
DEVS for mixed-signal Modeling based on VHDL

Shaylesh Mehta
Gabriel Wainer

Dept. of Systems and Computer Engineering

Carleton University
4456 Mackenzie Building

1125 Colonel By Drive
Ottawa, ON. K1S 5B6. CANADA.

gwainer@sce.carleton.ca

Abstract. We show how to build generic DEVS models to
facilitate simulation of mixed signal Hardware Description
Language models within a DEVS simulator. We present the
models required, and the conversion procedures for a subset
of VHDL called sAMS-VHLD. Hierarchical models written
in sAMS-VHDL that utilize Processes, Signals and Simulta-
neous Statements are be simulated in the CD++ toolkit by
elaborating the model, and converting the model hierarchy
into an equivalent CD++ coupled model. These Process,
Signal and Integrator models and their associated conver-
sion procedures were designed and then tested in CD++ us-
ing a number of characteristic sAMS-VHDL models.

Keywords: n-VHDL, DEVS, CD++, G-DEVS, Q-DEVS.

1. INTRODUCTION

Today’s technology business climate requires hardware
designers be fast; not only when designing new technology,
but throughout the design and maintenance cycle [1]. Digital
designers have known for some time, that thorough model-
ing and simulation of designs reduces the number of design
and integration errors, eases product maintenance and re-
duces costs. Design and simulation of digital logic with
HDLs (Hardware Description Languages) is a well-proven
methodology; digital designers have a rich toolset available
for defining and verifying logic before manufacturing. Such
robust toolsets for analog and mixed signal design and simu-
lation have yet to be developed, and those currently avail-
able have many limitations and do not exhibit the desired
performance. A suitable mixed signal simulator would give
the designer the ability to optimize, debug, and verify de-
signs with lower simulation costs, lower risk on manufactur-
ing investment and faster turnaround time.

A key design challenge for a mixed signal simulator is to
provide high performance while maintaining the accuracy of
continuous time signals. We also need to provide concurrent
execution of the simulations of the digital and analog mo d-
els. A proposed solution to these challenges presented in [2],
is to simulate mixed signal HDL models in DEVS (Discrete
EVent Systems Specification) [3]. In order to simulate a

mixed signal HDL model within a DEVS simulator, generic
models that capture the semantics of the constructs within
the HDL must be developed within the DEVS simulator us-
ing the developed generic models . We present a proposal
for a subset of VHDL-AMS (Very High Speed Integrated
Circuit Hardware Description Language - Analog Mixed
Signal) [4], which permits defining digital and analog com-
ponents. We designed a set of generic DEVS models and
presented conversion procedures to simulate designs utiliz-
ing these constructs in the CD++ toolset [5], which imple-
ments the DEVS formalism. This set of VHDL constructs
[6] with analog extensions will be referred to as sAMS -
VHDL (simple Analog Mixed Signal VHDL).

DEVS theory evolved and it was recently upgraded in
order to permit modeling of continuous and hybrid systems
[7]. This presents some advantages, including greater accu-
racy in modeling continuous systems and the ability to de-
velop a uniform approach to model hybrid systems, i.e.
composed of both continuous and discrete components. The
idea beyond this method is to provide quantization of the
state variables obtaining a discrete event approximation of
the continuous system.

In the long term, we want to attack the development of
hybrid systems based on the DEVS formalism and its exten-
sions, building libraries to make easy to use components de-
veloped on top of DEVS modeling tools. Here, we show
how to build a sAMS-VHDL interpreter using DEVS-based
models. One of the benefits is that for a given accuracy, the
number of transitions can be reduced, decreasing the execu-
tion time of simulations. Discrete time models can be simu-
lated under the discrete event paradigm, thus allowing the
development of a simulation environment for complex sys-
tems, modeled as hybrid systems, where all techniques (con-
tinuous time, discrete time, discrete event) merge together.

2. THE DEVS FORMALISM AND CD++

DEVS is a theoretical approach, which allows the defini-
tion of hierarchical modular models. DEVS models may be
described as a set of communicating atomic or coupled
submodels. A real system mo deled with DEVS is described

as a composite of submodels, each of them being behavioral
(atomic) or structural (coupled). A DEVS atomic model is
can be informally described as in Figure 1.

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

 Figure 1. Informal description of an atomic model.

Each atomic model can be seen as having an interface

consisting of input (x) and output (y) ports to commu nicate
with other models. Every state (s) in the model is associated
with a time advance (ta) function, which determines the du-
ration of the state. Once the time assigned to the state is
consumed, an internal transition is triggered. At that mo-
ment, the mo del execution results are spread through the
model’s output ports by activating an output function (λ).
Then, an internal transition function (δint) is fired, produc-
ing a local state change. Input external events (those events
received from other models) are collected in the input ports.
An external transition function (δext) specifies how to react
to those inputs.

A DEVS coupled model is composed by several atomic
or coupled submodels, as seen in Figure 2.

Figure 2. Informal description of a coupled model.

Coupled models are defined as a set of basic comp onents

(atomic or coupled), which are interconnected through the
model's interfaces. The model’s coupling defines how to
convert the outputs of a model into inputs for the others, and
to inputs/outputs to the exterior of the model.

CD++ [5] is a modeling tool that was defined using
DEVS specifications. DEVS Atomic models can be pro-
grammed and incorporated onto a class hierarchy pro-
grammed in C++. Coupled models can be defined using a
built-in specification language. CD++ makes use of the in-
dependence between modeling and simulation provided by

DEVS, and different simulation engines have been defined
for the platform: a stand-alone version, a Real-Time simula-
tor, and a Parallel simulator.

CD++ is built as a class hierarchy of models related with
simulation processing entities. DEVS Atomic models can be
programmed and incorporated onto the Model basic class
hierarchy using C++.

class Atomic : public Model {
public:
virtual ~Atomic(); // Destructor

protected:

//Kernel services
Time nextChange();
Time lastChange();
holdIn(AtomicState::State &, Time &);
passivate();
ModelState* getCurrentState() ;
sendOutput(Time &time,Port &port, Value value);

//User defined functions.
initFunction();
externalFunction(ExternalMessage &);
internalFunction(InternalMessage &);
outputFunction(CollectMessage &);
string className() const
}; // class Atomic

Figure 3. The Atomic Class

Once an atomic model is defined, it can be combined
with others into a multicomponent model using a specifica-
tion language specially defined with this purpose. Four
properties must be configured: components, output ports,
input ports and links between models. The syntax is:

Components: name1[@atomicClass1] name2 ...
Lists the components of the coupled model (atomic or

coupled). For atomic models, an instance and a class name
must be specified, allowing a coupled model to use more
than one instance of a given atomic class. For coupled mod-
els, only the model name must be given.

Out: portname1 portname2 ...
Enumerates the model’s output ports (optional clause).
In: portname1 portname2 ...
Enumerates the input ports (optional clause).
Link: source[@model] destination[@model].
It describes the internal and external coupling scheme. If

the name of the model is not included, the default will be the
coupled model being defined currently.

3. SAMS VHDL
sAMS VHDL is targeted toward register transfer level

modeling of digital circuits with limited behavioral model-
ing and analog constructs. sAMS VHDL integrates many of
the features of VHDL-AMS [4] and explicitly includes
some of the types and functions defined by the IEEE 1164
standard logic package [6]. The basic component is the de-
sign entity declaration, which describes the interface to a
sAMS VHDL design unit.

entity entity_name is
 { port ([signal | terminal | quantity]
 identifier{, identifier}: [mode | signal_type
 | electrical]; }+
 end [entity] [entity_name] ;

The entity declaration contains a list of ports, each of

which is assigned a type and an optional mode. Ports of type
std_logic or std_logic_vector (a standardized type for digital
logic) are used for digital signals, while ports of type elec-
trical are used for analog signals. In the case of digital sig-
nals, ports will have mode in, out, inout or buffer. Analog
ports do not require a mode.

Figure 4 shows the entity declaration of a digital flip-
flop and an analog circuit (low-pass filter). In the flip-flop
declaration, d and clk are input ports of type std_logic, and q
is an output port of type std_logic. In addition to the basic
std_logic type, vectors of std_logic signals may be declared
using the std_logic_vector type. This allows digital signals
to be operated on by only referencing one signal name. In
the declaration for the analog low-pass filter, tout, tin and
tgnd are electrical ports.

entity d_flip_flop is
 port(d, clk : in std_logic;
 q : out std_logic;) ;
end entity d_flip_flop ;

entity LPF is
 port (terminal tout, tin, tgnd: electrical);
end entity LFP;

tin tout

tgnd

R

C

vin

vout

Figure 4. Low-pass Filter

A design architecture describes the functionality of a

design unit (it may be a structural, dataflow or behavioral
description). A single architecture is associated with exactly
one entity, whose syntax is:

architecture architecture_name of entity_n is
 signal_declaration
 | constant_declaration
 | component_declaration
begin
 {process_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | simultaneous_statement}
end [architecture] [architecture_name] ;

The body of an architecture is made up of statements

that may be categorized as concurrent, sequential or si-
multaneous . These statements operate on signals/quantities

declared within the scope of the architecture, and ports that
are declared in the entity the architecture is associated with.

Signals and quantities are declared in the declarative
region of an architecture. They belong to the scope of the
architecture in which they are declared, and may only be
referenced within that architecture. Signals and quantities
have types (similar to ports in the entities). Types std_logic
and std_logic_vector are used for digital logic. Signals and
quantities are defined as below:

signal signal_name : std_logic_vector
(upper_bound downto lower_bound) | std_logic ;
quantity identifier: REAL | Voltage | Current |

Charge ;
Quantities can also be declared as relative to terminals in

an entity, defined as across or through quantities. Across
quantities represent the voltage at the free terminal relative
to the reference terminal. Through quantities represent the
current from the free terminal into the reference terminal.

quantity identifier {, identifier} across iden-
tifier {, identifier} through free_terminal to
reference_terminal ;

Concurrent statements within an architecture body exe-
cute concurrently. They include statements for Process, Si-
multaneous, Concurrent Assignment and Conditional Con-
current Assignments. The conditional concurrent assignment
assigns a target signal using a condition. Instead, the uncon-
ditional concurrent assignment always assigns the value of
the source signal to the target signal.

target_signal <= expression1 when condition
 else expression2; // conditional
target_signal <= source_signal; //unconditional
A process executes the statements between begin and

end process when an event occurs on a signal in its sensitiv-
ity list. All signals modified by the process are updated only
when the process body is completed. The statements be-
tween begin and end (sequential statements) are executed in
sequence.

[process_name:]
process (sensitivity_list) { type_declaration }
begin
 {signal_assignment_statement | if_statement
 | case_statement
end process [process_name] ;
The if-then-else statement has the same semantic found

in most programming languages.

[if_name:] if condition then
 sequence_of_statements
 {elsif condition2 then
 sequence_of_statements }
 [else sequence_of_statements]
 end if [if_name] ;
The case-when statement runs the sequence of state-

ments lis ted under the when clause whose expression
matches that of the expression in the case statement.

[case_name:] case expression is
 {when identifier | expression | discrete_range
 | others => sequence_of_statements}+
end case [case_name] ;

The sequential assignment assigns the value of the
driver signal to the target signal. When executed from
within a process, the target will not get the value of the
driver until the end of the process.

[label:] target <= driver ;
Simultaneous statements are used for describing Differ-

ential Algebraic Equations, and may consist of quantities or
signals, including a minimum of one quantity per simulta-
neous statement (we only support Ordinary Differential
Equations). Simultaneous statements may appear anywhere
a concurrent statement may, and they have no order.

x1’dot’dot == -f*(x1 – x2) / m1;
x2’dot’dot == -f*(x2 – x1) / m2;
In the previous example, the ‘dot notation denotes the

derivative with respect to time of the quantity. For example,
signal’dot is the first derivative with respect to the time of
the signal, while signal’dot’dot is the second derivative.

Components facilitate hierarchical design within
sAMS-VHDL. A component instance is a copy of the
named entity and its associated architecture that interacts
with the architecture it is instantiated within. The port map
clause specifies which ports of the entity are connected to
which signals in the enclosing architecture body.

Instantiation_label :
entity entity_name
port map (
 {port_name => signal_name | expression |
 variable_name | open }+);

4. MAPPING SAMS VHDL TO DEVS

Each of the sAMS-VHDL constructions presented in the
previous section must be converted into a DEVS model, and
made it available for execution in CD++. Process models
are translated into CD++ by converting its sequential state-
ments to C++ code, and instantiating ports for every signal
that is read or driven from within the process and for every
signal in the processes sensitivity list. Figure 5 illustrates an
example of a DEVS model generated from a flip-flop.

flipflop: process (clk)
begin
 if(rising_edge(clk))
 q<=d;
 end if;
end process my_proc;

Figure 5. CD++ Process Model.

The process body is implemented within the external
transition function. The values received from all external
events generated on the input ports (representing read and
sensitivity list signals) are buffered within the model. If the
process body contains a reference to ris-
ing_edge(signal_name) or falling_edge(signal_name)
operations, the values received from the external events are
stored on a buffer of length two within the model (keeping
the previous and current values of the signal).

The sequential statements in the process body are con-
verted directly to C++ and inserted into the external transi-
tion function since they are sequential and semantically
equivalent to C++ statements. sAMS VHDL If, case and as-
signment statements are converted directly into C++ if,
switch and assignment statements. The boolean expression
that refers to read and sensitivity list signals in the sAMS
VHDL if statement is replaced with an equivalent boolean
expression that refers to port buffers for those signals.

If the condition within an if statement contains a sensi-
tivity list signal, the last piece of code within the C++ if
condition should instruct the process model to change to the
active state in 0-time (causing an instantaneous output event
and internal transition). The output event will update all
driven signals (by sending the value of each output port
buffer), while the internal transition will cause the model to
return to the active state. The following figure shows sAMS
VHDL code for a process used in a four bit counter and its
translation into CD++.

This process has one sensitivity list signal (clk), four
read signals (d1...d4) and four driven signals (q1…q4). The
process body contains an if sequential statement with a boo-
lean expression that contains the rising_edge operation act-
ing on signal clk , and four sequential assignment operations.

Counter: process (clk) is
begin
 if(rising_edge(clk))
 q1<=not d1;
 q2<=d1 xor d2;
 q3<= d3 xor (d1 and d2);
 q4<=d4 xor (d1 and d2 and d3);
 end if;
end Counter;
if (msg.port()==clk) {
 // clk is in the trigger list
 o_clk=n_clk;
 n_clk=msg.value();
}
...
//port buffer code for d1 d2 d3 d4
if(o_clk==0 && n_clk==1) {
 // if rising_edge(clk)
 _q1=_1164not(_d1); q2=_1164xor(_d2,_d1);
 _q3=_1164xor(_d3,_1164and(_d1,_d2));
 _q4=_1164xor(_d4,_1164and(_d3,_1164and
 (_d1,_d2)));
 holdIn(active,0);
}

Figure 6. Translating Process Models

We show a fragment of the C++ code generated, in
which o_clk, n_clk, _d1, _d2, _d3 and _d4 are input port
buffers; _q1, _q2, _q3 and _q4 are output port buffers, and
_1164and , _1164not and _1164xor are functions that im-
plement and, not and xor operators in CD++.

signal my_signal, x, y, z: std_logic;
…
my_signal<=x after 5ns;

Figure 7. CD++ Signal Model.

Signals are used to determine how to interconnect the

ports on the many process model instances for each comp o-
nent. This information is then used during model file gen-
eration to create links between the models. As DEVS links
provides instantaneous communication between the comp o-
nents, a signal model is created to implement transport delay
on messages sent between process model ports. The signal
model receives and buffers data on its input port, enters the
active state for the time specified by the assignment state-
ment transport delay, then outputs the buffered data on its
output port, as showed in Figure 7.

Simultaneous statements in sAMS VHDL allow the
definition of ordinary differential equation systems with ini-
tial conditions. The problem of simulating an nth ordinary
differential equation is solved by reducing the nth order or-
dinary differential equation into a set of first order differen-

tial equations. For example,)()(2

2

xq
dx
dy

xp
dx

yd
=+ can be

written as two first-order differential equations:

)()()(),(xzxpxq
dx
dz

xz
dx
dy

−== . In general, an nth order or-

dinary differential equation of form:
0),...,,,,()(=′′′ nyyyytF (1) may be decomposed into a set

of first order differential equations:

Niyytf
dt

tdy
Ni

i ,...,1),,...,,(
)(

1 == (2) where each fi(t, y1…yN)

is known. A solution for each yi(t) is obtained for some t >0

and yi(0) set by integrating each
dt

tdyi)(.We have used both

Euler’s and Fourth-order Runge-Kutta methods (which is
more accurate and stable) for the numerical integration [8].
The Runge-Kutta method does not rely only on the deriva-

tive at the beginning of the interval only, but also uses the
derivative at two trial midpoints and the derivative at a trial
end point, as showed in Figure 8.

Figure 8. Runge-Kutta Integration

Finally, a weighted sum of k1, k2, k3 and k4 is added to yn to
determine yn+1.

(3)
6336

),(),
2

,
2

(

)
2

,
2

(),,(

4321
1

34
2

3

1
21

kkkk
yy

kyhthfk
k

y
h

thfk

k
y

h
thfkythfk

nn

nnnn

nnnn

++++=

++=++=

++==

+

Continuous time ODE systems with initial conditions

have traditionally been simulated by discretizing the time
domain, and solving the ODE over each discrete time inter-
val. An alternative approach introduced in [7] suggests dis-
cretizing the state space of the solution rather than the time
domain. Instead of determining what value a dependant
variable will have at a given time, we must determine at
what time the variable will enter a given state. These sys-
tems are termed quantized state systems, and its use may
yield results as accurate as a discrete time approach.

Figure 9. Signal Quantization

In order to use the Fourth-order Runge-Kutta method in

a quantized state system, equation (3) must be modified to
determine h when yn+.- yn = Q/2 (Q is the quantum size). Let
Q be the quantum size. Then, substitute

 get to(3)in
2

 and
2

 ,
2

 ,
2

 4321
Q

k
Q

k
Q

k
Q

k ====

(4)
6

1
3

1
3

1
6

1
6

2
3

2
3

2
6

2
2

26336

6336

 and ,,for substitute and (3)in sum theRearrange

)
2

)(,()
4

)(,
2

(

2

)
4

)(,
2

(

2
),(

2 and , ,

1

43214321

1
4321

1
4321

1

4321

33

4

2
2

3

1
1

214321

−

+

++

+++=

+++=

=−+++

=−++++=

++
=

++
=

++
==

hhhh
h

h

Q

h

Q

h

Q

h

Q

h
Q

Q
yy

kkkk

yy
kkkk

yy

kkkk

Q
hsignyhtf

Q
h

Q
hsigny

h
tf

Q

h

Q
hsigny

h
tf

Q

h
ytf

Q

hhhhh

nn

nnnn

nnnn

nn
nn

Equation (4) determines at what time relative to the pre-

sent time the integral of the first order differential equation
will enter the quantum state above or below its current
quantum state. In order to simulate an ODE system written
in sAMS VHDL simultaneous statements, the ODE is first
decomposed into a set of first order differential equations.
Each of these is then be converted into a Fourth-order
Runge-Kutta Quantized Integrator model during Model
Code and Netlist Generation, and it is instantiated and
linked to other Fourth-order Runge-Kutta Quantized Inte-
grators during the coupled model generation (outlined in
Section 5).

The conversion process must first determine which
quantities and signals are exogenous and endogenous to the
ODE system. Endogenous quantities will be the quantity on
the left hand side of the simultaneous statement as well as
all quantities on the right hand side of the simultaneous
statement with the same quantity name as the left hand side
quantity. All other quantities or signals will be exogenous.
For example, the following simultaneous statement de-
scribes a first order low-pass filter with input voltage vin
and output voltage vout:

vout’dot = (1/(R*C))*(vin-vout);
In this statement, vin is an exogenous quantity, while

vout and vout’dot are endogenous quantities. Once all
endogenous and exogenous quantities and signals have been
identified, the ODE specified in the simultaneous statement
must be decomposed into a set of first order differential
equations as outlined in (2). Each of these first order differ-
ential equations is then converted directly into a Fourth-
order Runge-Kutta Quantized Integrator. Each Integrator
must have an input port for each exogenous and endogenous
quantity or signal on the right hand side of its first order dif-
ferential equation, and an output port for the integral of the
left hand side of its first order differential equation. For ex-
ample, the low-pass filter above requires only a single inte-

grator, and this integrator has input ports for vin and vout, as
well as an output port for vout.

Following all port buffer code in the integrators external
transition function, the model executes the Fourth-order
Runge-Kutta method for a quantized state system if the
model is in the passive state. The right hand side of the first
order differential equation is converted to C++, substituting
the signal buffer name for the signal name, and multiplying
this buffer by the quantum size. The fo llowing is the Fourth-
order Runge-Kutta method code for the low-pass filter pre-
sented above:

p1 = (1.0/(C*R))*(_vin*QuantumSize –
 (_vout*QuantumSize));
p2 = (1.0/(C*R))*(_vin*QuantumSize –
 (_vout*QuantumSize +
 sign(p1)*(HalfQuantumSize/2.0)));
p3 = (1.0/(C*R))*(_vin*QuantumSize –
 (_vout*QuantumSize +
 sign(p2)*(HalfQuantumSize/2.0)));
p4 = (1.0/(C*R))*(_vin*QuantumSize –
 (_vout*QuantumSize +
 sign(p2)*(HalfQuantumSize)));

h1 = HalfQuantumSize / p1;
h2 = HalfQuantumSize / p2;
h3 = HalfQuantumSize / p3;
h4 = HalfQuantumSize / p4;

h = 1.0/(1.0/(6.0*h1) + 1.0/(3.0*h2) +
 1.0/(3.0*h3) + 1.0/(6.0*h4));

The model then transitions to the active state for a time

determined by h, which is calculated as in (4). The output
function simply outputs the current state of the output buffer
plus or minus one, plus one if the slope over the interval was
positive, minus one if the slope over the interval was nega-
tive. The internal transition function similarly incre-
ments/decrements the state of the output buffer depending
on the slope over the interval and then sends the model into
the passive state.

During the coupled model generation, each of the inte-
grator models converted during the model code and netlist
generation (discussed in the following section), are instanti-
ated and linked together. For each Integrator model in-
stance, each port that represents a given endogenous quan-
tity in the simultaneous statement is linked to all ports that
represent that same quantity on itself and on all other Inte-
grator model instances. All exogenous quantity and signal
input ports are linked to their respective output ports on a
process, component or signal model.

5. DEFINING CD++ COUPLED MODELS

Once the individual components are created, we need to
convert designs written in sAMS VHDL into DEVS models
that may be simulated in CD++. The application follows the
dataflow illustrated in Figure 10.

The conversion begins with a check to ensure that the
model is syntactically correct. Then, VHDL elaboration

yields to a description of the structure of each component in
the design hierarchy. The architecture and entity description
for each component in the design is parsed in order to pro-
duce a netlist (interconnected integrators, algebraic opera-
tors, processes, signals, etc.), which is used to generate
CD++ model code for each of the processes. CD++ process
models are then compiled into a model l ibrary.

Figure 10. Simulation Dataflow

Following compilation, the netlist and model library are

used by the model (MA) file generation process to yield a
coupled CD++ model defin ition file. During this stage,
sAMS VHDL models hierarchies are converted to CD++
coupled models. The comp onents that constitute the design
hierarchy must first be differentiated based on whether they
are a basic or aggregate component. Basic components do
not contain sub-component instances in their architectures,
while aggregate components may have one or more. A de-
pendency tree is generated: the leaves of this tree will be the
basic components, while the branches will be aggregate
components (the root will be the top-level model).

Figure 11 contains a CD++ coupled model definition for
the sAMS VHDL design hierarchy of Figure 4, note the or-
der of component declaration begins with the top level
model and is followed by models that approach the leaves in
the dependency tree. As we can see, there are two basic
components: a digital clock (a coupled component built as
the clock defined in Figure 6), and an integrator, built as in
Figure 8.

sAMS VHDL sub-component instances are connected to
the architecture in which they are instantiated as defined by
the port map clause in their component instantiation state-
ment. This clause will connect either a signal within the ar-
chitecture, or a port on the architectures’ entity definition to
each of the ports on the component instance. In the case of a
signal, the linking is termed structural, in the case of an-
other port, the linking is termed hierarchical. In both cases
the mode of the sub-component port specified in the port
map clause must be determined prior to generating link

statements in the coupled model definition. In structural
links, if the ports mode is out, it is linked to the input port
on the signal model specified in the clause; if the ports mode
is in, the output port on the specified signal model is linked
to it. In hiera rchical links, if the sub-components port mode
is out, it is linked to the component port; if the sub-
components port mode is in, the component port is linked to
it. Figure 11 illustrates all four of these cases.

entity LPF is

 port (terminal tout, tgnd: electrical);
end entity LFP;

architecture top of LPF is
 signal clk : std_logic;
 signal vin : std_logic;
quantity vout across tout to tgnd;

begin
vout’dot = (1/(R*C))*(vin-vout);
clk: entity clk
port map (clk=>clk);
vin<=clk;

end architecture top;

[top]
components : int@rkIntegModel clock
out : clk y
Link : y@int y
Link : y@int dydt@int
Link : out@clock clk
Link : out@clock vin@int

[int]
y0 : 0
dydt0 : 0
C : 1.0E-6
R : 1000

[clock]
components : inv@Process_Inv sig1@Signal
components : qm@QuantumMultiply
out : out
Link : out@sig1 in@inv
Link : out@inv in@sig1
Link : out@sig1 in@qm
Link : out@qm out

[sig1]
Transport_Delay : 00:00:1:000

[qm]
Transport_Delay : 00:00:00:000
Attenuation : 100

Figure 11. Hierarchical sAMS-VHDL Model

Once the complete model is defined and it has been

translated, it can be simulated in CD++. The following fig-
ure shows the execution results for the filter using different
input parameters.

Y: C=1E-5 R=1000

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12

Time*1000

V
o

u
t

Y:C=1E-8 R=1000

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12

Time*1000

V
o

u
t

 Fi-
gure 12. Simulation Results. Low-Pass Filter.

6. CONCLUSION

We showed the use of DEVS to facilitate simulation of
mixed signal HDL models. In order to permit the execution
of these models within a DEVS simulator, generic DEVS
models and conversion procedures were required. Hierar-
chical models written in sAMS-VHDL that utilize Proc-
esses, Signals and Simultaneous statements may be simu-
lated in CD++ by elaborating the model, and converting the
model hierarchy into an equivalent CD++ model.

The nature of DEVS permitted seamless integration of
the model's components. Likewise, quantized DEVS permit-
ted to integrate continuous signal models into a hierarchical
model definition.

At present, we are extending sAMS-VHDL, and addi-
tional models and conversion procedures be developed.
Type definition, generate blocks and signal attributes will
ease model definition. The modularity of the CD++ models
developed for this project will facilitate integration of new
models.

ACKNOWLEDGEMENTS

This work has been partially supported by NSERC (Na-
tional Science and Engineering Research Council of Can-
ada), the Canadian Foundation for Innovation, and the IBM
Eclipse Innovation Grants program.

REFERENCES
[1] KLOOS, C.; BREUER, P. Eds., "Formal Semantics for
VHDL". Dordrecht: Kluwer Academic Publis hers, 1995.
[2] GIAMBIASI, N., ESCUDE, B., GHOSH, S. "GDEVS: A
Generalized Discrete Event Specification for Accurate
Modeling of Dynamic Systems," Transactions of the Society
for Computer Simulation (SCS) International, Vol. 17, No.
3, September 2000, pp. 120-134, San Diego, CA.
[3] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of
Modeling and Simulation: Integra ting Discrete Event and
Continuous Complex Dynamic Systems". Academic Press.
2000.
[4] CHRISTEN, E.; BAKALAR, K.; DEWEY, A.;
MOSER, E. "DAC'99 VHDL-AMS Tutorial". 36th Design
Automation Conference, New Orleans, June 21-25, 1999.
[5] WAINER, G. "CD++: a toolkit to define discrete-event
models". G. Wainer. Software, Practice and Experience.
Wiley. Vol. 32, No.3. pp. 1261-1306. November 2002.
[6] IEEE 1076 Standard VHDL Language Reference Man-
ual, Design Automation Standards Committee (DASC). Pis-
cataway: IEEE-SA Standards Board, 2000.
[7] ZEIGLER, B.P. "DEVS Theory of Quantization".
DARPA Contract N6133997K-0007: ECE Dept., The Uni-
versity of Arizona, Tucson, AZ. 1998.
[8] PRESS, W.; FLANNERY, B.; TEUKOLSKY, S.; VET-
TERLING, W. "Numerical Recipes in C: The Art of Scien-
tific Computing". Cambridge University Press, 1992.

BIOGRAPHIES

Shaylesh Mehta received a B. Eng. in Computer Systems
with High Distinction from Carleton University(2003). He
is currently employed by MacDonald Dettwiler and Associ-
ates Space Missions Division, working on the Meteorologi-
cal Station (MET) Instrument for the 2007 Phoenix Mars
Lander Mission.

GABRIEL WAINER received the M.Sc. (1993) and Ph.D.
degrees (1998, with highest honors) of the Universidad de
Buenos Aires, Argentina, and Université d’Aix-Marseille
III, France. He is Assistant Professor in the Dept. of Sys-
tems and Computer Engineering, Carleton University (Ot-
tawa, ON, Canada). He was Assistant Professor at the Com-
puter Sciences Dept. of the Universidad de Buenos Aires,
and a visiting research scholar at the University of Arizona
and LSIS, CNRS, France. He is author of a book on real-
time systems and another on Discrete-Event simulation and
more than 100 research articles. He is Associate Editor of
the Transactions of the SCS, and the International Journal of
Simulation and Process Modeling (Inderscience). He is As-
sociate Director of the Ottawa Center of The McLeod Insti-
tute of Simulation Sciences. He has been awarded Carleton
University's Research Achievement Award (2005-2006).

