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Abstract 
 

DEVS is a sound formal modeling and simulation 
(M&S) framework based on generic dynamic system 
concepts. Cell-DEVS is a formalism for cell-shaped 
models based on DEVS. This work presents a new 
simulation technique for execution of DEVS and Cell-
DEVS models in parallel/distributed environments. The 
parallel simulator is based on Time Warp, and 
developed as a new simulation engine for CD++, a 
M&S toolkit that implements DEVS and Cell-DEVS 
theories. The technique uses a non-hierarchical 
approach that simplifies the structure of the simulator 
and reduces the communication overhead. The results 
obtained allowed us to achieve considerable speedups. 
 
1. Introduction 
 

The widespread use of M&S in different application 
domains is leading to execution of larger and more 
complex systems, which often translates into more 
memory and processor requirements [1]. Parallel 
discrete event simulation (PDES) studies the execution 
of discrete event models (i.e., those in which simulation 
advances by the occurrence of events that take place at 
discrete points in time) in parallel or distributed 
computers. The main concern of this community was to 
reduce execution time of applications by using multiple 
processors, and a large number of synchronization 
algorithms were developed [1].  

Another approach considered using of the DEVS 
formalism [2] as the modeling framework for PDES 
[3,4,5]. DEVS is a sound formal framework based on 
generic dynamic systems concepts that supports 
provably correct, efficient, event-based simulation. 
DEVS enables the construction of models in a 

hierarchical, modular fashion, allowing component 
reuse and reducing development and testing time. 
Parallel DEVS or P-DEVS [6] provides means of 
handling simultaneous scheduled, while keeping all the 
major properties of classic DEVS. Since P-DEVS 
eliminates serialization constraints, it enables improved 
execution of models in parallel and distributed 
environments.  

Cell-DEVS [7] combines Cellular Automata with 
DEVS theory, allowing individual cells to be defined 
as basic DEVS models and coupled to form complete 
cell spaces. CD++ [8] is a M&S tool that implements 
DEVS and Cell-DEVS theories. A hierarchical, 
conservative parallel simulator was implemented in 
CD++ [9], showing improvements for both DEVS and 
Cell-DEVS. However, its degree of parallelism and 
speedups are bounded. Here, we introduce a new 
technique for optimistic simulation in CD++. The 
technique combines the Time Warp synchronization 
mechanism and the DEVS abstract simulators. In our 
approach, the hierarchy of the simulation objects is 
flattened to reduce the communication overheads, using 
a flat simulation approach that eliminates the need for 
intermediate coordinators [3]. Consequently, it reduces 
the overhead of message passing, improving the overall 
performance of the simulation. 
 
2. Background 
 

The DEVS formalism [2] provides a framework for 
the definition of hierarchical and modular models. A 
real system modeled with DEVS is described as a 
composite of behavioral (atomic) or structural 
(coupled) submodels. P-DEVS [6] provides a way of 
dealing with simultaneous events. An atomic P-DEVS 
model is defined as: 



M = <XM, YM, S, δext, δint, δcon, λ, ta> 
At any given time, an atomic model is in state s 

during a period defined by ta(s). When that time 
expires, the system outputs the value λ(s) and then it 
changes to the state specified by δint(s). If one or more 
external events (XM) occur before ta(s), the new state is 
given by the external transition function, δext(s, e, XM). 
δext uses a bag of events, which allows multiple events 
to be processed simultaneously. If external and internal 
transitions conflict, the new state is given by δcon. 

Coupled models are defined as a set of basic 
components (atomic or coupled), which are 
interconnected through the model's interfaces.  

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC> 
X, is the set of input ports, Y is the set of output 

ports, D is a set of the component names; for each d ∈ 
D, Md is a basic DEVS model; the external input 
couplings (EIC) defines how to connect external inputs 
to components; the external output couplings set (EOC) 
defines how to connect components to external outputs; 
and the internal couplings set (IC) defines how to 
interconnect components.  

Cell-DEVS [7] is an extension that allows the 
specification of executable cell spaces with explicit 
timing delays. A parallel Cell-DEVS atomic model 
[10] can be formally defined as: 

TDC = <Xb, Yb, S, N, d, τ, τcon, δint, δext, δcon, λ, D> 
Each cell uses a set of N inputs to compute the next 

state. These values are received through a well-defined 
interface (Xb, Yb), activating a local function (τ, τcon), 
which uses the cell's inputs and present state (S). A 
delay function (d) associated with each cell, allows 
deferring the transmission of the results. The model 
advances through the activation of the internal, 
external, output and state's duration functions, as in 
other DEVS models. After the basic behavior for a cell 
is defined, the complete cell space will be constructed 
by building a coupled Cell-DEVS model: 

GCC = <Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z> 
The cell space is a coupled model composed of an 

array of t1… tn atomic cells (C). Each of them is 
connected to the cells defined by the neighborhood (N). 
The border (B) can be provided with a different 
behavior than the rest of the space. The Z function 
allows one to define the internal and external coupling 
of cells in the model, using the neighborhood definition 
and to the external models through Xlist and Ylist.  

CD++ [8] implements P-DEVS and Cell-DEVS 
formalisms. The tool was built as a class hierarchy in 
C++, where each class corresponds to a simulation 
entity using the basic concepts defined in [2]. There are 
two basic abstract classes: Model and Processor. The 
former is used to represent the behavior of the atomic 

and coupled models, while the latter implements the 
simulation mechanisms. Simulators manage the atomic 
models, handling the execution of δint, δext, δcon and λ. 
Coordinators manage coupled models. The Root 
Coordinator manages global aspects (global time, 
starting/stopping the simulation, I/O, etc). AtomicCell 
and CoupledCell simulate cell spaces. 

The simulation process is message-driven. Each 
message contains information to identify the sender 
and the receiver, including a timestamp for the message 
and an associated value. There are two main categories 
of messages: synchronization (@: Collect message; *: 
Internal message; done: Done message) and content 
messages (q: External message; y: Output message). 

As mentioned earlier, our goal is to combine 
advanced DEVS simulators with PDES techniques. In 
PDES, the simulation is subdivided in smaller, simpler 
parts that run on different nodes. Warped [11] is a 
simulation kernel that provides an implementation of 
Time Warp with different optimizations, and an 
interface that hides most of the implementation issues. 
Warped is written in C++ and uses the MPI message 
passing standard for communication, a standard 
designed for high performance communication on 
parallel and distributed environments. Simulation 
objects within the same LP exchange messages using 
direct communication, whereas those running in 
different LPs use MPI communication services. 

CD++ was originally developed as a stand-alone 
simulator, and it was redesigned to provide parallel 
execution of P-DEVS and Parallel Cell-DEVS. 
Although Parallel CD++ showed speedups, a single 
Root Coordinator still acts as a global scheduler for 
every node in the simulation. Another problem is that 
most DEVS simulators usually create a one-to-one 
correspondence between model components and 
simulation objects (Figure 1), increasing the 
communication costs of message passing.  
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Figure 1. DEVS hierarchical simulator. 

 
Flat simulation mechanisms, instead, reduce this 

overhead by simplifying the underlying simulator 
structure, while keeping the same model definition and 
preserving the separation between model and simulator. 



Studies have shown that flat simulators can outperform 
hierarchical mechanisms.  

 
3. Optimistic PDES of DEVS Models 

 
The fundamental classes in CD++ can be divided in 

two major groups: those who inherit from the basic 
model or processor classes. This reflects the clear 
distinction between the model and its simulator. All 
classes inheriting from model remain unchanged from 
those defined in earlier versions of the tool. Two new 
classes are introduced, both inheriting from processor: 
Flat Coordinator (FC) and Node Coordinator (NC). 
Additionally, we modified the Simulator and Root 
Coordinator classes. The algorithms we defined are 
based on those in [12] and [10], as it has been proven 
that they correctly simulate P-DEVS models. 
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Figure 2. New processors’ class hierarchy in 
CD++ 

 
Two processors (coordinator and cell coordinator) 

have been eliminated in the new hierarchy presented in 
Figure 2. Figure 3 presents the new structure for the 
model in Figure 2. 

The Root Coordinator only handles I/O operations, 
and starts/stops the simulation. The NC is in charge of 
synchronization and time management for the LP. The 
FC is responsible for receiving, translating, and 
sending messages between its descendants, contained 
on a flat data structure for handling all the coupling 
information for every component. In order to run the 
model on a distributed environment, we need to 
indicate the nodes that can participate in the simulation, 
and how they are allocated to each processor (Figure 

4). During the instantiation and registration of each 
Simulator object, they are associated to the 
corresponding LP. NCs can communicate with each 
other using inter-LP messaging. The Root Coordinator 
executes on one LP, and it forwards messages from the 
environment to the corresponding NC. On the other 
hand, when a NC processes an output that must be sent 
back to the environment, it is sent to the Root 
Coordinator. 
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Figure 3. Processor hierarchy using a flat 
approach 
 
0:atomic_4 atomic_5 
1:atomic_1 atomic_2 atomic_3 
2:atomic_6 atomic_7 
 
When an output is sent from an atomic component, a1, 
to another, a2, we can identify two different cases: both 
Simulators for a1 and a2 execute on the same or on 
different LPs. In the first case, the FC running on that 
LP takes care of the situation: the source Simulator 
sends the message to its parent FC (which has all the 
information for the port mappings), and it sends the 
output to the corresponding Simulator. In the second 
case, a Simulator on LPi has to send an output to a 
Simulator on LPj. FCi identifies that the destination 
Simulator is not one of its descendants, it forwards the 
message to its parent NCi, which identifies the 
corresponding LPj and forwards the message. The NC 
running on LPj forwards the message to FCj, which in 
turn sends it to the destination Simulator.
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Figure 4. Model partition file for CD++ 
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Figure 5. Sending an output to a remote simulator 

 
Notice that inter-LP communication can lead to 

violations to the local causality constraint, depending 
on the time at local and destination LPs. More 
specifically, if the timestamp of the message is smaller 
than the local time at the destination LP, a rollback is 
triggered. A detailed description of the algorithms 
involved in each of the components can be found in 
[13]. 
 
5. Implementing the Abstract Simulator 
 

We defined the previous algorithms using different 
services provided by Warped. On the Warped API, 
TimeWarp is a basic class defining the data and 
methods to allow every object to participate in a 
simulation. Three main methods determine the 
behavior of the objects: initialize, finalize and 
executeProcess. executeProcess runs every time a 
simulation object is scheduled for execution (i.e., when 
it has an event ready to be processed). finalize releases 
memory, collects statistics, etc. saveState is called 
automatically to save the current state of an object. In 
case of receiving a straggler message with a timestamp 
t, rollback(t) restores the state of the object and sends 
the necessary anti-messages. calculateMin reports the 
minimum time of the unprocessed events, and is used 
to compute the global virtual time. inputGcollect, 
stateGcollect, and outputGcollect take care of garbage 
collection in the input, state, and output queues. The 
state of a simulation object is defined by an instance of 
BasicState. The state of an object contains the 
information that can change in each simulation cycle, 
including pointers to input and output queues (inputPos 
and outputPos). Simulator objects communicate by 
message passing, which belong to the class BasicEvent 

or to one of its subclasses. LogicalProcess groups the 
simulation objects executing in the same processor. To 
create a new LP, it is necessary to specify the total 
number of objects in the simulation, the number of 
simulation objects to be handled on this LP, and the 
number of LPs participating in the simulation. The 
method registerObject(TimeWarp) is used to define 
which objects are running on this LP. The method 
simulate(VTime) starts the execution of this LP (the 
simulation stops when the global time is greater than 
the specified time). calculateLGVT is used to compute 
the local global virtual time at the end of each 
simulation cycle. It is calculated by a GVTManager as 
the minimum time reported by simulation objects. 
Figure 6 shows the new class diagram of the DEVS 
processors along with some of their main methods that 
implement the algorithms previously described. 

 
Processor (inherits from Warped TimeWarp) 

provides basic functionality and data that are common 
to all DEVS processors in the application (methods 
initialize, executeProcess, finalize,etc.). It includes the 
definition of: 

a. send methods for each type of message (e.g., 
send(initMsg,dest), send(doneMsg,dest)), 
which use, in turn, sendEvent in TimeWarp. 

b. Time management methods (e.g., timeNext(), 
timeLast(), timeNext(VTime), etc.). 

c. initialize, finalize, and debugging methods.  
d. executeProcess(), which defines the behavior 

of any DEVS processor.  
e. rollbackCheck(),called in the receive method, 

to check for straggler messages. 
f. Basic variables (model associated to this 

processor, its parent, id and descriptors). 



The method processor.executeProcess() is in charge 
of getting the first event in the queue of events, logging 
the event, and calling the corresponding receive 
method based on the message type. 

The receive(initMessage) method first sends 
initialization messages to all of its descendants 
(send(initMessage,dest)) and waits for all done 
messages from its dependant Simulators. The 
nodeCoordinator keeps track of the number of done 

messages (doneCount()) and it determines the time of 
next change (nextChange(VTime)), sening this value to 
its parent NC (send(doneMsg,dest)). The 
receive(initMessage) method, in contrast, initializes the 
model variables, computes the next time for the next 
transition and sends a done message to its parent, 
which is a FC. The Simulator executes δext, δint, δcon, λ, 
ta. 
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Figure 6. Class diagram for the new DEVS processors 

 
 

5. Execution Results 
 
We carried out different performance tests to 

analyze the results obtained with the new algorithms. 
To provide uniform means for the overhead, we used 
the DEVStone benchmark, a synthetic model generator 
that automatically creates models. Its accuracy relies on 
the execution of a large pool of models to provide a 
robust test set for the study. DEVStone generates 
models with different size, complexity and behavior, 
resembling different kinds of applications [13]. 

DEVStone uses three different types of models with 
variations in their internal and external structure: 

• LI models, with a low level of 
interconnections for each coupled model, 

• HI models with a high level of input 
couplings, and 

• HO models with high level of coupling and 
numerous outputs. 

Table 1 shows the parameters we used for different 
tests, including model type, structure and time spent on 
transition functions (e.g., model E is of HI type, it is 
composed of 3 levels, with 6 components per level). 



Table 1. Simulation parameters 
Name Type Depth Width δint δext 

A LI 3 10 50 ms 50 ms 
B LI 10 3 50 ms 50 ms 
C LI 5 5 50 ms 50 ms 
D LI 10 10 50 ms 50 ms 
E HI 3 6 50 ms 50 ms 
F HI 6 3 50 ms 50 ms 
G HI 5 5 50 ms 50 ms 
H HI 6 6 50 ms 50 ms 
I HO 3 6 100 ms 0 ms 
J HO 6 3 0 ms 100 ms 
K HO 5 5 50 ms 50 ms 
L HO 6 6 50 ms 50 ms 
 
Figure 7 shows the overhead obtained for these 

models executed on a single processor using the stand-
alone (Original CD++), conservative (Parallel 
NoTime), and optimistic (Parallel TimeWarp) 
approaches.  
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Figure 7. Overhead incurred by the abstract 
simulators. 

The percentage of overhead of the parallel versions 
is below 5.5% for the most complex problems running 
on top of the Warped and MPICH middleware. This is 
a promising result, as the amount of speedup time 
achievable by these simulators is considerable, and 
having a constrained overhead in the kernel permits a 
better utilization of the computing resources. 

We also studied the performance of our new 
simulator using variations of a sample Cell-DEVS 
model representing the execution of the ‘Life’ game. 
We executed the life game using different cell spaces: 
16x16 (256 cells), 20x20 (400 cells), 25x25 (625 cells) 
and 30x30 (900 cells). The initial configuration of cells 
for each model was randomly generated. First, the 
models were executed on one and four processors. We 
used simple rectangular partitions for the distributed 
case (Figure 8). 
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Figure 8. Execution times; Execution 
speedups (1 vs. 4 processors) 

 
The distributed execution of the model 

outperformed the execution in a single processor. The 
execution time for the model running on one processor 
varies from 30.7 to 90.8 seconds. When running the 
model in parallel on 4 processors, the execution time is 
smaller (between 18.1 and 47.5 seconds); in some 
cases, the optimistic simulator allows to reduce the 
execution time in ~50%. It also shows that the factor of 
speedup falls between 1.55 and 1.95 when distributing 
the execution of the life model among 4 processors 
using this partitioning approach. In these particular 
cases, the speedup has been affected by the 
communication costs, as the tests were executed over a 
relatively slow network (a 10 Mbit/s hub, which limits 
the simultaneous transfers rate to 10 Mbits per second). 



Results presented in [9] show promising results when 
faster networks are used. 

Figure 9 shows a comparison between our parallel 
simulator and the previous conservative simulator for 
different configurations of 30x30 (life 1-4) and 40x40 
(life 5-8) models using 4 processors. 
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Figure 9. Execution times using optimistic and 
conservative simulators (4 processors) 

 
Figure 9 shows that the optimistic simulator 

outperforms the conservative simulator for all 
configurations of 30x30 and 40x40 models. In the 
configuration labeled as life 5 (a 30x30 model), most of 
the 900 cells are active in the first cycles of the 
simulation. In cases like this, we observe the largest 
difference in execution times. In general, the difference 
is a result of the performance gains obtained not only 
by distributing the simulation in multiple processors 
but also by distributing the scheduling tasks in multiple 
NCs. 

We are interested in analyzing the performance of 
our simulator for larger Cell-DEVS. The following 
figures show the execution times and speedups for 
different configurations for a cell space of 50x50 
(different initial values were used, shown as life A, B, 
C, and D in Figure 10). 
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Figure 10. Execution times; Execution times 
(50x50 life model in 1 and 8 processors) 

 

The execution times for these cases are significantly 
reduced when we distribute the simulation in 8 
processors. When a 50x50 model is executed on a 
single processor, only one LP is created. Hence, a 
single instance of a FC is in charge of the 2500 
Simulators participating in the simulation, and a single 
NC is in charge of scheduling tasks for the entire 
model, for instance, the time required to update the list 
imminent components (i.e., models that are scheduled 
for a transition), which is maintained by a single FC. In 
contrast, the distribution of this model in 8 processors 
allows a smaller structure associated with each LP 
participating in the simulation (each LP has an 
associated FC/NC in charge of 312 Simulators). Figure 
10 shows that distributing the simulation of a large 
model in 8 processors allows significant execution 
speedups. 

The following set of tests uses a sample Cell-DEVS 
model to study the performance of a firefly model, in 
which most of the cells change frequently, producing 
increased processor load. These rules produce changes 
for almost every cell at every simulation cycle. We 
execute models with 400 and 900 cells, using two 
different initial configurations for each case. Figure 11 
shows that the simulation in 4 processors using the 
optimistic simulator achieves the best performance for 
all the cases. The conservative simulator distributed in 
4 processors outperforms its single-processor 
counterpart. The optimistic simulator running on a 
single processor achieves almost the same performance 
as the conservative simulator running on 4 processors, 
which shows the increased communication costs of the 
latter alternative and the good performance achieved by 
our simulator. Figure 11 shows the speedup of the 
optimistic simulator distributed in 1 and 4 processors in 
relation to the conservative simulator for the 20x20 and 
30x30 models. 
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Figure 11. Speedups using conservative and 
optimistic simulators; Speedup (1-4 
processors) 

 



Figure 11 illustrates the speedups obtained by our 
simulator using 1 and 4 processors in relation with the 
conservative simulator. The figure shows that the 
execution of the optimistic simulator in 1 processor 
allows significant speedups (2.91 for 20x20 models, 
3.17 for 30x30 models) in comparison to the 
conservative simulator running on a single processor. 
The speedup factor obtained by executing the 
simulation in 4 processors using the optimistic 
approach instead of the equivalent partitioning for the 
conservative approach is approximately 2.45 for 20x20 
and 30x30 models. The execution of the model using 
our approach in 4 processors enables speedup factors 
of up to 9.15 in comparison to the execution in a 
single-processor using the pessimistic technique. 
Although the execution of both 20x20 and 30x30 
models using the pessimistic approach in 4 processors 
outperforms our simulator executing in 1 processor, it 
is only by a relatively small fraction (the speedup factor 
is .82-.86). 

 
6. Conclusions 
 

We have introduced a new flat simulation technique 
for P-DEVS and Cell-DEVS based on Time Warp, a 
well-known optimistic synchronization protocol. Our 
efforts address the need for efficient, fast execution of 
models using parallel and distributed simulation. We 
propose an optimistic distributed mechanism that 
enables achieving higher degrees of parallelism than 
previous efforts, which only allowed exploiting 
parallelism in a limited way. Under our new approach, 
scheduling tasks are distributed on the LPs; each NC is 
in charge of the scheduling tasks for the local 
simulation objects. NCs advance the simulation 
optimistically, assuming that there will be no straggler 
events. In case of detecting a violation to the local 
causality constraint, a rollback mechanism allows 
recovering from it. 

Using DEVStone, we compared the overhead of our 
new technique with the overhead of previous 
implementations. Although the overhead associated 
with synchronization tasks implemented by our 
simulator can be considerable, it still outperformed 
previous alternatives for some models in single-
processor executions. This is a consequence of the flat 
mechanism implemented in our engine, which 
outweighs the increased overhead associated with its 
more complex implementation. More importantly, we 

showed that when executing different types of DEVS 
models, the overhead is reasonable small (2.5%-5%). 

We showed that the execution times for a particular 
Cell-DEVS model can be reduced using distributed 
simulation. Different model sizes where considered, 
ranging from 256 to 2500 cells. The execution of the 
model in a distributed environment allowed achieving 
better performance than stand-alone execution. Using 
distributed environments, our simulator outperforms 
other alternatives and achieves considerable speedups. 
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