
Simulation Modelling Practice and Theory 15 (2007) 285–314

www.elsevier.com/locate/simpat
DEVS modeling of mobile wireless ad hoc networks

Umar Farooq, Gabriel Wainer *, Bengu Balya

Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6

Received 8 December 2005; received in revised form 3 November 2006; accepted 7 November 2006
Available online 20 December 2006
Abstract

Ad hoc networks are self-organizing wireless systems conformed by cooperating neighboring nodes that conform net-
works with variable topology. Analyzing these networks is a complex task due to their dynamic and irregular nature. Cel-
lular Automata (CA), a very popular technique to study self-organizing systems, can be used to model and simulate ad hoc
networks, as the modeling technique resembles the system being modeled. Cell-DEVS was proposed as an extension to CA
in which each cell in the system is considered as a DEVS model. The approach permits defining models with asynchronous
behavior, and to execute them with high efficiency. We show how these techniques can be used to model mobile wireless ad
hoc networks, making easy model definition, analysis and visualization of the results. The use of Cell-DEVS permitted us
to easily develop new experiments, which allowed us to extend routing techniques for inter-networking and multicast rout-
ing, while permitting seamless integration with traditional networking models.
� 2006 Published by Elsevier B.V.

Keywords: Cellular models; Wireless ad hoc networks; DEVS; Cell-DEVS
1. Introduction

Mobile ad hoc networks are conformed by transitory association of mobile nodes. They do not require any
fixed support infrastructure and are typically based on short-range wireless technology. Mobile ad hoc net-
works are generally characterized by their highly dynamic nature, varying topology and intermittent connec-
tivity. One of the important and challenging aspects in the study of ad hoc networks is the routing algorithm
used for data transmission between nodes. This is a challenging task because of their lack of infrastructure and
highly dynamic nature. Any routing algorithm has to take into account the varying topology of the network
and unreliable and generally bandwidth-limited wireless links. Modeling and simulation has been widely used
to analyze these complex characteristics of mobile ad hoc networks, and to study the execution results of new
routing algorithms [1].

Different modeling and simulation tools have been applied to analyze these networks [2–4], but in recent
years, different authors [5,6] decided to represent this problem using Cellular Automata [7]. The Cellular Auto-
1569-190X/$ - see front matter � 2006 Published by Elsevier B.V.

doi:10.1016/j.simpat.2006.11.011

* Corresponding author. Tel.: 1 613 520 2600.
E-mail addresses: ufarooq@sce.carleton.ca (U. Farooq), gwainer@sce.carleton.ca (G. Wainer), bengu@sce.carleton.ca (B. Balya).

mailto:ufarooq@sce.carleton.ca
mailto:gwainer@sce.carleton.ca
mailto:bengu@sce.carleton.ca

286 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
mata technique permits providing good means for describing complex systems like these ones while being able
to analyze their spatial characteristics. Cellular Automata are discrete-time discrete models described as cells
organized as n-dimensional infinite lattices. Each cell in the automaton has a discrete value that is changed by
a local computation function, whose results are computed locally in each cell using the present value for the
cell and a finite set of neighbors. The use of such a discrete time base may constrain the precision of the model.
In addition, the execution of cellular automata usually requires a large amount of computation time, primarily
due to its synchronous nature. Cell-DEVS [8] solves these problems using the DEVS (Discrete Events systems
Specification) formalism [9] to define a cell space where each cell is defined as a DEVS model. Cell-DEVS per-
mits building discrete-event cell spaces and improves their definition by making their timing specification more
expressive.

DEVS allows the modeler to formally specify discrete-event systems using modular descriptions. This strat-
egy allows the reuse of tested models, improving the safety of the simulations and allowing reducing the devel-
opment times. As it uses a continuous time base, precision of the models can be improved while CPU time
requirements can be reduced. Higher timing precision can be obtained without using small discrete time seg-
ments (that would increase the number of simulation cycles). The formalism is based on sound theoretical
grounds, allowing for an abstract design of models that are independent from the implementation platform.
The use of DEVS and Cell-DEVS provides:

• Facilities to carry out formal tests.
• Seamless model sharing between different DEVS-based toolkits [10].
• High-performance execution of the same models in a parallel simulation environment [11].
• Remote execution using client–server services, allowing remote interaction between users [12].
• The ability to execute the models on a distributed platform based on HLA [13,14], CORBA [15] or other

technologies.
• The possibility to define models using different techniques interacting within the same environment [16].

This could allow including non-network entities that affect network operation, providing results that are
more realistic.

• The potential to automatically deploy models that have been tested on the simulation environment into the
actual networking hardware, converting them into the real applications [17,18].

The CD++ toolkit [10] implements DEVS and Cell-DEVS theories. The toolkit has been built as a set of
independent software pieces, each of them independent of the operating environment chosen. Our goal was to
build models of ad hoc networks using the advantages of DEVS and Cell-DEVS for the following reasons:
efficiency (by describing a high level specification of the problem to be modeled, we have reduced the effort
needed in developing the application) and high performance (the models execute using a discrete-event
approach, which, as shown in [18–20], provide higher precision and speedups than the discrete time
approaches). In [18], the authors showed that the discrete-event nature of DEVS models combined with par-
allel simulation techniques can produce speedups of up to 1000 times. In [19,20], we showed that Cell-DEVS
also provides these advantages. DEVS also provides a formal framework that can be used to validate and ver-
ify the models, opening the door to re-using the models as well as integrating them with other models based on
different formalisms (for instance, using Petri Nets or Finite State Machines to specify the behavior of traffic
lights or railway controllers). System specification can be done in a simple fashion, without spending time in
coding or testing every proposed solution to existing problems, and new rules can be easily incorporated, as we
will show with different examples here.

We aim to demonstrate the applicability, advantages and limitations of DEVS and Cell-DEVS techniques
in modeling and simulating wireless ad hoc networks. The results presented in this paper serve as a proof-of-
concept of the feasibility of our proposal. As the tools we use and the models we present are open-source, this
research can be used as a basis for future research efforts in the field. Therefore, we decided to include a
detailed version of many of the models, allowing the reader to fully understand how models are created.
We begin by using a variant of classical Lee’s Algorithm [21] to find out the shortest path between two com-
municating nodes in an ad hoc network plane. We show how such algorithms can be implemented in Cell-
DEVS easily and efficiently. We then show how to model one of the most widely accepted routing protocol

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 287
for wireless ad hoc networks, Ad Hoc On-Demand Distance Vector Protocol (AODV) [22] using cell-DEVS.
We then extend AODV for inter-network routing by making use of a three-dimensional Cell-DEVS model.
We also extend unicast AODV algorithm to a multicasting algorithm while achieving the optimality in mul-
ticast tree construction (i.e., the multicast trees are constructed in such a way that ensures least duplication of
data). We then present a model for routing using AODV among multiple pairs of senders and receivers. Hoch-
berger [23] has shown that if there are multiple pairs of senders and receivers on a cellular plane, it may gen-
erate deadlocks and may prevent the generation of routing path between pairs of nodes that can communicate.
We found a simple solution to the problem by exploiting the inherent parallelism in Cell-DEVS. We also dem-
onstrate the use of Cell-DEVS in modeling mobile nodes in an ad hoc network for the scenarios where each
node determines and regularly updates its shortest hop count from the wireless gateway. This information can
help forwarding the data to the neighbor that has the smallest number of hops to the gateway. Finally, we
model network coverage which is an important parameter for network engineers and can help in determining
the suitable location for the installation of gateways. As nodes can be either static or mobile, we have imple-
mented collision avoidance techniques.

2. Background

Wireless ad hoc networks are characterized by dynamic topology changes, severe power constraints and
unpredictable wireless environments. There is no infrastructure and each node acts as a router to forward traf-
fic. This means routers are mobile themselves, and face all other challenges such as dynamic topology changes,
unreliable links and power constraints. Nodes are connected with wireless links that are very prone to envi-
ronment factors such as fading, shadowing and noise. Therefore, link failures and congestion are the normal
characteristics of the network, and should not be considered as exceptions. This makes routing in ad hoc net-
works quite a challenging task.

Several routing algorithms have been proposed, such as Destination-Sequenced Distance Vector Protocol
(DSDV) [24], Dynamic Source Routing (DSR) [25], Ad Hoc On-Demand Distance Vector Protocol (AODV)
[21] and Temporally Ordered Routing Algorithm (TORA) [26]. DSDV, just like most of the traditional rout-
ing algorithms, is a table driven routing algorithm. On the other hand, DSR, TORA and AODV are source
initiated on-demand algorithms. Each algorithm has its advantages and disadvantages. In our study, we have
used one of the most widely accepted protocols, namely AODV, which is one of the first ad hoc routing algo-
rithms chosen by IETF as an experimental RFC standard [27]. While having low processing and memory
overheads, AODV offers quick adaptation to dynamic link conditions.

The use of different simulation tools and their effect on the performance evaluation and comparison of dif-
ferent algorithms is another challenge. OpNet [4,28], NS-2 [3] and GlomoSim [2] are the most commonly used
simulation tools for ad hoc network simulation. These tools have rich radio propagation, mobility, networking
and routing libraries. However, these tools cannot capture the spatial aspects of the models. Some extensions,
like AnSim [29] combine OpNet and GlomoSim models with a graphical interface, improving visualization of
the physical environment. Nevertheless, none of these models are easy to combine with other physical models
(for instance, detailed models of urban traffic, weather, natural catastrophes, etc.). Cell-DEVS, instead, enables
combining different sub-models easily. Finally, in building these models as Cell-DEVS, we can make use of the
existing infrastructure, including parallel simulators and distributed environments.

Cell-DEVS [8] was defined as a combination of DEVS [9] and Cellular Automata combined with timing
delay functions. The DEVS formalism provides a framework for the construction of modular hierarchical
models, allowing for model reuse and reducing development time and testing. In DEVS, basic models (called
atomic) are specified as black boxes, and several DEVS models can be integrated together forming a hierar-
chical structural model (called coupled). DEVS not only proposes a framework for model construction, but
also defines an abstract simulation mechanism that is independent of the model itself. A DEVS atomic is
model defined as

AM ¼ hX ; Y ; S; dext; dint; k; tai
With X the set of external events, Y the set of output events, S the set of sequential states, dext : Q · X! S the
external state transition function, where Q :¼ {(s,e)js 2 S, 0 6 e 6 ta(s)} and e is the elapsed time since the last

288 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
state transition, dint : S! S the internal state transition function; k : S! Y the output function and ta:
S ! Rþ0 [1 the time advance function. At any given time, a DEVS model is in a state s 2 S and in the absence
of external events, it will remain in that state for a period of time as defined by ta(s). The ta(s) function can
take any real value between 0 and 1. Transitions that occur due to the expiration of ta(s) are called internal
transitions. When an internal transition takes place, the system outputs the value k(s), and changes to state
dint(s). A state transition can also happen when an external event occurs. In this case, the new state is given
by dext based on the input value, the current state and the elapsed time.

A DEVS coupled model is defined as

CM ¼ hX self ; Y self ;D; fMig; fI ig; fZi;jg; selecti
where D is a set of components; for each i 2 D, Mi is a component with the constraint that Mi is a DEVS
model for each i 2 D [{self}, Ii is the set of influences of i, for each j 2 IiZi,j is a function, the i-to-j out-
put–input translation Ii is a subset of D [{self}, i is not in Ii, Zself,j : Xself! Xj; Zi,self : Yi! Yself; Zi,j : Yi! Xj

and select: subset of D! D such that for any non-empty subset E, select (E) 2 E. A coupled model can have
its own input and output events, as defined by the Xself and Yself sets. Upon receiving an external event, the
coupled model has to redirect the input to one or more of its components. In addition, when a component
produces an output, it has to be mapped as another component’s input or as an output of the coupled model
itself. All these input–output mappings are defined by the Z function.

In Cell-DEVS, each cell is defined as a DEVS model, and a procedure to couple cells is used to create a
complete space. Delay functions allow to define complex behavior for each cell, improving the definition
for each of the sub-models: transport delays have anticipatory semantics (every output event is transmitted
after a delay), and inertial delays have preemptive semantics (a scheduled event will not necessarily be exe-
cuted). A Cell-DEVS atomic model is defined as:

TDC ¼ hX ; Y ; S;E; d; dint; dext; s; k; tai
where X is a set of external input events; Y a set of external output events; S is the set of sequential states for
the cell; E the set of states for the input events; d the delay function for the cell; dint is the internal transition
function; dext is the external transition function; s is the local computing function; k is the output function; and
ta is the state’s duration function. A cell uses a set of input values E to compute its future state, which is ob-
tained by applying the local computation function s. A delay function is associated with each cell, deferring
the output of the new state to the neighbor cells. There are two types of delays: inertial and transport delays.
When a transport delay is used, the future value will be added to a queue sorted by output time. Therefore, all
previous values that were scheduled for output but that have not yet been sent, will be kept. On the contrary,
inertial delays use a preemptive policy: any previous scheduled output value, unless the same as the new com-
puted one, will be deleted and the new one will be scheduled. This activation of the local computation is car-
ried by the dext function.

After the basic behavior for a cell is defined, the complete cell space will be constructed by building a cou-
pled Cell-DEVS model:

GCC ¼ hXlist; Ylist;X ; Y ; n; ft1; . . . ; tng;N ;C;B; Zi

where Xlist is the input coupling list;Ylist the output coupling list; X the set of external input events;Y the set
of external output events; n the dimension of the cell space; {t1, . . . , tn} the number of cells in each of the
dimensions; N is the neighborhood set; C is the cell space; B is the set of border cells; and Z the translation
function. This specification defines a coupled model composed of an array of atomic cells. Each cell is con-
nected to the cells defined in the neighborhood, but as the cell space is finite, either the borders are provided
with a different neighborhood than the rest of the space, or they are ‘‘wrapped’’, meaning that cells in one
border are connected with those in the opposite one. Finally, the Z function defines the internal and external
coupling of cells in the model. This function translates the outputs of m � eth output port in cell Cij into values
for the m � eth input port of cell Ckl. Each output port will correspond to one neighbor and each input port
will be associated with one cell in the inverse neighborhood.

CD++ [9] is a modeling tool that was defined using DEVS and Cell-DEVS specifications. CD++ makes use
of the independence between modeling and simulation provided by DEVS, and different simulation engines

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 289
have been defined for the platform: a stand-alone version, a Real-Time simulator, and a Parallel simulator.
DEVS Atomic models can be programmed and incorporated onto a class hierarchy programmed in C++.
A new atomic model is created as a new class that inherits from the Atomic base class. The state of a model
is defined in the AtomicState class.

The Atomic abstract class defines some service functions: nextChange/lastChange return the time until/from
the next/last event; holdIn defines DEVS ta function; passivate sets the next internal transition time to infinity
(the model will only be activated again if an external event is received); getCurrentState returns the current
model’s phase; sendOutput sends an output message through the specified port. A newly defined atomic model
should override the following methods: initFunction, invoked at the first activation of the model; externalFunc-

tion, the dext function of the DEVS; internalFunction, which defines the dint function; and outputFunction, the
DEVS k function. Once an atomic model is defined, it can be combined with others into a coupled model, as in
Fig. 2.

This figure shows how to define one of the components of Router model (to be introduced later). After a
model’s name is defined, a list of sub-components (either an instance of an atomic model or another compo-
nent) is defined using the components keyword. Then, a list of input and output ports is defined for the model,
using the keywords in and out respectively. Once the models’ ports are defined, their coupling can be described
using the link keyword, followed by the output port for the event, and the input port that will receive it.

Cell-DEVS models are described using a built-in language provided by CD++. The model specification
includes the definition of the size and dimension of the cell space, the shape of the neighborhood and borders.
The cell’s local computing function is defined using a set of rules with the form: POSTCONDITION DELAY
{PRECONDITION}. These indicate that when the PRECONDITION is satisfied, the state of the cell will
change to the designated POSTCONDITION, whose computed value will be transmitted to other components
after consuming the DELAY. If the precondition is false, the next rule in the list is evaluated.

CD++ Modeler permits visualizing simulation results for 2D Cell-DEVS models in one plane, and 3D
models are showed by displaying the values of all of the planes comprising the model simultaneously. Like-
wise, a 3D visualization GUI was built to analyze simulation results in a 3D environment [12]. In this appli-
cation, the results are represented by nodes in a VRML scene. The user can navigate in the scene, and edit the
nodes for more convenient analysis (Fig. 3).

3. Modeling TCP/IP in DEVS

In [30] we presented the definition of a CD++ library to simulate user-defined topologies to assess network
functionality; modular design allows the addition of new models easily, while the models themselves are flex-
ible to permit future enhancements. The library consists of two major units: data generators and inter-net-
class Atomic : public Model {
public:
virtual ~Atomic(); // Destructor

protected:
//Kernel services
Time nextChange();
Time lastChange();
holdIn(AtomicState::State &, Time &);
passivate();
ModelState* getCurrentState() ;
sendOutput(Time &time,Port &port,Value value);

//User defined functions.
initFunction();
externalFunction(ExternalMessage &);
internalFunction(InternalMessage &);
outputFunction(CollectMessage &);
string className() const
}; // class Atomic

Fig. 1. The atomic class in CD++.

Fig. 2. RouterOut coupled model.

Fig. 3. CD++ Modeler and CD++ VRML GUI visualization tools.

290 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
working devices. Data generators (host model) were based on emulation of the TCP/IP protocol stack. Inter-
networking devices models include a router and a hub.

The Host coupled model is comprised of distinct models representing the Application, Transport, Network,
Data Link, and physical layers. The structure of the coupled model is shown in Fig. 4. As we can see in this
figure, the TCP model was broken in two (to facilitate full-duplex communications). The Transmitter module
Fig. 4. Host coupled model [30].

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 291
is responsible for receiving data from the Application layer model, adding sequence and acknowledgment
numbers, a window size and a checksum to the original data received (fields required for Service Level Agree-
ment simulations).

The data received is transformed to the format shown in Fig. 5, which follows the protocol requirements
[30].

Packet creation is split between two atomic models; datagramCreator and checksumCreator. Data
received (from the Application layer) is routed to the datagramCreator, which will create an initial packet
and forward it to the checksumCreator to compute a checksum. Then, the completed packet will be for-
warded to the datagramCreator, and sent to the next layer in the protocol stack. Before the packet is sent,
a copy is saved to accommodate the connection manager, which will resend packets in case they are not
received. Each of the models was formally specified, as follows:

datagramCreator ¼ hX ; S; Y ; dint; dext; k;Di
X = {in: receives data; Checkin: receives packets after the checksum has been created; ackPort: receives

acknowledgments; ackSender: receives requests to send ACKs (the data received)};
S = {phase, packet, saved packet, delay};
Y = {gocheck: sends data packets to request the creation of a checksum; datagramCreator: sends
complete output data packets; resend used to retransmit packets};
dint(s, e) :
Case phase
active: passivate;

dext(s, e, x) :
Case msg.port
In: Create packet;

Checkin: packet received, checksum added
ackPort: check acknowledgement

correct?: delete saved packet
else: resend saved packet

ackSender: send received data as ACK.
phase = active; holdIn(delay);
ks:
If message = packet and no checksum yet
Send packet through gocheck (checksum = 0)

If message = data and checksum created
Send data on datagramCreator

If message = ack
Check ACK to be correct or not.

Incorrect? Discard ack; resend packet.
If message = request to send ack
Send message on resend.

On the receiver side, we created a model to receive data from the Network layer. The model is made of two
atomic components: a datagramStripper and a checksumValidator. The datagramStripper
receives data and forwards it to the checksumValidator to test the checksum. If valid, the datagram-
Stripper checks the packet type (data or ack). If it is data, the headers are stripped, the data is forwarded,
Fig. 5. TCP packet format.

292 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
and a request to the datagramCreator to send an ack to the source of the packet is issued. On the other
hand, if the data is an ack, the datagramStripper forwards it to the datagramCreator to check if the
ack is expected (either deleting the saved packet or resending it). If the checksum is incorrect, the packet is
discarded.

After careful study of the model’s specifications, every model was coded using the CD++ services presented
in Fig. 1. Models were individually tested, and coupled models were created using the notation presented in
Fig. 2. Finally, integration testing was carried out. Fig. 6 shows a detailed execution log of the Transport
Layer model, in which we present the data being manipulated by its various models.

The first event (X) is an input carrying the value 12 through the HTTP port 80. This is transmitted to dat-
agramcreator, which executes the external transition function (adding the window size, acknowledgment,
and sequence number to the data – for testing purposes, the values = 0). Then, it schedules an internal tran-
sition (D) in 5 ms (reflecting the delay of the circuit). When this time is consumed, an internal transition (*) is
fired. The first step involves executing the output function (Y), which transmits the packet through the
gocheck port. The model then passivates (‘‘. . .’’ represents time =1). This event is converted into an input
(X) for checksumcreator, which receives the Application data and computes the checksum (also taking
5 ms). Once the checksum is computed, it is sent to the datagramcreator to signal that it is ready to be
sent.

The data presented on the previous example arrived to the Transport layer through the higher level Appli-
cation layer. This layer models a host generating and receiving data routed from various inter-networking
devices, and different services and protocols. The data generated is depicted in Fig. 7. The Application layer
receiving this data adds Application port variable, and then outputs the information to the Transport layer
(for instance, the HTTP request generated at 09:500 is the one originating the sequence presented in Fig. 6).
Fig. 6. Transport layer log file.

Fig. 7. Application output file.

Fig. 8. Header format.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 293
The Network layer is usually where most of the delay and stochastic operation occurs due to the nature of
IP being a connectionless protocol. The layer adds a source and destination IP fields to the packet to enable
routing, creating subnets, local networks, and many other Network artifacts, as shown in Fig. 8.

The headers for the Internet Protocol are based on RFC # 791 [30]. They contain the full addressing infor-
mation (source and destination IP) as well as other Quality of Service parameters such as Time To Live (TTL),
identification, and a checksum. The traffic packets are made of four values: the source address, the destination
address, and the TCP field. The options in each field are chosen from the IPV4 packet format. As seen in
Fig. 4, the Network model consists of a transmitter and a receiver, which add/extract the corresponding infor-
mation using the header format in Fig. 8. Fig. 9 shows an input example for this model.

The information sent to the Network layer is used to create a checksum value, which is used to verify the
data sent over the network. The model outputs the required four fields, as in Fig. 10.

The Data Link layer in our model implements the CRC operations of the Logical Link Control (LLC) sub
layer (which calculates a frame, checks the sequence, and uses it to detect errors when a frame is received), and
the Carrier Sense Multiple Access with collision detection (CSMA) algorithm in the Medium Access Control
(MAC) sub layer, which would senses the carrier by sending a senseCarrier port message to the Physical
layer, and waits for a response.

The Physical layer model simulates the wiring connecting different devices, using a list to save the incoming
data, and outputting them at a specific time intervals, modeling the link delays. As seen in Fig. 4, the model
Fig. 10. Network layer log file.

Fig. 9. IP test values.

Fig. 11. Integration test suite.

Fig. 12. Host log file section.

294 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
interacts with others through the Data link Layer and the sensing port. The layer can have one of four
states (idle, busy, jammed, collision) that determine how data is handled.

Data is received seamlessly through the same set of layers in the reverse direction with each layer stripping
the extra variables added by its counterpart. Figs. 11 and 12 show the results of one of the integration tests for
a host whose source IP address is 111222333.

The event file shows FTP data from the host to another end on the network. Simple values were chosen
here, to ease the process of reviewing the results. The host reacted to these events, as shown in Fig. 12.

This section of the host log file shows events that represent the host sending the received data through the
network (after adding the appropriate headers) and forwarding it to the Data Link layer. The Data Link
Layer actually responded as in the following figure:

The router model defines how to interconnect network devices. We used an abstract look up in the routing
process, considering three main functionalities: receiving and forwarding traffic, processing IP packets, and
maintaining a routing table.

In order to simulate the three functions, two models were created; the RouterInterface and the Rout-
erProcessor, which in turn is made of the ProcessingUnit model and a ripTable. The router coupled model
is shown in Fig. 13 (each of the models is even subdivided in lower levels of abstraction that are not discussed
here). Every router has a number of interfacing cards to receive/forward traffic from/to the network. The Rou-

terInterface model was developed to receive and send packets with the format discussed in Fig. 8. To handle
the traffic going in/out of the router, the RouterInterface was designed as a coupled model consisting of
one model receiving packets from the network, and a second forwarding packets out of the router. After pack-
ets are received by the RouterInterface, they are processed to see if they are messages to the router
(requests or updates), or just data packets to be forwarded to their destinations.

The ProcessingUnit is responsible for reading in the packets from the interfaces, processing them, and
making routing decisions regarding their destinations. Upon receiving a packet, it looks at the packet’s header,
extracts from it the TTL value, and checks if it is valid. If it is valid it will read the packet’s type, and will react
according to type.
Fig. 13. Router’s coupled module.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 295
Three types of packets are accepted: respond, request, and data. Request packets carry the destina-
tion address of the requesting router that wants the update, following the RIP protocol [31]. This address
value is extracted from the packet’s header and it is sent along with the requesting router reply information
to the ripTable model, so that the proper reply information can be prepared and sent to the requesting rou-
ter. The respond packets carry a network address and a metric value (cost) associated with that route. These
packets are used to update other routers, or to respond to other routers’ requests for updates. The router
extracts both the address and the metric, and it forwards this information along with the sending router’s data
to the ripTable. When a data packet is received, the processingUnit extracts its destination address,
and forwards it to the ripTable model (which maintains the routing information for forwarding packets).
Once the ripTable returns an output interface, the RouterProcessor will simply forward the data packet
through it. If the destination address is not found in the routing table, the value 0 is returned (and a request
packet is issued through all interfaces except the one that the packet was received through, requesting an
update on that destination).

The ripTable is in charge of maintaining the routing information that the router needs to forward pack-
ets to its destinations. The entries in the table have the format <Address,Metric,Interface>. Address
is a destination for the packet; Metric represents the cost of getting to that destination, and the output
Interface is the one through which the router must forward the packet (in order to be at least one hop
closer to the destination).

The ripTable receives three events: update, request, and request for forwarding information.
In the case of updates, the model will be receiving the address that the update is about, together with a new
metric value. If the address does not exist, the information will be added. Otherwise, the associated metric is
compared with the newly received one, and it will replace the output interface number with that of the new
update, if the new metric value is smaller than the one in the table. For the request events, the ripTable
model will prepare the required information from its table, and redirects it as responds. Finally, for the for-
wardinformation request, the model will search its table for the destination address and send the output
interface that should be used to forward the packet.

The router’s behavior was tested using different scenarios, as shown in Fig. 14.
Fig. 14. Router input/output events.

Fig. 15. Integrating DEVS (i.e., router, host) with Cell-DEVS (AODV) models.

296 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
The first packet is an update. The router passes the related values to its table and the table is updated. The
message arrived at the router from interface 1, and a corresponding update message was created and sent
through interface 2 (out2). For every update packet, an update to the neighbor nodes is sent thought the
other router interface. Then, we show a packet representing data injected into the router. The packet option
field shows a TTL value of 10. The router knew the address since it received an update on it before. The router
forwards the packet using the right output interface. After that, another update with a smaller metric for an
address that the router has in its table is sent through interface 1. We can see that the router did update its
table with the better metric value and sent an update through interface 2.

No output was sent in response to the last two packets. The reason is that the first one was an update with a
metric higher than the existing one in the routing table. The second was a data packet with a TTL value of 0
(expired). In both cases, the router discarded the packets.

These models of inter-networking are capable of building topologies as a first step for building a more com-
plex library. The models chosen are sufficient to create network topologies with an acceptable level of accuracy
in services, and customization in terms of Quality of Service and Service Level Agreements, and they provide
the backbone for a larger model library, since all components chosen represented different fields and layers of
a typical packet switched network.

4. Modeling routing in wireless ad hoc networks using Cell-DEVS

We used Cell-DEVS to model the core functionality of the Ad Hoc On-Demand Distance Vector Protocol
(AODV) [12]. AODV assumes symmetric (bi-directional) links and creates routes between two nodes only ‘‘on
demand’’ to eliminate overheads. Whenever, a node wants to communicate to another it broadcasts a Route
Request (RREQ) message to its neighbors. The neighbor re-broadcasts the message and set up a reverse path
pointing towards the source. When the intended destination receives a RREQ message, it replies by sending a
Route Reply (RREP) that travels along the reverse path set up when the RREQ is forwarded.

Our model considers a network plane divided into cells where nodes are spread randomly on the plane. The
network plane does not make any assumptions about the physical location of the nodes in the area. Thus, each
cell in the network plane may have a different size in terms of physical area represented (a few square meters in
a highly dense networks or a few square kilometers in a less dense networks). The key is, that movement of
data between two cells represents one hop. The reason for modeling it in such a way is that in AODV, routing
takes into account the hop count instead of the actual physical distance the data has to travel. Each node can
communicate to the neighboring nodes (representing those which lie within the direct communication range).
The network plane also contains dead cells through which communication cannot take place. These cells rep-
resent physical obstacles (such as a high-rise building) or simply the absence of a communication link. Two
nodes with a dead cell between them cannot communicate directly to each other. If we assume the cost of
the communication links (distance vectors) between any two nodes that can directly communicate to each
other to be the same, modeling AODV using Cell-DEVS involves finding the shortest path between two nodes
in the ad hoc network plane.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 297
In an ad hoc network, nodes are spread randomly and there may be many physical obstacles in between the
nodes. In a real-world scenario, often nodes that need to communicate are several hops away. Thus, for a
model of ad hoc network to be representative of a real-world scenario it should take into account the
above-mentioned factors. For experimental results to be presented in Sections 4.1–4.3 and 4.4, we generated
test models by randomly spreading the nodes in the network plane. Dead cells which are representative of
communication obstacles were also spread randomly throughout the network and we ensure that in most
of the scenarios source and destination nodes are several hops away. These considerations made tests more
representatives of real-world scenarios. For testing each model several factors such as location of source-des-
tination pairs, size of the network plane, dimensions of the network plane, number of nodes in the plane and
the number of communication obstacles are varied. The validity of results was confirmed by manually testing
the results obtained. As CD++ Modeler provides a good visualization of the results obtained, the validation
process was simple. We present snapshots of our tests taken with CD++ GUI during different steps of tests
conducted and with the help of those snapshots one can easily verify the correctness of the results obtained.

4.1. Defining AODV using Cell-DEVS

As discussed, modeling AODV involves finding the shortest path between two nodes in an ad hoc network
plane. In order to find out the shortest path between two communicating nodes on a network plane, we have
made use of a variant of the classical Lee’s Algorithm [11]. Fig. 16 shows a simple example of a network plane.
Here, S represents a sender node and D a destination node while black cells represent dead cells. In order to
find a route from S to D, the node S broadcasts RREQ message to all its neighbors (called the wave nodes).
The wave nodes re-broadcast the message to their neighbors, and set up a reverse path to the sender, which is
represented with pointing arrows in the figure. These nodes further re-broadcast this message and set up a
reverse path to the nodes from which they received the message. This process continues until the message
reaches the destination node D.

Since there are more than one path from the sender to the destination, the destination may receive multiple
RREQ message for the same sender. However, the route through which the destination node receives the
RREQ message first is the shortest path between the sender and the destination. The destination thus ignores
all RREQ messages for the same sender except the first one. It replies to the first RREQ message sending a
RREP message using the reverse path set up when the RREQ messages are forwarded. All the wave nodes
that lie on this shortest route between the sender and the destination become the path nodes (represented with
circles containing arrows in the figure). All communications between the sender and the destination from this
point onwards takes place using this path until the topology of the network changes. All other wave nodes are
sent a clear state message to move them from the wave state to a clear state (not shown in the figure).

This model can be formally defined using Cell-DEVS specifications as follows:

CD ¼ hX ; Y ; S;E; d; dint; dext; s; k;Di
S = dead (Dead Cell), init (Initial State of the Nodes), initD (Initial State of the Destination Node), DR

(Destination Ready; state of the Destination Node after it has received a send request from the sender), InitS

(Initial State of the Sender Node), WaveU (Wave Up "),WaveD (Wave Down #), WaveR (Wave Right !),
Fig. 16. AODV routing in Cell-DEVS.

298 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
WaveL (Wave Left), PathU (Path Up →), PathD (Path Down

→

), PathR (Path Right →), PathL (Path
Left →), Clear (final state of the node that received a wave message but is not going to become a path node),
Found (destination found; final state of the Sender Node).

X = U, Y = U; E = {(�1,0), (0,�1), (0,0), (0, 1), (1,0)}, d = 100 ms; s : E! S are the rules defined accord-
ing to the algorithm discussed and dint, dext, k, D are defined according to the definitions of Cell-DEVS atomic
models.

Using this specification as a base, the model was implemented in CD++, as presented in Fig. 17. Note here
that in [path-rule] many Boolean statements could have been combined together. However, for the sake of
clarity each statement is written in a separate line.

A number of tests were conducted on the model, and we will present here one of them as an example (more
detailed results can be found in [33]). Moreover, Fig. 18 shows screen shots taken from the execution of the
model on CD++ at different intervals during the test. Here all the dead cells are represented in black and all
the cells that have not yet received any message in white. This example used a 20 · 28 cells rectangular network
plane. The initial distribution of the nodes is given in Fig. 18a. The sender node (shown in gray in the lower-
left part of the figure) wants to communicate to a certain destination node (shown in the top-right part of the
figure). The first step is to broadcast a RREQ message as defined by rules Wave{U,D,L,R} in Fig. 17. The
state of the model after 50 steps of execution is shown in (b). Here the light gray nodes represent those nodes
that have received a RREQ message and have re-broadcasted this message while establishing a reverse path to
the sender. The dark gray node (on the way to the destination) is a node that carries a RREP message from the
destination and is going to become a path from the sender to the destination. This is in accordance with the
Fig. 17. Implementing AODV routing in CD++ [32].

Fig. 18. AODV simulation: (a) initial distribution, (b) state after 50 steps, (c) after 100 steps and (d) final state after 106 steps.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 299
rules Path{D,R,L,U} in Fig. 17. The state of the model after 100 steps of execution is shown in Fig. 18c. Here
a successful route has been established between the sender and the destination. Wave nodes that are not going
to become path nodes have been sent a clear state message. They are represented in light gray (rule clear in
Fig. 17). The final state of the model after 106 steps is shown in Fig. 18(d). Note that the model has success-
fully established the shortest route between the sender and the receiver and all wave nodes have ended up in
clear state. The white nodes represent those nodes that do not receive RREQ message.

4.2. Inter-networking AODV models using 3D Cell-DEVS

We extended the above model to three dimensions, as a way of representing different networks to which
the given ad hoc network connects, enabling inter-network routing. We can have different costs of commu-
nication in each network and thus it may be desirable to route the data through the network(s) which has
(have) the least communication costs. For example, if one of the planes represents a wireless ad hoc network
and the other a wired network, it would make sense to transmit the data in the ad hoc plane to the wired
plane through the nearest gateway (because the cost of the communication in a wired network is generally
less than that in a wireless one). We present here a simple case in which the intra-network and inter-network
communication costs are assumed to be the same (the model, however, is extendable to the case where dif-
ferent costs are associated with each hop. Each wave node broadcasts the RREQ message and the total cost
of the reverse path from this node to the sender on the reverse path. Each node that receives that RREQ
message can calculate the total cost to the sender on the reverse path by adding in the total cost to the sender,
the cost of communication of the link from which it received the message. The RREP message on its way
from the destination to the sender always selects the path with the least communication costs). We can imple-
ment this model in Cell-DEVS by extending the specification discussed in Section 4.1, and adding 4 new
states to the model:

S = dead (Dead Cell), init (Initial State of the Nodes), initD (Initial State of the Destination Node), DR

(Destination Ready; state of the Destination Node after it has received a send request from the sender), InitS

(Initial State of the Sender Node), WaveU (Wave Up), WaveD (Wave Down), WaveR (Wave Right), WaveL

(Wave Left), Wave3P (Wave in positive 3rd dimension) , Wave3N (Wave in negative 3rd dimension) , PathU

(Path Up), PathD (Path Down), PathR (Path Right), PathL (Path Left), Path3P (Path in positive 3rd dimen-
sion), Path3N (Path in negative 3rd), Clear (final state of the node that received a wave message but is not
going to become a path node), Found (dimension destination found; final state of the Sender Node).

Using these states, the algorithm for two-dimensional plane was extended to three dimensions. The algo-
rithm works the same way as the algorithm in Section 4.1 with a difference that the new algorithm also takes
into account the 3rd dimension while broadcasting RREQ messages and developing path from the destination
to the sender. The implementation of the new model along with the set of rules is shown in Fig. 19.

A number of tests were conducted on this model (more detailed results can be found in [33]), and here we
present the results obtained in an example consisting of a 5 · 5 · 5 cell space. Like before, all the dead cells are

Fig. 19. Implementing 3D AODV routing in CD++ [32].

300 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
represented in black and all the cells that have not yet received any message in white. The initial distribution of
the nodes is given in Fig. 20a. The sender node near the bottom of the figure broadcasts the RREQ message
that now is transmitted in three dimensions. The state of the model after 10 steps of execution is shown in
Fig. 20b. Here the destination node near the top has received the RREQ message and has sent a RREP mes-
sage. The path is thus being formed between the sender and the destination represented in dark gray. The final
state of the model after 18 steps of executions is shown in Fig. 20c. Note that the model has successfully estab-
lished the shortest path between the sender and the receiver in a three-dimensional space.

4.3. Modeling multicast AODV

We extended the model in Section 4.1 to model multicasting in AODV. The construction of multicast trees
on cellular planes is a complex task, and Hochberger [23] has shown that as the number of receiver and/or
Fig. 20. 3D AODV simulation: (a) initial distribution, (b) state after 10 steps and (c) after 18 steps.

Fig. 21. Optimal multicast trees concept.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 301
sender nodes on a plane increases, the number of states for each cell goes beyond practical limits. We intro-
duce a new algorithm to overcome this problem, and by introducing the notion of trees, model AODV mul-
ticast with a small number of states for each cell. Moreover, in our implementation, the number of states for
each cell is independent of the number of nodes in the tree (for the sake of simplicity we have not modeled the
group leader and the sequence numbers in standard multicast AODV).

Another aspect that has been taken into account during the construction of multicast trees is its optimality,
i.e., the multicast tree should duplicate data as less as possible. Consider for example the distribution of nodes
shown in Fig. 21. Here S represents a sender node that wants to multicast data to two nodes R1 and R2. The
shortest path between S and R1 exists and is shown in the figure in light gray. Note that for R2, there are two
shortest paths, both of which involve 8 hops from S to R2. Path 1 takes data first to the top of S and then left
to R2 while Path 2 takes data first to the left of S and then top to R2. Note that as the data is being multicast
by S to the two nodes R1 and R2, it would make much more sense to send data to R2 through Path 1. This is
because this way data would be duplicated only for the last 4 hops from S to R2. On the other hand, if the data
is sent to R2 through Path 2 it is duplicated right in the beginning (i.e., a total of 8 hops). If there are multiple
nodes in a multicast group, less duplicating data would save bandwidth. The construction of multicast trees in
our model considers this feature and seeks to minimize data duplication.

Our proposed algorithm for modeling Multicast AODV can be summarized in the following steps:

1. The model establishes the shortest route between the sender and one receiver using the algorithm discussed
in Section 4.1.

2. All the path nodes from the sender to the receiver become tree nodes, and a tree is formed between the sen-
der and the receiver. Note that the sender and a receiver belong to the multicast group but the tree nodes
may or may not be a part of the group. During this step all clear state nodes are also re-initialized to their
initial state value.

3. A new node wanting to join the multicast group broadcasts a RREQ message to join the group.
4. A path is established between the new node and the nearest tree node, following the algorithm in step 1

(instead of a particular receiver node, the path is formed between the new node and the nearest tree node).
5. Since the wave messages are broadcasted in fourth step and there may be more than one tree nodes in the

model, step 4 may generate more than one path between the tree and the new node. During step 5, all such
undesirable paths are purged by sending out a clear state message. This is done by adding a logic to the
model to detect and purge non-optimal paths.

6. The successful completion of step 5 generates the shortest, optimal path from the new node to the tree. This
path becomes the tree during this step. Moreover, during this phase, all clear state nodes are re-initialized to
their initial value.

7. For each subsequent node that wants to join the multicast group, steps 3–6 are repeated. The algorithm,
thus, can add as many nodes to the multicast trees as desired.

The formal specifications of this model are similar to the one presented in Section 4.1. There are two major
differences: the definition of the cell’s updating rules, which are now according to the algorithm just defined,

Fig. 22. Implementing multicast AODV routing in CD++.

302 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
and the addition of three new states: Tree (State of the nodes that belong to the multicast tree), MS (Final
state of the sender node after the construction of the tree), MR (Final state of the receiver node after the con-
struction of the tree). The implementation of this model in CD++ is shown next in Fig. 22. The width and
height of the model given here are for a particular example. Different tests were run with different values of
width and height. Moreover, the events receiving nodes here are for a particular test. For different tests, dif-
ferent nodes generated requests to become a part of the multicast group.

Fig. 23 shows the screen shots taken from execution of a sample model at different intervals during the test.
The test consists of 25 · 25 cell plane. Initially there are only two nodes; one at the top of the figure the other
at the bottom. Subsequent nodes join the group after the successful completion of tree construction. The initial
distribution of the nodes is shown in Fig. 23a. The state of the model after 50 steps of execution is shown in
Fig. 23b. Here the path between the two nodes is being formed in accordance with the path{U,D,R,L} rules in
Fig. 22. Also, note that all the wave nodes are being set to clear state and the clear state nodes are being re-
initialized in accordance with the rules clear and init in Fig. 22 respectively.

After 80 steps of execution, the state of the model is shown in Fig. 23c. Here the path between the two nodes
has been established and that path is becoming a tree according to rule tree in Fig. 22. All clear state nodes
have been re-initialized. The state of the model after 93 steps of execution is shown in Fig. 23d. Here the tree
between the two nodes has been established and a new node near the right center of the figure has just decided
to join the multicast group. The state of the model after 125 steps of execution is shown in Fig. 23e where the
new node has broadcasted RREQ message. As there are multiple tree nodes, multiple RREP have been sent

Fig. 23. AODV multicast modeling: (a) initial distribution, (b) state after 50 steps, (c) after 80 steps, (d) after 93 steps, (e) after 125 steps
and (f) final state after 217 steps.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 303
and hence multiple (non-optimal) paths from the trees are being formed. However, the algorithm logic is
detecting and purging all such non-optimal paths (rule clear in Fig. 22). The new node find the shortest opti-
mal route and that route becomes a tree (rule tree). All other non-optimal paths are purged and all the clear
state nodes have been re-initialized. The final state of the model after 217 steps of execution is shown in
Fig. 23f. Here 3 new nodes have been successfully added to the multicast tree formed between the first two
nodes.

The above example thus shows that the model has successfully built an optimal multicast tree. Note that
many non-optimal paths are generated during the addition of every new node to the group but the model suc-
cessfully detects and builds the shortest path and purges all other non-optimal paths.

4.4. Modeling routing among multiple pairs of senders and receivers

We have also defined models for AODV routing among multiple pairs of senders and receivers. The variant
of Lee’s Algorithm used in Section 4.1 fails for multiple pairs of senders and receivers: it generates deadlocks
and may prevent the generation of routing path between pairs of nodes that can communicate [23]. To over-
come this problem, we have exploited the inherent parallelism in Cell-DEVS and have found a very simple
solution to the problem. The idea is that each pair of sender and receiver is allocated a plane in a 3D Cell-
DEVS. The total number of planes in the resulting three-dimensional model thus depends on the total number
of pairs of receivers and senders to be routed in parallel. In each plane, we run the variant of Lee’s Algorithm
discussed in Section 4.1 (with a total of 15 states for each cell). The scheme permits to route multiple pairs of
senders and receivers without having to define more states. The reason is that as each pair is routed separately
in each plane, routing messages for each pair do not interfere with each other. The reason for the failure of
other approaches as in [23] was that the routing messages for different pairs interfere with each other. By
avoiding this interference, we can successfully prevent the generation of deadlocks. Moreover, our approach
exploits the inherent parallelism in the Cell-DEVS models as multiple pairs are routed simultaneously.

Fig. 24. AODV routing among multiple pairs of senders and receivers: (a) initial distribution of the nodes in Plane 1, (b) in Plane 2, (c,d)
state after 10 steps and (e,f) final state after 25 steps.

304 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
Using the same state definitions as in Section 4.2 and similar implementation in CD++, we successfully
implemented the model. Although a number of tests were conducted on the model, we present here a simple
test as a sample, in order to facilitate the understanding of the execution results obtained. The test consists of a
5 · 5 cells space having 2 planes and thus routes two pairs of senders and receivers, one in each plane. Since the
two planes represent the same network, we can assume the distribution of the nodes on the two planes to be
the same. However, to show that our model works even if we assume different distribution of nodes in each
plane, the example chosen has different distribution of nodes in plane 1 and plane 2 as shown in Fig. 24a and
Fig. 24b respectively. The state of the model after 10 steps of execution in plane 1 and plane 2 is shown in
Fig. 24c and d respectively. In plane 1, a successful route has been established between the sender and the
receiver while in plane 2 RREQ message has not yet reached the destination. The final state of the model
in plane 1 and plane 2 after 25 steps of execution is shown in Fig. 24e and f respectively. The figures show
that the model has successfully established the shortest path between the sender and the receiver in each of
the planes. The model thus is capable of routing among multiple pairs of senders and receivers simultaneously
without having to define more states. Although we have shown an example in which two pairs are routed
simultaneously, an arbitrary number of pairs can be routed simultaneously by defining each pair in a separate
plane.

5. Modeling the behavior of mobile nodes

We model the mobility behavior of mobile nodes for ad hoc networks using Cell-DEVS and show how we can
model factors such as network coverage and the lowest hop count to wireless gateways for mobile nodes. In our
model, mobile nodes move with a constant speed in diagonal-directions. For the purpose of modeling, we have
implemented a collision avoidance technique in which the mobile nodes reverse their direction if there is a col-
lision risk with another mobile, static or gateway node. A basic routing behavior is implemented such that every

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 305
mobile and static node can find out, if they can reach the gateway and if they can, how many hops away the
gateway is. The nodes always choose the neighbor which is closest to the gateway as their next hop. A coverage

model is also implemented. Every cell (whether or not occupied by an ad hoc node) with an occupied neighbor
that can reach a gateway, also has a potential to reach the gateway. Every cell, which has a potential to reach the
gateway is considered to be within the coverage area. As the number of hops to the gateway increases so does the
total power consumption. Therefore, it is reasonable to put an upper limit on the total number of hops allowed
to reach the gateway. In our study we allowed a maximum hop count of five hops. Mobile and static nodes that
are 6 or more hops away from the gateway are not allowed to reach the gateway and are therefore not considered
within the coverage area. For the experimental evaluation of modeling the behavior of mobile nodes in Cell-
DEVS, we have used a simple model in which we fix the size of the neighborhood of a node. We believe that
such a neighborhood should be dynamically determined depending on the strength of the signal available at
the current location of the node and other factors such as battery power available.

5.1. Mobility model

Mobility behavior of the mobile nodes is implemented by allowing mobile nodes to move in diagonal direc-
tions and bounce back whenever they reach the edges of the plane. For example, the top edge cells can only be
occupied by mobile nodes with north-east (NE) or north-west (NW) directions. If a mobile node with an NE
direction reaches the top edge cell, that mobile node will bounce back from the edge and leave that cell with a
SE direction. Similarly, a mobile node that reaches the bottom right corner (with a SE direction) will be
bounced back from the corner cell with an NW direction.

Collision avoidance is implemented by checking the state of the cell which is in the direction of the move-
ment of a mobile node. If that cell is not empty, the direction of the mobile node is reversed. If it is empty, then
the model checks if there is any other mobile node approaching the same cell from another direction. If there is
any, then the direction of the mobile node is reversed. Otherwise, the mobile node is allowed to occupy the cell.
There are both static and mobile nodes in our model, and one or more gateways. There is no limit on the num-
ber of nodes or gateways in our model. Depending on the initial location and direction of movement of the
nodes, different scenarios can be created.

A Cell-DEVS model named mobilenode is defined. The coupled model has 20 · 20 cells; and the surround-
ing 25 cells forms the neighborhood for each node. There are nine atomic models for inner, top edge, bottom
Fig. 25. Implementing mobility model in CD++.

Fig. 26. Nine different collision avoidance scenarios.

306 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
edge, left edge, right edge, top left corner, bottom left corner, top right corner and bottom right corner cells.
Mobility model for the inner atomic cell is as follows:

CD ¼ hX ; Y ; S;E; d; dint; dext; s; k;Di
X = Y = S = {0 (Empty), 1 (SE), 2 (NE), 3 (SW), 4 (NW), 5 (Static), 6 (Base Station)};
d = transport delay, 1000 m; s showed in the following figure;
dint, dext, k, D are according to Cell-DEVS definitions.
Fig. 27. Mobility, at 02:000, 03:000, 04:000 and 05:000.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 307
The model is implemented in CD++, as presented in Fig. 25. The mobilenode model implements mobility,
routing and coverage; however, in Fig. 25 we only show mobility related rules. The figure shows rules only for
the inner cells. Rule for other cells are not given here due to space considerations (details can be found in [33]).

Here, we use numerical values to represent the model’s state variables as follows: S = 0 (Empty Cell), 1
(Mobile Node moving in SE direction), 2 (Mobile Node moving in NE direction), 3 (Mobile Node moving
in SW direction), 4 (Mobile Node moving in NW direction), 5 (Static Node), 6 (Gateway). As can be seen from
the rules in Fig. 25, the value of the cells having static nodes and gateways do not change (as they do not
move). The first four rules represent the cases where the current cell is occupied by a mobile node but that
mobile node cannot move because either the next cell is already occupied or the next cell is empty but there
are other nodes approaching that empty next cell. In such cases the mobile nodes reverse their directions to
prevent a collision.

Fig. 26 shows an example of a topology with 2 gateways (value 6), 4 static nodes (value 5), 5 mobile nodes
with NW direction (value 4), 2 mobile nodes with SW direction (value 3), 2 mobile nodes with NE direction
(value 2) and 3 mobile nodes with SE direction (value 1). Nine different collision scenarios are created from
this initial topology. Four of these collisions are between static and mobile nodes (potential collisions between
node pairs located at cells: (0,0)–(1,1), (1, 4)–(0,5), (9,10)–(10,11), (18, 12)–(19, 13)), three of them are between
two mobile nodes (potential collisions between node pairs located at cells: (2,12)–(4,14), (6, 1)–(8,1), (12,3)–
(12, 5)) and two of them are between a mobile node and a gateway (potential collisions between node pairs
located at cells (14, 18)–(15, 19), (16,18)–(15,19)). Fig. 27 shows that all mobile nodes change their directions
at the next time unit in order to avoid collision. For example, at time 03:000, a mobile node approaching the
top edge with NW direction, changes its direction to SW. Similarly, in Fig. 27 there is a mobile node which
approaches bottom edge cell with SW direction and another which approaches the left edge cell with SW direc-
tion. At time 04:000, these two nodes change their directions (after they have reached the edge cells) to NW
and SE respectively.

5.2. Hop-count model

We incorporated a hop-count sub-model in the model of Section 5.1. In a hop-count sub-model every
mobile and static node determines its neighbor with the least number of hops to the gateway. Minimizing
the number of hops decreases the overall transmission power. At the same time, it reduces the overall delay.
Fig. 28. Implementing hop count model in CD++.

308 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
The model is especially useful for networks where most of the traffic is routed through the wireless
gateways.

The model was implemented in CD++. Hop-count model is implemented in a separate plane with values of
different cells defined as follows: 10 = (Gateway one hop away), 20 = (Gateway two hops away), 30 = (Gate-
way three hops away), 40 = (Gateway four hops away), 50 = (Gateway five hops away), 60 = (Gateway more
than 5 hops away or in other words unreachable). The hop-count plane rules are shown in Fig. 28. The initial
values of all cells are zero. Just like in Section 5.1, our coupled model has 20 · 20 cell structure. 25 cells sur-
rounding each cell on the hop-count plane plus 25 cells located just below these cells on the mobility plane
forms the neighborhood.

The hop-count model works according to the following rules:

• If the current cell value is 0, and either there are no nodes moving to this cell in the mobility plane or there is
more than one node trying to move to this cell, the value remains unchanged.

• If a cell is occupied by a gateway in the mobility plane then the cell value does not change.
Fig. 30. Mobility (left) and hop-count (right) planes at time 05:000.

Fig. 29. Mobility (left) and hop-count (right) planes at time 02:000.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 309
• If a cell is occupied by a static node in the mobility plane, then the model checks if there is a gateway in the
neighborhood. If there is any then the value of this cell is set to 10 showing that the gateway is one hop
away. Otherwise, the model checks if there are any other nodes in the neighborhood. If there are, the model
finds the one with the lowest hop-count to the gateway, increments it by ten and sets this value as the cur-
rent cell value. Otherwise, it is set to 60.

• If a cell is occupied by a mobile node in the mobility plane and if the next cell in the direction of the move-
ment of the mobile node is empty, and there are no other mobile nodes trying to move to the next cell in the
mobility plane, then the model sets the cell value to zero.

• If a cell is occupied by a mobile node in the mobility plane and if the next cell in the direction of the move-
ment of the mobile node is not empty, or there are other mobile nodes trying to move to the next cell in the
mobility plane, then the model checks if there is a gateway in the neighborhood. If there is any then the cell
value is set to 10. Otherwise, the model checks if there are other nodes in the neighborhood. If there are, the
model finds the one with lowest hop count value, increments it by ten and sets this value as the current cell
value. Otherwise, it is set to 60.
Fig. 32. Mobility (left) and hop-count (right) at time 23:000.

Fig. 31. Mobility (left) and hop-count (right) at time 22:000.

310 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
• If a cell is empty and there is only one node moving to this cell in the mobility plane, then the model checks
if the gateway is in the neighborhood. If it is, then the cell value is set to 10. Otherwise, the model finds a
node in the neighborhood with the lowest hop-count to the gateway, increments it by 10 and sets this value
as the current cell value. If no such node is found, it is set to 60.

We created a topology for testing the hop-count plane. The topology of nodes is shown in Figs. 29 and 30.
It consists of 2 gateways, 22 static nodes and 4 mobile nodes each with different initial directions. We pur-
posely created loops between nodes and gateways in the initial topology to test if the nodes correctly choose
the path with the least number of hops to the gateway.

When the model is executed, as a first step, all nodes lying in the neighborhood of gateways set their hop
count value to 10 at Time 01:000. In the second iteration all nodes lying in the neighborhood of cells with hop-
count value of 10 set their value to 20, as shown in Fig. 29. This process continues and finally, in the fifth iter-
ation all nodes which are 5 hops away from the gateway set their values to 50. This is shown in Fig. 30. From
this point onwards, the hop count values of the cells does not change frequently as after this point the cell
values change only due to relative change in position of the mobile nodes. When the mobile nodes change their
positions in accordance with the mobility model, the hop count values of the cells are updated. Figs. 29 and 30
also shows that the node located at the right most end of the hop-count plane (i.e. located at cell (12,18)), can
reach both gateways. This node chooses the path with the lowest hop count and sets its value accordingly (i.e.,
30 instead of 50).

Fig. 31 shows the state of the model after 22 iterations at Time 22:000. In the figure, when the mobile node
located at cell (17,12) with direction SW and hop count value 10 comes closer to another mobile node located
at cell (19,10), the mobile node located at cell (19, 10) should update its hop-count value to 20. Figs. 31 and 32
show that this does not happen.

The reason is that in the above scenario, when the mobile node located at cell (19, 10) in Fig. 31 with hop-
count value of 60 moves to a new cell (18,9) in Fig. 30, the new cell is not aware of the presence of the node in
its neighborhood with a hop-count value of 10. So, the cell does not update its hop-count value accordingly. In
real world scenarios as well, when the mobile nodes will move in and out of each other’s neighborhood, same
transients are expected. However, if mobile nodes communicate with other nodes in their neighborhood or
Fig. 34. Mobility (left), hop count (middle) and coverage (right) at time 02:000.

Fig. 33. Implementing mobility model in CD++.

Fig. 35. Mobility (left), hop count (middle) and coverage (right) at time 05:000.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 311
with the gateways before they move to the next cell transients will be much shorter. This scenario is accom-
modated in our Cell-DEVS model by making execution time for mobility rules higher than the execution time
for hop-count state rules. Increasing the neighborhood size can also minimize the transients because with a
larger neighborhood, once a mobile node enters into another node’s neighborhood, it is expected to stay there
long enough to update its connectivity information i.e., its hop-count value. So, by increasing the neighbor-
hood size and/or by executing hop count rules faster than mobility rules, our model can easily prevent
transients.
5.3. Coverage model

We implemented a coverage model as a sub-model of our models in the previous sections. The coverage
model finds all cells (irrespective of whether or not they are currently occupied by a node) from which a wire-
less gateway is reachable. All cells that are occupied by the nodes that can reach the gateway and all cells in the
neighborhood of these nodes are in the coverage area. Coverage models can help network engineers find the
suitable locations for the installation of wireless gateways. It is to be noted that due to the mobility of the
nodes the coverage area changes dynamically.

The coverage model was implemented in CD++ on a separate plane. The rules for the coverage plane are
shown in Fig. 33 in which a cell value of 7 represents that the cell is in the coverage area while the cell value of
0 represents that the cell is not in the coverage area. Thus in Fig. 33, if there is a gateway or a node with value
10, 20, 30 or 40 within the neighborhood of a cell than value of that cell is changed to 7. Otherwise it remains
0.

Figs. 34 and 35 are the graphical representations of Figs. 31 and 32 respectively. They also include the cov-
erage plane. As can be seen from these figures, when the hop-count plane updates the hop-count values of the
nodes, coverage plane updates itself accordingly. Static nodes determine the main shape of the coverage plane.
As mobile nodes move around, the shape of the coverage plane continues to change dynamically. This
dynamic behavior becomes more pronounced when we increase the number of mobile nodes and decrease
the number of static nodes in our model. Another observation from these figures is that there are certain areas
in this scenario that irrespective of the movement of the mobile nodes remain out of coverage area. These
areas are suitable locations for the installation of gateways so as to ensure coverage.
6. Discussion

Section 3 presented modeling of TCP/IP in DEVS while in Section 4 routing protocols for ad hoc networks
are modeled with Cell-DEVS. Section 5 discusses how various characteristics of ad hoc networks such as node

312 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
mobility and node coverage model can be represented in Cell-DEVS. Discussion in those sections show how
can one easily develop models for quite complex scenarios with a simple schema and how easily those models
can be used and tested with several tools available. The models presented in those sections were implemented
with just a few lines of rules as opposed to most of the other tools that not only require much more coding but
also consultation of various library functions.

Although various models in Sections 3–5 were developed independent of each other, they can be easily com-
bined to test various complex scenarios requiring detailed models of various components and physical char-
acteristics. For example, in Fig. 15 we have shown how DEVS models for TCP/IP can be seamlessly combined
with AODV models developed independently in Cell-DEVS. Similarly, one can combine mobility and cover-
age models in Section 5 to create a more detailed scenario for testing various characteristics of ad hoc net-
works. Since each model can be developed independently of the other, the process is scalable and allows
for selective integration of components as per demands of the testing being conducted. For example, given
various models for physical layers, each developed independently, one can plug-in different models for differ-
ent tests to test the network protocol under varying physical layer characteristics. Independent development of
various models also ensures less overhead in testing by allowing unit testing of each model developed. Results
in Sections 4 and 5 also shows that Cell-DEVS modeling of ad hoc networks also allowed for easy validation
of the results obtained. With the help of CD++ Modeler and VRML GUI one control and visualize each and
every step in the simulation. This not only allows for easy debugging but it also facilitates in understanding
dynamics of the systems which can help in improvement of various protocols being tested. This feature of
modeling in Cell-DEVS makes it one of the most promising techniques among those available for modeling
ad hoc networks.

One of the important issues for simulating ad hoc networks is to accurately model node mobility. Various
models for node mobility in ad hoc networks have been presented and some of the most widely used relies on
the modeling of section of a city where the ad hoc network exists (such as [31]). Although tools such as NS-2
[3] and Op-Net [4] can provide for the implementation of various mobility models, they do not allow the inte-
gration of these models with maps of actual cities. In DEVS/Cell-DEVS on the other hand, maps of actual
cities and models of actual traffic behavior have been developed [32] and they can be easily integrated with
the network simulation models presented here. Such a scheme would provide for simulation and performance
evaluations of various protocols for the actual deployment places and hence would make results more valid
than other tools. Likewise, in [34] we introduced advanced models of environmental catastrophes (forest fires,
pollution, etc.), and in [35,36], we presented different models on emergency evacuation and battlefield scenar-
ios. In all of these cases, wireless communication facilities can improve the work of the first responders. There-
fore, having the ability to integrate models of the actual system and the communication facilities that the
experts use can result in improved definitions for the routing algorithms and the equipment created for the
emergency planners. Integration of such models is straightforward (as it has been shown in [8,16]). By includ-
ing each sub-model on a different layer of a multidimensional model, the sub-components can interact without
further complications. We are currently working on such an integration of our models.

For the experimental evaluation of modeling the behavior of mobile nodes in Cell-DEVS, we have used
a simple model in which we fix the size of the neighborhood of a node. We believe that such a neighbor-
hood should be dynamically determined depending on the strength of the signal available at the current
location of the node and other factors such as battery power available. However, this limitation in our
model is not inherent in Cell-DEVS modeling and one can easily couple models developed in Section 5 with
more detailed models developed in Cell-DEVS where the signal strength can be made a function of time as
well as location. We are currently working on more detailed models that can incorporate effects of such
factors.

We have already discussed how different models developed within DEVS/Cell-DEVS can be easily inte-
grated. Recently there has been some work for integrating tools such as NS-2 and DEVS simulators [37,38]
with DEVS. In [37] the authors show how to implement heterogeneous simulators based on the DEVS Bus
concept, showing how to integrate DEVS models, NS-2 models and a TCP simulation using the HLA as mid-
dleware. In [38], the author shows how to integrate DEVS and NS-2 using the DEVS/C++ simulator. We
believe such integration would allow DEVS/Cell-DEVS models to make use of already built libraries in such
simulators and would increase their applicability while reducing their development costs.

U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314 313
7. Conclusions

We presented modeling mobility and routing in wireless ad hoc networks using Cell-DEVS. Our research
shows that routing protocols can be successfully mapped onto Cell-DEVS and as an example we mapped Ad
Hoc On-Demand Distance Vector (AODV) protocol onto Cell-DEVS. Such a modeling can not only provide
insights into the dynamics of the system and its reaction to different input stimuli but can also give an in depth
analysis of the protocol for different testing conditions such as the number and relative location of nodes, con-
nectivity conditions etc. Moreover, this mapping of the algorithm onto Cell-DEVS resulted in the extension of
the algorithm in three different directions (inter-network routing, multicast AODV, routing among multiple
pairs of senders and receivers) covered comprehensively in the paper. This shows that, generally speaking,
mapping of traditional algorithms onto Cell-DEVS can lead into new ideas in theory and implementation
of algorithms.

We also modeled the mobility behavior of the nodes in an ad hoc network consisting of mobile, static and
gateway nodes. Network coverage behavior is also successfully implemented, that can provide useful informa-
tion to network engineers in deciding where to put extra gateways.

As a future work, we plan to incorporate more features into the models. For example, each cell may be
assigned an index showing the wireless transmission media changes due to shadowing or fading effects. There
will be more reflections and consequently attenuation in the wireless signal in urban areas. It is also possible to
insert physical objects, such as mountains, high-rise buildings etc. in the models. Altitude is another factor that
can be assigned to each cell to determine wireless transmission index. Addition of such phenomena is straight-
forward in Cell-DEVS because different models can be easily coupled.
References

[1] T.S. Rappaport, Wireless Communications: Principles and Practice, Prentice-Hall, 2002.
[2] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, M. Gerla, GloMoSim: a scalable network simulation environment, Technical

Report 990027, Department of Computer Science, University of California at Los Angles, USA, May 1999.
[3] Kevin Fall, Kannan Varadhan, The ns Manual (formerly ns Notes and Documentation). Available from: <http://www.isi.edu/

nsnam/ns/>.
[4] Opnet Technologies, Inc. , Opnet Simulator. <http://www.opnet.com/>.
[5] Pavlosoglou, M. Leeson, R. Green, Spotting emergence in wireless routing protocols, in: Proceedings of the London Communications

Symposium, London, UK, September 2003.
[6] R. Subrata, A.Y. Zomaya, Evolving cellular automata for location management in mobile computing networks, IEEE Transactions

on Parallel and Distributed Systems 14 (1) (2003) 13–26.
[7] S. Wolfram, A New Kind of Science, Wolfram Media, Inc., 2002.
[8] G. Wainer, N. Giambiasi, Timed Cell-DEVS: modelling and simulation of cell spaces, in: Discrete Event Modeling & Simulation:

Enabling Future Technologies, 2001.
[9] B. Zeigler, T. Kim, H. Praehofer, Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic

Systems, Academic Press, 2000.
[10] G. Wainer, CD++: a toolkit to define discrete-event models, Software, Practice and Experience 32 (3) (2002) 1261–1306.
[11] A. Troccoli, G. Wainer, Implementing parallel Cell-DEVS. in: Proceedings of Annual Simulation Symposium, Orlando, FL, USA,

2003.
[12] G. Wainer, W. Chen, A framework for remote execution and visualization of Cell-DEVS models, Simulation 79 (November) (2003)

626–647.
[13] B. Zeigler, H. Cho, J. Lee, H. Sarjoughian, The DEVS/HLA distributed simulation environment and its support for predictive

filtering, DARPA Contract N6133997K-0007: ECE Dept., UA, Tucson, AZ. 1998.
[14] C. Zhang, Integrating existing DEVS simulations with the HLA, M.A.Sc. Thesis, Carleton University, 2004.
[15] Y.W. Cho, X. Hu, B. Zeigler, The RTDEVS/CORBA environment for simulation-based design of distributed real-time systems,

Simulation 79 (4) (2003) 197–210.
[16] P. MacSween, G. Wainer, On the construction of complex models using reusable components, in: Proceedings of SISO Spring

Interoperability Workshop, Arlington, VA, USA, 2004.
[17] E. Glinsky, G. Wainer, Modeling and simulation of systems with hardware-in-the-loop, in: Proceedings of the Winter Simulation

Conference, Washington, DC, 2004.
[18] B. Zeigler, Y. Moon, D. Kim, G. Ball, The DEVS environment for high-performance modeling and simulation, IEEE Computational

Science and Engineering 4 (3) (1997).
[19] G. Wainer, N. Giambiasi, Application of the Cell-DEVS formalism for cell spaces modeling and simulation, Simulation 71 (1)

(2001).

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.opnet.com/

314 U. Farooq et al. / Simulation Modelling Practice and Theory 15 (2007) 285–314
[20] A. Davidson, G. Wainer, ATLAS: a specification language for traffic modelling and simulation, Simulation Modeling, Practice and
Theory 14 (3) (2006) 317–337.

[21] C.Y. Lee, An algorithm for path connections and its applications, in: IRE Transaction on Electronic Computers, September 1961, pp.
345–365.

[22] C. Perkins, E. Belding-Royer, S. Das, Ad Hoc On-Demand Distance Vector (AODV) Routing Protocol, IETF Network Working
Group, RFC 3561, July 2003.

[23] C. Hochberger, R. Hoffmann, Solving routing problems with cellular automata, in: Proceedings of the Second Conference on Cellular
Automata for Research and Industry, Milan, Italy, 1996.

[24] C.E. Perkins, P. Bhagwat, Highly dynamic DSDV for mobile computers, in: Proceedings of the ACM Conference on
Communications Architectures, Protocols and Applications, London, UK, August 1994, pp. 234–244.

[25] D. Johnson, D. Maltz, Y. Hu, The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR), IETF MANET Working
Group Internet Draft, April 2003.

[26] J. Raju, J.J. Garcia-Luna-Aceves, A new approach to on-demand loop-free multipath routing, in: Proceedings of the 8th International
Conference on Computer Communications and Networks (IC3N), Boston, MA, USA, October 1999, pp. 522–527.

[27] M. Corson, J. Macker, Mobile Ad Hoc Network (MANET) Routing Protocol and Performance Evaluation Considerations, IETF
Networking Group RFC 2501, January 1999.

[28] V. Naoumov, T. Gross, Simulation of large ad hoc networks, in: Proceedings of the ACM 6th International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, San Diego, CA, USA, September 2003, pp. 42–48.

[29] H. Hellbrück, Stefan Fischer, Towards analysis and simulation of ad hoc networks, in: Proceedings of the 2002 International
Conference on Wireless Networks (ICWN’02), Las Vegas, NV, USA, June 2002, pp. 69–75.

[30] M. Ahmed, K. Yonis, M. Elshafei, G. Wainer, Building library of network protocols in CD++, in: Proceedings of the 38th IEEE/SCS
Annual Simulation Symposium, San Diego, CA, USA, 2005.

[31] RFC-editor Official Internet Protocol Standards, [Online]. <ftp://ftp.rfc-editor.org/in-notes/rfc791.txt> (accessed 24.9.2003).
[32] B. Balya, U. Farooq, G. Wainer, Modeling ad-hoc networks using Cell-DEVS models, in: Proceedings of the 2004 International

Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS’04), San Jose, CA, 2004.
[33] U. Farooq, B. Balya, Modeling routing in wireless ad hoc networks using Cell-DEVS, Internal Report, Department of Systems and

Computer Engineering, Carleton University, Ottawa, ON, Canada, December 2003.
[34] G. Wainer, Applying Cell-DEVS methodology for modeling the environment, Simulation 82 (10) (2006) 635–660.
[35] R. Madhoun, G. Wainer, Developing defense applications using DEVS/Cell-DEVS, SCS Journal of Defense Modeling and

Simulation 2 (3) (2005) 121–143.
[36] E. Poliakov, G. Wainer, J. Hayes, M. Jemtrud, A busy day at the SAT building, in: Proceedings of AIS 2007, Artificial Intelligence,

Simulation and Planning, Buenos Aires, Argentina, 2007.
[37] Y.J. Kim, J.H. Kim, T.G. Kim, Heterogeneous Simulation Framework Using DEVS BUS, Simulation 79 (1) (2003) 3–18.
[38] T. Kim, Devs-Ns2 Environment: an integrated tool for efficient networks modeling and simulation, Master’s Thesis, University of

Arizona, 2006.

	DEVS modeling of mobile wireless ad hoc networks
	Introduction
	Background
	Modeling TCP/IP in DEVS
	Modeling routing in wireless ad hoc networks using Cell-DEVS
	Defining AODV using Cell-DEVS
	Inter-networking AODV models using 3D Cell-DEVS
	Modeling multicast AODV
	Modeling routing among multiple pairs of senders and receivers

	Modeling the behavior of mobile nodes
	Mobility model
	Hop-count model
	Coverage model

	Discussion
	Conclusions
	References

