
New Parallel Simulation Techniques of DEVS and Cell-DEVS in CD++

Ezequiel Glinsky Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University
4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. CANADA.
{eglinsky, gwainer}@sce.carleton.ca

Abstract

DEVS is a sound formal modeling and simulation
(M&S) framework based on generic dynamic system
concepts. Cell-DEVS is a formalism for cell-shaped
models based on DEVS. This work presents a new
simulation technique for execution of DEVS and Cell-
DEVS models in parallel/distributed environments. The
parallel simulator is based on Time Warp, and
developed as a new simulation engine for CD++, a
M&S toolkit that implements DEVS and Cell-DEVS
theories. The technique uses a non-hierarchical
approach that simplifies the structure of the simulator
and reduces the communication overhead. The results
obtained allowed us to achieve considerable speedups.

1. Introduction

The widespread use of M&S in different application
domains is leading to execution of larger and more
complex systems, which often translates into more
memory and processor requirements [1]. Parallel
discrete event simulation (PDES) studies the execution
of discrete event models (i.e., those in which simulation
advances by the occurrence of events that take place at
discrete points in time) in parallel or distributed
computers. The main concern of this community was to
reduce execution time of applications by using multiple
processors, and a large number of synchronization
algorithms were developed [1].

Another approach considered using of the DEVS
formalism [2] as the modeling framework for PDES
[3,4,5]. DEVS is a sound formal framework based on
generic dynamic systems concepts that supports
provably correct, efficient, event-based simulation.
DEVS enables the construction of models in a

hierarchical, modular fashion, allowing component
reuse and reducing development and testing time.
Parallel DEVS or P-DEVS [6] provides means of
handling simultaneous scheduled, while keeping all the
major properties of classic DEVS. Since P-DEVS
eliminates serialization constraints, it enables improved
execution of models in parallel and distributed
environments.

Cell-DEVS [7] combines Cellular Automata with
DEVS theory, allowing individual cells to be defined
as basic DEVS models and coupled to form complete
cell spaces. CD++ [8] is a M&S tool that implements
DEVS and Cell-DEVS theories. A hierarchical,
conservative parallel simulator was implemented in
CD++ [9], showing improvements for both DEVS and
Cell-DEVS. However, its degree of parallelism and
speedups are bounded. Here, we introduce a new
technique for optimistic simulation in CD++. The
technique combines the Time Warp synchronization
mechanism and the DEVS abstract simulators. In our
approach, the hierarchy of the simulation objects is
flattened to reduce the communication overheads, using
a flat simulation approach that eliminates the need for
intermediate coordinators [3]. Consequently, it reduces
the overhead of message passing, improving the overall
performance of the simulation.

2. Background

The DEVS formalism [2] provides a framework for
the definition of hierarchical and modular models. A
real system modeled with DEVS is described as a
composite of behavioral (atomic) or structural
(coupled) submodels. P-DEVS [6] provides a way of
dealing with simultaneous events. An atomic P-DEVS
model is defined as:

M = <XM, YM, S, δext, δint, δcon, λ, ta>
At any given time, an atomic model is in state s

during a period defined by ta(s). When that time
expires, the system outputs the value λ(s) and then it
changes to the state specified by δint(s). If one or more
external events (XM) occur before ta(s), the new state is
given by the external transition function, δext(s, e, XM).
δext uses a bag of events, which allows multiple events
to be processed simultaneously. If external and internal
transitions conflict, the new state is given by δcon.

Coupled models are defined as a set of basic
components (atomic or coupled), which are
interconnected through the model's interfaces.

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC>
X, is the set of input ports, Y is the set of output

ports, D is a set of the component names; for each d ∈
D, Md is a basic DEVS model; the external input
couplings (EIC) defines how to connect external inputs
to components; the external output couplings set (EOC)
defines how to connect components to external outputs;
and the internal couplings set (IC) defines how to
interconnect components.

Cell-DEVS [7] is an extension that allows the
specification of executable cell spaces with explicit
timing delays. A parallel Cell-DEVS atomic model
[10] can be formally defined as:

TDC = <Xb, Yb, S, N, d, τ, τcon, δint, δext, δcon, λ, D>
Each cell uses a set of N inputs to compute the next

state. These values are received through a well-defined
interface (Xb, Yb), activating a local function (τ, τcon),
which uses the cell's inputs and present state (S). A
delay function (d) associated with each cell, allows
deferring the transmission of the results. The model
advances through the activation of the internal,
external, output and state's duration functions, as in
other DEVS models. After the basic behavior for a cell
is defined, the complete cell space will be constructed
by building a coupled Cell-DEVS model:

GCC = <Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z>
The cell space is a coupled model composed of an

array of t1… tn atomic cells (C). Each of them is
connected to the cells defined by the neighborhood (N).
The border (B) can be provided with a different
behavior than the rest of the space. The Z function
allows one to define the internal and external coupling
of cells in the model, using the neighborhood definition
and to the external models through Xlist and Ylist.

CD++ [8] implements P-DEVS and Cell-DEVS
formalisms. The tool was built as a class hierarchy in
C++, where each class corresponds to a simulation
entity using the basic concepts defined in [2]. There are
two basic abstract classes: Model and Processor. The
former is used to represent the behavior of the atomic

and coupled models, while the latter implements the
simulation mechanisms. Simulators manage the atomic
models, handling the execution of δint, δext, δcon and λ.
Coordinators manage coupled models. The Root
Coordinator manages global aspects (global time,
starting/stopping the simulation, I/O, etc). AtomicCell
and CoupledCell simulate cell spaces.

The simulation process is message-driven. Each
message contains information to identify the sender
and the receiver, including a timestamp for the message
and an associated value. There are two main categories
of messages: synchronization (@: Collect message; *:
Internal message; done: Done message) and content
messages (q: External message; y: Output message).

As mentioned earlier, our goal is to combine
advanced DEVS simulators with PDES techniques. In
PDES, the simulation is subdivided in smaller, simpler
parts that run on different nodes. Warped [11] is a
simulation kernel that provides an implementation of
Time Warp with different optimizations, and an
interface that hides most of the implementation issues.
Warped is written in C++ and uses the MPI message
passing standard for communication, a standard
designed for high performance communication on
parallel and distributed environments. Simulation
objects within the same LP exchange messages using
direct communication, whereas those running in
different LPs use MPI communication services.

CD++ was originally developed as a stand-alone
simulator, and it was redesigned to provide parallel
execution of P-DEVS and Parallel Cell-DEVS.
Although Parallel CD++ showed speedups, a single
Root Coordinator still acts as a global scheduler for
every node in the simulation. Another problem is that
most DEVS simulators usually create a one-to-one
correspondence between model components and
simulation objects (Figure 1), increasing the
communication costs of message passing.

Coordinator

Coordinator Simulator Coordinator Simulator

Simulator Simulator Simulator Simulator Simulator

Root Coordinator

Figure 1. DEVS hierarchical simulator.

Flat simulation mechanisms, instead, reduce this

overhead by simplifying the underlying simulator
structure, while keeping the same model definition and
preserving the separation between model and simulator.

Studies have shown that flat simulators can outperform
hierarchical mechanisms.

3. Optimistic PDES of DEVS Models

The fundamental classes in CD++ can be divided in

two major groups: those who inherit from the basic
model or processor classes. This reflects the clear
distinction between the model and its simulator. All
classes inheriting from model remain unchanged from
those defined in earlier versions of the tool. Two new
classes are introduced, both inheriting from processor:
Flat Coordinator (FC) and Node Coordinator (NC).
Additionally, we modified the Simulator and Root
Coordinator classes. The algorithms we defined are
based on those in [12] and [10], as it has been proven
that they correctly simulate P-DEVS models.

 Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

Figure 2. New processors’ class hierarchy in
CD++

Two processors (coordinator and cell coordinator)

have been eliminated in the new hierarchy presented in
Figure 2. Figure 3 presents the new structure for the
model in Figure 2.

The Root Coordinator only handles I/O operations,
and starts/stops the simulation. The NC is in charge of
synchronization and time management for the LP. The
FC is responsible for receiving, translating, and
sending messages between its descendants, contained
on a flat data structure for handling all the coupling
information for every component. In order to run the
model on a distributed environment, we need to
indicate the nodes that can participate in the simulation,
and how they are allocated to each processor (Figure

4). During the instantiation and registration of each
Simulator object, they are associated to the
corresponding LP. NCs can communicate with each
other using inter-LP messaging. The Root Coordinator
executes on one LP, and it forwards messages from the
environment to the corresponding NC. On the other
hand, when a NC processes an output that must be sent
back to the environment, it is sent to the Root
Coordinator.

Flat Coordinator

Simulator Simulator Simulator ... Simulator

Node Coordinator

Root Coordinator

Figure 3. Processor hierarchy using a flat
approach

0:atomic_4 atomic_5
1:atomic_1 atomic_2 atomic_3
2:atomic_6 atomic_7

When an output is sent from an atomic component, a1,
to another, a2, we can identify two different cases: both
Simulators for a1 and a2 execute on the same or on
different LPs. In the first case, the FC running on that
LP takes care of the situation: the source Simulator
sends the message to its parent FC (which has all the
information for the port mappings), and it sends the
output to the corresponding Simulator. In the second
case, a Simulator on LPi has to send an output to a
Simulator on LPj. FCi identifies that the destination
Simulator is not one of its descendants, it forwards the
message to its parent NCi, which identifies the
corresponding LPj and forwards the message. The NC
running on LPj forwards the message to FCj, which in
turn sends it to the destination Simulator.

Flat Coordinator #0

Simulator #4

Node Coordinator #0

Root Coordinator

Simulator #5

Flat Coordinator #1

Simulator #1

Node Coordinator #1

Simulator #3 Simulator #2

Flat Coordinator #2

Simulator #6

Node Coordinator #2

Simulator #7

Processor 0 Processor 1 Processor 2

Figure 4. Model partition file for CD++

Flat Coordinator

Simulator #1

Node Coordinator

Root Coordinator

Simulator #2

Processor i

Simulator #3

1. simulator sends output

2. flat coordinator translates
output and forwards external
message

3. node coordinator sends external message to
appropriate remote node coordinator

Flat Coordinator

Simulator #4

Node Coordinator

Simulator #5

Processor j

Simulator #6

4. external message is forwarded to flat coordinator

5. external event is sent to destination simulator

Figure 5. Sending an output to a remote simulator

Notice that inter-LP communication can lead to

violations to the local causality constraint, depending
on the time at local and destination LPs. More
specifically, if the timestamp of the message is smaller
than the local time at the destination LP, a rollback is
triggered. A detailed description of the algorithms
involved in each of the components can be found in
[13].

5. Implementing the Abstract Simulator

We defined the previous algorithms using different
services provided by Warped. On the Warped API,
TimeWarp is a basic class defining the data and
methods to allow every object to participate in a
simulation. Three main methods determine the
behavior of the objects: initialize, finalize and
executeProcess. executeProcess runs every time a
simulation object is scheduled for execution (i.e., when
it has an event ready to be processed). finalize releases
memory, collects statistics, etc. saveState is called
automatically to save the current state of an object. In
case of receiving a straggler message with a timestamp
t, rollback(t) restores the state of the object and sends
the necessary anti-messages. calculateMin reports the
minimum time of the unprocessed events, and is used
to compute the global virtual time. inputGcollect,
stateGcollect, and outputGcollect take care of garbage
collection in the input, state, and output queues. The
state of a simulation object is defined by an instance of
BasicState. The state of an object contains the
information that can change in each simulation cycle,
including pointers to input and output queues (inputPos
and outputPos). Simulator objects communicate by
message passing, which belong to the class BasicEvent

or to one of its subclasses. LogicalProcess groups the
simulation objects executing in the same processor. To
create a new LP, it is necessary to specify the total
number of objects in the simulation, the number of
simulation objects to be handled on this LP, and the
number of LPs participating in the simulation. The
method registerObject(TimeWarp) is used to define
which objects are running on this LP. The method
simulate(VTime) starts the execution of this LP (the
simulation stops when the global time is greater than
the specified time). calculateLGVT is used to compute
the local global virtual time at the end of each
simulation cycle. It is calculated by a GVTManager as
the minimum time reported by simulation objects.
Figure 6 shows the new class diagram of the DEVS
processors along with some of their main methods that
implement the algorithms previously described.

Processor (inherits from Warped TimeWarp)

provides basic functionality and data that are common
to all DEVS processors in the application (methods
initialize, executeProcess, finalize,etc.). It includes the
definition of:

a. send methods for each type of message (e.g.,
send(initMsg,dest), send(doneMsg,dest)),
which use, in turn, sendEvent in TimeWarp.

b. Time management methods (e.g., timeNext(),
timeLast(), timeNext(VTime), etc.).

c. initialize, finalize, and debugging methods.
d. executeProcess(), which defines the behavior

of any DEVS processor.
e. rollbackCheck(),called in the receive method,

to check for straggler messages.
f. Basic variables (model associated to this

processor, its parent, id and descriptors).

The method processor.executeProcess() is in charge
of getting the first event in the queue of events, logging
the event, and calling the corresponding receive
method based on the message type.

The receive(initMessage) method first sends
initialization messages to all of its descendants
(send(initMessage,dest)) and waits for all done
messages from its dependant Simulators. The
nodeCoordinator keeps track of the number of done

messages (doneCount()) and it determines the time of
next change (nextChange(VTime)), sening this value to
its parent NC (send(doneMsg,dest)). The
receive(initMessage) method, in contrast, initializes the
model variables, computes the next time for the next
transition and sends a done message to its parent,
which is a FC. The Simulator executes δext, δint, δcon, λ,
ta.

 Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

TimeWarp

TimeWarp()
~TimeWarp()
initialize()
finalize()
executeProcess()
saveState()
rollback(VTime)
rollbackFileQueues()
calculateMin()
inputGcollect(VTime)
stateGcollect(VTime)
outputGcollect(VTime)
sendEvent()
getEvent()
...

Processor()
~Processor()
executeProcess()
nextChange()
nextChange(VTime)
lastChange()
lastChange(VTime)
model()
receive(initMsg)
receive(doneMsg)
receive(collectMsg)
receive(externalMsg)
receive(internalMsg)
...
send(initMsg, dest)
send(doneMsg, dest)
send(internalMsg, dest)
...
writelog()
rollbackCheck()

initialize()
receive(initMsg)
receive(internalMsg)
receive(externalMsg)
receive(collectMsg)

initialize()
rootInitialize()
receive(outputMessage)
events()
addExternalEvent(Vtime
,port,value)
...

initialize()
addLocalDependants()
receive(initMsg)
receive(doneMsg)
receive(internalMsg)
receive(collectMsg)
receive(externalMsg)
receive(outputMsg)
calculateNextChange()
synchronizeList()
events()
...

initialize()
stopTime(VTime)
events()
getParentNC()
receive(initMsg)
receive(doneMsg)
receive(externalMsg)
receive(outputMsg)
sendOutsFromNC()
...

Figure 6. Class diagram for the new DEVS processors

5. Execution Results

We carried out different performance tests to

analyze the results obtained with the new algorithms.
To provide uniform means for the overhead, we used
the DEVStone benchmark, a synthetic model generator
that automatically creates models. Its accuracy relies on
the execution of a large pool of models to provide a
robust test set for the study. DEVStone generates
models with different size, complexity and behavior,
resembling different kinds of applications [13].

DEVStone uses three different types of models with
variations in their internal and external structure:

• LI models, with a low level of
interconnections for each coupled model,

• HI models with a high level of input
couplings, and

• HO models with high level of coupling and
numerous outputs.

Table 1 shows the parameters we used for different
tests, including model type, structure and time spent on
transition functions (e.g., model E is of HI type, it is
composed of 3 levels, with 6 components per level).

Table 1. Simulation parameters
Name Type Depth Width δint δext

A LI 3 10 50 ms 50 ms
B LI 10 3 50 ms 50 ms
C LI 5 5 50 ms 50 ms
D LI 10 10 50 ms 50 ms
E HI 3 6 50 ms 50 ms
F HI 6 3 50 ms 50 ms
G HI 5 5 50 ms 50 ms
H HI 6 6 50 ms 50 ms
I HO 3 6 100 ms 0 ms
J HO 6 3 0 ms 100 ms
K HO 5 5 50 ms 50 ms
L HO 6 6 50 ms 50 ms

Figure 7 shows the overhead obtained for these

models executed on a single processor using the stand-
alone (Original CD++), conservative (Parallel
NoTime), and optimistic (Parallel TimeWarp)
approaches.

0,00%
0,50%
1,00%
1,50%
2,00%
2,50%
3,00%
3,50%
4,00%
4,50%
5,00%

A B C D

Original CD++
Parallel NoTime
Parallel
TimeWarp O

ve
rh

ea
d

(%
)

0,00%
1,00%
2,00%
3,00%
4,00%
5,00%
6,00%

E F G H

Original CD++
Parallel NoTime
Parallel TimeWarp O

ve
rh

ea
d

(%
)

0,00%
1,00%
2,00%
3,00%
4,00%
5,00%
6,00%

I J K L

Original CD++

Parallel NoTime

Parallel TimeWarp

O
ve

rh
ea

d
(%

)

Figure 7. Overhead incurred by the abstract
simulators.

The percentage of overhead of the parallel versions
is below 5.5% for the most complex problems running
on top of the Warped and MPICH middleware. This is
a promising result, as the amount of speedup time
achievable by these simulators is considerable, and
having a constrained overhead in the kernel permits a
better utilization of the computing resources.

We also studied the performance of our new
simulator using variations of a sample Cell-DEVS
model representing the execution of the ‘Life’ game.
We executed the life game using different cell spaces:
16x16 (256 cells), 20x20 (400 cells), 25x25 (625 cells)
and 30x30 (900 cells). The initial configuration of cells
for each model was randomly generated. First, the
models were executed on one and four processors. We
used simple rectangular partitions for the distributed
case (Figure 8).

0

20

40

60

80

100

256 400 625 900

Number of cells
T

im
e

(s
ec

)

1 processor 4 processors

0

0.5

1

1.5

2

2.5

256 400 625 900

Number of cells

S
pe

ed
up

Figure 8. Execution times; Execution
speedups (1 vs. 4 processors)

The distributed execution of the model

outperformed the execution in a single processor. The
execution time for the model running on one processor
varies from 30.7 to 90.8 seconds. When running the
model in parallel on 4 processors, the execution time is
smaller (between 18.1 and 47.5 seconds); in some
cases, the optimistic simulator allows to reduce the
execution time in ~50%. It also shows that the factor of
speedup falls between 1.55 and 1.95 when distributing
the execution of the life model among 4 processors
using this partitioning approach. In these particular
cases, the speedup has been affected by the
communication costs, as the tests were executed over a
relatively slow network (a 10 Mbit/s hub, which limits
the simultaneous transfers rate to 10 Mbits per second).

Results presented in [9] show promising results when
faster networks are used.

Figure 9 shows a comparison between our parallel
simulator and the previous conservative simulator for
different configurations of 30x30 (life 1-4) and 40x40
(life 5-8) models using 4 processors.

0

20

40

60

80

100

120

Life 1 Life 2 Life 3 Life 4 Life 5 Life 6 Life 7 Life 8

T
im

e
(s

ec
)

Conservative mechanism Optimistic mechanism

Figure 9. Execution times using optimistic and
conservative simulators (4 processors)

Figure 9 shows that the optimistic simulator

outperforms the conservative simulator for all
configurations of 30x30 and 40x40 models. In the
configuration labeled as life 5 (a 30x30 model), most of
the 900 cells are active in the first cycles of the
simulation. In cases like this, we observe the largest
difference in execution times. In general, the difference
is a result of the performance gains obtained not only
by distributing the simulation in multiple processors
but also by distributing the scheduling tasks in multiple
NCs.

We are interested in analyzing the performance of
our simulator for larger Cell-DEVS. The following
figures show the execution times and speedups for
different configurations for a cell space of 50x50
(different initial values were used, shown as life A, B,
C, and D in Figure 10).

0

50

100

150

200

250

300

350

Life A Life B Life C Life D

T
im

e
(s

ec
)

1 processor 8 processors

Figure 10. Execution times; Execution times
(50x50 life model in 1 and 8 processors)

The execution times for these cases are significantly
reduced when we distribute the simulation in 8
processors. When a 50x50 model is executed on a
single processor, only one LP is created. Hence, a
single instance of a FC is in charge of the 2500
Simulators participating in the simulation, and a single
NC is in charge of scheduling tasks for the entire
model, for instance, the time required to update the list
imminent components (i.e., models that are scheduled
for a transition), which is maintained by a single FC. In
contrast, the distribution of this model in 8 processors
allows a smaller structure associated with each LP
participating in the simulation (each LP has an
associated FC/NC in charge of 312 Simulators). Figure
10 shows that distributing the simulation of a large
model in 8 processors allows significant execution
speedups.

The following set of tests uses a sample Cell-DEVS
model to study the performance of a firefly model, in
which most of the cells change frequently, producing
increased processor load. These rules produce changes
for almost every cell at every simulation cycle. We
execute models with 400 and 900 cells, using two
different initial configurations for each case. Figure 11
shows that the simulation in 4 processors using the
optimistic simulator achieves the best performance for
all the cases. The conservative simulator distributed in
4 processors outperforms its single-processor
counterpart. The optimistic simulator running on a
single processor achieves almost the same performance
as the conservative simulator running on 4 processors,
which shows the increased communication costs of the
latter alternative and the good performance achieved by
our simulator. Figure 11 shows the speedup of the
optimistic simulator distributed in 1 and 4 processors in
relation to the conservative simulator for the 20x20 and
30x30 models.

0

1

2

3

4

5

6

7

8

9

10

1 4

of processors

Sp
ee

du
p

20x20 model, cons.
1 processor

30x30 model, cons.
1 processor
20x20 model, cons.
4 processors
30x30 model, cons.
4 processors

Figure 11. Speedups using conservative and
optimistic simulators; Speedup (1-4
processors)

Figure 11 illustrates the speedups obtained by our
simulator using 1 and 4 processors in relation with the
conservative simulator. The figure shows that the
execution of the optimistic simulator in 1 processor
allows significant speedups (2.91 for 20x20 models,
3.17 for 30x30 models) in comparison to the
conservative simulator running on a single processor.
The speedup factor obtained by executing the
simulation in 4 processors using the optimistic
approach instead of the equivalent partitioning for the
conservative approach is approximately 2.45 for 20x20
and 30x30 models. The execution of the model using
our approach in 4 processors enables speedup factors
of up to 9.15 in comparison to the execution in a
single-processor using the pessimistic technique.
Although the execution of both 20x20 and 30x30
models using the pessimistic approach in 4 processors
outperforms our simulator executing in 1 processor, it
is only by a relatively small fraction (the speedup factor
is .82-.86).

6. Conclusions

We have introduced a new flat simulation technique
for P-DEVS and Cell-DEVS based on Time Warp, a
well-known optimistic synchronization protocol. Our
efforts address the need for efficient, fast execution of
models using parallel and distributed simulation. We
propose an optimistic distributed mechanism that
enables achieving higher degrees of parallelism than
previous efforts, which only allowed exploiting
parallelism in a limited way. Under our new approach,
scheduling tasks are distributed on the LPs; each NC is
in charge of the scheduling tasks for the local
simulation objects. NCs advance the simulation
optimistically, assuming that there will be no straggler
events. In case of detecting a violation to the local
causality constraint, a rollback mechanism allows
recovering from it.

Using DEVStone, we compared the overhead of our
new technique with the overhead of previous
implementations. Although the overhead associated
with synchronization tasks implemented by our
simulator can be considerable, it still outperformed
previous alternatives for some models in single-
processor executions. This is a consequence of the flat
mechanism implemented in our engine, which
outweighs the increased overhead associated with its
more complex implementation. More importantly, we

showed that when executing different types of DEVS
models, the overhead is reasonable small (2.5%-5%).

We showed that the execution times for a particular
Cell-DEVS model can be reduced using distributed
simulation. Different model sizes where considered,
ranging from 256 to 2500 cells. The execution of the
model in a distributed environment allowed achieving
better performance than stand-alone execution. Using
distributed environments, our simulator outperforms
other alternatives and achieves considerable speedups.

7. References
[1] Fujimoto, R.M. Parallel and Distribution Simulation
Systems. Wiley. 1999.
[2] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press. 2000.
[3] Kim, K.H.; Seong, Y.R.; Kim, T.G.; Park, K.H.
“Distributed Simulation of Hierarchical DEVS Models:
Hierarchical Scheduling Locally and Time Warp Globally”
Trans. of the SCS. vol. 13(3), pp. 135-154. 1996.
[4] Troccoli, A.; Wainer, G. “Implementing Parallel Cell-
DEVS.” Proceedings of the Annual Simulation Symposium.
Washington DC, USA. 2003.
[5] Zeigler, B.; Moon, Y.; Kim, D.; Ball, G. “The DEVS
Environment for High-Performance Modeling and
Simulation” IEEE Computational Science and Engineering.
4 (3), pp. 61 -71. 1997.
[6] Chow, A.C.; Zeigler, B.P. “P-DEVS: A parallel,
hierarchical, modular modeling formalism.” Proceedings of
the Winter Simulation Conference. Orlando, FL. USA. 1994.
[7] G. Wainer, N. Giambiasi. "N-Dimensional Cell-DEVS".
Discrete Events Systems: Theory and Applications, Kluwer.
Vol. 12, No. 1. January 2002. pp. 135-157.
[8] Wainer, G. “CD++: a toolkit to develop DEVS models.”
Software Practice and Experience. (32), 1261-1306. 2002.
[9] Troccoli, A.; Wainer, G. “Performance results of parallel
Cell-DEVS execution.” Proceedings of the Summer
Computer Simulation Conference. Orlando, FL. USA. 2001.
[10] Wainer, G.; “Improved cellular models with parallel
Cell-DEVS.” Transactions of the SCS. vol. 17 (2). June
2000.
[11] Martin, D.; McBrayer, T.; Wilsey, P. “WARPED: Time
Warp Simulation Kernel for Analysis and Application
Development.” Proceedings of the 29th Hawaii International
Conference on System Sciences. 1996.
[12] Chow, A.C.; Kim, D.C.; Zeigler, B.P. “Abstract
Simulator for the P-DEVS formalism.” AI, Simulation, and
Planning in High Autonomy Systems. Gainesville, FL. USA.
1994.
[13] Glinsky, E.; Wainer, G. “Abstract simulation algorithms
for Parallel CD++”. Technical Report SCE-05-11. Carleton
University. Submitted for publication. 2005.

