An Environment for Development and
Benchmarking DEV S applications

By
J. Marcelo Gutierrez-Alcaraz

A thesis submitted to

The Faculty of Graduate Studies and Resear ch

In partial fulfillment for the degree of
Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario
Canada
O Copyright 2007, J. Marcelo Gutierrez-Alcaraz

Abstract

Discrete Event System Specification (DEVS) is arfar modeling and simulation (M&S)
framework that supports hierarchical, modular medBIEVS-based M&S environments
have been used successfully to understand, anaydejevelop a variety of systems. Some
of the environments and systems modeled with DENSIdficult to replicate and analyze;
on the other hand, some others are populated witil,sembedded devices that perform
critical operations with dedicated hardware andtvafe. In both cases the design,
simulation and test of these models tend to growize and complexity. In each of the
development stages, different methods of modelimg)ementation and testing are used
without any relation among them. CD++ is a modehng simulation toolkit based on the
DEVS formalism. This thesis proposes a modelingnustion and benchmarking
environment based on the CD++ toolkit. Two différeols are presented to the user of the
CD++ toolkit: a Benchmarking tool for comparisontbé modelling and simulation CD++
tool with other simulators including a benchmarkingthodology, and an Integrated
Development Environment (IDE) for the conceptior aonstruction of models of Real-
Time embedded systems, as well as the final imphkaien and deployment on an
embedded target. A hardware-in-the-loop examplegutie embedded version of CD++ is

also described.

Table of Contents

1. INTRODUCTION ..o s 8
1.1 [F2Tex (| 011 T OSSP 10
1.2. CONEIIDULIONS......ece e e 16
1.3. TheSIS OrganiZaALIONcovuiiiirieiiiiesie et se et se e stesne s 19
2. DEV S bbbt 20
2.1 Embedded systemsand SImulators...........cocoviriiiieeneneeeeee e 24
2.2, ADEVS ... bbbt 30
2.3, CDH bbbt 31
24. EMDedaded CD ... 32
2.5. Benchmarking for Simulationsand Simulators..........cccoeeevivninie e sccenicsennns 34

3. EMBEDDED CD++ BUILDER INTEGRATED DEVELOPMENT

ENVIRONMENT IN ECLIPSE.......oo et 38
3.1. Embedded CD++ IDE - DeVEIOPMENTocviiiiiesieieeie e 41
4 ROBOGCART Lttt bbb e e s e ettt b bbbt e s e b nn s 56
41. ECD++ with Hardware-In-the-L 00p........cccoeririiiiieeeeee e 61
4.2. IMEOEOT DFIVEY ..ttt sttt et nn e nn e 62
4.3. IMPLEMENTALION.......eiiiiicee e e sre e e et nneens 64
5. DEVSTONE ..o ERROR! BOOKMARK NOT DEFINED.
5.1. DEVStone Implementationcccccvvveeieneniinnnens Error! Bookmark not defined.
6. DEVSTONE RESULTS.......cccoeiierienne ERROR! BOOKMARK NOT DEFINED.

7.

8.

CONCLUSIONSAND COMMENTS....ERROR! BOOKMARK NOT DEFINED.

REFERENCES

Table of Figures

FIGURE 1: CD++(A) MODEL HIERARCHY, (B) PROCESSOR HIERARCHY.....cciiiiiieeeeeiiieieeieeeiinsieniinn s snnen s 32
FIGURE2: ECD++BUILDER IDE AS ECLIPSE PLUGIN — REQUIREMENTS ... cttiittiiiiiiiieiieeteisneesnesenesnnsennnns 40
FIGURE 3: NEwW CD++ BUILDER ENVIRONMENT WINDOW—EMBEDDED CD++ FUNCTIONALITY ...cccvvvvvvrienennnns 42
FIGURE4: ECD++BUILDER COMPILE2TARGET — CLASSESDIAGRAMciiiiiiiiieiiiiiineeeeeeeiiinneeeesesnneeaeeeees 44
FIGURE5: ECD++BUILDER COMPILE2TARGET — SOFTWARE SUPPORT DIAGRANM......uuuieiiiiiiiineeeeeiiiaeaeeeeinnnnss 45
FIGURE 6: ECD++BUILDER COMPILE2TARGET FIRST WINDOW.uuiiitsieeeeeeeeeeieeeeeeeeesreestennesnnannnnnsnnaneseeeas 46
FIGURE 7: ECD++BUILDER COMPILE2TARGET PROGRESS WINDOW......ccetttuneieiarinneeeeeeninnneaseesnnnaaeeeeesnens 46
FIGURE 8: ECD++BUILDER COMPILE2TARGET— IDE WHEN COMPILE2TARGET FINISHES.......uiiiiiiiiiineeeeennens 47
FIGURE 9: ECD++BUILDER DOWNLOAD2TARGET — SOFTWARE SUPPORT DIAGRAM.......cceiiiviieiieirinniinninnnnnns 49
FIGURE10: ECD++BUILDER DOWNLOAD2TARGET WINDOW SCREENSHOT.uuiiiiiitiiaeeeeeeiineeeaeeennnseeeeeees 50
FIGURE11:ECD++BUILDER RUN SIMULATION REMOTELY — SOFTWARE SUPPORT DIAGRAM.......oeeeveeivennnnn. 52
FIGURE12:ECD++RUN SIMULATION REMOTELY —PARAMETER'SINPUTBOX ...ooviiiiiieiiieiiieeceeceeieiei e 52
FIGURE13:ECD++BUILDER TELNET2TARGET — SOFTWARE SUPPORT DIAGRAM.......uuitiiiiiiinaeieeiiineeeeeeninnnns 54
FIGURE 14:ECD++BUILDER TELNET2TARGET WINDOW SCREENSHOTuutittittiieeeeiiiineeereeenieeeeesrnnannns 54
FIGURE 15: STEPPER MOTOR TEST CIRCUIT LAYOUTB3] ...eveeieeeeeieiiiiiiiieiiieeeee e e e e s mmmmmeeeaeenaeaaeesesennnennnnens 63
FIGURE 16: STEPPERMOTOR TEST CIRCUIT....ttttttuuteteettiniaeeeetanieeaeeatsnaasseeesssnnseeeeessnnsesaessssaaeeeessnnnsaens 64
FIGURE 17:SPIN MOTOR THREAD IMPLEMENTATION—PSEUDO CODEuuiiiitiittiieeeetiieeeseeeiinneeaeesesnnnanaaaes 65
FIGURE 18: MODIFIED DC MOTORDRIVER CIRCUIT ..evvtvittttittititianinnsaeseeesaeseseeteeetssssseeesssssnsnnssennnanaaeseess 68
FIGURE 19: ROBOTIC CART — PSEUDO CODE MODEL ... ttttttuiieiiiittieeeeeeetiaseeeeessinaseeessesssnnseaseesssneeaseessnnnns 71
FIGURE 20: ROBOCART TOP VIEW.. ...t ttttttieeteetitiaseeeeettin s s eeeeeas e saatesesaasaeaesssan s s aeeesssanseaesessaaaeeaeeesssnnas 74
FIGURE 21: ROBOCART — SIDE VIEWcetttttttttttuttusninsaanssessaaesaessassasesssessessesssesssssssnssnnnassasssesessessessensseeees 74
FIGURE 22: ROBOCART — SYSTEM VIEW (AMPRO BOARD INSIDE CPUCASE, MONITOR NOT USEDcccvvus 75
FIGURE23: DEVSTONE LI MODEL....uiiiiiiiiiiiieciieiie e ERROR! BOOKMARK NOT DEFINED.
FIGURE 24: DEV STONE INNER‘ COUPLED ATOMIC MODELvvvvvverernn... ERROR! BOOKMARK NOT DEFINED.
FIGURE 25: DEVSTONE HI MODEL ..ccvvuuiiiiiieiiiiie et eeeeeaaia s ERROR! BOOKMARK NOT DEFINED.

FIGURE26:DEVSTONEHO MODEL....cuuiiviiiiiiiiiiici et ee e e eaans ERROR! BOOKMARK NOT DEFINED.

FIGURE 27: DEVSTONE HOMOD MODEL (SHOWN EXPLICITLY FORW = 3) .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 28: DEVSTONE INITIALIZATION TIME —LI MODEL......cccvvuvrrerennen ERROR! BOOKMARK NOT DEFINED.
FIGURE 29: DEVSTONE INITIALIZATION TIME HI MODELccvuvveieeeiinnn. ERROR! BOOKMARK NOT DEFINED.
FIGURE 30: DEVSTONE INITIALIZATION TIME HO MODEL.......uvvvvveeeeeennn. ERROR! BOOKMARK NOT DEFINED.
FIGURE 31: MINIMUM WIDTH AND MAXIMUM DEPTH OF MODELS ERROR! BOOKMARK NOT DEFINED.
FIGURE 32: LI PLOT FORGNT = Giyrevrenreeremmnieieeiiiiiiieeeeeeetiaeaeeeeessnnnnaaaaed ERROR! BOOKMARK NOT DEFINED.
FIGURE 33: LI PLOT FOR Q1 < Ghxreererererereeeesesaninisnrnnnnerreeeesessssnssnseeeeees ERROR! BOOKMARK NOT DEFINED.
FIGURE 34: LI PLOT FOR T Qhrceevneiiiiiiiiieiiitie et eebe e ERROR! BOOKMARK NOT DEFINED.
FIGURE 35: LI PLOT FORGNT = Ghyreerenreeremmnieieeieiiiiieeeeeeetieeeeeeeeennnnneaaaed ERROR! BOOKMARK NOT DEFINED.
FIGURE 36: LI PLOT FOR Gt < Gixrereererererreresasaniniinrnnnneereasasessssnssnsneeeees ERROR! BOOKMARK NOT DEFINED.
FIGURE37: LI PLOT FOR T > Qhrecevvneiiiiiiiiiieiiie et eebe e ERROR! BOOKMARK NOT DEFINED.
FIGURE 38:HI PLOT FOR O\ T = Gyt eevrrnneeeeeiiiiieeeeeitiieeeeeeeetiaeeeeeeennnnnnns ERROR! BOOKMARK NOT DEFINED.
FIGURE 39: HI PLOT FOR Ot < Gyt evverreeeeeessisisinnnnnnnenesseeesasessnsnnnsnnnneeses ERROR! BOOKMARK NOT DEFINED.
FIGURE4O:HI PLOT FOR OGN ™ Ghyrercvvrnneiriiiiiiiiiieiiiieesiiieeeiieesaiseseanneees ERROR! BOOKMARK NOT DEFINED.
FIGUREAL:HI PLOT FOR O T = Gyt eevrrnneeeeeiniieieeeeeitiieeeeeeeetiaeeeeeeennnnnnns ERROR! BOOKMARK NOT DEFINED.
FIGURE42: HI PLOT FOR Ot < Qg evvereeeeeeeseisasisnunnnneereseeeeasassnsesnsnnnneeses ERROR! BOOKMARK NOT DEFINED.
FIGURE43:HI PLOT FOR OGN ™ Qhyrerevvrneiriiiiiiiiiieiiiieeiiiseeeiieesaiesssanneees ERROR! BOOKMARK NOT DEFINED.
FIGURE44:HO PLOT FOR Q1 = GExreceeerrnneereemiiaiaeeeeeiiiieeeeeeesnaeeeeeeennnnnns ERROR! BOOKMARK NOT DEFINED.
FIGURE45: HO PLOT FOR O\t < QLyreeeeerrnnrerrrnnnnrrereeesssssnsnsssnnnneneeasassnnns ERROR! BOOKMARK NOT DEFINED.
FIGURE46:HO PLOT FOR O\t ™ Ghyreeeevrnneiiriiiiiiiieeiiiiesiiiisesiineessiinesssnnnns ERROR! BOOKMARK NOT DEFINED.
FIGUREA7:HO PLOT FOR Q1 = GEyreceeerrnneeeremiiiiieeeeeiiiieeeeeeesneeeeseeesnnnnns ERROR! BOOKMARK NOT DEFINED.
FIGURE48:HO PLOT FOR O\ < QLyreeeerrenrrrrrrnnerreeeeeassssnsnssssnnnneeeeaaaeanans ERROR! BOOKMARK NOT DEFINED.
FIGURE49:HO PLOT FOR G\t > Ghyreeeivrneiirieiiiiiieeiiiieesiinsesiinssssiinesssnnnns ERROR! BOOKMARK NOT DEFINED.
FIGURES50: HOMOD PLOT FOR O\t = Ghyreevrvnneereerrneeeeeeiriiieeeeeesnnaaeeseeesd ERROR! BOOKMARK NOT DEFINED.
FIGURES1: HOMOD PLOT FOR Q71 < iyt eereeeeeeeesnsnnnnnrnnnrereeeeeesesesnnssnsened ERROR! BOOKMARK NOT DEFINED.
FIGURES52: HOMOD PLOT FOR Q1> Gyt evvvernneiiiiriiieeeeiisiieeeesssssneeeessaesd ERROR! BOOKMARK NOT DEFINED.

FIGURES3:HOMOD PLOT FOR O\t = Ghyreevevnneererrrniaeeeeeeriiaeeeeesnnaaeeseeesd ERROR! BOOKMARK NOT DEFINED.
FIGURES4: HOMOD PLOT FOR Q71 < Gyt eereeeeeesesnsnnnnnrnnreerereeeesesesnnsssnneeed ERROR! BOOKMARK NOT DEFINED.

FIGURE55: HOMOD PLOT FOR Gt Gyt vvvvennieiiiiiiieeeeiisiieeeessssseseessaesd ERROR! BOOKMARK NOT DEFINED.

Table of Acronyms

ADEVS
DDR
DEVS
ECD++
EIC
EOC
ETF
FSB
GCC
GUI
HIL
IC
IDE
IP
ITF
M&S
NFS
OOM
OS
PERL
RAM
RT
T™MO
TTL
UML
XML

A Discrete EVent System

Double Data Rate

Discrete EVent System Specification
Embedded CD++

External Input Couplings

External Output Couplings

External Transition Function

Front Side Bus

GNU Compiler Collection

Graphical User Interface

Hardware In the Loop

Internal Coupling

Integrated Development Environment
Internet Protocol

Internal Transition Function

Modeling and Simulation

Network File System

Out Of Memory

Operating System

Practical Extraction and Report Language
Random Access Memory

Real Time

Time-triggered Message-triggered Object
Transistor-Transistor Logic

Unified Modeling Language
eXtensible Markup Language

1. Introduction

Different technologies of modeling and simulatior aidely used in the industry and the
academy to assist system development. Using abstradels in simple and complex
simulations of most process greatly reduces theldpment time and significant savings
in resources and cost are made. Reducing the geweld time also helps the design of
safer systems and environmental-friendly produsiace it is possible to test more
scenarios and run simulations on each and everyobitieem. It is because of this that
Modeling and Simulation techniques have becomergroitant part of system analysis and
later design through history. Mathematical modelan cbe defined as abstract
representations of natural events, for engineedssaientist these models usually represent
different types of phenomena that can be physmamical, economical, and social or
many others. And by Simulation (by Computer Simalain particular), we understand it
as the process that takes those abstract mathamatadels, and through a controlled

update of certain defining variables, evolves thoséels to a different state.

Commonly, the simulation is done through simulatiools that are used at different stages
of system development: the analysis phase to sumooicept development (i.e. virtual

prototyping) and in the implementation and testys$ato provide virtual test environments
(via hardware-in-the-loop techniques) and expertadescenarios for system verification

and evaluation [1]. By using abstract models (whdepend on the simulation tool used) of
real systems in the analysis stage, simulationeba®sign can highlight problems early
enough in the product development process, whicturim may be addressed more cost-
effectively on the production side. Many leadingnpanies, among them Boeing, and
General Dynamics, have saved millions of dollarsfighter planes, and submarines by

replacing physical prototypes with computer mock-yg]. Simulation-based test and

verification enable automated test program and dasé generation, functional coverage
and checking, etc. This virtual test methodology heen widely used, although still in an
ad-hoc way, by both hardware and software devedopeor example, test generation
techniques, tools, and solutions are widely recogphias the main means for hardware
verification of complex designs. The approach ahgsimulation-based software design
and implementation combined with hardware-in-theplosimulation techniques greatly

accelerate the embedded software development sagtation processes. The effective use
of these techniques will result in a faster prodietelopment cycle, lower development

costs, and higher overall product quality [3].

One particular use of modeling and simulationsgaslin the development of embedded
systems, usually these systems also have timeraoristin which case they are also called
Real-Time Systems. Real-Time Systems must prowetlabte outputs to external inputs
within a time limit. Depending on the strictnesstioé time limit, the systems are usually
separated in soft or hard real time systems [4btAar characteristic of embedded systems,
is that most of them are application specific, @igh with the increase in computational
power from microprocessors this trend is somewhanging [5]; many of these systems
also have a low electrical power constraint becahsy are deployed in environments
where grid-electricity is not commonly availableibis scarce, i.e. inside cars, space ships

or remote sensors and actuators.

Many development methods and techniques existhercteation of embedded systems,
with the common denominator that most of them a®el on hardware and software that
exceeds the computational power of the intendedesydo be developed. The most
common developing system is given by a generalgsgpcomputer, a general-purpose
operative system, the target software, which ofteriludes a simulator, and required

hardware to communicate with the embedded platform.

For engineering in particular, Modeling and Simwlat(M&S) of embedded systems is of
utmost importance. For example, engineers and tssfiemmake heavy use of simulation
tools when a process is difficult to replicate @sexe of the cost involved, or if the
environmental conditions for the experiment ardialift to replicate or the danger is too
high) or when the simulation of a natural processany times faster than the real process.
By using different techniques for modelling, we gamdict the behaviour of simple or
complicated phenomena with, most of the time, & liiggree of certainty. For systems that
interact with real data, the preferred method foodeling is the use of continuous
differential equations. However, one layer higherthe interaction between systems and
the real world we deal with a different nature oddulling and control which is usually

easy to model using discrete event modeling methods

1.1. Background

Zeigler in [6] explains a general framework for Bi&S process, and defines the basic
entities and their relationships; the basic erstité the M&S process are comprised of a
real or virtual environment under analysis; experimental framewhich defines the type
of data obtained and the conditions of the systdma; model, as stated is an abstract
representation of the system to be simulated dredsimulator, which is any computational
system capable of executing the model to genenmatradlict its behaviour. In any M&S
framework, it is important to separate the modehfithe simulator, because this separation

between them allows us:

- toreuse a single model for different purposes and,

10

- to validate and verify both the simulator and theded for easiness of use; (i.e. once
the simulator is validated and verified we can assthat the simulator is valid for

any simulation that we want to run on it as long asrtiodel is valid as well).

In particular, M&S tools have been useful for tlevelopment of embedded systems. Since
the beginning of the electronic era, most of theatdlities of embedded systems were put
on hardware most of the development was done oenskge prototypes. However, with
the advent of more powerful microprocessors ancetdmmomy of building digital hardware
compared to analog hardware, the implementationtheir functionalities has steadily
shifted to software. This is driven by the factttBaftware has much more flexibility to
cope with system varieties and requirement chariResent studies indicate that up to 60%
of the development time of an embedded real-tingtesy is spent in software coding [7],
[8], [9]. This indicates to us that the existindta@re development methods are insufficient
to develop real-time systems. Actually, the laclgobd design methods and support tools
has made the software development for embeddedmnsysd bottleneck, especially when a

large number of subsystems and task synchronizatmmvolved.

The embedded software developer faces several endpallenges beyond those of

classical software development. First, in the dhgesystem is real-time it needs to meet
both timeliness and reliability requirements andosel the system have constrained
resources in terms of memory and processing powkese requirements add extra
complexity to the software design and test. Fongda, for hard real-time systems, special
test and analysis techniques have to be adaptedltonately, developed to test the

correctness of specific control models and to guarm the system can meet deadlines

under all conditions.

11

In addition, embedded systems usually operate isteotly changing environments, in
which the environment itself may be unknown durthg design time or it could be
continuously evolving as time passes. Therefore,stbftware that controls these systems
should be able to deal with uncertainties, i.eoiild have to reconfigure itself dynamically
to adapt to a changing environment. This posest grhallenges to test the software

effectively under development.

Something else to consider is that the rapid gravftreal-time embedded systems brings
two other factors into embedded software’s compyexkirst, embedded systems are
making heavy use of networking technologies, amtirgnselves or between them and
wired/wireless access points. In the near futdrejli be usual for hundreds of embedded
controllers, smart sensors and actuators to wodether to finish a common task.
Consequently, scalability, which was not even abersd for this type of systems some
time ago, is becoming an important design issuedal with. Second, with the rapid
adoption of cheaper and powerful microprocessamfyeelded systems are expected to
carry out more and more complex functionalitiehids been foreseen that the new breed of
embedded systems (which have enough computatiamaérpand memory to carry out
complex functionalities) will become dominant [10haking it little practical, if not
impossible, to develop physical prototypes in evatigp of the development process. In
order to handle the complexity of these systemsgchmeffort has to be put on system
modeling and simulation during the concept propodakign, analysis, and verification

steps.

Historically the state-of-the-art in embedded saftsvdevelopment involves a great deal of
empirical knowledge and previous experience withtipaar platforms. Along the time,
various efforts to systematize and generalize dpjgroach have been proposed. However,

so far none of them fits very well in supporting ttesign, test, and execution of embedded

12

software from a systematic way. A compilation ofmeo deficiencies of current

development methods is provided in [11]:

> In the software development lifecycle, most of time different stages are not
related to each other, resulting in inconsistenai®®ng analysis, design, test, and
implementation. For instance, in the analysis stage complex systems,
mathematical models are usually built to analyzedbntrol algorithms. However,
these mathematical models are rarely effectiveldusy the design stage, which
uses different modeling languages such as Unifiedéling Language (UML). The
same happens in the implementation stage, whice psggramming languages
such as C or Java. Because of this constant chiundidesign and development
environments, transformation from one type of mddeanother is needed among
different stages. However, it is important to ndbat some tools have been
developed and improved particularly in the comnararena, for instance Rational
Rose Real-Time sold by International Business Maehi(IBM) and the Telelogic
family of software development tools. Both systegnavide a framework for code
generation based on model specification using Uktthhiques for modeling and
some other tools for simulation. These toolkitsufoon system model analysis and
design and allow graphical description of the systesing use-case models and
scenarios, activity charts, control block diagramd atate-charts. Both environments
provide support for maintaining consistency amohgsé models, as well as
providing model-driven development environment $mftware engineering. The
formal languages of activity charts and state-chartable the models’ execution
and verification using mapping rules. Additionatlyese products offer, and can
produce, graphical interfaces for the project bedwyeloped, since it utterly

beneficial for software design stage [12].

13

» Software test for embedded systems is largely addrmd low level. Although
control algorithms can be developed and testetieranalysis stage, once they are
transformed into implementation code, extensiveitestill required because of the
discontinuity problem already mentioned. For thisason, many tests are
meaningful only after the actual code is generaded, often enough, these tests are
meaningful only when the software has been depldygetthe real hardware. This
low-level activities result in later detection afcbnsistencies between the final

implementation and the original system specificatio

> Despite the continuous need for software to regoindé itself dynamically in order
to adapt to new situations or new environmentser&his no effective and
systematic way to design and analyze these kindselbfadaptive software” [11].
As embedded systems usually operate in real ermigats, most of them tend to
exhibit dynamic reconfiguration to change theiustures and operation modes in
response to different situations. Hence, it is rdéd¢ for an embedded software
development method to provide a systematic way twmlyae dynamic

reconfiguration of systems.

» Scalability becomes an important design specificatas embedded systems
increasingly work in ad-hoc networks. To ensureladsbty, component based
technology [13] and suitable software structures imysical topologies are needed.
Meanwhile, computer-based modeling and simulatigi&$) methodologies are
required since the scale of systems is well beywhdt analytical tools alone can
handle and it is not always possible to replicateénvironments where controlled

real experiments could be setup.

14

To overcome the problems posed by the different etlodised in different stages of
development, the best solution is to providéoemal methodduring the development

process. A formal method in this context refersnmthematically rigorous techniques and
tools for the specification, design and verificatiof software and hardware systems.
Where specifications used in formal methods aré-feaihed statements in a mathematical
logic and that, the formal operations are rigordeductions in that logic (i.e. each step

follows from a rule of inference and therefore banchecked by a mechanical process).

The solution proposed in this thesis deals with uke of a formal method, the Discrete
Event System Specification (DEVS) formalism, assi® for the construction of embedded
system models with the help of an Integrated Deweknt Environment (IDE) tool, where
the developer can find the required tools to cagiwith the next design stage from just
one model. The work done in the thesis providegdbés required for the continuous use
of a single model throughout the development prmdesem the conception of the problem
to the implementation in an embedded target. Ieotd do so, we made use of the CD++
Builder toolkit environment, the embedded versiol GD++ [14] and other
communications tools to create one developmentr@mwvient as a solution. This solution
allows the development of the model, the consequest and verification through
simulation of such model, the development of a drstrategy for the variables that need
to be controlled by the control system, which carthoroughly tested and verified, and the
deployment of the final code to the embedded systensharge of the control. The
proposed solution includes a test case that insltitke use of hardware components in the

simulation.

Since the use of simulation tools was successaglylied in such a variety of applications
due to the ease of model definition, improved cositpmn and reuse, and hierarchical

coupling many different simulation tools have amis®ue to its discrete nature, DEVS

15

provides considerable precision and speedups irexlkeeution time, as models advance
triggered by instantaneous asynchronous eventsomtraposition with time stepped
approaches [15]. The CD++ tool, which is basednenREVS formalism, allows the rapid
development of models and their simulation. Howgedéferent versions of this tool have
been developed with many improvements and for diffe purposes and platforms. With
every new version, many new features are addetdeddolkit but, at the same time, it
becomes increasingly more complex to keep trackhef impact of the changes, or

additions, in the general performance of the M&&Kib.

To measure the impact on the performance of thellator and to generate a common
metric among different implementation of DEVS siatols, DEVStone [16] was
developed. DEVStone is a synthetic model genethtdruses the Dhrystone Benchmark as
a basic real-time metric. To provide uniform meaf@ obtaining meaningful
measurements, the benchmark is based on a lardeoponodels with different size,
complexity and behaviour, resembling different ldraf complex applications. Hence, it is
possible to analyze the efficiency of a simulatémgine in relation to the characteristics of
a category of models of interest. The tool can beduo assess the efficiency of several
DEVS simulation engines, and it provides a commatric1 to compare the results using

different tools.

1.2. Contributions

One of the contributions of this Thesis is the dewment of a simulation-based Integrated
Development Environment (IDE) to manage the complerf developing embedded
software. This Integrated Development Environmbased on the DEVS framework, with

a front-end based on Eclipse, provides a smootisitran for the developer to design and

16

test embedded systems on general-purpose compentivigtpnments by emphasizing the
use and reuse of a single model through the dewedopprocess. Specifically, this IDE has
been developed so that any control models desiguadl fully tested in multiple
simulations, can be deployed, retested and analymedemulation in a particular

development target.

To improve the actual software testing procedur¢hef Embedded CD++ (ECD++) tool
(where simulations are run in a virtual environmeat new functionality is provided to
allow the embedded target to be connected to tilewerld through sensors and actuators.
Consequently, any virtual simulation ran with ECDean now be run in real mode with
hardware-in-the-loop. This allows analyzing andidating the control algorithms, or to

emulate the response of the developed systemedarcevent through real actuators.

The Eclipse-based front-end of the CD++ Buildedkibhavas populated with the required
functionality to create complex discrete event ni®a@ecording to the CD++ language and,
if necessary, create new atomic components assatenof the basic ECD++ via the C++
development plug-in of Eclipse. The IDE provides Hinary executable for the appropriate
target through cross-compilation mechanisms andiges means to download all the
required files to the target platform to run sintiglas or an emulation of the model. The
emulation was done by using real input and outmgabilities through an IEEE-1284
compliant port, which have been added to the asigitCD++ simulator in order to allow

the test of hardware-in-the-loop techniques.

As an example of the use of the new functionalibe€£CD++ a simulation and testing
environment for an autonomous robotic system wagldped. This environment applies
modeling and simulation methodologies and the restirtg methods to test a hardware-in-

the-loop robotic system. In particular, the work an autonomous vehicle simulation

17

allows us to proof the concept of havireal and virtual simulations of the developments
done with ECD++. For instance, when developing l@otic system that includes electric
DC motors, a real motor can be hooked up to thgetdo see if the real hardware performs

as simulated on the computer.

The other important contribution of the thesis cosgs a benchmarking tool for
comparison between different implementations of EH&VS formalism and as a tool to
compare the performance of CD++ from different \@rs of itself. DEVStone was
developed to measure the performance of simulationsing in a tool that makes use of
the Parallel extension of the DEVS formalism. Tharkvdone in this thesis first adapted
the DEVStone benchmark to the standalone implertientaof CD++ [17] and then
extended the tool with a new tool that generatedatsathat are more complex. In addition
to the implementation of DEVStone adapted to tlenddlone CD++ version, we also
tackled the problem of the performance of our tamammpared with a different
implementation of the DEVS formalism named ADEVS [fscrete Event System) [18].
The main advantage that CD++ provides is flexiilily separating the development of the
simulator core and the models that use the sinomagngine; whereas ADEVS provides a
single portable library that embeds DEVS functidgah programs developed with C++.
Both implementations of DEVS have been developed ased in different academic

environments.

We used the synthetic benchmark to analyze thepeance of different models in CD++
and ADEVS, which allowed us to show the performanagiations of the both
implementations. Moreover, these results permiitetb characterize the execution time of
a standard DEVS simulator. The benchmark can be tasdetermine which directions and

decisions should be taken when updating or impgpeither tool’s simulation techniques.

18

Furthermore, DEVStone can be used to aid the mesmsnt and improvement of other

existing simulation tools.

1.3. Thesis Organization

The Thesis is organized as follows: Chapter 2 plewitheoretical background of the
Thesis discussing the DEVS formalism and the impletations of the formalism in CD++
and ADEVS, as well as basic definitions of embedslggtems and the current approaches
in the usage of development tools for embeddedesyst simulators and simulators for
embedded systems. Chapter 3 discusses the orlgiENEtone, the different models and
the adaptation to standalone CD++ and ADEVS plus nlew model developed for
DEVStone. Chapter 4 presents the results of the &i&ve benchmark, from CD++ and
ADEVS, and shows a procedure on how to use thdtsesiuthe benchmark to improve the
CD++ simulator. Chapter 5 focuses on the designth&f Integrated Development
Environment for ECD++ with a brief introduction Exlipse and the CD++ Builder toolkit.
In Chapter 6 RoboCart is presented, which is thbeslded hardware-in-the-loop design
test case presented; it was developed in its éntusing the new ECD++ IDE. The
example uses a LEGO Robotic Cart connected to abeHded PC running an ECD++
version capable of simulating and emulating modelgal mode. Chapter 7 concludes this

Thesis report and discusses about future reseaexttidns.

19

2. DEVS

DEVS is a mathematical formalism that is used ashidsis of a M&S framework. One of
the many advantages of DEVS is that it allows thestruction of hierarchical and modular
models, coupling of components, and even suppoddotinuous-like discrete event model

simulation by time approximation.

Given the natural hierarchical platform of DEVSailows the coupling of existing models
modularly in order to build bigger and more comptgstems. Because the formalism is
closed under coupling, a coupled model can beddeas a basic DEVS component. The
modular specifications of DEVS view every modelbdscks with input and output ports
through which all of the interactions between tix¢egor, and the internal and middle

blocks —if any— occur.

A DEVS Atomic Modeis formally described as follows:
M = <X! Y) Sydnt, dxts A ,ta>

Where:
X = {(p,v)/p O Input Ports, V1 X,} set of input ports and acceptable values
Y = {(p,v)/p U Output Ports, \J Y,/ set of output ports and acceptable values
S: set of sequential states
S-S internal state transition function
i QXX & external state transition function, where:
Q={(s,eyslI S,0sesty}
e =total time elapsed since the last state transition
A S Y output function
ta: S — [0, «) time advance function

20

At any time, the system is in some state definethensetS. In the absence of external
events, the system will stay in the state for theetspecified byt,, which can be any real
value between [&). Whent, is finite and is consumed, the system first owgghe valuet
and then changes immediately to a new state frarptol of states its. If an external
eventX is received before the expiration timethe new statef the system is determined
by &, wheree is the time elapsed since the last transitiorother words, the state of the
model is driven by the internal transition functidmo external events are present, if an
external event is received before the determimadrtfinishes counting then the state of the

model changes accordingly.

A DEVS coupled model, composed of several atomiccaupled sub-models, and is

formally described as:

M = <X,Y, D, {/Mi}, {1;}, EIC | EOC>

Where:
X ={(p,v)/p U Input Ports,] X,/ set of input ports and acceptable values
Y ={(p,v)/p O Output Ports, \[J Y} set of output ports and acceptable values

D = set of component names; the following requireisiane imposed
on the components, which must also be DEVS models:
For each d1 D, My = <X¢, Y4, Si, Ont, Ooxs 4 ,t> IS a DEVS with
X ={(p,v)yp U Input Portg, v X}, and
Y ={(p,v)/p O Output Portg, v Yy}
Component couplings are subject to the followiaguirements:
External Input Couplings (EIC) connect externalutgto component outputs,
EIC O {(N,ipn),(d,ipy) | ipn O Input Ports d 0 D, ipg O Input Portg}
External Output Couplings (EOC) connect componeiyuts to external outputs,

EOC{(d,opy),(d,om)) | opy O Output Portsd [0 D, ipy O Output Portg}

21

Internal Couplings connect component outputs topmment inputs,
IC O {(a,ipy),(b,ipp)) | &, bl D, op, [0 Output Ports, ipy, O Input Ports}

Select: 2 — {} -~ D is the tie breaking function for imminent comeats.

X is the set of input events; Y is the set of otigpwents; D is an index for the components
of the coupled model, aridi [0 D, M; is a basic DEVS (i.e., an atomic or coupled mqdel)
li is the set of influences of moddi.e., models that can be influenced by outputsiofiel

i), and]j O I;, is thei to] translation function. Coupled models are defined saet of basic
components (atomic or coupled) interconnected gitothe models’ interfaces. The
coupling specification consisting of the externgbut coupling (EIC) which connects the
input ports of the coupled to one or more of thauirports of the components. The external
output coupling (EOC) which connects the outputgof the components to one or more
of the output ports of the coupled model; and titernal coupling (IC) which connects
output ports of components to input ports of ottmmponents. The influences of a model
define to which model outputs must be sent. Thestedion function converts the outputs
of a model into inputs for other models. This fumctdefines that the outputs of the model

M; are connected to inputs in the molkl wherej is an element df.

The DEVS scene has been very active among sevedemic institutions, and many of
them have come up with different implementationshef DEVS formalism. A non-up-to-

date list includes the following implementationdD#VS-based simulators:

¢ ADEVS [18] provides a C++ library based on DEVS. Usas ase the classes in
the library to build their own models.

¢ CD++ [17] is a modeling and simulation tool implemegtiDEVS and Cell-DEVS
theory, which supports stand-alone, parallel [18] ambedded real-time simulation

[20].

22

DEVS/HLA [21] is based on the High Level Architecture (HURP] and DEVS. It
was used to demonstrate how an HLA-compliant DEMfvirenment could
improve the performance of large-scale distributeddeling and simulation
environments.

DEVSJAVA [23] is a DEVS-based modeling and simulation estvinent written

in Java that supports parallel execution. It presidclasses for the users to
implement their own DEVS models.

DEVS-Scheme [24] is a knowledge-based environment for modeliagd
simulation based on the DEVS formalism, supportiegl-time simulation and
control.

DEVSm++ [25] is an object-oriented software to simulateM3Emodels; which
was implemented in C++. The tool defines basicsdaghat can be extended by
users to define their own atomic and coupled DE®@monents.

GALATEA [26] is a simulation platform that offers a langaato model multi-
agent systems using an object-oriented architectinme tool describes a real system
as interacting agents.

JDEVS [27] is a DEVS modeling and simulation environmemitten in Java. It
allows general purpose, component-based, objeetvadl, visual simulation model
development and execution.

PyDEVS uses the ATOMS3 tool [28] to construct DEVS modafsl to create the
code to be executed. Models are represented aste gtaph used to generate
Python code and then interpreted by PyDEVS.

SimBeams [29] is a component-based software architecturgedbeon Java and
JavaBeans. The idea is to provide a set of layeoegponents that can be used in

model creation, result output analysis and visaéitin using DEVS.

23

2.1. Embedded systems and simulators

Throughout time many definitions of embedded systéave arisen, the modern definition

that clearly summarizes the main characteristicgioh systems is given by [30]:

“An embedded system is a special-purpose compustensydesigned to perform a
dedicated function. Unlike a general-purpose cormpwuch as a personal computer, an
embedded system performs one or a few pre-defasds,t usually with very specific
requirements, and often includes task-specific wareé and mechanical parts not usually
found in a general-purpose computer. Since theesyst dedicated to specific tasks, [it can
be optimized], reducing the size and cost of tleglpct. Embedded systems are often mass-
produced, benefiting from economies of scale... imgeof complexity embedded systems
run from simple, with a single microcontroller chifp very complex with multiple units,

peripherals and networks mounted inside a largesstsaor enclosuré.

Based on the general definition provided aboves isafe to conclude that embedded
systems refer to systems that are connected te#hevorld through sensors and actuators,
and perform dedicated tasks with varying levelscomplexity. Historically embedded
systems were mechanical or electronic devices, wetly low complexity for the former
and low computational power for the later, whichl lae advantage of providing a rather
fast and exclusive response to all or some infuthd system. In particular, the electronic
version of this type of systems was completely @padnd had their niche in process
control and automation equipment. With the advémigher computational power at lower

prices [31], the use of such systems and their éexitp has augmented considerably.

24

Some common characteristics of modern embeddeedmsgshclude:

They are often networked amongst themselves,
They must interact with concurrent real-world eest

They may contain very large and complex softwaremanents,

YV VYV VY V

They may contain processing elements that are cultge the constraints of

computation resources (such as memory, CPU, netspw&d), cost, size, etc.

Y

They more often than not rely on restricted enexggilability,

» They may require an exact and timely output foivarginput,

» Their development is done by higher power compomali equipment and then
downloaded to such systems.

» They may have one or multiple means for commurooatvith similar or different

types of systems.

Maybe the most important characteristic of any opecocessor-based embedded system
regarding its software is the certainty of the eystto respond appropriately and
exclusively to inputs coming from its attached seasThis last characterization applies to

a huge variety of systems ranging from purely toneen to purely event-driven systems.

For these systems, a systematic time handling iamel rhodeling approach is usually not
feasible to attain because of the multiple varigion the environments where these
systems work. Since a systematic design is not y@lwaossible the validation and
verification of embedded systems is accomplishedutih extensive testing, which

includes heavily use of simulations in the earlgige phase [32]. The very nature of most
embedded applications calls for stringent requirgséor high reliability, which could be

formulated by the intrinsic need for dependabiltyd safety. However, and precisely

because of the non-systematic approach of the metig original design objectives are

25

usually compromised by non-ideal implementatioreg,tsometimes, bear no resemblance
with the original design techniques, i.e. the desig initially done with mathematical

control models whereas the implementation uses Wisiéed JAVA or C++ tools.

The levels of reliability and safety often requisailt-tolerant hardware and software, and
make the testing of such systems of equal impogtamiceven of more importance, as the
design of these systems. As a result, and givemntpracticality of testing every possible

scenario designers tend to simulate as many reat\gase-scenario tests as possible.

Embedded systems are often real-time systems, ngeédmit the time at which the system
produces an output is finitely constrained, witle thurpose of providing ‘real-time’
response for certain or some system’s respongiiliEor this reason, the terms real-time
systems and embedded systems are usually refeogether as real-time embedded
systems, because of the exclusive attendanceks bgsembedded systems, they are better
suited to perform such tasks faster than genenggse computing systems. The tight
interaction between hardware and software thategimong many of these systems makes
it difficult to separate completely one from théaet, the software being heavily dependant
on the hardware platform in which it will be exemuit Nevertheless, for the purpose of this
Thesis, we will refer simply to the software side embedded systems without major

concern in the limitations of the underlying hardeva

Most of the current research on embedded systenecised on the operating system
mainly because this is theingle element that has to provide fast, predictable and
concurrent services (such as fast response toruptsr and predictable scheduling
algorithms to the programs running on top of ithe$e specialized operating systems are
often stripped-down versions of traditional timasig operating systems, which are made

appropriate for the embedded domain [33]. An essledtfference, due to the usually

26

unattended nature of embedded applications, isftinaxternal events the related internal
processes and outpuisust bedelivered, most of the time within a deadline. Foe
purpose of this research, we will refer to embedsiestems that have to respond to external
events in a real-time manner, since this the uscahario where embedded systems are

used.

When designing real-time embedded systems, the coosinon scheduling algorithms are
Rate Monotonic scheduling [34], Earliest Deadlimstscheduling [35], Minimum-Laxity-

First scheduling [36] and Maximum-Urgency-First eghling [37]. Included in the middle

layer are computation models that are widely usedthe design, analysis, and
implementation of real-time embedded software. Fbeomputation models for embedded
real-time systems have received growing attentiortee recent years. A formal model is
an essential ingredient of a sound system-levelgdesiethodology because it makes it
possible to capture the required functionality,ifyethe correctness of the functional
specification and synthesize the specification -todependently [38]. As timeliness is
often an important feature in real-time embeddestesys, computation models can be
characterized into two categories: models not cargig time such as finite state machine,
Petri Nets, process algebra; and models considdinmg such as timed automata, timed
Petri Nets, temporal logic. These computation nm®gebvide the basis to capture the
behaviour and structure of a system under developnidhose models considering time
also capture the timeliness feature of the sysfidmay support time modeling explicitly so

are naturally fitted into the real-time domain.

While simulation methods help to analyze and deslignsystems under development, they
face a common deficiency—that the simulation modets discarded as unusable by the
implementation stage [39]. More often than not, timplementation techniques are not

derived in any direct way from the simulation maddlhisdiscontinuitybetween the actual

27

implementation and the analysis, design, and moglé a common deficiency of most
design methods. It results in an inherent incoasst among the different phases of

design, implementation and test.

The simulation-based approach can be defined astlaoniology that models a real system,
and based on this abstract representation contwdels are constructed and tested through
heavy use of computer simulations [40]. This apginozan be used as a general tool for the
design of a complete complex system or a speafi, i.e. the design of an independent
component of a complex system. During differentad@wment stages, different models of

the same process are used depending on the papdskesign methodology used.

Ensuring consistency among different developmeasgs it is an ongoing research topic in
various areas of design. In software engineefirageability, in the form of requirements
traceability [41] or design-code traceability [4Rhs been advocated to ensure consistency
among software blocks of subsequent phases ofdhelapment cycle. Boyd [43] shows
how traceability can be achieved when designingtiea systems. In hardware/software
co-design, Janka et al. [44] described a methogdlogt allows the specification stage and
design stage to work together coherently when desigembedded real-time signal
processing systems. These approaches use differetitodologies for different stages.
Design of real-time embedded systems can be imgrdwe supporting consistent
methodologies among all the design phases. For lexmeal-time embedded systems
where multiple crews of engineers work on differaspects of the design, implementation
and validation, it is very difficult to manage theftware’s complexity during development

without the support of a continuous model.

The explanation given by Zeigler and Hu abmddel continuityindicates a methodology

that keeps consistency among all development stagesusethe same control models

28

that are designed and tested by simulation methoaals be deployed to the real target
system for execution’Because the control model remains unchanged tinendesign stage

to implementation stage, no transformation or retwiction is needed, more over the
originally designed and simulated control algorithmoan be deployed to operation
seamlessly. This gives the simulation-based appr@adecisive advantage among other
methodologies, with it, designers can be confidkat the final system in operation is the
system that was designed and that the system aiitly ®out the functions as tested by

simulation.

The Thesis is based on different efforts closellateel by applying simulation-based

design. The conceptual approach presented supertdesign of distributed systems via
iterative refinement of a partially implemented igaswhere some components exist as
simulation models and others as operational subsyst In [45] the authors present a
simulation and control tool that provides the calitglio model, as well as to control, real-

world systems. Part of this research focuses indéneelopment of a continuous model
Integrated Design Environment framework, based dipge, and the required adaptation

of real-world control capabilities for the curremrsion of the CD++ DEVS tool

Other methods for real-time software system devetyg have focused on exploring the
modeling capabilities for real-time embedded systeRor example, the unified modeling

language for real time (UML-RT) [46] extends UML deds to address special aspects of
designing real-time systems. Kim [47] uses the {inggered message-triggered object

(TMO) model to capture the timeliness and concuyeroperties of real-time.

The simulators used in this thesis make use informa or another the DEVS modeling
formalism as the basis for the construction of n®dad the consequent simulators. Both

simulators run under Linux and are optimized, tdaie degree, to make the best use of

29

system resources when running. Both simulatorediff the implementation although both
are written in C++. A short description of each giator, and their different versions is

given next.

2.2. ADEVS

ADEVS (A Discrete EVent System) simulator was depeld by Jim Nutaro of the
University of Arizona. ADEVS is a C++ library fooostructing discrete event simulations
based on the Parallel DEVS and Dynamic DEVS forsnadi. The models are constructed
based on a template of classes in C++ and then itmmand linked to the library to
produce the simulation executable. The latest stabision of the ADEVS template, as of

this writing, is 2.0.5.1.

Every atomic or coupled model in ADEVS is comprisédwo files:

- A library file (.h); where the name of the modeiput and output ports and local
variables are defined for the particular atomic glod

- A source code file (.cpp); where the actual modebuilt based on a template,
common elements of the class include: construdtdernal transition function,

external transition function, time advance functioatput function, and destructor.

Once the model is written as a C++ file thain() function needs to be created in a new
file. When compiling and linking all the code, tresulting file is an executable that has the
simulator embedded in the model file. As a rediné, model binary file is generally of
larger size than the counterpart in CD++. In additithe compilation time for medium to

large models, which is negligible for CD++ comparedthe simulation time, is not

30

negligible in ADEVS for some models might take mtree to compile than to execute. .

In the executable file, where the macro-model wefindd and the simulator was created
for the model, there is something to notice: destms are inside the model itself and not in
the main function, which the simulator is creatadd the ‘destruction’ process is started
from the inside out as usual but with one quirle, shmulator relinquishes its resources after

the model has done it first.

Additionally, due to the self-contained charactari®f ADEVS, the compilation can be
done with any ISO 14882 compliant C++ compiler with major problems. However,
ADEVS was developed in Linux for UNIX like enviroramnts and the reality is that some
caution has to be taken even when compiling wiffedint versions of the GNU C++

Compiler.

2.3. CD++

DEVS is a formal Modeling and Simulation framewdi&sed on generic dynamic systems
concepts. One of the main advantages of DEVS ipectd0 some other techniques is that
it allows the implementation of the simulation cergine and the incumbent model to be
completely separated from each other. In partictlarCD++ [48] implementation, takes
advantage of this characteristic because by daitiggiverification and validation of both,
simulator and model (the simulator is essentialhpther DEVS model), can be done
independently. As a result, CD ++ permits reuseradr built models, therefore if there
could be a fairly big library of elementary atonmmdels it is possible to say that bigger
and more complex models can be built from the ggsbnes and this coupled models in
turn can be used as ‘atomic’ models for even moraptex model constructions with as

many interconnections among coupled and atomic ma@dethe model requires.

31

The CD++ tool and the Eclipse-based front end C[Butlder are ongoing research
projects that implement the DEVS formalism for déte event simulations. On the other
hand, the CD++ tool and the Embedded CD++ versi@rescommon design roots, with
the exception that Embedded CD++ is an optimizedior of CD++ designed for reduced
footprint in Embedded Systems. To avoid repetitiorg will proceed to explain the
Embedded CD++ tool, emphasising that the same itmadt description holds true for

CD++.

2.4. Embedded CD++

As stated Embedded CD++ [49] is a stripped-dowsivarof the more general CD++ tool,
both tools are built as a hierarchy of classes+,Qvhere each class corresponds to DEVS
defined entities. The two main abstract classesh&®lodeland theProcessor The former
used to represent the behaviour of the atomic angled models, and the later deals with

the simulation mechanisms. Figure 1 shows a sireglgtructure of both.

Model Processor
/ \ / 1 \
Atomic Coupled Simulator Coordinato Root
Coordinatof
(@) (b)

Figure 1: CD++ (a) Model hierarchy, (b) Processor hierarchy

The Atomic class implements the behaviour of atomic companant theCoupledclass

implements the equivalent mechanics for coupledetsod

32

A Simulatorobject manages an associated atomic block, hanttienexecution 08, Axs

&on andA) functions. ACoordinator block manages an associated coupled object. Only
one Root Coordinatorexists in a simulation and is manages the glospkets of the
simulation. It is connected to the higher-level poment(s) of the model, thRoot
Coordinator also controls the global time and starts and stbpssimulation process. In
addition, it is the one in charge of receiving thueputs of the model.

The simulation is accomplished by the exchange edsages among the components, for
example, processors exchange messages to advamaxehbution of the model. Each
message contains information to identify the semaer the receiver. A time-stamp for the
message and an associated value are also includlee packet. For our purpose, it suffices
to say that two categories of messages exist acll e@egory contains several types of

inter-component messages and administrative message

All versions of CD++ provide a unique specificatitemguage that allows describing
coupling of models, initial values and external ubpevents (in the real-time
implementations of CD++, the expected output pod the expected completion time for
an external transition can also be defined). Fob&hded CD++ the complete development
process was done in an entirely text-mode environwnoader Linux; whereas for the
particular case of the standalone version of CD-t#d®r for Windows or Linux Atomic
models are developed in an Eclipse-based environimeéhe C++ language; in this toolkit
the combined use of an IDE for the development ©f Code provides greater flexibility.
When adding new atomic models, each of them mirgtrinfrom theAtomicclass in order
to extend their basic behaviour. TAgomic class defines different methods for the initial

function, internal and external functions and otifpaction.

Until now, the only way to compare the performaaoceng different versions of the CD++

simulator is by creating different sample modelsvéltheless, a benchmarking tool could

33

help better distinguish the advantages betweenverson of the simulator and another,
while permitting comparisons with other DEVS sintala. The next section presents a

short introduction to benchmarks and in partical@ommon benchmarking technique.

2.5. Benchmarking for Simulations and Simulators

As computer systems evolve is becoming more diffimuanalyze the global performance
of a system. Computer components on the other hand developed separately their own
benchmarking and performance measures. Standardsvandor specific synthetic

benchmarks exist for processors, hard disk drirsgjom access memory (RAM), external
peripheral buses, protocols, and operating systéfosvever, and due to the general-
purpose nature of computers it is not possiblertwvigde a general benchmark for a wide

range of applications.

When it comes to test computer systems in particafplication benchmarkare preferred

to synthetic benchmarks, because they reflect lgpeéormance of the systems under test
by running real-world applications [50]. In casésene is unfeasible to run a batch of real-
world applicationsynthetic benchmarksome on handy given that, they can provide with
an approximatedegree of certainty the performance of a compsystem under test by
executing artificially designed workloads that resemble the real-worlgliegtion’s

workload.

Very few efforts have been derived on the perforceaanalysis of simulators, and in
particular of discrete event simulators. Most comuoa simulators are compared against
each other based on the amount of features orbdititéo-task [51] rather than on a

systematic way. In the case of academic effortg, ¢cbmparison between different

34

implementations of same algorithms varies from agetlunded scientifically based
benchmarking to non-existent. This because anajysimulators can be an extremely
complex task; end-users can create a wide varfatyodels with different structures, levels
of complexity and mixed degrees of interaction leswmodels. Most studies of simulation
techniques are focused on very specific tools algdrithms. In particular, existing
performance studies devoted to DEVS-based simglatover almost exclusively parallel
and distributed implementations. For instance i],[5he performance measures of Cell-
DEVS models in a parallel environment; in [53], atershed model is used to demonstrate
performance improvements in parallel and distridutarchitectures; in [54], the
performance of DEVSCluster is compared with thégrerance of D-DEVSSim++; for the
comparison of DEVS-based simulators against coatiattime type of simulators Zeigler
[55] demonstrates that DEVS is more efficient whemulating natural and artificial
systems. In the particular case of the CD++ implgateon of DEVS, an interesting

approach was introduced as DEVStone.

DEVStone is a synthetic benchmark that providesaingh analysis for the execution of
models with different characteristics; in additidnprovides a common metric to compare
results among different DEVS-based simulators. @beuracy of DEVStone results is
based on a large pool of models that when combireed provide a robust test set.
DEVStone is able to generate different models ¥laay in size, complexity and behaviour
that have the same functionally of different kinofsreal world applications. Based on
predefined synthetic model it is possible to analtize efficiency of a simulation engine,
may it be a new version of CD++ or a different DEN&ed simulator, with relation to the

characteristic of a category of interest.

35

DEVStone allows the developer to have control othex key factors of performance
metrics in a simulator: the size of the model amelworkload carried out in the transition

functions. DEVStone produces models require theviohg parameters as input:

» Type: defines the different internal structure amerconnection schemes between
the components.

» Depth: the number if coupled componentseselsin the modeling hierarchy.

* Width: the number oAtomic componentis each coupled component or level.

* Internal transition time: the execution time spbwgtinternal transition functions,
measured in Dhrystones per second.

» External transition time: the execution time splewntexternal transition functions,

measured in Dhrystones per second.

With the flexibility provided by the benchmark, tbaginal DEVStone showed how it can
be used to test and optimize better algorithmsnproved features of CD++. By using
DEVStone to generate a set of small and large msodsh different parameters and
running simulations of these models with the norweakion and a modified version of the
simulator, it was demonstrated that the creatiomteimediate coordinators/simulators and
the passing of messages among them created ansiexces/erhead in the Parallel
implementation of CD++. To reduce such overheaghrave resource utilization and, in
general, optimize the performance of the tooltélad coordinator and simulator were

used in the modified version of the Parallel CD++.

On the other hand, another step towards the desigan integrated, self-contained
development tool is the development of an interfaitk the designer, which would include
a mechanism for activating the different componehtse simulation engine, including the

Benchmarking tool. An Integrated Development Envinent (IDE) would help to display

36

all relevant information on the screen as soors é@sproduced by the system. In the case of
the simulation of an embedded system this interfagef the utmost importance, since it
might be the only way to analyze the intermediatd autput states of the system being
analyzed. The development of such interface for eéngbedded version of CD++ is

discussed in the next chapter.

37

3. Embedded CD++ Builder Integrated Development
Environment in ECLIPSE

Working on ECD++ requires writing C++ code in attbased Linux environment with
open source tools. In order to improve the develgnand simulation experience, CD++
provides a IDE for the simulator core, which waveleped for the CD++ Standalone
version; the IDE plus the simulator was called CBuilder [REF1], and it was built on

the Eclipse Environment [56] as a plug-in.

In the case of Embedded CD++ (ECD++) an IDE is se&®y, because ECD++ will most
likely be running on embedded platforms with minimwr even none, output peripherals,
therefore the information required during developmms rather limited for the developer
from the intended platform. We have extended the pPovided by CD++ Builder, adding
Embedded CD++ functionality. The concept behind thito permit the developer to port
seamlessly already written code (code reuse) frdd++CBuilder to Embedded CD++

without worrying about compatibility problems.

In order to have this environment integrated whk briginal CD++ Builder tool some

basic requirements and design considerations eleel fulfilled:

- The IDE for ECD++ should permit code reuse from dhiginal CD++ Standalone
version, ideally sharing all the possible resoutbas the development environment
has to offer from the later. Ideally, it would betdgrated within the actual
environment.

- Since ECD++ will be deployed in a different platfoother than the one where it is

being developed, cross-compilation will be necegssar

38

- Means of communication to the Target platform hivbe part of the tool, in order
to download the executable binary file, running teecutable and for remote
debugging and maintenance if required.

- In order to make the tool easy to work with, it sldo remember important
‘preferences’, i.e. last IP Address used if thenmmtion is established through a
Local Area Network, or other important informatiathat remains constant

throughout the development process.

The graph in Figure 2 summarizes the additiondktoeeded to achieve the functionality
that the design objectives state. From the CD++dBuiplug-in, five new processes need to
be spawned, each one parallel to the others buot fallowing a certain order among

themselves, for instance the project needs to edefirst in order to be compiled and

generate an executable file. Only when this fileoki#ained it can be deployed to the
embedded target, and only when this file is pregernhe target it can be run remotely
thorough a remote shell connection or remotely aviemote command. However, each
process is separated from the other to give theagssaplete control over the development,
for instance, the project can be compiled but regtlalyed and a previous version of such

project can be executed for testing purposes.

39

ECD++ Builder — Requirements’ Diagram

ECD++ Project Edition (*CD++ Builder
interface)

ECD++ Project Generation (C++
compilatior)

Delivery of ECD++ executable file and

Eclipse Plug-in model and model and events’ file.

ECD ++ Project Remote Execution.

Communication with Target (fo
debugging and maintenance)

Figure 2: ECD++ Builder IDE as Eclipse plug-in — requirengent

Based on these requirements and the actual imptatr@nof Embedded CD++ and CD++

Builder, there are some limitations of the desighich are:

To allow flexibility on the Target, the cross-conpg implementation is setup by
modifying three files, in other words before usthg tool a working cross-compiler
must be set ughenthe path to compiler needs to be updated to ttweéguration
files that come with the plug-in.

The link to the Target relies on services provitbgddifferent kernel services and
additional software, therefore the Eclipse IDE pdeg a ‘hassle-free’ experience
for the model developeagfter the initial required software components have been
installed; some of the services that IDE makesfaisthe Embedded CD++ Builder

version are: telnet, ssh, java, bash, X-server, etc

40

3.1.

Most of the communication’s functionality used ihet development is only
available to theoot user by default; therefore the IDE assumes thatdaweloper

using the tool hasot access, or equivalent, to the system.

Embedded CD++ IDE - Development

Four new features need to be added to the tool:

Compile2Target - Allows the compilation of the software with theoss-compiler,
with a similar methodology as the one used forSkendalone version, with some

modifications to adapt the automated process t&@e++ tool.

Download2Target - A new feature inside the plug-in that allows ttevnloading

of the binary file to the Target platform by estahing a Network File System
(NFS) mount between Host and Target. Whenever NMk@&iht’ is set up the Host
downloads up to three files: the ECD++ simulationaby, the model file and the
external event file if any or both are selectedewhhe copying of the files is

finalized the NFS folder is ‘unmounted’.
Run Simulation on Target — Allows the execution of the simulation remotftym
the Host machine, with user selectable parametedgecting the display output of

the Target machine to a non-interactive Consolelauwnin Eclipse.

Telnet2Target — The last feature offers a way to establish aoternonnection with

the Target, which can be used to execute the stionjao debug such simulation

41

remotely by using standard Linux remote debuggioglst or for maintenance

purposes, i.e. to configure network parameterdiermarget.

In the end of the development process the IDE mamtlow looks like the one shown in

Figure 3, where the buttons providing the new festare circled.

= CD++Builder - RTPport.cpp - Eclipse SDK il ¢
File Edit Refactor MNavigate & Run Window Help
= s = 9 e iz = el »
Ci- i | & A ® [Jo s 8 WL @ |- |8 & |4 Gl G @ [F% |(CD++Builder
% Navigator 5 = 5 |NS=Iepo =8|
e @ RS Y
b= pow CLASS RTPport
B — A <1
= Target
=i .project Function Name: RTPport::RTPport()
* Description: Constructor
= Makefilel
= | RTPport::RTPport(const std::string &name) : Atomic(name }
M bt , in(addInputPort("in"))
|= model.out , out(addOutputPort("out™))
| register.cpp . preparationTime(0, 0, 0, 1)
=l register.o {
[DY Brnn son "": st string time(MainSimulator::Instance().getParameter(description(), "preparation")]}
5% Outline 22 = fwe © et some parameters that we might need form the model file
e z =i (L).getPar ster(description(), "intDelay
y W osf e setParameter(description(), "extDelay
if(time I= "")
preparationTime = time ;
B3| CD++ConsoleView 82 - Tasks =d
i Wiitable Smart Insert | 1:1
[0 || & root@x30:/devs_tesi @ root@x30:~ | Terminal | @ Plug-in Development @ Nikola Tesla Inventic @ CD++Builder - RTPp![_]
- : T A e 1 g
€ Applications Actions @@ 2% 74 @S & wed Jun 6,13:18 @

Figure 3: New CD++ Builder environment window — Embedded GDunctionality

For the Compile2Target feature, keeping consistency with standalone CDihe, first
guestion that the developer is asked is if it isessary to have a verbose output or not.
Once the user selects the preference, this isdsiora preference field and the user gets no
more questions about on screen information ofralgrocess. Next the feature checks the
availability of new model files (models and libes) within the project folder, if found
they should be moved temporarily to the folder thas the required files to generate the

simulator executable.

42

In Linux the compilation and linking is done autdioally through amakefilescript file,
for the successful compilation of the new model ponents in the simulator this file needs
to be created based on a template that includesethecomponents of the project. Once the

script is created the make command needs to beiexkwith the new file as a parameter.

For accomplishing these tasks tempile2Target makes intensive use of some Eclipse
services as well as of JAVA components. For insad the windows are made using
JAVA graphical services, plus the output of all trequired process running in the
background are redirected to a JAVA Console winadwre all the messages are available
to the user. The search for project files is ddmeugh Eclipse by checking the project file
and looking-up the list of files based on the “t@md “.h” extensions. The JAVA
threading capability built in Eclipse is used teexte shell programs in a different in the
background, for instance the copying of the newegtdfiles, temporarily, to the internal
directory where the compilation will be done. Indamn, the threading is used to launch
commands for moving the executable for the projetd the original folder as well as
temporary files. The generation of theakefilescript is done using the JAVA file I/O
functionality and, based on a template, copy tingptate character by character including
the new files where necessary at the end of limallly the threading capability is called
upon again and thmakecommand executed in a separate thread with thergedescript
file as a parameter. THeompile2Embedded feature, like all the rest of the new features,
is a self contained JAVA class that is called tiglouhe plug-in eXtensible Markup
Language (XML) script. When one of the buttonslisked on, the XML script launches
the corresponding JAVA class, which contains a#l tequired components to draw the
required window and executes the task that wagdedifor. The class diagram of the new

features of the CD++ Builder for Linux can be seeRigure 4.

Embedded CD++ - Class Diagram

JAVA

Eclipse

CD-++ Plug in
Compile2Embedded

Download2Target

RunSimuRemotely

Telnet2Target

Figure 4: ECD++ Builder Compile2Target — Classes Diagram

The Compile2Target functionality needs supporting software runninglemmeath Eclipse

to perform all the required tasks. As stated, Bdigathers information on behalf of the
new tool about the location of the files and thesixce of such files. Once basic
information is made available to ti@mpile2T arget feature, it makes use of the JAVA
threading capability that comes in Eclipse andates basic commands (i.e. cp, mv, make)
to place project files in a temporary location.also uses creates a text file based on a
template using basic File I/0O from JAVA. All theitig of the files is done using the IDE
of the CD++ Builder plug-in. A diagram of the supirag software and its interaction with

theCompile2Target feature is shown in Figure 5.

Compile2Target — Software support diagram

Compile2Tar get

A 4
CD++ Builder Plug-in
- Project Edition (Environment Layout

Eclipse
- Capture project folder (PATH)
- Check file's existence (from PATH)

JAVA

- Input/Output text file.
- Display background
process output in
Console window.

JAVA Thread

Shell commands: cp
make ‘makefile’, mv.

Figure 5: ECD++ Builder Compile2Target — software supporgdin

Running the feature three different windows will peesented to the user, the first one
asking for the verbosity option, which only occatsthe begging of the Eclipse session.
Then a Console window redirects the output frompgrecess running in different threads
in the background, and a bar-graph progress winstmows the advancing of the process.
Finally the progress window is closed and the tssahd error messages if any are

presented in the Console windows. The whole proeadspicted in Figures 6 to 8.

45

af _CD++Builder-RTPport.cpp - Eclipse SDK =X
File Edit Refactor Navigate Search Project Run Window Help

It-rBa AaF e 288 |5 A BFF 0|0 |87 8- % cre- £} [#cnsBuilder »
&5 Navigator 2 3 = 8|/ RTPport.cpp 5 " =i
coar] el v P B
b = ppw = * DESCRIPCION: RTAtomic
~ ZRTPport i
i) 3 i i y —
(& Target . AUTOR: Ezequiel Glinsky
-PFCHECE i * EMATL: mailto://eglinsky@dc.uba.ar
BimyLe . FECHA: 01/08
R 1 B f2por
Gy 2. o T T X | -+
el dhry.h Would you like to run in verbose mode?

: #include <string
Makefilel #include "dhry.h Yes
@moﬁeﬂ.ma #include "RTPpor
=l #include
EE Outline =3 =5 #include "mainsi] or::Instance().getParameter{ ...))

— // MainSimulator::Instance().Spin_Motor....()
Ba e~

ary

on't ask me again,

p
/

/** Global Constants *%/

//const bool RTDEVS_DEBUG = true;
ronet _hanl RTNEVS NERNC — Falea- =]
[a] i I¥]

/
/

Bl Co++ConsoleView 82 Tasks =0

| &

\
Figure 6: ECD++ Builder Compile2Target first window

af _CD++Builder -RTPport.|
File Edit Refactor Navigate Search Project Run Window Help

B a6 h? | eld2eitl| B A 8RN O || @

iy e br o ¥ |65CD++Builder »

& Navigator b =0 RTPport.cpp 5 k- =0|
esaleg 7|/ B

b = ppw = * DESCRIPCION: RTAtomic

= ZRTPport Al

AUTOR: Ezeguiel Glinsky

(= Target X =

[l .project B ¥

&l dhry_L.c Building Project

el dhry_2.c - i

[& dhry.h

Malkefilel § Running the makefile...
@model.ma ‘ #
il =i # e
52 Outline 32 =5 # ' Cancel .getParameter(...))
laz E\ “S @ X
af .af
/** Global Constants *%/
//const bool RTDEVS_DEBUG = true;
ranet hanl RTNEVE NERIC — Falea- =]
(=1 : [x
& cD++ConsoleView 5 -.jasks‘ =0

In file included from /eclipse/plugins/CDPlusPlusBuilder_1.1.0/internal/npCD++/event.h:21,

from /eclipse/plugins/CDPlusPlusBuilder_1.1.0finternal/npCD++/root. h:22,

from /eclipse/plugins/CDPlusPlusBuilder_1.1.0fintemal/mpCD++/mainsimu.h:22,

from register.cpp:15:
eclipse/plugins/CDPlusPlusBuilder_1.1.0/intemal/npCD++/cdTime.h:14:13: waming: extra tokens at end of #fndef directive
Jeclipse/plugins/CDPlusPlusBuilder_1.1.0/internal/npCD++/cdTime.h:15:13: warning: 1SO C requires whitespace after the macro name

I Writable ‘ Smart Insert | 2B S ‘

Figure7: ECD++ Builder Compile2Target progress window

= CD++Builder - RTPport.cpp - Eclipse SDK —-BX

File Edit Refactor Navigate Search Project Run Window Help

rEE | A2? e|d2et | A8 O |Gr|® & |80y 5 | CDs+Buicer »
- Navigator 22 =il & RTPport.cpp X =B
eoalos T T Ty
b = ppw =|| * DESCRIPCION: RTAtomic
¥ =RTPport ’ y)
& Tagér . AUTOR: Ezequiel Glinsky
5 project * EMATL: mailto://eglinsky@®dc.uba.ar
[dhry_1.c : o
- 'ECHA: 01/08/2001
[& dhry_2.c T Ty
[l dhry.h
include files
#include <string.h>
bk Makefilel #include "dhry.h" S h
A% model.ma #include "RTPport.h" // ba er
= i =i #include "message.h" InternalMessage
92 Outline 52 =H #include "mainsimu.h" // cla Simulator (MainSimulator::Instance().getParameter(...))
// MainSimulator::Instance().Spin Motor....()
T
ants
//const bool RTDEVS_DEBUG = true;
ronet hnal RTNEVS NERNN — Falea-
[«
gCD++CnnsdeView 22 Tasks =0

macroexpansion::expanat) : =
make: Leaving directory ‘feclipse/plugins/CDPlusPlusBuilder_1.1.0/intemal/npCD++' |
| Transfering newly created project files...
warning: the use of ‘tmpnam’ is dangerous, better use ‘mkstemp’
mv [eclipse/plugins/CDPlusPlusBuilder_1.1.0finternal/npCD++/RTPport.o /eclipse/runtime-EclipseApplication/R TPport/mv /eclipse/
| plugins/CDPlusPlusBuilder_1.1.0/internal/npCD++/register.o /eclipse/runtime-EclipseApplication/RTPport/Finalizing project...
|simu_e was created, ready to to start simulations... ‘

Witable Smart Insert | 1:1

Figure 8: ECD++ Builder Compile2Target — IDE wh&@ompile2Tar get finishes

The Download2Target functionality uses the NFS mount feature of Linindtially the
plug-in looks for the existence of the binary filefound it creates a folder within the
project directory where the Target will be mountBg.calling the mount service on Linux
much of the problems related to authentication @mthection over the network are dealt
by the mount utility and the operating system. Qsail that was found during the
development is that when executing the copy comsandifferent threads from Java, the
execution is too fast for the scheme used, reguitirmany threads trying to use the results
of a command in a previous thread, i.e. the copgroand at the same time that the mount
NFS folder. As a result, the last task that is marge of demounting the NFS folder is
called for during the copying of the files, whidwdws an error of the network device

being busy.

47

To overcome such a problem, a scheme that forcpgengal execution of the threads was
implemented. In general terms this scheme doesahotv the threads calling for an
execution of external commands to run in parafietcing the main thread to remain
waiting in itself until the thread that was firsteated is terminated; i.e. the main thread
waits for the NFS folder to be mounted and thentsvir each file to be copied into the
Target before copying the next file or before dentmg the NFS resource. The IP Address
field of the IDE is saved in the preferences fifetlee plug-in to save the developer the
hassle of introducing the IP address every timedezls to download a new version of the
embedded simulator. A remote folder field was @edh case there is the need to have
multiple versions of different simulators on thebsdded device, if it has enough memory.
Such configuration though, would require that tlserucreate new access permissions for
multiple folders on the Target before using therhe Tadvanced options field provides
flexibility and permits the use of virtual Targetsavailable, i.e. the virtual device is inside

a folder or is a file that needs to be mounted Wifferent parameters than an NFS mount.

The Download2Target feature design chart shown in Figure 9 depictsréiationship
between the feature and the supporting softwaréhimrdeployment of the executable file
and the required files needed to run a simulatiothe Target Platform. Initially the feature
gathers information through a JAVA window with apts fields where the user can
explicitly type in the desired destination foldehave the binary should be copied. Plus it
gathers information about the location of the fikbat will be copied. To check the
existence of the files introduced, an Eclipse senis summoned to check the in the
project’'s path the files introduced. With this infmation the feature uses a JAVA
background thread to ‘mount’ a networked folder the Host. If this connection is
established successfully then the feature initiatitional threads and copies the required

files, one after the other, to the destination éoJdis a last step the feature ‘unmounts’ the

48

NFS directory from the local folder tree. This @& does not use any functionality of the

plug-in directly.

Download2T ar get — Software support diagram

Download2T ar get

l

CD++ Builder Plug-in

Eclipse
- Capture project folder (PATH)
- Check file's existence (from PATI

- Generate options
window.

- Display background
process output in
Console.

JAVA

JAVA Threads
Shell commands: mkdir, cp,
mount NFS, umount.

variable, kernel services.

Linux Network services, shell interface, commands RATH environment

Figure 9: ECD++ Builder Download2Target — software suppoaggdam

Figure 10 shows a snapshot of the options windoat pgops up every time that the

Download2T ar get feature is executed, the target IP address andnsiields can be seen.

The selection checkboxes for the files are cheetabling the text boxes to accept inputs

(the boxes are disabled when the selection chedsbare unchecked). Something similar

happens with the advanced options checkbox.

49

-

CD++Builder -RTPport.cpp - Eclipse SDK - & X
Eile Edit Refacter Navigate Search Project Run Windew Help
-l | A7 & |28 | R-A LRI O QB | E-F % oo [|EED s+ Builder
. Navigator 52 =ol|E rRPootte 0 2~ =g
= Download Project x
e @ Bgs T /
- . = | Target IP Address
T =
= ppw 134.117.53.97
= 1= RTPport X X
Remote Folder (by default: simulation)
(= Target
B L]
=l .project
iﬁdhw_l.c B Model file to be copied
[€] dhry_2.c |~ Browse
¢ dhry.h Events file to be copied
#1| |7 Browse
= Makefilel i : .
'iéjmude{.ma " Advanced Users Only. Enter desired paramaters:
25 Outline 2 =8 #il .getParameter(...))
% a8 ¥
Proceed Close
/ feormrpoorTrrT oo ——troe;
roanet _hanl RTNEVS NERNA - falea-
El
Q] [“ansoleV I8 . Tasks =0

Figure 10: ECD++ Builder Download2Target window screenshot

Once the executable binary file for the appropriedeget plus the model and, if required,
external events files have been downloaded thestilisthe need taemotely run the
simulation on the Target platform. A solution to this problé&rprovided by a third new
functionality that automatically generates a scfilgt based on the options introduced by
the user in a new ECD++ Builder window and thersritrand displays the remote output
information in a non-interactive CD++ ConsoleViewndow. This functionality works for
any model that is downloaded into the defasithulation/ directory, if the executable
file and the additional files were downloaded iffetent directories other than the default
then the best alternative to run the simulatiorioisonnect remotely to the Target and

execute the simulation from a remote shell.

The method used to execute the remote commandassesire sheltall, therefore prior to

the use of this functionality an ssh-keyword netilde generated and shared by both

S0

platforms [57]. This setup allows the executiorsigle commands from registeredhost

in the Target platform without the introductionpzfsswords or authentication.

The process for the remote execution of the sinarat rather simple. On pressing the
remote execution button in Eclipse the cl&smSimuRemotey() is summoned and, an
option window pops up, allowing the user to introewall the parameters desired for the
simulation. After introducing all the parametersdahe execute button is pressed in the
options window, the feature mounts the Target detistination folder as a NFS device in
the default Target foldertarget) and a script file is created based on a tempiétethe
parameters introduced by the user. Using differsaetuential threads, this file is
immediately made executable, copied to the NFSctirg and the Target folder
unmounted. Upon termination the feature runs a tensommand executiorssh) in a
separate JAVA thread, redirecting the output of pinecess running in the thread to a

Console Window.

Figure 11 shows the supporting software requiredaimplete all the steps needed. The
basic information is provided by Eclipse itself df@rences) then the feature executes
different shell commands in a sequential mannenenof the steps can be executed in
parallel, and the execution of one after the oth@nforced. The commands executed only
present a message if some thing goes wrong witinthenting of the folder or the creation

of the file. On simulation the output of the sintida takes precedence and all the
messages are redirected through JAVA to an existemsole Window in the Eclipse

Environment. A picture of the parameters window femote execution can be seen in

Figure 12.

51

Run Simulation Remotely — Software support diagram

Run Simulation Remotely

A 4
CD++ Builder Plug-in
- Options Window
Eclipse
- Capture project folder (PATH)
JAVA
- Options Window
- Display background JAVA Threads
; Shell commands: mount
process output in NES Seriot file
ConsoleView -CF SCP:ID ile’,
window. umount, ssh.

- Create script file.

Linux Network services, secure shell interface ntlieshell commands in
PATH environment variable, kernel services.

Figure 11: ECD++ Builder Run Simulation Remotely — softwan@gort diagram

m @

ile Edit Refactor Navigate

CD++Builder - RTPport

Search Project Run Window Help

| X

r QA7 e/ d2ebhi | B A ERE G Q- | |0 G0 & @ [|EICD++Builder >
%5 Navigator 2 = B |0 RTPport.cpp & =g
s G R +
T i
1 CLASS RTPport
= I=ZRTPport
(= Target
& project ; Function Name: RTPport::RTPport()
Descrintion: Constructor
=| Makefilel EREELS Run Sin Targe otel bl i
& model.ma RTII‘pm The simulations will run with these parameters
¥ , ini
|=! model.out . out{ |-g00:00:03:00 -mmeodel.ma -eevent.ev -o- -t00:00:10:00 -W
[¢ register.cpp + PTER
register.o {
[F1DTBnnrt can - s Proceed Close ription(), “preparation"))
5= Outline 22 = e e
stOT TSI INg TIMEINTOe Ayt WMalis IMIIaTor: ;IS TANCe] J . getraraneter (ription(), "intDelay
Bwaww e ¥ St i etring timaBatDalavt s T il et Paransterl desarintinnt MartDalat
z std: :string timeExtDelay(MainSimulator::Instance().getParameter(description(), "extDelay
if(time 1= "')
preparationTime = time ; =
“ v
Q CD++ConsoleView £ . Tasks =0
: Writable Smart Insert 1:1
|58 | ;| B root@x30:/devs_tes| Bl root@x30:~ E Terminal 2 Plugin Development @ Nikola Tesla Inventic & CD++Builder - RTPp EI
o [7
"G‘ Applications Actions _‘ﬁ@/

@5 & wed jun 6,13:20 @

Figure 12: ECD++ Run Simulation Remotely — Parameter's Iripox

52

The last feature added to the CD++ IDE is callethet2Embedded. The primary function

of this new functionality is to establish a commuation channel form the Host to the
Target to perform different tasks within the targd¢vice. The communication is
established using Telnet mainly because the fadtmi a Telnet server in the Target is
small enough to be present in any type of embeddette; since these kinds of devices are
known to have limited memory space; however, Tellgd increases the vulnerability of
the system [58] providing less security in the autication and communication than other
types of network communication, in this project® tsecurity of the Target system is not

critical therefore it can be traded-off for smalleotprint.

Another advantage of Telnet is that is simplerdtug and modify the Telnet server side
with minor effort from the developer, also therehis need to consider that there is a Telnet
implementation for every kind of Linux distributi@s well as Windows environments and
other Embedded Real-Time operating systems. Inrdadevork, this connection scheme
requires the user to have prior access to the Targeother means other than the

development tool to set up the Telnet server abagehe NFS server and permissions.

Figure 13 summarizes the required software suppbithe Telnet2Target feature. A
window is presented to the user filled with infotioa extracted from the plug-in
preference’s file. In the options window the Id&tAddress used to connect with the Target
is displayed and the user is set to the root ugatdfault. The feature executes the telnet
command in a terminal window that is dependanhefX-server system. In Fedora there
are two common options: GNOME and KDE. This is th@son why the options checkbox
allows the user to change the Desktop Environmghé selection allows either one of
them but not both, neither none. The selectionra will force the non-selection of the
other. Once the information is accepted the mas<ls launch which consists of a single

task: run the telnet command in the appropriatemireal window for the Desktop

53

Environment. Figure 14 shows the options windowt tteomes up when the
Telnet2ZEmbedded feature is summoned with the checkbox selectingn@nas Desktop

Environment.

Telnet2Target — Software support diagram

Telnet2Target

v
CD++ Builder Plug-in

Eclipse
- Capture project folder (PATH)
JAVA
- Option window JAVA Threads
Shell commands: telnet

Linux Network services, Desktop Environment TerrhirRATH environment
variable contains all shell commands.

Figure 13: ECD++ Builder Telnet2Target — software support ciag

-] CD++Builder —RTPportcpp - Eclipse SDK — & X
File Edit Refactor Navigate Search Project Run Window Help
-l | A AT e 2el | B AW O |Qr|® & | Fi~ilr s br B |CD++Builder ™
5. Navigator & = 0|0 ATPpor.cpp & i
o EE :
b = ppw | = DESCRIPCION: RTAtemic
- = RTPport)
. AUTOR: Ezeguiel Glinsky
Lt ; g Tehetoraga 5
i project © EM User 1D (default: roat)
Le| dhry_1.c
v ||
€ dhry_2.c
2 dhey.h Target IP address ([host] [port])
#incl
__.__‘Makeﬂlel fincl, Select XServer: Gnome KDE
@& model.ma #incl ~ L
- - = = #incl
5 Outline 32 =7 #inecl Eee | T ef(_j.getf‘cu.'dmet-:rc s)
B aw o™
** Global Constants **/
J//const bool RTDEVS_DEBUG = true;
ranet hanl RTNEVE NERIIC — fFaleca- =
0 v
QCD++COHSG|€W€M’ 2% . Tasks =0
L =
=
1=
Writable Smart Insert 4 5 3

Figure 14: ECD++ Builder Telnet2Target window screenshot

Having built the interface for an embedded systamgood way of testing it is by
developing a simulation with a medium level of cdexity, for example the use of
Hardware-in-the-Loop simulations require the ma@ifion of the simulator’s core system,
including timely response to inputs and the adexjimindling of input and output data.
Therefore, to show the capabilities of the new tgwment tool and the flexibility of

ECD++ when dealing with external events a commodehwas built, a semi-autonomous
robotic cart which is capable to go around obstaekhen they are found in its path,
through the use of a touch sensor. The construetahtesting of the model is given in the

next section.

55

4 RoboCart

The fundamental use of CD++ is to be used as adeada tool for discrete event
simulation learning. Though most simulators proveh®ugh abstraction for the student to
understand the principles, there is always the feeor' missing in this approach. At the
same time, interfacing through a computer printat pas been, probably, the most used
type of interfacing throughout the history of cortipg ranging from rather simple
communication protocols via the standard paraltat pr data intensive communication
using enhanced version of the parallel port asrdest in the standard IEEE 1284. This
port emits and receives TTL (transistor-transisbgi€e) signals of O [V] and 5 [V]. The
outputs of this port are latched by flip-flops, shconserving the last value written to the

port.

There has been a steady ongoing work in the Emide@d®++ front to run Real-Time
simulations. Until now, the work done on Embedddd+& provided us with a special

option to run simulations in real time, using tleenputer's real-time wall-clock [51].

Using the new IDE for Embedded CD++ tour goal wabuild a test system as quickly as
possible with a medium level of complexity, whicftludes the development of Hardware-
in-the-Loop simulation test system. By using autteda common tasks during
development, that had to be manually coded or typeatior to the existence of the new
ECD++ IDE tool, a project that would have a relatlead time of a couple of weeks was
finished in 5 days since the conception of the rhtml¢he test and debug stage (including
the development of the hardware and software coemsh MARCELO: SI PODES
AQUI PONE UN DETALLE DE CUANTO TARDASTE EN EL SOFTARE SOLO, Y

SI PODES, DIVIDILO EN DEVELOPMENT/TESTING. For theevelopment of the HIL

56

system, DEVS models of all the components usedevbrerated and coded accordingly the
standard CD++ template. Because CD++ was also ojgzel DEVS models, and is a
DEVS model in itself, new DEVS models that dealthathe interaction of external events

and the simulator’s internal behaviour were alsated.

In general, Hardware-In-the-Loop simulation is aayic test technique that simulates the
I/O behaviour of a physical system that interfates® computer control system in real-
time. It is dynamic because the values of stimgigsals generated by a simulator are a

function of a computer’s response from the previogde.

However, due to the slow nature of the peripheratapared to the processing speed of the
computer's microprocessor there are some techrballenges at the time of the
implementation. In the ECD++ case, when the simoulat running in real time mode, an
event file is read at the beginning of the simolatand according to the information
contained in the file the simulator engine assantexternal event when the real-time clock

reaches the predefined time.

To be able to respond to external events is obwioatsthe simulator needs to be run in real
time; otherwise, the simulation would evolve inrad scale too fast compared to the time
scale of the real process making it impossibldHerslower real events to catch up with the
simulation. When running in real time, the ECD+mglator requires the time-stamp of the
external event and the time stamp of the expedtalifation time of the simulator's

response.

The approach presented in this Thesis modifiesotding of events running the simulation
individually for each received external event. Timethod is also DEVS-based and can be

easily cast in a DEVS atomic model:

57

Parallel port read =X Y, S, 4 dnt, Gexs 4>

X: Parallel port external event: is a new event canfiilom the parallel port.

Y: output port: is a new external event with all thata required by the root
coordinator to perform a complete run of the siriafg timestamp of the event,
expected completion time, port name and value.

S. system states: forward external event from thalfeh port; wait for next external
event.

ta: time advance function: the time advance is predids real time count from the
computer’s real time clock.

Adne: internal transition function: is the total timer fthe simulation to run, if infinite
then this atomic component can only respond toreatevents.

a. external transition function: since there is m@ct method to generate interrupts
to the processor from the parallel port, the exetmansition function is implemented
as constant polling and comparing the acquiredeveduhe last value in memory, if
these values are different then an external egegemerated.

A: output function: sends the value of the exteavwant to the list of external events
managed by the root coordinator along with the tt@np of the event, the expected

finalization time, the input port and the valuesafoating-point number.

Program Code 1 highlights the main sections ofctbae that deal with the polling of the

parallel port and the subsequent generation ofrextevents from the parallel port to the

model, only when there as a change in the stateeofnput register in the parallel port.

This is done only when two conditions are met. Titgt one involves the non-existence of

an event file, only when this field is left blan&rcthe polling mechanism work. The second

58

condition has been added to ECD++, and is the itiefinof another flag “-g” at runtime
that instructs the simulator, through the functisRealRun()ffrom theloader() class that
the simulation being performed will use the memspace destined for the parallel port,
which is usually protected by the kernel [59]. Whexecuting the simulation with the “-g”
flag, some portion of the code that request peiomsfor the software to use restricted
memory space is executed; once the request isegranstarts to execute an additional
thread that will ultimately control the memory pasis that change the assertion of bits in

the parallel port.

MainSimulator &MainSimulator::loadExternalEvents(i stream &fileln)
{
Root::Instance().initialize();

if (loader()->isRealRun()&&loader()->EmptyEventFile 0)
/Ireal run and real events ena bled
{

try {
tnow = Time::currentTime();

if (thow < Time::Zero) thow = Time::Zero;
deadline = Time::currentTime();
deadline+=loader()->endeventTime();
if (deadline < Time::Zero) deadline = Time::Zero +
loader()->endeventTime();
inportName ="in"; // the names of the ports are fixed
outportName = "out";
parvaluetemp = pport.readfromParallel();
if(parvaluetemp != parvalue){
/Ivalues should be different to activate the event

Port &port(Root::Instance().top().port(inport Name)) ;
Port &outport(Root::Instance().top().port(outp ortName)) ;
convalue = parvaluetemp / 1.0;

std::cout << "Event occurs @: " << tnow.asStri ng() <<""

<< "Deadline @: " << deadline.asString() << " "
<< "Value: " << convalue << "\n";
Root::Instance().addExternalEvent(tnow, deadl ine,
port, outport, convalue) ;
parvalue = parvaluetemp;
} else {
//Do Nothing

}

} catch(InvalidPortRequest &e) {
e.addLocation(MEXCEPTION_LOCATION()) ;
throw e ;}

} else {... read external events from file...}

Program Code 1: Parallel Port read atomic DEVS implementation

59

The next Program Code 2 deals with the initialaa@nd loading of the type of simulation,
i.e. if the simulation is executed with the “-gad then the executable file will start a new
thread and send the signals for the initializatadrthe motor, plus the loading of each
external event as a single external event instdéaal ool of events (if no event file is

defined), this is done through a do...while structure

MainSimulator &MainSimulator::run()

{if(lloader())

MException e("The MainSimulator loader not found "y;
e.addText("The loader must be set before running the simulation.");
MTHROW(e);

if (loader()->isReal TineRun()){//initialization of the notor

pport.spincl ockwi se = fal se;
pport.spincountercl ockw se = fal se;
pt hread_create(&t hreadl, NULL, control_notor_, (void*) NULL);
} //linitialization ends

loader()->loadData();

DBG("Loading Models...");

loadModels(loader()->modelsStream(), loader()->p rintParserinfo());

Root::Instance().stopTime(loader()->stopTime()) ;
startTime_m = elapsedTime();
/I run the following code at least once
do{
/I at the end decide to contiune looping or not
DBG("Loading ExternalEvents...");
loadExternalEvents(loader()->eventsStream());

DBG("Running Root::Instance().simulate()...\n");

DBG("startTime_m =" << startTime_m.asString());

Root::Instance().simulate();

i f (I oader()->i sReal Run() &&l oader ()->EnptyEventFile())
{if(Tinme::currentTinme()>=l oader()->stopTinme()) break;}

} while (Ioader()->i sReal Run() &&l oader ()->EnptyEventFile())
/Ireal run and real events enabled

loader()->writeResults();

if (loader()->i sReal Run())

{if(!'pport.close()) std::cout << "\nCannot <close LPT1 port!" <<
std::endl;}

return *this;

}

Program Code 2: Main simulator code with real input capability. detl code in italics.

60

Whenever the simulation runs mormal mode(i.e. without the *-g’ flag) the simulator
loads all the external events from an external &svéav) text file, and then the simulation

is executed having a list of all the future extémaents in memory.

In the case where the inputs are changing in @, tit is not possible to anticipate future
changes neither have a list of future timestamps slgnal when the next event will take
place. For this reason, whenever the simulatiors rianreal time, with real inputs, the
simulator treats each external event as a single uamque external event, i.e. runs a
complete simulation every time an external eveneceived. This whole approach takes
considerable more time to execute than the noredigion, but considering the speed of

the external events, this does not have major itmpac

4.1. ECD++ with Hardware-In-the-Loop

The parallel port is tremendously slow for todagtandards, and because there is a lot
going on between readings, it is just not possibldhave an accurate measure of the
sampling frequency. One of the main reasons fariththat the code developed by the end
user, the model developer, will run between reaimtpwever, it is possible to measure

the sampling frequency when there is no changeeanriput.

The sampling period measured on the platform was0.0R2 (s) which gives an
approximate sampling frequency of 46 reads perrgkcAs stated this number is only
given as the empirical maximum frequency at whiel simulator performs, any code
developed by the user is executed between sampiewid affect the sampling frequency

parameter, making it much slower.

61

On the other hand, in the case of the ‘writes’hHe parallel port the contrary happens,
because is very likely that the electro-mechanictdrface, i.e. a motor, will be several
times slower than the port frequency; thereforsame cases, there is the need to create
delays between port-updates. For example, thenafigiroof of concept of the output
through the parallel port was to drive a small 2-stepper motor; the type of motor
commonly found in toys, CD-ROMs and hard disk dsivr spinning this type of motor a
defined sequence of switches (bits) need to bedarand off and a delay needs to be
introduced between changes to accommodate thensgsspeed to the motor. In the final
implementation the time between updates to the mstdone in the user software or it can
be done in the model, because the motor usedrigshlbss DC motor that only needs one

switch (bit) for each direction.

4.2. Motor Driver

The main difference of using a stepper motor i$ tha speed, spin direction and position
of the rotor can be controlled with trains of psisthat can be easily generated by a
computer, while a continuous brushless DC motouireg polarity inversion to switch the
direction of spin (which is done via hardware), amgbosition the rotor accurately requires
slightly more elaborated electronics. Despite tussideration, a single general driver can
be built for both types of motors. For an initiast setup, in a four-wire stepper motor the
coils can be connected in such a way that evere tihat they are energized with a
predefined set of binary numbers the rotor spinaf % turn, therefore by keeping track of

any number in the set is possible to know the osif the rotor.

62

PTSL Aux3(s])

11 o EE T PP(Bar2/ 7 a
1A[1 . = Fob b I Au213) = [& 1
ivll 2 ' S A
2Af] 3 S Y-
s PPa(ar 1) Py
Al s 10 5Y bl HEHREEHE— 36{?
s I 4 Aux13D 2 ¢) r:_. ! . 'q

e) 33chn

i YAV

PTBALXILS) % T

Note: +5v [.d1[2 ;
el Stepper Motor Block

Figure 15: Stepper motor test circuit layout [63]

According to the schematic shown in the Figure thBge input-bits are required for the
motor to spin: two of them are connected to theamtitrough a quad push-pull driver and
the other is connected to the enable pin of thees@rver to enable the outputs of it. The
logic inverter is only used to minimize the wiresying from the computer to two. All the
capacitors are in place to limit the ac-ripple loa tic power source. The low value resistors
limit the current that is fed to the motor and tigh value resistors are set in a pull-down

configuration. Figure 16 shows the circuit moundedca breadboard.

63

Figure 16: Stepper Motor test circuit

Since the simulator is performing multiple differeéasks and because the actual drive of
the motor implies outputting a value, wait for ansierable time and output a new value
according to a predetermined sequence. An eas)eimgitation of these control system
would assume that a specific processor is dedicatdy to generate the write-and-wait

sequences, while it communicates with a differemttiol processor that sends enable and
control signals. A good abstraction of this conaapkes use of a new thread that only runs
the motor and leaves the main simulator thread annple and flexibility to do any kind of

control it needs to do without having to make majbenges to the architecture of the

system.

4.3. Implementation

During the development of this test case, the refv énvironment was used and proved

useful in the debugging and optimization of thejgrb Additionally, the information

presented on the IDE made the design process easiemuch quicker than a purely text

based environment.

The control of the sequence of steps for the modor be done through a new thread that
behaves as a completely isolated processor, wtsatnly task is to generate the steps and

delays required for the motor to spin. This is dega in Figure 17.

Original Simulator Process (Main thread)

Real time execution enabled (-g) + real time adegnd/)

Main thread
//developer code New thread
MainSimu::Spinmotorclockwise; —» | Spinmotorclockwise;

- , _ |__—» | Spinmotorcounterclokwise],

MainSimu::Spinmotorcounterclockwise-—T——>

If spinmotorclockwise ==
{spin_motor_clockwise;}

If spinmotorcounterclockwise ==
{spin_motor_counter_clockwise;}

If spinmotorclockwise ==0 &&

spinmotorcounterclockwise ==

{motor_stop;}

Main::MotorStop;

(Main thread)
Termination the process, save logging and outpes ff set; perform garbage collectign
and destruct remaining processes.

Figure 17: Spin motor thread implementation — pseudo code

Figure 17 shows that when ‘real simulation’ (whbea t-g” flag) is selected, the simulator
creates a new thread and defines shared variablestiis through these variables that the
main thread is capable to control the executiothefcode required for the motor to spin in

either direction. The slave thread reads the vabiigisese variables in an infinite loop, and

65

then uses them as flags to execute defined sequehegitings to the Parallel Port output
register. For a stepper motor four updates areinedjuand occur after a short delay and
then are repeated indefinitely until there is anggain one of the control variables. For a
DC motor the updates are written in every executibthe thread, this is obviously not
necessary since it is possible to set the regisseéonce to keep the motor running, but then
the flexibility of having a second thread is lo&tditional care has been taken to avoid
unknown states, i.e. both control bits assertedcdéethe implemented condition for the
motor to spin is to have only one of the Booleanaldes asserted (true) while the other is

unasserted (false).

The implementation of writing to the Parallel partd generating the sequence that moves

the motor can also be cast as a DEVS atomic model:

Spin Motor = <X, Y, S,4 Ant, Qexs 4>

X: Parallel port external events: these are the awimgthe state of four inputs:
- Spin_Motor_Clockwise, Spin_Motor_CounterClocksyiSurn_Left, Turn_Right
Y: output port: is the Parallel port.
S. system states: - Spin Motor Clockwise,
- Spin Motor Counter Clockwise.
- Stop motor.
- Turn Left.
- Turn Right.
ta: time advance function: handled externally from simulator.
dnt. internal transition function: not required forglimplementation.

d.. external transition function: checks for changesither one of the control bits.

66

A: output function: Writes a predefined 3-bit datani a pool of values to the Parallel

port depending on the state of the control vargble

The implementation of the initialization and clasiof the parallel port can be easily taken
from the explanation from above by first requesiiggmission to the system to access the
memory space destined to the parallel port. Thgiaro Code 3 shows how such scheme is

implemented.

bool parallelPort::setup(void){

if(ioperm(DATA,3,1)) return (0);

/I if access granted initialize DATA to 0x00

outb(0x00,DATA);

/finitialize all control pins to low (c0, c2 and ¢3 are inverted)
/l cO being the LSB

outb(0x0B, CONTROL);

Il return 1(true) is successful

return (1);

bool parallelPort::close(void){

//set pins to 0 and set control pins to low

outb(0x00,DATA);

outb(0x0B,CONTROL);

/IRemove access permision to 3 1/0 addresses (DATA, STATUS, CONTROL)
//starting from the DATA address

if(ioperm(DATA,3,0)) return(0);

/lif successful return true = 1

return (1);

Program Code 3: Parallel port setup and termination

Once the proof of concept test was successfullgted, a more complete test platform was
required to test different scenarios. Small carsvadely used in the manufacturing plants,
warehouses and almost any industry in generakaasgort vehicles for the relocation of
goods in short distances. In a very simplified enation scheme, we would be interested in
making this carts change direction when they seonsee obstacle in their way. Based on

this concept, and to provide a complete implementatf the RoboCart system, a LEGO

67

NXT Robotic Kit was acquired, and a small cart waslt. The advantage of this
prototypingtool is that it provides all the electro-mechanisapport required by small to
medium proof-of-concept projects and small protesyplhe standard NXT kit comes with
three DC motors and sound, touch, infrared and ¢éeatpre sensors plus a special ‘brick’
that contains a microcontroller and electronicsatdg of receive information from the
sensors and drive the motors. For the test casdyasic robotic cart was assembled without
the controller brick, and the motors connected he parallel port through a slightly

modified version of the circuit used to drive thepper motor.

; |
10K %
= M1
Pport
pin 17
Pport
pin 17 al=
M2
i;—j o

Pport pin 14

10K

=
T
oo
i
| .

Figure 18: Modified DC Motor Driver Circuit
From the modified version of the driver circuit, figure 18, the same motor driver that

controls one stepper motor is used to control tv rBotors, the synchronization is done

via software. The spin direction of each motorasteolled by one bit, CO controls the left

68

motor and C1 the right motor, and the whole sysgetarned on or off by asserting a third

enablebit (C3), which can also be used to brake.

In the software side of the implementation, theaRar port atomic block acts as a driver
providing the required code to initialize the Plalaport for subsequent use, and it closes
the port when the program finishes by callinglaose() function that restores all port
outputs to zero. The Parallel port block was cibat® a separate class and is called from
the new thread, this way it is easier to make mcatibns, i.e. change stepper or dc motors,
or upgrade the control algorithm in future develepts; i.e. if there is the need to change
the controlling method to some other control aldwn, then the class file is the only one

that needs to be changed.

The excerpted code in 4, shown above demonstiaasse of the methods used to spin the
motor so that the cart moves forward and backwBine. methods to turn left and right are
set in a way that minimum resolution for turnin@® degrees, this because the constructed
prototype is only capable of sensing obstacles wighonly one push-sensor available in
the kit, located at the front of it. Therefore,awoid completely crashing into an obstacle
constantly, the cart rotates 90 degrees to positiself parallel to the obstacle and

continues rolling forward.

69

void parallelPort::output2P_CONTROL(int cValue){
int cV = cValue;
if(spinclockwise&&!spincounterclockwise){
outb(0x03,CONTROL); // for DC motors this is enou gh
/lif it's a stepper motor uncomment these lines
[* delay(cV);
outb(0x02,CONTROL);
delay(cV);
outb(0x00,CONTROL);
delay(cV);
outb(0x01,CONTROL);
delay(cV); */ }

if(!spinclockwise&&spincounterclockwise){
outb(0x00,CONTROL); // for DC motors this is enou gh
/lif it's a stepper motor uncomment these lines
[* delay(cV);
outb(0x02,CONTROL);
delay(cV);
outb(0x03,CONTROL);
delay(cV);
outb(0x01,CONTROL);
delay(cV);*/
}

if(!spinclockwise&&!spincounterclockwise)
outb(0x08,CONTROL);

if(turn_left&&!turn_right)

{
outb(0x02,CONTROL);
delay(150000000);
turn_left = false;

}
if(turn_right&&!turn_left)

outb(0x01,CONTROL);
delay(150000000);
turn_right = false;

}
/lend of parallelPort::output2P_DATA

Program Code 4: Motor spin driver - parallel port

The turn-left and turn-right methods are implemdritesuch a way that whenever they are

summoned they restore the control bit automaticattgr enough time to complete a 90-

degree turn to either side.

70

The model of the robotic cart is rather simple aad be better explained by the use of a
diagram like the one in Figure 19. When the coteraleceives an input form the touch
sensor, meaning that the cart is facing an obstédwodecontrol code moves the RoboCart
backwards to have more space for taking the tuue 1 the availability of a single sensor
the turning is done alternating the direction o thrn (i.e. the RoboCart turns either side
twice to the left, but once to the left and thetr@ne to the right); by increasing the number
of sensors or, even better, having the providecsdhic sensor would make the direction
decision more accurate, but the system’s softwaireerd would have to increase in
complexity, because this sensor uses the Integidated Circuit 1C) communication
protocol. Therefore, the minimum turn that the RBad can take to be completely sure
that it is perpendicular to the obstacle is 90 degr The turning is done by spinning the

wheel of the turning side clockwise while the otiwreel is rotating counter clockwise.

Actuatorl -

Robotic cart
—T1——> Actuator2-

Initialize = Move forward;
Actuatorl~ /-
Touch sensor — ! If (touch sensor == pressed——— aActuator2 /-
{move backwards;

change direction 90 degrees}

Actuatorl -
Move forward. ——» Actuator2-

Figure 19: Robotic Cart — pseudo code model

This behaviour can be easily represented by a Cbwdel. The C++ code for the

RoboCart is shown in the Program Code 5.

71

kkkkkkkkkkkkkkkkk

/
* CLASS RTPport

******************/
/ *kkkkkkkkkkkkhkkk
* Function Name: RTPport::RTPport()
* Description: Constructor
*****************/
RTPport::RTPport(const std::string &name) : Atomi c(name)
, in(addInputPort("in"))
, out(addOutputPort("out"))
, preparationTime(0,0,0,1)
std::string time(MainSimulator::Instance().getPara meter(description(),
"preparation”)) ;
/lwe can get some parameters that we might need for m the model file
if(time 1="")
preparationTime = time ;
MainSimulator::Instance().Spin_Motor_Clockwise();
}
/ kkkkkkkkkkkkkhkkk
* Function Name: RTPport::initFunction()
* Description: Initialization Function
*****************/
Model &RTPport::initFunction()
ackNum = 0; // to recover the input value from the external event
return *this ;
}
/ kkkkkkkkkkkkkhkkk
* Function Name: RTPport::externalFunction()
* Description: External Function handler
*****************/
Model &RTPport::externalFunction(const ExternalMes sage &msg)
ackNum = static_cast < int > (msg.value());
if (msg.value()==216) { //checks If the external e vent comes from the touch
sensor
MainSimulator::Instance().Spin_Motor_CounterClockw ise(); //move back for
holdIn(Atomic::active, preparationTime); //t he preparationTime from

the model file

else passivate(); //if not go to sleep
return *this;

Program Code 5: Model file.

In the above Program Code, the initialization fuorctsets the motors to start spinning
forward, and initializes some intermediate variablé an external transition function is
triggered by the touch sensor (an external evegeigerated), the RoboCart model moves

backwards for a certain time-period given by timeetiadvance function entry in the model

72

file (.ma). This also triggers the internal traiwitfunction (ITF), which is activated after

the time advance function has elapsed, the coddeirike ITF turns the RoboCart to a

different side based on the last direction of tma.t Finally the model continues moving

forward (the component goes to rest) and waitsafoexternal event that indicates that a

new obstacle has been found and an evasive astigguired to overcome such obstacle.

This is presented in the Program Code 6.

/
* Function name: RTPport::internalFunction()
* Description: Internal Function handler

Model &RTPport::internalFunction(const InternalMes

{

test = 17test; //ex-or toggles the bit, thus 'remem

/I and turning in the opposite direction.

if (Itest) MainSimulator::Instance(). Turn_V_Left();

if (test) MainSimulator::Instance(). Turn_V_Right();
MainSimulator::Instance().Spin_Motor_Clockwise(); /
passivate(); //go to sleep

return *this ;

/
* Function Name: RTPport::outputFunction()
* Description: Output function handler - writes inf

Model &RTPport::outputFunction(const InternalMessa

sendOutput(msg.time(), out, ackNum) ;
return *this ;

}
RTPport::~RTPport()
II' NIA

kkkkkkkkkkkkkkkkk

*****************/

sage &)
bering' the last turn
[Iturn left or right

/ move forward again

kkkkkkkkkkkkkkkkk

0 about time and events
*****************/

ge &msg)

Program Code 6: Model file (cont)

Also in the Program Code 6 the output function rdsoor displays, depending on the

selection mode of the simulation, the time at whitul external event was received and the

value of the external even, this is last valueasywseful because, if multiple sensors are

used then we can tell the controller the directmmhich it should go. If a more advanced

73

sensor is used (i.e. ultrasonic sensor) then maagsares can be taken from many
directions to find which way presents the leastadies. The cart built for the project and

the driver circuit can be seen in Figures 20, 21 2

Figure 20: RoboCart top view

F|gur‘ 21: RoboCart — side view

74

Figure 22: RoboCart — System view (AMPRO board inside CPl&chfonitor not used)

Initially the RoboCart was tested with the extereaénts coming from an event file with
random times and event values, some of them spnet&tie and some others were closely
spaced in time. The events in the file that weoseltogether created confusing behaviour
in the RoboCart emulation, mostly because the egemieration was too fast for the
dynamics of the motors of the RoboCart and the timés of ECD++ could not be met,
sometimes this led to a random behaviour and thalpbport remains enabled even after

the termination of the program.

For sufficiently spaced external events the resarésthe expected ones, when an external
events occurs the RoboCart moves backwards acgptdithe time defined in the model
(measured in seconds) to allow sufficient spaceitio, then the internal transition is fired
and the RoboCart turns right or left based on #s¢ turn, finally it displays or prints the
event information to the screen or file and mowasvérd. This process is repeated for all

external events coming from the event file.

When running the simulation ireal mode i.e. receiving input form the parallel port and

generating an external event as soon as a chartbe input register of the parallel port is

75

detected, the RoboCart behaves as expected, mbuaitigand then turning to either side
depending on the last turn. However, the touchaeisssimply a mechanical switch that
switches between high impedance and ground, to Keegircuit simple no provisions
were made for théouncingeffect typical of this switches. Whenever the tijos of
changes of the input register is too fast (i.efieidlly pressing and releasing the sensor
very fast), the system can keep up with this réipatand the same erroneous behaviour is

present, that is to say that the port stays enahled after the termination of the program.

For a normal execution of th@mulation a small maze-like path was constructed, the
RoboCart was placed at the beginning and the pmogrgecuted. The RoboCart went
through the maze and every time it hit a wall tbetml algorithm developed in CD++ took
control of the situation; forcing the RoboCart tove backwards for the time given in the
model, then turn to a wall free side based on &lsé turn and move forward again until a

new obstacle pushes the touch sensor, when theggarepeated.

To develop the Development Environment tool furthédris possible to create a
performance measure that can be used to comparspterl and accuracy of different
versions of CD++ against other DEVS-based simuatBuch comparison can be based on
thebenchmarkingf the performance of the simulators when runingjlar simulations of
identical models. With the information provided twze benchmark and the use of common
debugging tools it is, also possible to find theissa of performance problems of one
simulator versus another. Once the cause of anplgmois found, multiple solution
strategies can be analyzed, and the simulator uedeccan be improved. The creation of

the benchmark and the strategy of analysis areiséscl further in the next Chapters.

76

References

Schludermann, Harald; Kirchmair, Thomas; Vorderdenk Markus. "Soft-
Commissioning: Hardware-In-the-Loop-Based Verifiocatof Controller Software".
Winter Simulation Conference 2000: Proceedinghef32nd conference on Winter
simulation. Orlando, FL, USA. Society for Comput&mulation International.
2000.

Puttré, Michael. “Simulation-based design puts thgual world to work”.
DesignNews. February 16, 1998

Hu, Xiaolin. “A Simulation-Based Software Developmie Methodology for
Distributed Real-Time Systems”. PhD Thesis Dissiema Department of Electrical
and Computer Engineering — University of Arizona.

Liu, Jane W.S. Real-time Systems. Prentice Halpadsaddle River, NJ. 2000.
Jerraya, A.A.; Wolf, W. "Hardware/software intefaco-design for embedded
systems"”. Computer Volume 38, Issue 2, Feb. 200§e®n63 - 69. IEEE
Computer Society.

Zeigler, B.; Kim, T.; Praehofer, H. Theory of Moo and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systécademic Press. 2000.
Morse, J.; Hargrave, S. “The increasing importawicgoftware”. Electronic Design,
Vol. 44 (1), Jan. 1996.

P. Paulin, M. Cornero, C. Liem, F. Nacabal, C. DeaaS. Sutarwala, T. May and
C. Valderrama, “Trends in embedded systems techgoloAn Industrial
Perspective”. NATO ASI on Hardware/software co-gdasiake Como, Italy, 1995.
P. Paulin, C. Liem, M. Cornero, F. Nacabal, andC@ossens, “Embedded software
in real-time signal processing systems: Applicatmal architectural trends”. Proc.

of IEEE, vol. 85(3), Mar. 1997, pp. 419-435

77

10.

11.

12.

13.

14.

15.

16.

17.

Paul Robertson, Robert Laddaga, and Howie Shrolmrotiuction: The First
International Workshop on Self-Adaptive Software&cture Notes in Computer
Science, Volume 1936/2001, pp. 1-10, Springer Be2001.

Hu, Xiaolin. Ziegler, B. “Model Continuity in the &ign of Dynamic Distributed
Real-Time Systems”. IEEE TRANSACTIONS ON SYSTEMS,AN, AND
CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NOG6,
NOVEMBER 2005.

Huang, D. and Sarjoughian, H. "Software and SinutabModeling for Real-Time
Software-Intensive Systems". Proceedings of thehtBiglEEE international
Symposium on Distributed Simulation and Real-TimppHhcations (Ds-Rt'04) -
Volume 00 (October 21 - 23, 2004). DS-RT. IEEE Catep Society, Washington,
DC, 196-203.

Rastofer, U.; Bellosa, F., “Component-based sofwamgineering for distributed
embedded real-time systems”. Software, IEE ProogsdiVolume: 148 Issue: 3,
June 2001.

Wainer, G.; Glinsky, E. “"Model-Based DevelopmentErhbedded Systems with
RT-CD++". RTAS 2004. IEEE Real-Time and Embeddedchimlogy and
Applications Symposium May 25-28, 2004. Toronton&ia.

Zeigler, B.; Moon, Y.; Kim, D.; Ball, G. “The DEVEnvironment for High-
Performance Modeling and Simulation” IEEE Compuwotadl Science and
Engineering, vol. 4 (3), pp. 61 -71. 1997.

Glinsky, E.; Wainer, G.; "DEVStone: a benchmarkitechnique for studying
performance of DEVS modeling and simulation enuinents". Distributed
Simulation and Real-Time Applications, 2005. DS-R0U05 Proceedings. Ninth
IEEE International Symposium on 10-12 Oct. 2005eRg8)g265 — 272.

Wainer, G. “CD++: a toolkit to develop DEVS modelSoftware - Practice and

Experience. vol. 32, pp. 1261-1306. 2002.

78

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Nutaro, J. ADEVS Internet Homepage. Available on

http://www.ornl.gov/~1qgn/adevs/index.htnflccessed on Oct. 12, 2006.

Troccoli, A.; Wainer, G. “Implementing Parallel GEIEVS”. Proceedings of 36th
IEEE/SCS Annual Simulation Symposium. Orlando, U3803.

Glinsky, E.; Wainer, G. “Definition of Real-Timersulation in the CD++ toolkit”.
Proceedings of the SCS Summer Computer Simulationfe@ence. San Diego,
USA. 2002.

Zeigler, B.P.; H.S. Sarjoughian, “Support for Hretdcal Modular Component-
based Model Construction in DEVS/HLA”. Simulatorgdroperability Workshop,
99S-SIW-066.

IEEE Standard for Modeling and Simulation (M&S) Hid-evel Architecture
(HLA) — Framework and Rules. IEEE Std. 1516-2008pt8mber 2000.
Sarjoughian, H.S.; Zeigler, B.P. “DEVSJAVA: Basiorfa DEVS-based
collaborative M&S environment”. Proceedings of 8@S International Conference
on Web-Based Modeling and Simulation, vol. 5, @p-3B. San Diego, USA. 1998.
Zeigler, B.P.; Kim, J. “Extending the DEVS-schemmoWwledge-based simulation
environment for real-time event-based control”. EEEransactions on Robotics and
Automation. 1993.

Kim, T.G. "DEVSim++: C++ based Simulation with Hegchical Modular DEVS
Models”. User’'s Manual CORE Lab, EE Dept, KAIST €]an, Korea. 1994.
Davila, J.; Uzcagegui, M. “GALATEA: A multi-agentsimulation platform”.
Proceedings of the International Conference on MogleSimulation and Neural
Networks. Mérida, Venezuela. 2000.

Filippi, J-B.; Bernardi, F.; Delhom, M. “The JDEV&vironmental modeling and
simulation environment” Proceedings of the the IEBM® Conference on

Integrated Assessment and Decision Support. Luganizerland. 2002.

79

28.

29.

30.

31.

32.

33.

34.

35.

36.

de Lara, J.; Vangheluwe, H. “ATOMS3: A Tool for MuFormalism Modeling and

Meta-Modeling". European Joint Conferences on Tyhéord Practice of Software.
Grenoble, France 2002.

Praehofer, H.; Sametinger, J.; Stritzinger, A. ‘é&te Event Simulation using the
JavaBeans Component Model”. Proceedings of Intemalt Conference On Web-
Based Modeling & Simulation. California. 1999.

Barr, Michael. Embedded Systems Glossary — Netrifechnical Library.

http://www.netrino.com/Publications/Glossary/index. Accessed on 2007-04-18

Moore, G. "Cramming more components onto integrategduits”. Electronics

Magazine 1965. 19 April 1965.

Thoen, Filip; Catthoor, Francky. “Modeling, Veriéiton, and Exploration of task-
level concurrency in real-time embedded system$tiwiér Academic Publishers,
2000, pp.46.

K. Ghosh, B. Mukherjee, K. Schwan, "A Survey of R&iane Operating Systems",
Technical report, Atlanta, Georgia 30332-0280, €gdl of Computing, Georgia
Institute of Technology,1994.

Liu, C. L.; Layland, James W. “Scheduling Algoritarfor Multiprogramming in a

Hard Real-Time Environment”. Journal of the ACM, V&0, Nr. 1, pgs. 46-61,

1973.

Zhao, Wei; Ramamritham, Krithi; Stankovic, J. AréBmptive scheduling under
time and resource constraints". IEEE Transaction€omputers, C-36(8):949-960,
August 1987.

Stewart, D. B.; Khosla, P. K. "Real time scheduliafj sensor based control
systems". In Eighth IEEE Workshop on Real-Time @peg Systems and
Software, May 1991.

80

37.

38.

39.

40.

41.

42,

43.

44,

45,

Dertouzos, Michael L.; Mok, Aloysius K. "Multiprossor on line scheduling of
hard real time tasks". IEEE Transactions on So#wangineering, 15(12):1497-
1506, December 1989.

Sgroi, M.; Lavagno, L.; Sangiovanni-Vincentelli,, AFormal models for embedded
system design"”, Design & Test of Computers, IEBBIume: 17 Issue: 2 , April-
June 2000.

Hu, X.; Zeigler, B. P. "An Integrated Modeling a&imulation Methodology for
Intelligent Systems Design and Testing". Perforneamdetrics for Intelligent
Systems Workshop, August, 2002.

Washington, Chris; "HIL simulation boosts autometivdesign efficiency".
Automotive DesignLine, Accessed on May 09, 2007.

http://www.planetanalog.com/showArticle?article| (39501368

Ramesh, B.; Jarke, M. “Toward reference modelsréguirements traceability”.
Software Engineering, IEEE Transactions on , Volug¥e Issue: 1, Jan. 2001.
Antoniol, G.; Caprile, B.; Potrich, A.; Tonella, PDesign-code traceability for
object-oriented systems”. Annals of Software Engiirgy vol. 9: 35-58 (2000).
Boyd, Joanne L.; Karam, Gerald M. “Designing reaztisystems for strong
traceability”. International Workshop on SoftwarepeSifications & Design.
Proceedings of the 7th international workshop oftv&owe specification and design
Carleton University, 1993.

Janka, R. S.; Wills, L. M.; Baumstark, L. B. “ViduBenchmarking and Model
Continuity in Prototyping Embedded Multiprocessagrfal Processing Systems”,
IEEE Transactions on Software Engineering, Vol.8, 9, September 2002.

Li, Lidan; Wainer, Gabriel, Pearce, Trevor. “Hardedn The Loop Simulation
Using Real-Time CD++". Department of Systems andn@ater Engineering.

Carleton University. Accessed on 2007-05-02.

81

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

Del Bianco, Vieri; Lavazza, Luigi; Mauri, Marco; el. "Towards UML-based
formal specifications of component based real-tso#ware" pp. 118 - 134 Lecture
Notes in Computer Science Publisher: Springer-\gerldeidelberg Volume:
Volume 2621 / 2003.

Kim, K.H., “Object Structures for Real-Time Systerasd Simulators”. IEEE
Computer, August 1997, pp.62-70.

See [16].

Wainer, Gabriel; Yu, Henry. “ECD++: An Engine fox&cuting DEVS Models in
Embedded Platforms”. Summer Computer Simulation f€ence 2007 (SCSC
2007). San Diego, California (USA), July 15-18, 200

Joshua J. Yi, Lieven Eeckhout, David J. Lilja, Balder, Lizy K. John, James E.
Smith, "The Future of Simulation: A Field of Dredm€omputer, vol. 39, No. 11,
pp. 22-29, Nov., 2006. IEEE Computer Society.

Glinsky, E.; Wainer, G. “Performance Analysis of dR&ime DEVS Models”.
Proceedings of the SCS Winter Simulation ConfereSea Diego, CA. 2002.
Troccoli, A.; Wainer, G. “Performance Analysis oéltilar Models with Parallel
Cell-DEVS”. Proceedings of the SCS Summer Comp8ierulation Conference.
Florida. 2001.

Chiari, F.; Delhom, M.; Filippi, J-B.; Santucci,R-“A GIS based methodology for
the modeling and the simulation of watersheds”.cBedings of the ATW 2000
Conference. Corsica, France. 2000.

Kim, K.; Kang, W. "CORBA-Based, Multi-Threaded Dibuuted Simulation of
Hierarchical DEVS Models: Transforming Model Sturet into a Non-hierarchical
One". International Conference on Computationalesoe and its Applications.
Assisi, Italy, 2004.

Zeigler, B.; Moon, Y.; Kim, D. “DEVS-C++: A High Reoermance Modeling and

Simulation Environment”. 29th Hawaii Internation&onference on System

82

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Sciences (HICSS'96) Volume 1: Software Technologg Architecture. Hawaii,
USA. 1996.
ECLIPSE. Eclipse 3.1 Online Manualww.eclipse.org

OpenSSH. "OpenSSh Manual Pagedittp://www.openssh.org/manual.html

Accessed on May 02, 2007.
SecuriTeam. "Multiple Vendors Telnet Vulnerability"

http://www.securiteam.com/unixfocus/SRPOD2K4UQ.htrAdlccessed on January

10, 2007.

Corbet, Jonathan; Kroah-Hartman, Greg; Rubini, #deslro. “Linux Device
Drivers, 3rd Edition”. O'Reilly. February 2005.

Weicker, R. P. “Dhrystone: A synthetic systems paogming benchmark”.
Communications of the ACM, volume 27, pages 1013010984.

Wainer, G. et al. "CD++ A tool for DEVS and Cell-DE Modelling and
Simulation. User's Guide". Draft. August 2004.

Felanson, Jay; Stallman, Richard. "GNU gprof - B1¢U Profiler User's Guide".
Free Software Foundation. 1998.

Department of Systems and Computer Engineeringlet®ar University. Ottawa,
Canada.

http://www.sce.carleton.ca/faculty/wainer/paper€0SRTDEVS.pdf

Li, L.; Pearce, T.; Wainer, G. “Interfacing Reakie@ DEVS models with a DSP
platform”. Proc. Of Industrial Simulation Symposiuxealencia, Spain. 2003.
STMicroelectronics. “L293B Push-Pull Four ChanneivBr". Datasheet.

Texas Instruments. "SN74LS04 Hex Inverter". Datathe

Harries, lan. ‘"Interfacing to the [IBM-PC Parallel rirfer Port".

http://www.doc.ic.ac.uk/~ih/doc/parAccessed on April - 10 - 2007.

Martin, Fred G. “Robotic Explorations, A Hands-Qrtrbduction to Engineering”.
Prentice Hall, Upper Saddle River 2001.

83

70. [REF1] REFORMATEAR!!! “CD++Builder: a toolkit to deelop DEVS models”.
C. Chidisiuc, G. Wainer. liProceedings of DEVS Symposium 208@rfolk, VA.
2007.

