
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

ABSTRACT

In recent years, we have developed a Modeling and Simu-
lation-Driven Engineering methodology for engineering
embedded Real-Time systems. This approach relies on the
use of the DEVS formalism for developing components of
real-time embedded systems using incremental develop-
ment. Here, we show how to apply these techniques for an
application in hybrid control. The model defines a discrete-
event controller for a time varying plant based on multiple
model control. Our discrete event approach permitted us to
define such application, seamlessly integrating discrete
event and continuous components. The approach allows
secure, reliable testing, analysis of different levels of ab-
straction in the system, and model reuse. The common
problem of "controller wind-up" or "parameter estimation
bursting" can be avoided when performing this proposed
form of discrete event adaptive control.

1 INTRODUCTION

Embedded real-time software construction has usually
posed interesting challenges due to the complexity of the
tasks executed. Most methods are either hard to scale up
for large systems, or require a difficult testing effort with
no guarantee for bug free software products. Although
formal methods have advanced, their adoption by the engi-
neering community is still under development, moreover
because they are difficult to apply when the complexity of
the system under development scales up. Instead, the use
of M&S is a well-known approach by systems engineers,
which makes system development tasks manageable. This
is a useful approach, moreover considering that testing un-
der actual operating conditions may be impractical and in
some cases impossible.

In (Wainer et al., 2005; Glinsky and Wainer, 2004;
Glinsky and Wainer, 2004b) we introduced Modeling and
Simulation-Driven Engineering (MSDE), whose main ob-
jective is to explore the integration of M&S in all aspects
of real-time embedded system engineering. MSDE propos-

es a discrete-event simulation architecture to be used as the
final target architecture for products. Our approach for
MSDE is based on the DEVS (Discrete EVents Systems
specification) formalism (Zeigler et al. 2000). DEVS pro-
vides a formal foundation to M&S that combines the ad-
vantages of a simulation-based approach with the rigor of a
formal methodology.

Most applications can be thought as a combination of
discrete event and Continuous Variable Dynamic Systems,
which are represented by continuous variables on a conti-
nuous time basis. Analysis of these complex systems has
usually been tackled using different mathematical formal-
isms, including Differential Algebraic Equations (DAEs),
Ordinary Differential Equations (ODEs), or Partial Diffe-
rential Equations (PDEs). Most existing simulation tools
implement numerical methods based on the discretization
of time to find approximate solutions to these equations,
which are based on discretization of time. In the last few
years, different approaches developed tried to simulate
continuous systems under the discrete event paradigm.
This presents some advantages over discrete time simula-
tion, including reduction of the number of calculations for
a given accuracy (Zeigler, 2005) and seamless integration
of complex systems composed by both continuous time
and discrete event paradigms. The idea of this method,
called Quantized Systems theory (Q-DEVS), is to provide
quantization of the state variables obtaining a discrete
event approximation of the continuous system (Zeigler,
1998). The state variables of the system are converted into
a piecewise constant function via a quantization function.
The Quantized State System (QSS) method (Kofman, 2003)
is an extension to Q-DEVS in which the trajectory of each
state variable is converted into a piecewise constant func-
tion via a quantization function equipped with hysteresis.

Conventional adaptive control using a single identifi-
cation model is efficient when the initial parameter estima-
tion error is small, and plant parameters are slowly varying
over time. The use of multiple models becomes appropri-
ate, when either of these conditions are not satisfied, such
as in the case of a subsystem failure or a change in the op-
erating environment. Typically, a finite number of models

APPLYING DEVS MODELING FOR DISCRETE EVENT MULTIPLE MODEL CONTROL OF A TIME

VARYING PLANT

Alexander Scott Campbell Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, ON, K1S 5B6, Canada

Perrone, Wieland, Liu, and Lawson

are evaluated by an index-of-performance, where, at any
instant, the most suitable model’s parameterized controller
is applied to the plant. An arrangement using multiple
fixed models is shown in Figure 1. This approach proves
beneficial for maintaining control of a plant when there are
parameter jumps (Narendra et al. 2003).

Figure 1: Typical arrangement of multiple fixed models for
control of an unknown plant (Narendra et al. 2003).

Multiple model control demands a union of high-level
decision making with mathematically complex algorithms.
Here, we present an implementation of such algorithms us-
ing a discrete-event mathematical approach that can be
built in embedded control systems. This requires studying
the application of discrete event modeling to hybr-
id/continuous systems (Kofman, 2003b; Kofman, 2003c).

The goal of the controller we present is to have the
plant’s output match the reference signal yr, with zero con-
trol error. The reference signal is originally a real signal,
which must be discretized using quantized DEVS with hys-
teresis. When performing mathematical calculations of the
plant and controller states, interpolation of state, in-
between event arrivals, was necessary. Here, we show how
to apply these techniques for an application in hybrid con-
trol. The model defines a discrete-event controller for a
time varying plant based on multiple model control. Our
discrete event approach permitted us to define such appli-
cation, seamlessly integrating discrete event and conti-
nuous components. The approach allows secure, reliable
testing, analysis of different levels of abstraction in the sys-
tem, and model reuse. Discrete event control using a single
adaptive controller is all performed. With this, the common
problem of "controller wind-up" or "parameter estimation
bursting" can be avoided using the proposed form of dis-
crete event adaptive control

The experience was carried out using CD++ (Wainer,
2002), a software implementation of DEVS with exten-
sions to support real-time model execution. We will ex-

plain how to use our approach to integrate the different
plant models seamlessly. As showed in (Wainer et al.
2005), the models can be replaced incrementally with
hardware surrogates at later stages of the process. The tran-
sition can be done in incremental steps, incorporating
models in the target environment after thorough testing in
the simulated platform. The use of DEVS improves relia-
bility (in terms of logical correctness and timing), enables
model reuse, and permits reducing development and testing
times for the overall process.

2 DEVS AND CD++

DEVS (Zeigler et al., 2000) is a formal M&S framework
based on systems theory. DEVS has well-defined concepts
for coupling of components and hierarchical, modular
model composition. DEVS defines a complex model as a
composite of basic components (called atomic), which can
be hierarchically integrated into coupled models. A DEVS
atomic model is described as:

M = < X, S, Y, δint, δext, λ, ta >
Every state S is associated with a lifetime ta, which is

defined by the time advance function. When an event rece-
ives an input event X, the external transition function δδδδext is
triggered. This function uses the input event, the current
state and the time elapsed since the last event in order to
determine what the next model’s state is. If no events occur
before the time specified by the time advance function for
that state, the model activates the output function λλλλ (pro-
viding outputs Y), and changes to a new state determined
by the internal transition function δδδδint.

A DEVS coupled model is defined as:
CM = < X, Y, D, {M i}, {I i}, {Z ij} >

Coupled models are defined as a set of basic compo-
nents Mi (i ∈ D) interconnected through their interfaces (X,
Y). The translation function Zij converts the outputs of a
model into inputs for others using I/O ports. To do so, an
index of influencees is created for each model (Ii). This
index is used to connect outputs in model Mi are con-
nected with inputs in the model Mj (j ∈ I i). The formalism
is closed under coupling, therefore, coupled and atomic
models are semantically equivalent, which enables model
reuse.

The execution of a DEVS model is defined by an ab-
stract mechanism that is independent from the model itself.
DEVS also permits defining independent experimental
frames for the model, that is, a set of conditions under
which the system is observed or experimented with. The
CD++ toolkit (Wainer, 2002) implements DEVS theory.
Atomic models can be defined using C++. Coupled models
are defined using a built-in language that follows DEVS
formal specifications.

Perrone, Wieland, Liu, and Lawson

3 THE PLANT AND CONTROL SYSTEM

We performed discrete event simulation of both an adap-
tive controller and a multiple model controller. In this sec-
tion we develop the conceptual discrete event models for
the more complex controller, the multiple model control.
The plant is a 2nd order discrete time plant, defined using
the difference equation

() () () ()1)(2)(1)(321 −+−+−= kuspkyspkyspky cppp

where the piecewise constant parameter vector is defined
() [])()()(321 spspsps =Τθ .

The plant State input, s={1, 2, 3}, determines what set
of parameters the time-varying plant should operate on

(()Τ1θ , ()Τ2θ , and ()Τ3θ). This plant also requires, as

inputs, its most recent outputs. For discrete event simulat-
ing, these most recent plant outputs must be found using
interpolation (explained later). A new plant output is made
when the trigger is enabled.

s1
gen. yp

s2
wait

ucontrol

yp(k-1)

yp(k-2)

trigger

.

.Plant

yp(k)

Figure 2: Conceptual model of the plant..

The three Plant Identification Models must next be de-
fined. Plant identifying model i creates an output as

() () () ()121 3,2,1, −+−+−= kuqkyqkyqky cipipii
,

where the model’s parameter vector is defined
[])3,2,1, iiii ppq=Τθ .

A second output is the modeling error, defined as

() () ()()2kykyke pii −= .

This error is used by the controller to determine which
plant identifying model’s parameters are best for control-

ling the system (i.e. Τ
1θ , Τ

2θ , or Τ
3θ).

s1
gen.ym

s2
wait

ucontrol
yp(k)

yp(k-1)
yp(k-2)

 Model

ym

em

Figure 3: Conceptual model of a plant-identifying model.

A conceptual model of the Unit Delay function must
also be defined. This model performs the simple task of de-
laying a signal’s propagation for one time unit. It is used to
force the plant-identifying models to update after a plant
output is generated. A model of the State Interpolation me-
thod must also be defined. This model performs the task

receiving consecutive events, and interpolating points in
between them. Given an event signal x(k) and past event
information, the two points x(k-1) and x(k-2) are created as
described in Figure 4.

Figure 4: Interpolation strategy

Finally, we need to build a conceptual model of the
Controller. The goal of the controller is to have the plant’s
output match the reference signal yr, with zero control er-
ror. This controller must analyze the available modeling
errors (from the separately implemented plant identifying
models) to decide which is the smallest and most suitable.
The parameters associated with the best-fit model are used
to generate a control signal for the system. These required
parameters are already known within the controller and do
not need to be sent to it. The certainty equivalence prin-
ciple (Campbell, 2005) is used with the chosen plant’s pa-
rameters to calculate the control signal as follows

() () ()
i

ir
c q

kky
ku

ϕθ ~1 Τ−+= , where

() () ()[]01
~ −−−= kykyk ppφ

s4

wait

yref

yp(k-1)

yp(k-2)

em1

em2

em3

genControl

uc(k)

modelSelect

s1
generate uc
using Τ

1θ

s2
generate uc
using Τ

2θ

s3
generate uc
using Τ

3θ

Figure 5: Conceptual model of the controller.

The following figure shows the structure of a Coupled
Model integrating the previously presented models as a
Coupled Model (a detailed formal specification for each of
the models can be found in the Appendix).

Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

Figure 6: Conceptual coupled model of multiple model controller.

4 DISCRETE EVENT CONTROL STRATEGY
PROTOTYPING

Adaptive control and multiple model control require ma-
thematically complex calculations. Implementing such us-
ing DEVS and CD++ modeling language, requires addi-
tional design and testing. The initial problem posed is
“how does one perform multiple model control, or adaptive
control, when the discrete event system must model a real-
time physical system?” Some of the tools we used:

• Quantized discretization
• Interpolation of states
• Triggering updates
• Unit delays, to propagate updates

As a starting point, the method of quantum discretiza-

tion was implemented. The desired plant output, existing as
reference signal, was declared in discrete time:

() () 2102sin202sin)(++= kkkyref ππ

Using this signal as an operand, quantized DEVS with
hysteresis (Q = 0.1, n = 2) was applied. Given the signal

being quantized is ∈(0,2), the normalized quantum size

can be considered Q = 0.05. The resulting quantized signal

is a discrete time signal that contains discrete event
changes. To remove the discrete time component, a list is
made which contains the signal’s event changes and asso-
ciated event times. This list of events and event times was
used for all tests performed. Figure 7 (a) shows the quan-

Perrone, Wieland, Liu, and Lawson

tized signal and Figure 8 shows the reduction in state
changes due to the discretization.

Figure 7: Discretization of reference signal (n=2, Q= 0.10).

Figure 8: Reduction in state changes due to discretization.

First, discrete event, single model, adaptive control
will be performed. The plant to be controlled has the time-
invariant parameter values []1.02.06.0=Τp . A dis-

crete event controller was implemented using RLS and cer-
tainty equivalence control. The adaptive model has the ini-
tial parameter estimates defined []4.03.01.1 −−=Τ

initθ .

In observing the produced figures, it is clear that the
control error remains roughly the same, despite the differ-
ence in quantum size for discretization of the reference
signal.

These simulations allow for a discussion of parameter
excitation. The RLS adaptive algorithm was able to con-
verge faster when the quantum size was smaller. This is
inherent, as increased excitation increases performance of
adaptive algorithms. It is worth noting that this discrete
event implementation of adaptive control of overcome the
issue of controller windup. Controller windup, or the pa-
rameter burst phenomenon, occurs in discrete time when
long periods pass without excitation while adaptation con-
tinues. Using discrete event notation, adaptation does not
occur unless there are event changes.

Now discrete event simulation of the multiple model
control will be performed. The conceptual model used is
given in Figure 6. The plant has the possible plant
states []0.22.06.01 =Τp , []5.28.01.02 =Τp , and

[]0.15.02.03 =Τp . The models and controller have the

available parameter estimates []0.22.06.01 =Τθ ,

[]5.28.01.02 =Τθ , and []0.15.02.03 =Τθ .

(a)

(b)

Figure 9: Adaptive control (a) using Q=0.02; (b) Q=0.2

An event file is used to input the reference signal
events and their associated event time. The event file also
forced the plant state changes (parameter jumps).

In the simulation given in Figure 10, the multiple
model controller is handicapped and forced to always use

the first plant identifaction model, Τ1θ .

Using the fixed parameter controller, stable control
was achievable for plant states P1 and P3. At plant state P3,
the closed loop system becomes unstable, eventually yield-
ing unbounded plant outputs.

In the simulation given in Figure 11, the multiple
model controller is allowed to operate as designed, and
switch among its plant identifying models. The simulation
displays the advantages of multiple model control.

Perrone, Wieland, Liu, and Lawson

Figure 10: CD++ simulation with parameter jumps, using
only one plant identifying model.

Figure 11: CD++ simulation containing parameter jumps,
using a fixed controller.

Because a perfectly matching identification model was

designed a priori, the controller was able to find it and use
its parameters. For this deterministic scenario, control error

existed only at the time period coinciding with each jump
in plant parameters. During simulation initialization, the
instantaneous error of each model was zero, requiring sev-
eral reference signal arrival events and corresponding trig-
gered plant outputs to identify which controller was most
suitable. During operation, only at time 355 did a false
model switch occur. The source of the false switch was due
to two models having almost zero modeling error.

5 CONCLUSION

The benefit of performing discrete event control using
adaptive control and multiple model control was explained
and demonstrated in this paper. The design problem was
researched and discussed, before being implemented in two
phases. In the first phase, we tested the proposed methods
of discretization, interpolation, unit delays, and triggered
subsystems. The front-end discretization provided a drastic
reduction in data volume. Using true discrete event inputs
and updates, adaptive control of a time-invariant plant was
demonstrated. The discrete event implementation of adap-
tive control could overcome the issue of controller windup
and parameter estimate burst. In the second phase, CD++
was used to fully implement a discrete event controller.
Three plant identification models were implemented to
identify jumps in plant parameters and select controllers
accordingly. Simulations, using CD++, showed that the
properties of continuous and discrete time multiple model
controllers could be employed using discrete event systems
with CD++.

ATOMIC MODEL DEFINITIONS

- Plant
X = {Uin Ypdin Ypddin Trigger plantState}
Y = {Ypout} S = {createOutput pState}
Vars = {p11 p12 p13 p21 p22 p23 p31 p32 p33 U Ypd
Ypdd Yp scrap}

Internal Transition Function:

passivate
External Transition Function:
 if (msg.port() == Uin) {
 U = msg.value();
 holdIn(active, Time(0.1)) ; }
 if (msg.port() == Ypdin) {
 Ypd = msg.value();
 holdIn(active, Time(0.1)) ; }
 if (msg.port() == Ypddin) {
 Ypdd = msg.value();
 holdIn(active, Time(0.1)) ; }
 if (msg.port() == Trigger) {
 if (createOutput == 0) {
 createOutput = 1;

Perrone, Wieland, Liu, and Lawson

 scrap = msg.value();
 holdIn(active, Time(0.1)) ; }
 }
 if (msg.port() == plantState) {
 pState = msg.value();
 holdIn(active, Time(0.1)) ; }
Output Function:
 if (createOutput == 1) {
 createOutput = 0;
 if (pState==1) { Yp=p11*Ypd+p12*Ypdd+p13*U;}
 if (pState == 2) { Yp = p21*Ypd+p22*Ypdd+p23*U;}
 if (pState == 3) { Yp = p31*Ypd+p32*Ypdd+p33*U;}
 send output Yp to Port Ypout }

- Model1 (Model2 and Model3 are instances of Model1)
X = {Uin Ypin Ypdin Ypddin} Y = {Ymout Eout}
S = {haveU haveYp haveYpd haveYpdd}
Vars = {p1 p2 p3 U Ym Yp Ypd Ypdd E}
Internal Transition Function:

passivate
External Transition Function:
 if (msg.port() == Uin && haveU == 0){
 haveU = 1;
 U = msg.value();
 holdIn(active, Time(0.1)) ; }
 if (msg.port() == Ypin && haveYp == 0) {
 haveYp = 1;
 Yp = msg.value();
 holdIn(active, Time(0.1)) ; }
 if (msg.port() == Ypdin && haveYpd == 0) {
 haveYpd = 1;
 Ypd = msg.value();
 holdIn(active, Time(0.1)) ; }
 if (msg.port() == Ypddin && haveYpdd == 0) {
 haveYpdd = 1;
 Ypdd =msg.value();
 holdIn(active, Time(0.1)) ; }
Output Function:
if (haveU==1 && haveYp==1 && haveYpd==1 &&
 haveYpdd == 1) {
 haveU =haveYp = haveYpd = haveYpdd = 0;
 Ym = p1*Ypd+p2*Ypdd+p3*U;

E = (Yp-Ym)*(Yp-Ym);
send output Ym to Port Ymout
send output E to Port Eout }

- UnitDelay
X = {theIn} Y = {theOut} S = {haveSignal}
Vars = {theSignal}
Internal Transition Function:

passivate
External Transition Function:
 if (msg.port() == theIn && haveSignal == 0) {
 haveSignal = 1;
 theSignal = msg.value();
 holdIn(active, Time(0.5)) ; }

Output Function:
 if (haveSignal == 1) { //have the new event
 haveSignal = 0;

send output theSignal to Port theOut }

- InterpLast
X = {evXin xTin} Y = {xdout xddout}
S = {waitingforData haveNewEvent haveNewEventTime}
Vars = {evX oldEvX xT oldxT slopeX xtd xtdd}
Internal Transition Function:

passivate
External Transition Function:
 if (msg.port() == evXin && haveNewEvent == 0) {
 haveNewEvent = 1;
 oldEvX = evX;
 evX = msg.value();
 holdIn(active, Time(0.001)) ; }
 if (msg.port() == xTin && haveNewEvent == 1) {
 haveNewEventT = 1;
 oldxT = xT;
 xT = msg.value();
 holdIn(active, Time(0.001)) ; }
Output Function:
 if (haveNewEvent == 1 && haveNewEventT == 1) {
 haveNewEvent = haveNewEventT = 0;
 slopeX = (evX-oldEvX)/(xT-oldxT);
 xtd = evX - slopeX;
 xtdd = evX - 2*slopeX;

send output xtd to Port xdout
send output xtdd to Port xddout

 }
 }

-GenControl
X = {Yrin Ypin Ypdin Em1in Em2in Em3in}
Y = {Uout, modelSelect} S = {haveYr haveYp haveYpd}
Vars = {q11 q12 q13 q21 q22 q23 q31 q32 q33 Yr Yp Ypd
U em1 em2 em3 bestModel}
Internal Transition Function:

passivate
External Transition Function:
 if (msg.port() == Yrin && haveYr == 0) {
 haveYr = 1;
 Yr = msg.value();
 holdIn(active, Time(0.001)) ; }
 if (msg.port() == Ypin && haveYp == 0){
 haveYp = 1;
 Yp = msg.value();
 holdIn(active, Time(0.001)) ; }
 if (msg.port() == Ypdin && haveYpd == 0) {
 haveYpd = 1;
 Ypd = msg.value();
 holdIn(active, Time(0.001)) ; }
 if (msg.port() == Em1in) {
 em1 = msg.value();

Perrone, Wieland, Liu, and Lawson

 holdIn(active, Time(0.001)) ; }
 if (msg.port() == Em2in) {
 em2 = msg.value();
 holdIn(active, Time(0.001)) ; }
 if (msg.port() == Em3in) {
 em3 = msg.value();
 holdIn(active, Time(0.001)) ; }

Output Function:
 if (haveYr == 1 && haveYp == 1 && haveYpd==1) {
 haveYr = haveYp =haveYpd = 0;
 bestModel = 2; // initial guess
 U = (Yr-q21*Yp-q22*Ypd)/q23;
 // calc U as if Model 2 was best
 if (em1<em2 && em1<em3) { // Model 1 is best
 bestModel = 1;
 U = (Yr-q11*Yp-q12*Ypd)/q13;
 if (em3<em2 && em3<em1) { // Model 3 is best

bestModel = 3;
 U = (Yr-q31*Yp-q32*Ypd)/q33; }
 send output U to Port Uout

 send output bestModel to Port modelSelect }

REFERENCES

Campbell, A. “Improvements to Stochastic Multiple Mod-
el Control: Hypothesis Test Switching and a Modified
Model Arrangement”. M.A.Sc. Thesis. Carleton Uni-
versity, Canada. August 2005.

Glinsky, E.; Wainer, G. "Modeling and simulation of sys-
tems with hardware-in-the-loop". E. Glinsky, G.
Wainer. In Proceedings of the Winter Simulation Con-
ference. Washington, DC. IEEE Press. 2004.

Glinsky, E.; Wainer, G. b. "Model-Based Development of
Embedded Systems with RT-CD++". In Proceedings
of the WIP session, IEEE Real-Time and Embedded
Technology and Applications Symposium. Toronto,
ON. Canada. 2004.

Kofman, E. “Discrete Event Based Simulation and Control
of Continuous Systems”. Ph.D. Thesis. Universidad
Nacional de Rosario, Argentina. August 2003.

Kofman, E. b. "Quantized-State Control. A Method for
Discrete Event Control of Continuous Systems," Latin
American Applied Research (LAAR Journal), 2003,
33(4). pp 399-406.

Kofman, E. c. "Discrete Event Control of Time Varying
Plants," Technical Report LSD0303, LSD, Universi-
dad Nacional de Rosario, 2003,

Narendra, K. S., Driollet, O. A., Feiler, M., and George, K.
"Adaptive control using multiple models, switching
and tuning," Int. J. Adapt. Control Signal Process.,
vol. 17, 2003, pp. 87–102.

Wainer, G. CD++: a toolkit to define discrete-event mod-
els. Software, Practice and Experience. Wiley. Vol.
32, No. 3. pp. 1261-1306. 2002.

Wainer, G.; Glinsky, E.; MacSween, P. “Model-Driven
Architecture of Real-Time Systems”. In Model-driven
Software Development - Volume II of Research and
Practice in Software Engineering. S. Beydeda and V.
Gruhn eds., Springer-Verlag. 2005.

Zeigler, B. "Continuity and Change (Activity) are Funda-
mentally Related in DEVS Simulation of Continuous
Systems", LNCS, Vol. 3397, Springer-Verlag, 2005.

Zeigler, B. DEVS. “Theory of Quantization”. DARPA
Contract N6133997K-007. University of Arizona,
1998.

Zeigler, B; Kim, T; Praehofer, H. “Theory of M&S”. New
York, 2000.

AUTHOR BIOGRAPHIES

ALEXANDER S. CAMPBELL received his B.Sc. degree
with honours in Electrical Engineering from Queen’s Uni-
versity, Kingston, Ontario, Canada in June 2003. He re-
ceived his MASc. degree in Electrical Engineering from
the department of Systems and Computer Engineering at
Carleton University, Ottawa, Ontario in November 2005.
He is currently working at March Networks Corporation,
Ottawa, Ontario. His research interests include intelligent
systems, discrete event and adaptive control, and digital
signal processing. His email address is
< alexc@sce.carleton.ca>.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the Universi-
dad de Buenos Aires, Argentina, and Université d’Aix-
Marseille III, France. In July 2000, he joined the Depart-
ment of Systems and Computer Engineering, Carleton
University (Ottawa, ON, Canada), where he is now an As-
sociate Professor. Previously, he was Assistant Professor at
the Computer Sciences Department of the Universidad de
Buenos Aires, and a visiting research scholar at the Uni-
versity of Arizona and LSIS, CNRS, France. He is author
of a book on real-time systems and another on Discrete-
Event simulation and over 110 research articles. He was PI
of several research projects (NSERC, Precarn IRIS, IBM
Scholars, Usenix, CFI, CONICET, ANPCYT). He is Asso-
ciate Editor of the Transactions of the SCS, and the Inter-
national Journal of Simulation and Process Modeling. He
is a member of the Board of Directors of the SCS, a chair-
man of the DEVS standardization study group (SISO), and
Associate Director of the Ottawa Center of The McLeod
Institute of Simulation Sciences and chair of the Ottawa
M&SNet. His current research interests is related with
modelling methodologies and tools, parallel/distributed
simulation and real-time systems. His e-mail and web ad-
dresses are <gwainer@sce.carleton.ca> and
<www.sce.carleton.ca/faculty/wainer>.

