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Abstract

The ATLAS specification language is devoted to build models of city sections using micro-
simulation. The basic language constructions allow defining a static topology of the section to
be studied. The dynamic behavior of the section can be modified by including traffic lights,
traffic signs, etc. Once the urban section is outlined, models are converted into cell spaces
and the traffic flow is automatically set up. Language constructions were mapped into DEVS
and Cell-DEVS models that can be easily executed with a simulation tool. The models were
formally specified, improving the verification of the language. Thanks to this formal approach,
we ensure that the simulations are correct, avoiding a high number of errors in the developed
application, and as the modelers can focus in the problem to solve, development times can be
reduced.
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1. Introduction

Traffic flow in modern urban centers is a complex phenomenon that cannot be
studied analytically; instead, computer simulation has gained acceptance for urban
traffic analysis and control [20]. Simulators have been used to improve traffic, mea-
sure the consequences of collisions, avoid pollution, etc. Existing traffic simulators
can be classified according to the level of detail they allow.Microscopic traffic models
describe both the system entities and their interactions at a high level of detail. For
example, a lane change could consider the nearby cars, as well as detailed driver deci-
sions. Mesoscopic models also represent the entity details, but their interaction is
analyzed with less detail. For example, the lane changes could be modeled according
with relative lane densities. Finally, macroscopic models describe entities and their
activities and interactions at a low level of detail [26,35]. For instance, lane changes
can be approximated, or not represented at all. Instead, flow rate, density and speed
are analyzed [23]. Each of these approaches has advantages and drawbacks. Macro-
scopic models are effective when global traffic flow features must be analyzed, allow-
ing planning in the large, solving environmental issues, global traffic light
coordination strategies, etc. In the other extreme, microscopic models enable de-
tailed behavior analysis, such as local delays due to traffic conditions or, heavy traf-
fic, local traffic light coordination or changing of lane directions according to the
traffic density.

Several approaches have been used to develop traffic simulations in all of these
levels. Some of them include queuing networks [6,36], Markov models, Cellular
Automata [12,38,30,33], DEVS [8,22], software agents [2], object-oriented program-
ming [34] and learning automata [25]. Several other approaches have also been used,
from Game Theory [7], Petri Nets [37], up to fluid or electrical flow models equiva-
lent to traffic. The early efforts in this area used macroscopic models to analyze traffic
demand and flows on a traffic network using static parameters (such as average of
daily traffic or an average for the peek hours). The goal was to find long-term fore-
casts that could be used for investments or dimensioning of the traffic net. Micro-
scopic simulations are more recent, and they require higher computing power.
Nonetheless, they can reproduce the real dynamics of traffic, enabling a modeler
to study detailed phenomena as a function of time. We are interested in developing
microsimulations to precisely describe the behavior of traffic in closed sections. The
goal is to let a modeler to analyze behavior in cities with complex urban design, or in
closed traffic conditions (parking, roads in shopping malls, amusement parks or
sports stadiums).

Cellular Automata (CA) have been used in defining the kind of models of our
interest [1,27,29,30,18,28,32]. CA define a grid of cells using discrete variables for
time, space and system states [9,43]. Cells are updated synchronously and in parallel
for every cell in the space according with a local rule using a finite set of nearby cells
(the neighborhood). Cellular models represent a quite intuitive way of analyzing the
traffic flow in detail, and they enable good visualization of the results. In [13], we pre-
sented a survey of the research results in microsimulations with CA. This report
showed that most existing models could only represent simple aspects of the flow,
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such as the standard car movement in streets and crossings. In addition, the repre-
sentation of some of the most basic behaviors (i.e., vehicle speed) is done in a highly
non-intuitive fashion. Besides these problems, CA are synchronous, a fact that poses
precision constraints and extra compute time. The Cell-DEVS formalism [42] was
proposed to solve these problems by defining cell spaces as DEVS (Discrete Events
systems Specifications) models [44]. Using Cell-DEVS, a cell space is described as a
discrete event model in which explicit delays can be used to accurately model the cell
timing properties.

Using DEVS and Cell-DEVS as theoretical frameworks, we defined a high-level
specification language called ATLAS (Advanced Traffic LAnguage Specifications)
and a compiler [24], called TSC (Traffic Simulation Compiler) that enables a modeler
to represent city sections based on constructions found in standard maps. Once the
topology of an urban section is defined, traffic flow is automatically set up and
microsimulations executed. The city shape can be easily modified by changing the
constructions used or some of their parameters. Therefore, a modeler can concentrate
in the problem to solve, and not in low-level programming details. The modelers can
write high level specifications that will automatically generate executable models,
avoiding human intervention in the intermediate steps of the development [40].

The language constructions are mapped into DEVS and Cell-DEVS models, pro-
viding the benefits of a formal approach. Consequently, the use of ATLAS allows
reducing the development times of traffic simulation. In [17], we showed that the
development times of simple traffic models can improve in one order of magnitude
when we compare Cell-DEVS against general purpose programming languages. This
is due, in part, to the complexity reduction provided by Cell-DEVS (for instance, a
one-lane traffic model, represented by 185 lines of code in a high level programming
language, can be specified by 15 lines of Cell-DEVS definitions). DEVS also enables
reusing predefined submodels, and coupling them in seamless fashion, improving the
definition of complex models and favoring reuse. Once a model has been tested, it
can be coupled with others hierarchically. Besides this, complex speed behavior
can be easily defined as a function of the delay of a cell. Using ATLAS, we could
even improve these results (i.e., a 15-line Cell-DEVS specification like the one men-
tioned can be defined with a one-line construction). This reduces the time spent in the
testing and maintenance phases. As we will show, structural changes in the models
are done by simply changing model specifications. Once the city section is specified,
coding time disappears (as existing tools generate code from the specifications with-
out user intervention). Model testing is highly reduced as we guarantee the correct
execution of the simulations (only integration testing must be carried out).
2. DEVS and CELL-DEVS

ATLAS components have been defined as DEVS and Cell-DEVS models. Two
reasons support this decision. First, these formal approaches enable to prove the cor-
rectness and completeness of the simulation models. Errors found during the simu-
lation can be fixed by analyzing the specification, without considering the underlying
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software system. A second advantage is that DEVS and Cell-DEVS are discrete
event formalisms, providing higher precision and speedups than the discrete time ap-
proaches. In [45], the authors showed that DEVS combined with parallel simulation
techniques can produce speedups of up to 1000 times. In [42], we showed that Cell-
DEVS also provides these advantages. This is particularly important for traffic mod-
els: though cars move at different speeds, we need to be able represent the fastest
ones. For instance, to have precise behavior, we would need to represent speeding
behavior (for instance, cars moving at 100 km/h in 60 km/h streets). We need to acti-
vate all the cells at a rate of 270 ms (considering cells of 7.5 m, the standard size used
by CA traffic models), against the 670 ms required for most cases. The situation is
even worse if we consider that we need a timeslot which is a common divisor of these
two numbers, while a large number of cells do not need to be activation very long
periods (for instance, cars stopped by traffic lights, city areas without traffic, or park-
ing spots). Nevertheless, discrete time approaches need to activate every cell in the
model at the smallest possible rate.

Let us consider a city section with 2000 cells (a square region of 655 m on the
side). In a CA simulation 10 h long, we would activate 267M cells for maximum
speeds of 100 km/h (or 48M for 40 km/h). Instead, when a discrete-event approach
is used, we should just activate the cells used by the cars in the area. If we consider
rates of 100–1000 cars/hour, we would have from 100K to 1M activations in 10 h
(independently of speed).

Fig. 1 shows the break-even point for the number of activations using CA and
DEVS. The X-axis is divided in three areas: two for CA (maximum speed: 40 and
100 km/h), and one for DEVS. In each category, we include the number of cars in
the cell space (1–2000 cars maximum). The Y-axis shows different average speeds
for vehicles running under DEVS (as different speeds will change the activation times
for each cell). The Z-axis shows the total number of cells activated in a 10-h simu-
lation. Both the number of cars and their speed affect the performance of DEVS
models. Nonetheless, in most cases we obtain a smaller number of activations when
compared against CA. Performance is worse only for a large number of cars (1000–
2000) at high speed. This hypothetical case (a large number of cars speeding), is non-
valid: when such a large number of vehicles exist, most of the cells will be blocked
(traffic jam). The situation is even worse when we consider that we need to model
traffic lights, parking lanes or special vehicles (ambulances, police cars), which makes
it more complex to choose an adequate timeslice to use. Instead, DEVS and Cell-
DEVS enable to use different time scales in each of the submodels employed, due
to the existence of explicit timing functions that are independent of a global clock.

A real system modeled using DEVS can be described as composed of several sub-
models. Each of them can be behavioral (atomic) or structural (coupled). A DEVS
atomic model is described as

M ¼ hX ; S; Y ; dint; dext; k; tai
Each state (S) has an associated lifetime (ta). When this time is consumed, the inter-
nal transition function (dint) is activated to produce an internal state change. The
model can generate outputs (Y) using the output function (k), which executes before



Fig. 1. Comparing the number of cells activated using DEVS and CA.
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the internal transition. The model specification also defines the behavior of the exter-
nal transition function (dext) under input events (X). Atomic models can be inte-
grated into a model hierarchy, allowing reuse of the models. As DEVS is closed
under coupling, this integration can be done safely. A DEVS coupled model is de-
fined as

CM ¼ hX ; Y ;D; fMig; fI ig; fZijgi
Coupled models consist of a set of basic models (D) interconnected. The set of influ-
ences (Ii) of a given component defines the models to which it must send outputs. The
Zij function is in charge of translating outputs of a model into inputs for others,
using the index of influences created for each model: for every j in Ii, outputs of
the model Mi are connected to inputs in the model Mj. X and Y define the model�s
external inputs/outputs.

Cell-DEVS [42] allows one to define cellular models in which each cell is defined as
an atomic DEVS (Fig. 2). Cell-DEVS atomic models are specified by

TDC ¼ hX ; Y ; S;N ; delay; dint; dext; s; k; tai
Each cell uses N input values (received from the cell�s neighborhood or from other
DEVS models), and computes the new state using the function s. The outputs of a
cell are not transmitted instantaneously, but after the consumption of a transport

or inertial delay, which defines the timing behavior of the cell explicitly. Transport



Fig. 2. Informal definition of a Cell-DEVS model.
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delays allow one to model a variable response time for each cell. Instead, inertial de-
lays are preemptive: a scheduled event is executed only if the delay is consumed. This
behavior is driven by the dint, dext, k and ta functions.
3. ATLAS constructions

ATLAS language constructions let amodeler to define a city sectionwith detail. The
language enables representing the topology of the area to be analyzed by reproducing a
city map. This approach has been followed by most microsimulation tools, such as
HUTSIM [21], Tramsims [4] Traffic Simulator [10], AIMSUN [3], Corsim [5,19],
TRANSIM [31] or PARAMICS [6,35]. ATLAS formal specifications were used to
build a compiler implementing the language [24]. The compiler, called ATLAS/TSC
(Traffic Simulation Compiler) takes as input a set of ATLAS constructions, and gen-
erates a Cell-DEVS specification. The compiler was built based on a set of templates
that defines how to code the output rules, and translated intoCell-DEVS specifications
which can be executed using theCD++ simulator [41]. These templates can be changed
to generate new rules, or to change the existing ones, providing independence from the
simulation environment. For instance, if the syntax of CD++ changes or another tool-
kit is intended to be used, we can change the templates, and the traffic models previ-
ously developed would still be valid. Each construction defines a static view of the
model, which have an implicit associated dynamic behavior.

3.1. Segments

Each street in the city is defined as a sequence of one-lane segments (Fig. 3). Seg-
ments are one way and have a maximum speed associated (one segment in each



             p1                                                p1

                                    p2                                         p2

s = (p1, p2, 1, 0, 0, 40)         s1 = (p1, p2, 2, 1, 1, 60)
    s2 = (p1, p2, 2, 1, 0, 60)

(a) (b)

Fig. 3. Specification of segments: (a) one lane straight segment; (b) two-lane curve segments with different
direction.
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direction is needed to build two-way streets). In ATLAS/TSC, segments are specified
using the delimiters begin/end segments. At least one segment must be defined,
using this syntax

id = p1, p2, lanes, shape, direction, speed, parkType

Here, p1 and p2 represent the boundaries of the segment. Then, we define the num-
ber of lanes in the segment, and the vehicle direction (go means that vehicles
move towards p2, and back, otherwise). The, we define the shape of the segment
(curve or straight), and the maximum speed.

Segments are the basic building blocks, which enable us to define the shape of the
section to be studied. This construct enables the modeler to essay alternatives (for
instance, reversing the lane directions in peak hours, retracing the topology in a con-
flicting area, analyzing the influence of changes in the maximum speeds, etc.).

3.2. Crossings

Every segment is connected to a crossing (street intersections), which intercon-
nects a number of segments which provide inputs or outputs according to their direc-
tion. As we can see in Fig. 4, a crossing is represented as a ring: some cells receive
cars from a segment; others are used to leave the crossing. A car moving in the inter-
section has higher priority to obtain the following position in the ring than those out-
side the crossing. Each vehicle advances continuously in order to avoid deadlocks.
This approach was successfully used in [12,11,10].

The crossing construction enables car routing, and permits modeling every possi-
ble connection (right or left turns, U-turns, etc.) in a simple and intuitive way.
             2     1                 To segment
        3               0
       ...             k-1          From segment

To segment To segment

Fig. 4. Crossing.
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Besides, the application of the construction to model roundabouts or dead-ends is
straightforward. In TSC, crossings are delimited by the separators begin/end
crossings. Each sentence defines a crossing using the following syntax:
id = p1, p2, speed, tLight, crossHole, Pout.

Parameters p1, p2 represent the position of the crossing, and speed defines the
maximum speed in the crossing. Pout defines the probability of a vehicle to abandon
the crossing, used to simulate random routing.

3.3. Traffic lights

Every existing microsimulation language includes models for traffic lights, as they
are essential in controlling traffic flow. Correct traffic light synchronization can
improve the traffic according to the traffic density, weather conditions, congestion,
pedestrian crossings, etc. We defined a traffic light construction, specified as:
tLight: [withTL | withoutTL].

Traffic lights are defined as an extension to the crossing construction, representing
the lights and a controller. Each light in the intersection will be associated to an input
cell in the crossing, as showed in Fig. 5. The traffic light model selects the light color
and sends it to the output cell in the segment corresponding to the input crossing.
The synchronizer coordinates all the lights in the crossing, and they may be con-
trolled by a common coordinator for the city section.

3.4. Railways

Vehicle flow in a city section can be seriously influenced by level crossings (Fig. 6).
We have included a construction to model railways, which can be useful in analyzing
train schedules, barrier synchronization schemes, evaluation of building bridges/tun-
nels, etc. Each train follows a predefined advance sequence through level crossings
overlapped with the city segments. In TSC, the railway network is defined by the
begin/end railnets clauses, which act as separators for the definition of a rail-

net (a part of the railway network in a city section). Each railnet is defined using the
following syntax:

id = (s1,d1) {, (si,di)}
Synchronizer

Traffic lights

Segments

Fig. 5. Crossing with traffic lights.



Station 1112 3       Railtrack

δ                     Segment S

Fig. 6. Level crossing definition.
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where si is the identifier of a segment crossed by the railway, and di is the distance
between the beginning of the segment and the railway. The railway topology is
defined by the places where the level crossings are located. The compiler automati-
cally assigns a sequence number to each level crossing in a RailTrack. A Station rep-
resents a source of trains for the RailNet.

3.5. Traffic signs

We defined a construction to represent different traffic signs in order to constrain
vehicle movement. This construction is useful, for instance, to study the effect of
replacing stop signs by traffic lights, the cost/benefit of having a pedestrian crossing
or a raised crossing, etc. In TSC, traffic signs are defined by the begin/end
ctrElements delimiters, and: in s : Type, distance is the definition for each
sign, with Type : [bump|depression|pedXing|saw|stop|school]. The
distance defines the location of the sign in the segment (Fig. 7). Traffic signs define
a zone of one cell length in all the lanes, where the behavior of the segment is mod-
ified according to the sign (in general, reducing speed).

An extension of this construction allows one defining potholes, which produce a
speed reduction of the vehicles passing through them. Pothole fixing tasks are usually
complex, as their number in a city can be large. The availability of this construction
enables analyzing the priority for fixing them, and, combined with the Roadwork
construction, it allows defining policies to improve traffic conditions. In TSC, they
are defined by the begin/end holes separators. Each hole is defined as: in s :
lane, distance representing the position of the hole on a given segment s. A pot-
hole can also be included in a crossing. In this case, crossHole : [withHole |
withoutHole] defines if the crossing contains a pothole or not.
Fig. 7. Definition of a traffic sign.



322 G. Wainer / Simulation Modelling Practice and Theory 14 (2006) 313–337
3.6. Roadwork

We also defined a construction to describe men at work, which enables analyzing
congestion in job areas. These traffic obstructions are specified with the begin/end
jobsites separators, and in s : firstlane, distance, lanes.

Each jobsite is related to a segment s where the work is being done. The
remaining parameters include the first lane affected (firstlane), the distance be-
tween the center of the jobsite and the beginning of the segment (distance), and
the number of lanes occupied (lanes). These parameters are depicted in Fig. 8.
As we can see, we use them in order to define a rhombus over the segment. The vehi-
cles cannot pass through this area, and they must deviate. This construction is useful
to analyze traffic behavior in the area surrounding a Roadwork. The same construc-
tion can also be used to define car collisions.

3.7. Parking lanes

Cars parking in the streets can produce delays in the traffic flow and lead to con-
gestion. Nevertheless, other types of parking require extra infrastructure, and public
parking is an important source of funds for the cities (Fig. 9). We have included a
construction that lets the modeler to experience with different parking strategies
(timeslots, parking for permit holders only, night parking, etc.). In addition, ticket-
ing policies can be decided according to the influence of a wrongly parked vehicle.
Segments can include information for parking, with parkType : [park-
None|parkLeft|parkRight|parkBoth]. Every segment identifies the lane
where car parking is allowed. When a car arrives into a parking lane, it will stop
c1 c2

firstlane distance
lanes

Jobsite

Fig. 8. Segment with Roadwork.

Parking lane

Movement allowed

Fig. 9. Parking segments.
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during a given amount of time. This is modeled using a long transport delay (several
minutes or hours).
4. Applying ATLAS to define a city section

This section is devoted to show how to define a city section using ATLAS, intro-
ducing the kind of problems we are trying to solve. Fig. 10 shows a section of the city
of Buenos Aires, Argentina. It is a part of residential neighborhood, where the traffic
flow is non-significant, even in peak hours. Nevertheless, the complexity in the trace
of the area makes traffic jams likely to occur. The neighborhood includes a park, a
railway, several one way streets, dead ends, and several avenues (one with four lanes
in each direction). In several of these streets, parking is allowed, while in others it is
forbidden.

The basic idea is that by applying ATLAS in this kind of city trace, we can pro-
vide different strategies to solve existing problems, and analyze the simulation results
to choose the best solution. Fig. 11 shows a part of this city section in detail, labeling
the segments and crossings.
Fig. 10. A section of Buenos Aires, Argentina.

Fig. 11. Specification of the segments and crossings in the city section.
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Using ATLAS/TSC, this section can be specified as follows: the specification con-
siders a plane representing this city section starting in the crossing c1. Segment rA is
a one-way/one-lane segment. The maximum speed allowed is 40 km/h, and it is part
of a straight street. Segments rB and rC are the following segments belonging to the
same street. Segment rD is a two-way segment, therefore, two components rD1 and
rD2 are defined (each with different direction). Segment rI is the following segment in
the same street. Finally, rG is a two-way segment with 4 lanes in each way. The cross-
ing specifications show the position and maximum speed allowed for each of them
The railway construction shows that a level crossing intersects the segment rI (rI1
is crossed at 10 m from the corner, and rI2 at 90 m before the following crossing).

As we can see, ATLAS constructions let the user to define a model by simply spec-
ifying the map topology (Fig. 12). This approach represents a clear advantage over
other modeling and simulation applications:

• The user only has to focus in defining the city section map correctly. Any errors in
the model are related with wrong definitions of the city map, which can be easily
fixed.

• Programming problems are avoided: the user does not need to write source code
to implement the models.
Fig. 12. Definition of the Area in ATLAS compiler.
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• Testing and experimentation are improved. Any modifications will affect the sec-
tion specifications only.
5. Mapping ATLAS models into DEVS

The constructions defined by ATLAS allow us describing the shape and behavior
of traffic models. Each of these constructions is translated into DEVS and Cell-
DEVS using a set of procedures defined with detail in [15,16].

5.1. Segments

Each segment is translated into a bidimensional Cell-DEVS. As showed in Section
3.1, each segment can have different number of lanes. We need to provide different
behavior for the local computing functions according to the number of lanes, be-
cause different border conditions exist in each case. The simplest case allows us defin-
ing one lane segments (such as rA in the example presented in Section 4). The
construction is translated into a one-dimensional Cell-DEVS with transport delays.

Fig. 13 informally depicts a Cell-DEVS with k cells, in which the border cells are
connected to crossings. The Cell-DEVS atomic models corresponding to the one-
lane segment are defined as

S1 ¼ hX ; S; Y ;N ; dint; dext; delay; d; s; k; tai
X = {(X1,binary), (X2,binary), (X3,binary)}; Y = {(Y1,binary), (Y2,binary),

(Y3,binary)}.

S ¼ 1 if there is a vehicle in the cell;
0 otherwise.

�

N = {(0,�1), (0,0), (0,1)}; delay = transport; d = speed(max).
k, dint and dext behave as defined in the Cell-DEVS formalism with transport
delays [42].
s: S · N ! S is defined as follows:
s(N)
 (0,0)(0,1) (0,2)
Input 
crossing

Fig.
N

1
 (0,�1) = 1 and (0,0) = 0

0
 (0,0) = 1 and (0,1) = 0

(0,0)
 TRUE /*Otherwise: state unchanged*/
(0,3)  ... (0,k-1) 
Output
 crossing

13. One lane segment.
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The first rule represents a vehicle arriving to an empty cell. The second rule rep-
resents the car abandoning the present cell towards the front. Otherwise, the cell pre-
serves the present value (these basic rules can be easily extended to check congestion
conditions by looking ahead several cells; as ATLAS/TSC is based on templates,
new rules can be easily incorporated into the template). Transport delays are used
to model the time can be a vehicle spends leaving a cell and getting into the next
one. This time is generated by using a function which combines a random value with
the current speed: the current speed of the car is represented by the delay of the car in
crossing the cell, and this value can be partially modified using a random value
(choosing different distributions we can model varied speed behaviors). In this
way, we can consider congestion (defined by the movement rules) and also varied
speed behavior from different drivers.

The parameters p1, p2 are used to build a coupled model corresponding to
the segment. The maximum speed is used to compute the speed function. The
segment position is used to compute the number of cells. We use a length for each
cell representing the average length of a car plus some extra space (7.5 m), as

defined in [39,31]. For segment rA we have: k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx1� x2j2 þ jy1� y2j2

q
=cell size

� �
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0þ 1302
p

=7:5
l m

¼ 18. Then, the coupled model corresponding to a one-lane seg-

ment construction is specified as follows:

CS1ðk;maxÞ ¼ hX list; Y list;X ; Y ; n; ft1; . . . ; tng; g;N ;C;B; Zi
Ylist = Xlist = {(0,0), (0,k � 1)}; X = {hXg+1(0,0),binaryi, hXg+1(0,k � 1),binaryi},
Y = {hYg+1(0,0),binaryi, hYg+1(0,k � 1), binaryi}. These ports will be named as fol-
lows (the i parameter corresponds to the lane number; in our case, as a 1-lane seg-
ment model is being considered, then i = 0): Xg+1(i, 0) = x-c-vehicle;
Xg+1(i,k � 1) = x-c-space; Yg+1(i, 0) = y-c-space; Yg+1(i,k � 1) = y-c-vehicle. n = 1;
t1 = k; g = 3. N = {(0,�1), (0,0), (0,1)}; B = {(0,0), (0,k � 1)}; and Z is built using
the neighborhood definition, as specified by Cell-DEVS formalism.

Cells (0,0) and (0,k � 1) comprise the external interface of the model, because
they must interchange information with the crossings corresponding to the street
corners. The coupling scheme for these border cells is described in Fig. 14. We
can see that the cell (0,0) receives a new car in the port x-c-vehicle, and informs
the state of the cell through the y-c-space port. In cell (0,k � 1), we inform the state
of the segment through the port y-c-vehicle, and receive information from the cross-
ing through port x-c-space.
Crossing

Cell (0,0)

                       Xη+1

     Yη+1  (0,1)

Crossing

     Yη+1

                                  Xη+1

Cell (0,k-1)

   (0,-1)

Fig. 14. Coupling for the cells (0,0) and (0,k � 1).
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Hence cell (0,0) is different: g = 2; N = {(0,0), (0,1)}, while the first rule of the s
function rules must be changed to
s(N)
(0,0)  (0,1)  (0, 2)     

  (1,0) (1, 1)  (1, 2)     

Fig. 15.
N

1
 Portvalue(x-c-vehicle) = 1 and (0,0) = 0
This new rule represents the arrival of a new car from a crossing to the segment:
whenever a vehicle wants to get out of the crossing (e.g., port x-c-vehicle is 1) and the
receiving cell is empty, the vehicle moves to the cell. The cell (0,k � 1) must be cou-
pled with a cell in the crossing and the equivalent behavior is defined for this cell.

If the segment to be translated has two lanes (Fig. 15), we create a two-dimen-
sional Cell-DEVS with the following structure.

Each row of this space acts as a border: vehicles in the first row can decide to
change to the right, and those in the second row can choose to move to the left. Each
row is specified separately as an extension to the one-lane cells. The main changes in
the first row include the interface (X,Y), neighborhood (N), and the s function rules
we use are the same than those defined for one-lane models, adding the following
rules in the cases that we want to represent lane changes (other behaviors, according
to the characteristics of driving characteristics in the country/city of interest can be
incorporated as extensions to these ones)
s(N)
 N
1
 (0,0) = 0 and (0,�1) = 0 and (�1,�1) = 1 and (�1,0) = 1

0
 (0,0) = 1 and (�1,1) = 0 and (�1,0) = 0
The first rule here represents a vehicle arriving in diagonal. Lane change rules con-
sider that a vehicle try to move straight first. A vehicle moving forward has the pri-
ority to access to the position in front of it. To define the priority access, the diagonal
movement checks if there is no car waiting to move forward. If that is not the case,
the diagonal movement can be executed. The main difference in the definition for the
second lane includes changing the neighborhood and the local computing function,
whose definition is symmetric to the previous.

The interface of this model is integrated by all the cells in the first and last col-
umns, which can be used to interchange information with the limiting crossings,
which are extensions of those defined previously for the one lane model. Similar
          ...                                (0,k-1)

         ...                                 (1,k-1)

A two-lane segment.
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mechanisms are used to translate the segment constructions into models with three
to five or more lanes. Further details can be obtained in [16].

5.2. Crossings

Atomic cells description is based in those defined for the one lane model of Sec-
tion 5.1 (the rules must define that each cell in a crossing is connected to a segment).
The local computing function s: S · N ! S will execute different rules for input or
output cells. Details about these functions can be found in [16]. For each crossing,
we build a coupled model defined by

Crossingðk; In;OutÞ ¼ hX list; Y list;X ; Y ; n; ft1; . . . ; tng; g;N ;C;B; Zi
This model defines a crossing of k cells, where the positions in the set In are input
cells, and Out output cells. The parameters (k, In,Out) are obtained by checking
the direction of the segments connected to the crossing. Initially, we use their direc-
tion and check which cells must be used as inputs or outputs. Then, we use the num-
ber of lanes of each segment is used to compute the total number of cells needed: we
compute the number of lanes in each segment connected to the crossing, and we de-
fine a unique ordering for the input/output segments (so that segments close to each
other are connected to neighboring cells in the crossing).

5.3. Traffic lights

The first step to translate the traffic light construction is to build a DEVS model
Sync for each of them, representing the controller in charge of setting up the color of
each traffic light connected to the corner. For instance, when we consider the cross-
ing c6 in the example of Section 4, we build Tin(c6) = {rG1, rH2, rD1, rI2}. A model
Syncc6(4) is created, and for each input segment for the crossing, a DEVS model rep-
resenting the traffic light is built. This model transmits the traffic light color to the
segment providing inputs to the crossing, and changes the light color when the Sync
model decides it is time to do it. Specification details of these DEVS models can be
found in [15].

5.4. Railways

As stated earlier, the railway network is a set of RailTracks, each defining the level
crossings after a train station. For every element in RailNet, two models are defined.
The first one is a DEVS representing a station. It is built as a generator according to
the train�s timetable. It is connected with a RailTrack model, defined as a one-dimen-
sional Cell-DEVS with transport delays that models all the level crossings. Each cell
represents the presence of a train advancing independently of the cells in front of it.
The train speed is defined by a function using transport delays (which computes the
delay between crossings, depending on distance and speed). The behavior of a seg-
ment crossed by a railway should be changed to stop the vehicles while a train is
passing. The cells affected are those around col = dd/cell_sizee, defined as Cpn =



Fig. 16. Segment with level crossing.
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{(i,col)/i 2 [0,n � 1]} [ {(i,col + 1)/i 2 [0,n � 1]}, where n is the number of lanes in
s. The cars in cells {(i,col)/i 2 [0,n � 1]} must stop when a train is crossing (described
in Fig. 16).

5.5. Traffic signs

A segment including one of the traffic signs showed in Section 3.5 will be defined
as any other segment, and the delay time used is increased in the cells influenced by
the sign. In this way, we can represent a slower speed of the vehicles approaching to
the sign.

5.6. Roadwork

The Jobsite constructions are translated into Cell-DEVS models using different
rules according to the size and position of the jobsite and its number of lanes. Cells
inside jobsite will always keep a value of 0. As cars cannot advance into the jobsite,
we must group the cells before it according to the movements that are permitted.
Fig. 17 shows a sketch of a jobsite in which traffic advances from left to right. In this
case, vehicles can move to the left diagonal (LD), the right diagonal (RD), either
(2D), or advance in a straight line. We have defined different rules for each of these
cases.
Fig. 17. Jobsite cells.
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6. Implementation models

After defining ATLAS constructions and their translation in to DEVS models, we
faced implementation of the TSC compiler. The first steps were focused on the valid-
ity of the language. In [44], three types of validity are distinguished: replicative, struc-
tural and predictive. We carried out validation activities in each of these levels,
checking ATLAS validity with respect to two factors:

• validity of the constructions� behavior: we tested that every construction pro-
posed was valid;

• validity of the coupled constructions: besides the individual behavior provided
by each construction, we need to obtain a valid behavior for larger models,
integrated by a number of components defined using different constructs.

After, we faced activities on simulation verification. As we used CD++ as the
development platform, and the tool follows the formal definitions presented in
[42,41], model execution is correct (CD++ simulator was formally verified for cor-
rectness). Hence, our activities were mainly devoted to check if the constructions pro-
posed provided a valid dynamic behavior. Therefore, we first used CD++ and built a
set of independent models for each of the constructions, analyzing the validity of the
rules proposed in Section 5. After, we tested the integration of the constructions.

(A) Replicative validity: A model is considered replicably valid if, for every exper-
iment within an experimental frame, the behavior of the model and the real system
under analysis agree within acceptable tolerance. In our case, we have guaranteed
replicative validity using two different approaches. First, the rules we used to define
the dynamic behavior of the vehicles were built as direct mapping from CA models
that were already proven valid at the replicative level [12,11,10,39,31]. The second
phase was devoted to check that the Cell-DEVS specifications were equivalent to
those we used. To do so, we showed that the Cell-DEVS constructions were homo-
morphic to the CA definitions at the level of input/output trajectories [14].

(B) Structural validity: A model structurally valid is able to replicate the data ob-
served from the system, but also to mimic system interactions in step-by-step, com-
ponent-by-component fashion. As CA are structural models, the original rules used
also provided structural validity. Structure of coupled models is guaranteed to be
correct, as they are automatically built using well-known results in geometry and
their coupled behavior is guaranteed by the use of DEVS.

In order to guarantee validity, the constructions used by the compiler must be
homomorphic to represent the original ones, which were already validated. We used
the same specifications to build the compiler, which was enough to ensure validity.
We also attacked a new level of structural validation, related to checking map prop-
erties within the specifications written in ATLAS. Different types of conditions can
be automatically checked:

• Every segment has an associated crossing (even in dead ends a crossing is
needed to allow U-turns).
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• Every crossing is associated to an existing segment.
• There are no crossing-to-crossing or segment-to-segment couplings.
• The maximum speed is the same for a street (as in some cases different speeds

are allowed, only a warning is issued).
• Street direction is correct in each of the segments.
• At least one segment exists.
• A segment does not have the same beginning and end.
• There are no isolated segments or crossings.
• No more than one crossing exists at the same point.
• Railways, potholes, control signals and jobsites should be defined within an

existing segment, and cannot exceed the segment boundaries.
• Railways cannot cross the segments close to their borders.
• Segments in which parking is permitted must have at least 2 lanes (to allow

parking in one side) or 3 lanes (if parking in both sides is allowed).

After carrying out this step, we validated the behavior of city sections consisting
of several components. Because of this phase, we were able to find some construc-
tions whose behavior was not valid. For instance, our original definitions for parking
and railways (which were defined using rules that were not validated previously)
showed incorrect behavior when compared with the real system involved.

(C) Predictive validity: A model is predictably valid if replicative validity holds,
and the ability to predict unseen system behavior can be achieved. After obtaining
structural validity, we conducted some experiments in order to see the scope of pre-
dictive validity. We developed some examples based in actual city sections (such as
the one described in Section 4), and obtained results that seem to be valid for certain
phenomena not covered by structural validity. When comparing field data for the
sections under study, and checked it against the simulation results, we obtained
acceptable tolerance margins (less than 3%).

In Fig. 11, we saw that there is a train station close to the crossing c1. This level
crossing uses an automatic barrier that closes when a train is approaching to the sta-
tion. While a train is at the station, the barrier is closed. We have simulated the pre-
sent behavior of the train using an average delay of 4 min for the level crossing
(which is the actual time taken by the train). Fig. 18 shows the results obtained
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Fig. 18. Execution results in the area.
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within a fixed period (10 min simulated time) using different input rates according to
the actual traffic flow in the area.

The first graphic in Fig. 18 shows the number of cars in the section. In the first
minutes we can see congestion in the area due to the closing of the barrier (although
traffic flow was almost constant). Then, we repeated the tests replacing the level
crossing by a tunnel. The influence of the railway can be clearly seen in the second
figure, which shows the number of cars leaving the segment rI1. The level crossing
makes that about half of the cars cannot leave the area. The results were validated
by comparing them with the traffic flow rates in the same time slot (using data ob-
tained while the barrier is open to compare), which were similar to those shown in
the figure.

In order to study the influence of non-synchronized traffic lights, we modified the
specifications of crossings c1 and c2 as follows:
c1 = (22, 16), 10, withTL, withoutHole, 3.
c2 = (7, 16), 10, withTL, withoutHole, 3.
In Fig. 19, we can see that the number of cars in the city section increments when
traffic lights are included. We can also see the combined influence of traffic lights and
railways: as lights are not synchronized, the number of cars in the area is higher.

We also compared the degree of congestion during peak times. This is done by
modifying the experimental framework in order to increase the rate of traffic
generated:
c1 = (1, 2), input, exponential, 20.
c5 = (22, 16), input, exponential, 70.
In Fig. 20, we see that in some cases, the number of cars in the area is more than
double than in off-peak hours. The input/output ratio is higher in peak hours, due to
a higher number of cars flowing through the area. Nevertheless, having the double of
cars only increases the input/output ratio in 10–20%. This shows that the topology of
the area is complex enough to have a small I/O ratio even in non-peak hours.
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We analyzed the influence of having a pothole (in crossing c6). As explained ear-
lier, the behavior of a car crossing a pothole is to reduce its speed. The hole is defined
as follows:
c6 = (22, 16), 30, withoutTL, withHole, .7.
Results included in Fig. 21 show that the I/O ratio reduces about 1/3 when the
pothole is fixed. The number of cars in the area reduces one half, as the cars can leave
the section earlier, thus, the number does not change as abruptly as in the previous
cases, because the pothole produces a speed reduction in the main crossing (keeping
the number of cars in the area constant). The results obtained when using the cross-
ing with potholes are still not validated (as there are no potholes). We intend to do
field work in the area whenever if a pothole is detected. In that case, we could be able
to analyze the predictive validity for this construction.
7. Conclusion

We have presented a specification language used to define sections of cities as cell
spaces. The language allows defining a static view of a city section, allowing includ-
ing different components: traffic lights, railways, men at work, transit signals, parked



334 G. Wainer / Simulation Modelling Practice and Theory 14 (2006) 313–337
cars, etc. This approach provides an application oriented specification language,
which allows the definition of complex traffic behavior using simple constructions.
The models are formally specified, avoiding a high number of errors in the developed
application, thus reducing problem solving time. The constructions are mapped into
DEVS and Cell-DEVS. These translated models are formally specified, improving er-
rors in their definition. Our cell-based framework, allows user to study vehicle move-
ment in detail, allowing analysis of different to existing problems (car crashes,
parking problems, etc.).

DEVS and Cell-DEVS helped us verifying the correctness of the simulation re-
sults. The development used the CD++ tool as a basis. CD++ was developed using
the definitions of the Cell-DEVS formalism, and it allows defining both DEVS and
Cell-DEVS models. DEVS atomic models can be written in C++, and coupled and
Cell-DEVS models are described using a built-in specification language. The formal-
isms provide separation between the model and simulator concepts, and the correct-
ness of the simulation algorithms implemented in CD++ has been proven.
Therefore, we only required providing a correct translation between the language
constructions and the CD++ specifications. This was done by comparing the spec-
ifications generated using the tools with the original specifications written by hand.
In every case, the code generated was equivalent, ensuring correctness of the com-
piled code.

As we could see, there was a significant reduction in the coding effort. The spec-
ification of the example presented in Section 4 (24-lines) was translated into over 120
lines of Cell-DEVS specifications. An equivalent model defined in a standard pro-
gramming language had more than 1400 lines of code. As we could see, changing
the behavior in the model only involved changing a few lines in the specification.
Providing this behavior in a standard programming language involved reading
and modifying about 30–40% of the source code. This shows how the use of this spe-
cific purpose language can improve the definition of traffic models. The results
showed to be even better when more complex models were created, as the testing
of a complex city section involved a much more complex testing effort, which could
be avoided using ATLAS.

At present, a graphical user interface is being created, to allow easy definition of
the models. The GUI will validate the static model based on information given by
the map and the constructions used. We also intend to build a translator of Geo-
graphical Information Systems representing city maps into ATLAS. Finally, efficient
execution of the models is being considered by means of parallel execution of Cell-
DEVS. We are also defining new extensions to the ATLAS compiler, allowing
including routing information, behavior of the drivers, and congestion avoidance
mechanisms.
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[24] M. Lo Tártaro, C. Torres, G. Wainer, TSC: a compiler for the ATLAS language, in: Proceedings of

2001 Winter Simulation Conference, IEEE Press, Arlington, VA, USA, 2001.
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