal name, and multiplying 
this buffer by the quantum size. The fo llowing is the Fourth-
order Runge-Kutta method code for the low-pass filter pre-
sented above:  

 
p1 = (1.0/(C*R))*(_vin*QuantumSize –  
 (_vout*QuantumSize)); 
p2 = (1.0/(C*R))*(_vin*QuantumSize –  
 (_vout*QuantumSize +  
 sign(p1)*(HalfQuantumSize/2.0))); 
p3 = (1.0/(C*R))*(_vin*QuantumSize –  
 (_vout*QuantumSize +  
 sign(p2)*(HalfQuantumSize/2.0))); 
p4 = (1.0/(C*R))*(_vin*QuantumSize –  
 (_vout*QuantumSize +  
 sign(p2)*(HalfQuantumSize))); 
 
h1 = HalfQuantumSize / p1; 
h2 = HalfQuantumSize / p2; 
h3 = HalfQuantumSize / p3; 
h4 = HalfQuantumSize / p4; 
 
h = 1.0/(1.0/(6.0*h1) + 1.0/(3.0*h2) +  
    1.0/(3.0*h3) + 1.0/(6.0*h4));  
  
The model then transitions to the active state for a time 

determined by h, which is calculated as in (4). The output 
function simply outputs the current state of the output buffer 
plus or minus one, plus one if the slope over the interval was 
positive, minus one if the slope over the interval was nega-
tive. The internal transition function similarly incre-
ments/decrements the state of the output buffer depending 
on the slope over the interval and then sends the model into 
the passive state.    

During the coupled model generation, each of the inte-
grator models converted during the model code and netlist 
generation (discussed in the following section), are instanti-
ated and linked together. For each Integrator model in-
stance, each port that represents a given endogenous quan-
tity in the simultaneous statement is linked to all ports that 
represent that same quantity on itself and on all other Inte-
grator model instances. All exogenous quantity and signal 
input ports are linked to their respective output ports on a 
process, component or signal model.        
 
5. DEFINING CD++ COUPLED MODELS 

Once the individual components are created, we need to 
convert designs written in sAMS VHDL into DEVS models 
that may be simulated in CD++. The application follows the 
dataflow illustrated in Figure 10.  

The conversion begins with a check to ensure that the 
model is syntactically correct. Then, VHDL elaboration 



yields to a description of the structure of each component in 
the design hierarchy. The architecture and entity description 
for each component in the design is parsed in order to pro-
duce a netlist (interconnected integrators, algebraic opera-
tors, processes, signals, etc.), which is used to generate 
CD++ model code for each of the processes. CD++ process 
models are then compiled into a model l ibrary. 

 

Figure 10. Simulation Dataflow 
 
Following compilation, the netlist and model library are 

used by the model (MA) file generation process to yield a 
coupled CD++ model defin ition file. During this stage, 
sAMS VHDL models hierarchies are converted to CD++ 
coupled models. The comp onents that constitute the design 
hierarchy must first be differentiated based on whether they 
are a basic or aggregate component. Basic components do 
not contain sub-component instances in their architectures, 
while aggregate components may have one or more. A de-
pendency tree is generated: the leaves of this tree will be the 
basic components, while the branches will be aggregate 
components (the root will be the top-level model).  

Figure 11 contains a CD++ coupled model definition for 
the sAMS VHDL design hierarchy of Figure 4, note the or-
der of component declaration begins with the top level 
model and is  followed by models that approach the leaves in 
the dependency tree. As we can see, there are two basic 
components: a digital clock (a coupled component built as 
the clock defined in Figure 6), and an integrator, built as in 
Figure 8.   

sAMS VHDL sub-component instances are connected to 
the architecture in which they are instantiated as defined by 
the port map clause in their component instantiation state-
ment. This clause will  connect either a signal within the ar-
chitecture, or a port on the architectures’ entity definition to 
each of the ports on the component instance. In the case of a 
signal, the linking is termed structural, in the case of an-
other port, the linking is termed hierarchical. In both cases 
the mode of the sub-component port specified in the port 
map clause must be determined prior to generating link 

statements in the coupled model definition. In structural 
links, if the ports mode is out, it is linked to the input port 
on the signal model specified in the clause; if the ports mode 
is in, the output port on the specified signal model is linked 
to it. In hiera rchical links, if the sub-components port mode 
is out, it is linked to the component port; if the sub-
components port mode is in, the component port is linked to 
it. Figure 11 illustrates all four of these cases.    

 
entity LPF is  

   port (terminal tout, tgnd: electrical); 
end entity LFP;  

 
architecture top of LPF is 
 signal clk : std_logic; 
 signal vin : std_logic; 
quantity vout across tout to tgnd; 
 

begin 
vout’dot = (1/(R*C))*(vin-vout); 
clk: entity clk 
port map (clk=>clk); 
vin<=clk; 

end architecture top; 
 
[top] 
components : int@rkIntegModel clock  
out : clk y  
Link : y@int y 
Link : y@int dydt@int 
Link : out@clock clk 
Link : out@clock vin@int 

 
[int] 
y0 : 0     
dydt0 : 0    
C : 1.0E-6    
R : 1000 

 
[clock] 
components : inv@Process_Inv sig1@Signal  
components : qm@QuantumMultiply 
out : out 
Link : out@sig1 in@inv 
Link : out@inv  in@sig1 
Link : out@sig1 in@qm 
Link : out@qm   out 

 
[sig1] 
Transport_Delay : 00:00:1:000 

 
[qm] 
Transport_Delay : 00:00:00:000 
Attenuation : 100 

Figure 11. Hierarchical sAMS-VHDL Model 
 
Once the complete model is defined and it has been 

translated, it can be simulated in CD++. The following fig-
ure shows the execution results for the filter using different 
input parameters. 
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 Fi-
gure 12.  Simulation Results. Low-Pass Filter. 

 
6. CONCLUSION 

We showed the use of DEVS to facilitate simulation of 
mixed signal HDL models. In order to permit the execution 
of these models within a DEVS simulator, generic DEVS 
models and conversion procedures were required. Hierar-
chical models written in sAMS-VHDL that utilize Proc-
esses, Signals and Simultaneous statements may be simu-
lated in CD++ by elaborating the model, and converting the 
model hierarchy into an equivalent CD++ model. 

The nature of DEVS permitted seamless integration of 
the model's components. Likewise, quantized DEVS permit-
ted to integrate continuous signal models into a hierarchical 
model definition. 

At present, we are extending sAMS-VHDL, and addi-
tional models and conversion procedures be developed. 
Type definition, generate blocks and signal attributes will 
ease model definition. The modularity of the CD++ models 
developed for this project will facilitate integration of new 
models. 
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