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ABSTRACT 

In recent years, we have developed a Modeling and Simu-
lation-Driven Engineering methodology for engineering 
embedded Real-Time systems. This approach relies on the 
use of the DEVS formalism for developing components of 
real-time embedded systems using incremental develop-
ment. Here, we show how to apply these techniques for an 
application in hybrid control. The model defines a discrete-
event controller for a time varying plant based on multiple 
model control. Our discrete event approach permitted us to 
define such application, seamlessly integrating discrete 
event and continuous components. The approach allows 
secure, reliable testing, analysis of different levels of ab-
straction in the system, and model reuse. The common 
problem of "controller wind-up" or "parameter estimation 
bursting" can be avoided when performing this proposed 
form of discrete event adaptive control. 

1 INTRODUCTION 

Embedded real-time software construction has usually 
posed interesting challenges due to the complexity of the 
tasks executed. Most methods are either hard to scale up 
for large systems, or require a difficult testing effort with 
no guarantee for bug free software products. Although 
formal methods have advanced, their adoption by the engi-
neering community is still under development, moreover 
because they are difficult to apply when the complexity of 
the system under development scales up. Instead, the use 
of M&S is a well-known approach by systems engineers, 
which makes system development tasks manageable. This 
is a useful approach, moreover considering that testing un-
der actual operating conditions may be impractical and in 
some cases impossible. 

In (Wainer et al., 2005; Glinsky and Wainer, 2004; 
Glinsky and Wainer, 2004b) we introduced Modeling and 
Simulation-Driven Engineering (MSDE), whose main ob-
jective is to explore the integration of M&S in all aspects 
of real-time embedded system engineering. MSDE propos-

es a discrete-event simulation architecture to be used as the 
final target architecture for products. Our approach for 
MSDE is based on the DEVS (Discrete EVents Systems 
specification) formalism (Zeigler et al. 2000). DEVS pro-
vides a formal foundation to M&S that combines the ad-
vantages of a simulation-based approach with the rigor of a 
formal methodology.  

Most applications can be thought as a combination of 
discrete event and Continuous Variable Dynamic Systems, 
which are represented by continuous variables on a conti-
nuous time basis. Analysis of these complex systems has 
usually been tackled using different mathematical formal-
isms, including Differential Algebraic Equations (DAEs), 
Ordinary Differential Equations (ODEs), or Partial Diffe-
rential Equations (PDEs). Most existing simulation tools 
implement numerical methods based on the discretization 
of time to find approximate solutions to these equations, 
which are based on discretization of time. In the last few 
years, different approaches developed tried to simulate 
continuous systems under the discrete event paradigm. 
This presents some advantages over discrete time simula-
tion, including reduction of the number of calculations for 
a given accuracy (Zeigler, 2005) and seamless integration 
of complex systems composed by both continuous time 
and discrete event paradigms. The idea of this method, 
called Quantized Systems theory (Q-DEVS), is to provide 
quantization of the state variables obtaining a discrete 
event approximation of the continuous system (Zeigler, 
1998). The state variables of the system are converted into 
a piecewise constant function via a quantization function. 
The Quantized State System (QSS) method (Kofman, 2003) 
is an extension to Q-DEVS in which the trajectory of each 
state variable is converted into a piecewise constant func-
tion via a quantization function equipped with hysteresis. 

Conventional adaptive control using a single identifi-
cation model is efficient when the initial parameter estima-
tion error is small, and plant parameters are slowly varying 
over time. The use of multiple models becomes appropri-
ate, when either of these conditions are not satisfied, such 
as in the case of a subsystem failure or a change in the op-
erating environment. Typically, a finite number of models 
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are evaluated by an index-of-performance, where, at any 
instant, the most suitable model’s parameterized controller 
is applied to the plant. An arrangement using multiple 
fixed models is shown in Figure 1. This approach proves 
beneficial for maintaining control of a plant when there are 
parameter jumps (Narendra et al. 2003). 

 
Figure 1: Typical arrangement of multiple fixed models for 
control of an unknown plant (Narendra et al. 2003). 
 

Multiple model control demands a union of high-level 
decision making with mathematically complex algorithms. 
Here, we present an implementation of such algorithms us-
ing a discrete-event mathematical approach that can be 
built in embedded control systems. This requires studying 
the application of discrete event modeling to hybr-
id/continuous systems (Kofman, 2003b; Kofman, 2003c).   

The goal of the controller we present is to have the 
plant’s output match the reference signal yr, with zero con-
trol error. The reference signal is originally a real signal, 
which must be discretized using quantized DEVS with hys-
teresis. When performing mathematical calculations of the 
plant and controller states, interpolation of state, in-
between event arrivals, was necessary. Here, we show how 
to apply these techniques for an application in hybrid con-
trol. The model defines a discrete-event controller for a 
time varying plant based on multiple model control. Our 
discrete event approach permitted us to define such appli-
cation, seamlessly integrating discrete event and conti-
nuous components. The approach allows secure, reliable 
testing, analysis of different levels of abstraction in the sys-
tem, and model reuse. Discrete event control using a single 
adaptive controller is all performed. With this, the common 
problem of "controller wind-up" or "parameter estimation 
bursting" can be avoided using the proposed form of dis-
crete event adaptive control 

The experience was carried out using CD++ (Wainer, 
2002), a software implementation of DEVS with exten-
sions to support real-time model execution. We will ex-

plain how to use our approach to integrate the different 
plant models seamlessly. As showed in (Wainer et al. 
2005), the models can be replaced incrementally with 
hardware surrogates at later stages of the process. The tran-
sition can be done in incremental steps, incorporating 
models in the target environment after thorough testing in 
the simulated platform. The use of DEVS improves relia-
bility (in terms of logical correctness and timing), enables 
model reuse, and permits reducing development and testing 
times for the overall process. 
 
2 DEVS AND CD++ 
 
DEVS (Zeigler et al., 2000) is a formal M&S framework 
based on systems theory. DEVS has well-defined concepts 
for coupling of components and hierarchical, modular 
model composition. DEVS defines a complex model as a 
composite of basic components (called atomic), which can 
be hierarchically integrated into coupled models. A DEVS 
atomic model is described as: 

M = < X, S, Y, δint, δext, λ, ta > 
Every state S is associated with a lifetime ta, which is 

defined by the time advance function. When an event rece-
ives an input event X, the external transition function δδδδext is 
triggered. This function uses the input event, the current 
state and the time elapsed since the last event in order to 
determine what the next model’s state is. If no events occur 
before the time specified by the time advance function for 
that state, the model activates the output function λλλλ (pro-
viding outputs Y), and changes to a new state determined 
by the internal transition function δδδδint. 

A DEVS coupled model is defined as: 
CM = < X, Y, D, {M i}, {I i}, {Z ij} > 

Coupled models are defined as a set of basic compo-
nents Mi (i ∈ D) interconnected through their interfaces (X, 
Y). The translation function Zij converts the outputs of a 
model into inputs for others using I/O ports. To do so, an 
index of influencees is created for each model (Ii). This 
index is used to connect outputs in model Mi are con-
nected with inputs in the model Mj (j ∈ I i). The formalism 
is closed under coupling, therefore, coupled and atomic 
models are semantically equivalent, which enables model 
reuse. 

The execution of a DEVS model is defined by an ab-
stract mechanism that is independent from the model itself. 
DEVS also permits defining independent experimental 
frames for the model, that is, a set of conditions under 
which the system is observed or experimented with. The 
CD++ toolkit (Wainer, 2002) implements DEVS theory. 
Atomic models can be defined using C++. Coupled models 
are defined using a built-in language that follows DEVS 
formal specifications.  
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3 THE PLANT AND CONTROL SYSTEM 

We performed discrete event simulation of both an adap-
tive controller and a multiple model controller. In this sec-
tion we develop the conceptual discrete event models for 
the more complex controller, the multiple model control. 
The plant is a 2nd order discrete time plant, defined using 
the difference equation  

( ) ( ) ( ) ( )1)(2)(1)( 321 −+−+−= kuspkyspkyspky cppp
 

where the piecewise constant parameter vector is defined 
( ) [ ])()()( 321 spspsps =Τθ . 

The plant State input, s={1, 2, 3}, determines what set 
of parameters the time-varying plant should operate on 

( ( )Τ1θ , ( )Τ2θ , and ( )Τ3θ ). This plant also requires, as 

inputs, its most recent outputs. For discrete event simulat-
ing, these most recent plant outputs must be found using 
interpolation (explained later). A new plant output is made 
when the trigger is enabled.  
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Figure 2: Conceptual model of the plant..  
 

The three Plant Identification Models must next be de-
fined. Plant identifying model i creates an output as 

( ) ( ) ( ) ( )121 3,2,1, −+−+−= kuqkyqkyqky cipipii
, 

where the model’s parameter vector is defined   
[ ])3,2,1, iiii ppq=Τθ . 

A second output is the modeling error, defined as 

( ) ( ) ( )( )2kykyke pii −= . 

This error is used by the controller to determine which 
plant identifying model’s parameters are best for control-

ling the system (i.e. Τ
1θ , Τ

2θ , or Τ
3θ ). 
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Figure 3: Conceptual model of a plant-identifying model. 
 

A conceptual model of the Unit Delay function must 
also be defined. This model performs the simple task of de-
laying a signal’s propagation for one time unit. It is used to 
force the plant-identifying models to update after a plant 
output is generated. A model of the State Interpolation me-
thod must also be defined. This model performs the task 

receiving consecutive events, and interpolating points in 
between them. Given an event signal x(k) and past event 
information, the two points x(k-1) and x(k-2) are created as 
described in Figure 4. 

 

 
Figure 4: Interpolation strategy  
 

Finally, we need to build a conceptual model of the 
Controller. The goal of the controller is to have the plant’s 
output match the reference signal yr, with zero control er-
ror. This controller must analyze the available modeling 
errors (from the separately implemented plant identifying 
models) to decide which is the smallest and most suitable. 
The parameters associated with the best-fit model are used 
to generate a control signal for the system. These required 
parameters are already known within the controller and do 
not need to be sent to it. The certainty equivalence prin-
ciple (Campbell, 2005) is used with the chosen plant’s pa-
rameters to calculate the control signal as follows 
 

( ) ( ) ( )
i

ir
c q

kky
ku

ϕθ ~1 Τ−+= ,  where   

( ) ( ) ( )[ ]01
~ −−−= kykyk ppφ  
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Figure 5: Conceptual model of the controller. 
 

The following figure shows the structure of a Coupled 
Model integrating the previously presented models as a 
Coupled Model (a detailed formal specification for each of 
the models can be found in the Appendix).  
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Figure 6: Conceptual coupled model of multiple model controller. 

4 DISCRETE EVENT CONTROL STRATEGY 
PROTOTYPING 

Adaptive control and multiple model control require ma-
thematically complex calculations. Implementing such us-
ing DEVS and CD++ modeling language, requires addi-
tional design and testing. The initial problem posed is 
“how does one perform multiple model control, or adaptive 
control, when the discrete event system must model a real-
time physical system?” Some of the tools we used: 

• Quantized discretization 
• Interpolation of states 
• Triggering updates 
• Unit delays, to propagate updates 

 
As a starting point, the method of quantum discretiza-

tion was implemented. The desired plant output, existing as 
reference signal, was declared in discrete time: 

( ) ( ) 2102sin202sin)( ++= kkkyref ππ  

Using this signal as an operand, quantized DEVS with 
hysteresis (Q = 0.1, n = 2) was applied. Given the signal 

being quantized is ∈(0,2), the normalized quantum size 

can be considered Q = 0.05. The resulting quantized signal 

is a discrete time signal that contains discrete event 
changes. To remove the discrete time component, a list is 
made which contains the signal’s event changes and asso-
ciated event times. This list of events and event times was 
used for all tests performed. Figure 7 (a) shows the quan-
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tized signal and Figure 8 shows the reduction in state 
changes due to the discretization.  

 
Figure 7: Discretization of reference signal (n=2, Q= 0.10).  

 
Figure 8: Reduction in state changes due to discretization. 
 

First, discrete event, single model, adaptive control 
will be performed. The plant to be controlled has the time-
invariant parameter values [ ]1.02.06.0=Τp .  A dis-

crete event controller was implemented using RLS and cer-
tainty equivalence control. The adaptive model has the ini-
tial parameter estimates defined [ ]4.03.01.1 −−=Τ

initθ . 

In observing the produced figures, it is clear that the 
control error remains roughly the same, despite the differ-
ence in quantum size for discretization of the reference 
signal.  

These simulations allow for a discussion of parameter 
excitation. The RLS adaptive algorithm was able to con-
verge faster when the quantum size was smaller. This is 
inherent, as increased excitation increases performance of 
adaptive algorithms. It is worth noting that this discrete 
event implementation of adaptive control of overcome the 
issue of controller windup. Controller windup, or the pa-
rameter burst phenomenon, occurs in discrete time when 
long periods pass without excitation while adaptation con-
tinues. Using discrete event notation, adaptation does not 
occur unless there are event changes. 

Now discrete event simulation of the multiple model 
control will be performed. The conceptual model used is 
given in Figure 6. The plant has the possible plant 
states [ ]0.22.06.01 =Τp , [ ]5.28.01.02 =Τp , and 

[ ]0.15.02.03 =Τp . The models and controller have the 

available parameter estimates [ ]0.22.06.01 =Τθ , 

[ ]5.28.01.02 =Τθ , and  [ ]0.15.02.03 =Τθ . 

 

 
(a) 

 
(b) 

Figure 9: Adaptive control (a) using Q=0.02; (b) Q=0.2 
 

An event file is used to input the reference signal 
events and their associated event time. The event file also 
forced the plant state changes (parameter jumps).  

In the simulation given in Figure 10, the multiple 
model controller is handicapped and forced to always use 

the first plant identifaction model, Τ1θ . 

Using the fixed parameter controller, stable control 
was achievable for plant states P1 and P3. At plant state P3, 
the closed loop system becomes unstable, eventually yield-
ing unbounded plant outputs.  

In the simulation given in Figure 11, the multiple 
model controller is allowed to operate as designed, and 
switch among its plant identifying models. The simulation 
displays the advantages of multiple model control.  
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Figure 10: CD++ simulation with parameter jumps, using 
only one plant identifying model.  
 

 
Figure 11: CD++ simulation containing parameter jumps, 
using a fixed controller. 

 
Because a perfectly matching identification model was 

designed a priori, the controller was able to find it and use 
its parameters. For this deterministic scenario, control error 

existed only at the time period coinciding with each jump 
in plant parameters.  During simulation initialization, the 
instantaneous error of each model was zero, requiring sev-
eral reference signal arrival events and corresponding trig-
gered plant outputs to identify which controller was most 
suitable. During operation, only at time 355 did a false 
model switch occur. The source of the false switch was due 
to two models having almost zero modeling error.  

 

5 CONCLUSION 

The benefit of performing discrete event control using 
adaptive control and multiple model control was explained 
and demonstrated in this paper. The design problem was 
researched and discussed, before being implemented in two 
phases. In the first phase, we tested the proposed methods 
of discretization, interpolation, unit delays, and triggered 
subsystems. The front-end discretization provided a drastic 
reduction in data volume. Using true discrete event inputs 
and updates, adaptive control of a time-invariant plant was 
demonstrated. The discrete event implementation of adap-
tive control could overcome the issue of controller windup 
and parameter estimate burst. In the second phase, CD++ 
was used to fully implement a discrete event controller. 
Three plant identification models were implemented to 
identify jumps in plant parameters and select controllers 
accordingly. Simulations, using CD++, showed that the 
properties of continuous and discrete time multiple model 
controllers could be employed using discrete event systems 
with CD++.   

ATOMIC MODEL DEFINITIONS 

- Plant 
X = {Uin Ypdin Ypddin Trigger plantState} 
Y = {Ypout}                 S = {createOutput pState} 
Vars = {p11 p12 p13 p21 p22 p23 p31 p32 p33 U Ypd 
Ypdd Yp scrap} 
 
Internal Transition Function: 

passivate 
External Transition Function: 
 if (msg.port() == Uin) { 
  U = msg.value(); 
       holdIn( active, Time( 0.1) ) ;   } 
 if (msg.port() == Ypdin) { 
  Ypd = msg.value(); 
       holdIn( active, Time( 0.1) ) ;  } 
 if (msg.port() == Ypddin) { 
  Ypdd = msg.value(); 
       holdIn( active, Time( 0.1) ) ;  }  
 if (msg.port() == Trigger) { 
   if (createOutput == 0) { 
  createOutput = 1;  
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  scrap = msg.value(); 
       holdIn( active, Time( 0.1) ) ;    } 
 } 
 if (msg.port() == plantState) { 
  pState = msg.value(); 
       holdIn( active, Time( 0.1) ) ;          } 
Output Function: 
  if (createOutput == 1) {  
 createOutput = 0; 
 if (pState==1) { Yp=p11*Ypd+p12*Ypdd+p13*U;} 
 if (pState == 2) { Yp = p21*Ypd+p22*Ypdd+p23*U;} 
 if (pState == 3) { Yp = p31*Ypd+p32*Ypdd+p33*U;}
 send output Yp to Port Ypout      } 

 
- Model1 (Model2 and Model3 are instances of Model1) 
X = {Uin Ypin Ypdin Ypddin}       Y = {Ymout Eout} 
S = {haveU haveYp haveYpd haveYpdd} 
Vars = {p1 p2 p3 U Ym Yp Ypd Ypdd E} 
Internal Transition Function: 

passivate 
External Transition Function: 
 if (msg.port() == Uin && haveU == 0){ 
  haveU = 1; 
  U = msg.value(); 
       holdIn( active, Time( 0.1) ) ;    } 
 if (msg.port() == Ypin && haveYp == 0) { 
  haveYp = 1; 
  Yp = msg.value(); 
       holdIn( active, Time( 0.1) ) ; } 
 if (msg.port() == Ypdin && haveYpd == 0) { 
  haveYpd = 1; 
  Ypd = msg.value(); 
       holdIn( active, Time( 0.1) ) ;  }  
 if (msg.port() == Ypddin && haveYpdd == 0) { 
  haveYpdd = 1; 
  Ypdd =msg.value(); 
       holdIn( active, Time( 0.1) ) ; }  
Output Function: 
if (haveU==1 && haveYp==1 && haveYpd==1 &&  
  haveYpdd == 1) {  
  haveU =haveYp = haveYpd = haveYpdd = 0;  
  Ym = p1*Ypd+p2*Ypdd+p3*U; 

E = (Yp-Ym)*(Yp-Ym); 
send output Ym to Port Ymout 
send output E to Port Eout  } 

- UnitDelay 
X = {theIn}  Y = {theOut}   S = {haveSignal} 
Vars = {theSignal} 
Internal Transition Function: 

passivate 
External Transition Function: 
 if (msg.port() == theIn && haveSignal == 0) { 
   haveSignal = 1; 
  theSignal = msg.value(); 
       holdIn( active, Time( 0.5) ) ;  } 

Output Function: 
 if (haveSignal == 1) { //have the new event 
  haveSignal = 0; 

send output theSignal to Port theOut } 
 
- InterpLast 
X = {evXin xTin}   Y = {xdout xddout} 
S = {waitingforData haveNewEvent haveNewEventTime} 
Vars = {evX oldEvX xT oldxT slopeX xtd xtdd} 
Internal Transition Function: 

passivate 
External Transition Function: 
 if (msg.port() == evXin && haveNewEvent == 0) { 
  haveNewEvent = 1; 
  oldEvX = evX; 
  evX = msg.value(); 
       holdIn( active, Time( 0.001) ) ;  } 
 if (msg.port() == xTin && haveNewEvent == 1) { 
  haveNewEventT = 1; 
  oldxT = xT; 
  xT = msg.value(); 
       holdIn( active, Time( 0.001) ) ;  }  
Output Function: 
 if (haveNewEvent == 1 && haveNewEventT == 1) {  
           haveNewEvent = haveNewEventT = 0; 
  slopeX = (evX-oldEvX)/(xT-oldxT); 
  xtd = evX - slopeX; 
  xtdd = evX - 2*slopeX;  

send output xtd to Port xdout 
send output xtdd to Port xddout 

  } 
 } 
 
-GenControl 
X = {Yrin Ypin Ypdin Em1in Em2in Em3in} 
Y = {Uout, modelSelect}   S = {haveYr haveYp haveYpd} 
Vars = {q11 q12 q13 q21 q22 q23 q31 q32 q33 Yr Yp Ypd 
U em1 em2 em3 bestModel} 
Internal Transition Function: 

passivate 
External Transition Function: 
 if (msg.port() == Yrin && haveYr == 0) { 
  haveYr = 1; 
  Yr = msg.value(); 
       holdIn( active, Time( 0.001) ) ;  } 
 if (msg.port() == Ypin && haveYp == 0){ 
  haveYp = 1; 
  Yp = msg.value(); 
       holdIn( active, Time( 0.001) ) ;  } 
 if (msg.port() == Ypdin && haveYpd == 0) { 
  haveYpd = 1; 
  Ypd = msg.value(); 
       holdIn( active, Time( 0.001) ) ;  }  
 if (msg.port() == Em1in) { 
  em1 = msg.value(); 
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       holdIn( active, Time( 0.001) ) ;  }   
 if (msg.port() == Em2in) { 
  em2 = msg.value(); 
       holdIn( active, Time( 0.001) ) ;  }   
 if (msg.port() == Em3in) { 
  em3 = msg.value(); 
       holdIn( active, Time( 0.001) ) ;  }   
  
Output Function: 
 if (haveYr == 1 && haveYp == 1 && haveYpd==1) {  
  haveYr = haveYp =haveYpd = 0;  
  bestModel = 2; // initial guess 
  U = (Yr-q21*Yp-q22*Ypd)/q23;  
  // calc U as if Model 2 was best 
  if (em1<em2 && em1<em3) {  // Model 1 is best 
   bestModel = 1;       
   U = (Yr-q11*Yp-q12*Ypd)/q13; 
  if (em3<em2 && em3<em1) { // Model 3 is best 

bestModel = 3;        
   U = (Yr-q31*Yp-q32*Ypd)/q33;  } 
    send output U to Port Uout 

       send output bestModel to Port modelSelect   } 
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