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Abstract 

 

Discrete Event System Specification (DEVS) is a formal modeling and simulation (M&S) 

framework that supports hierarchical, modular models. DEVS-based M&S environments 

have been used successfully to understand, analyze, and develop a variety of systems. Some 

of the environments and systems modeled with DEVS are difficult to replicate and analyze; 

on the other hand, some others are populated with small, embedded devices that perform 

critical operations with dedicated hardware and software. In both cases the design, 

simulation and test of these models tend to grow in size and complexity. In each of the 

development stages, different methods of modeling, implementation and testing are used 

without any relation among them. CD++ is a modeling and simulation toolkit based on the 

DEVS formalism. This thesis proposes a modeling, simulation and benchmarking 

environment based on the CD++ toolkit. Two different tools are presented to the user of the 

CD++ toolkit: a Benchmarking tool for comparison of the modelling and simulation CD++ 

tool with other simulators including a benchmarking methodology, and an Integrated 

Development Environment (IDE) for the conception and construction of models of Real-

Time embedded systems, as well as the final implementation and deployment on an 

embedded target. A hardware-in-the-loop example using the embedded version of CD++ is 

also described.  
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1. Introduction 

 

Different technologies of modeling and simulation are widely used in the industry and the 

academy to assist system development. Using abstract models in simple and complex 

simulations of most process greatly reduces the development time and significant savings 

in resources and cost are made. Reducing the development time also helps the design of 

safer systems and environmental-friendly products, since it is possible to test more 

scenarios and run simulations on each and every one of them. It is because of this that 

Modeling and Simulation techniques have become an important part of system analysis and 

later design through history. Mathematical models can be defined as abstract 

representations of natural events, for engineers and scientist these models usually represent 

different types of phenomena that can be physical, chemical, economical, and social or 

many others. And by Simulation (by Computer Simulation in particular), we understand it 

as the process that takes those abstract mathematical models, and through a controlled 

update of certain defining variables, evolves those models to a different state.  

 

Commonly, the simulation is done through simulation tools that are used at different stages 

of system development: the analysis phase to support concept development (i.e. virtual 

prototyping) and in the implementation and test stages to provide virtual test environments 

(via hardware-in-the-loop techniques) and experimental scenarios for system verification 

and evaluation [1]. By using abstract models (which depend on the simulation tool used) of 

real systems in the analysis stage, simulation-based design can highlight problems early 

enough in the product development process, which in turn may be addressed more cost-

effectively on the production side. Many leading companies, among them Boeing, and 

General Dynamics, have saved millions of dollars on fighter planes, and submarines by 

replacing physical prototypes with computer mock-ups [2]. Simulation-based test and 
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verification enable automated test program and test case generation, functional coverage 

and checking, etc. This virtual test methodology has been widely used, although still in an 

ad-hoc way, by both hardware and software developers. For example, test generation 

techniques, tools, and solutions are widely recognized as the main means for hardware 

verification of complex designs. The approach of using simulation-based software design 

and implementation combined with hardware-in-the-loop simulation techniques greatly 

accelerate the embedded software development and integration processes. The effective use 

of these techniques will result in a faster product development cycle, lower development 

costs, and higher overall product quality [3]. 

 

One particular use of modeling and simulations tools is in the development of embedded 

systems, usually these systems also have time constraints in which case they are also called 

Real-Time Systems. Real-Time Systems must provide reliable outputs to external inputs 

within a time limit. Depending on the strictness of the time limit, the systems are usually 

separated in soft or hard real time systems [4]. Another characteristic of embedded systems, 

is that most of them are application specific, although with the increase in computational 

power from microprocessors this trend is somewhat changing [5]; many of these systems 

also have a low electrical power constraint because they are deployed in environments 

where grid-electricity is not commonly available or it is scarce, i.e. inside cars, space ships 

or remote sensors and actuators. 

 

Many development methods and techniques exist for the creation of embedded systems, 

with the common denominator that most of them are based on hardware and software that 

exceeds the computational power of the intended system to be developed. The most 

common developing system is given by a general-purpose computer, a general-purpose 

operative system, the target software, which often includes a simulator, and required 

hardware to communicate with the embedded platform. 
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For engineering in particular, Modeling and Simulation (M&S) of embedded systems is of 

utmost importance. For example, engineers and scientists make heavy use of simulation 

tools when a process is difficult to replicate (because of the cost involved, or if the 

environmental conditions for the experiment are difficult to replicate or the danger is too 

high) or when the simulation of a natural process is many times faster than the real process. 

By using different techniques for modelling, we can predict the behaviour of simple or 

complicated phenomena with, most of the time, a high degree of certainty. For systems that 

interact with real data, the preferred method for modeling is the use of continuous 

differential equations. However, one layer higher in the interaction between systems and 

the real world we deal with a different nature of modelling and control which is usually 

easy to model using discrete event modeling methods. 

 

1.1. Background 

 

Zeigler in [6] explains a general framework for an M&S process, and defines the basic 

entities and their relationships; the basic entities of the M&S process are comprised of a 

real or virtual environment under analysis; an experimental frame, which defines the type 

of data obtained and the conditions of the system; the model, as stated is an abstract 

representation of the system to be simulated and; the simulator, which is any computational 

system capable of executing the model to generate or predict its behaviour. In any M&S 

framework, it is important to separate the model from the simulator, because this separation 

between them allows us:  

 

- to reuse a single model for different purposes and, 
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- to validate and verify both the simulator and the model for easiness of use; (i.e. once 

the simulator is validated and verified we can assume that the simulator is valid for 

any simulation that we want to run on it as long as the model is valid as well). 

 

In particular, M&S tools have been useful for the development of embedded systems. Since 

the beginning of the electronic era, most of the capabilities of embedded systems were put 

on hardware most of the development was done on expensive prototypes. However, with 

the advent of more powerful microprocessors and the economy of building digital hardware 

compared to analog hardware, the implementation of their functionalities has steadily 

shifted to software. This is driven by the fact that software has much more flexibility to 

cope with system varieties and requirement changes. Recent studies indicate that up to 60% 

of the development time of an embedded real-time system is spent in software coding [7], 

[8], [9]. This indicates to us that the existing software development methods are insufficient 

to develop real-time systems. Actually, the lack of good design methods and support tools 

has made the software development for embedded systems a bottleneck, especially when a 

large number of subsystems and task synchronization are involved. 

 

The embedded software developer faces several unique challenges beyond those of 

classical software development. First, in the case the system is real-time it needs to meet 

both timeliness and reliability requirements and second the system have constrained 

resources in terms of memory and processing power. These requirements add extra 

complexity to the software design and test. For example, for hard real-time systems, special 

test and analysis techniques have to be adapted or, ultimately, developed to test the 

correctness of specific control models and to guarantee the system can meet deadlines 

under all conditions.  
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In addition, embedded systems usually operate in constantly changing environments, in 

which the environment itself may be unknown during the design time or it could be 

continuously evolving as time passes. Therefore, the software that controls these systems 

should be able to deal with uncertainties, i.e. it could have to reconfigure itself dynamically 

to adapt to a changing environment. This poses great challenges to test the software 

effectively under development. 

 

Something else to consider is that the rapid growth of real-time embedded systems brings 

two other factors into embedded software’s complexity. First, embedded systems are 

making heavy use of networking technologies, among themselves or between them and 

wired/wireless access points. In the near future, it will be usual for hundreds of embedded 

controllers, smart sensors and actuators to work together to finish a common task. 

Consequently, scalability, which was not even considered for this type of systems some 

time ago, is becoming an important design issue to deal with. Second, with the rapid 

adoption of cheaper and powerful microprocessors, embedded systems are expected to 

carry out more and more complex functionalities. It has been foreseen that the new breed of 

embedded systems (which have enough computational power and memory to carry out 

complex functionalities) will become dominant [10], making it little practical, if not 

impossible, to develop physical prototypes in every step of the development process. In 

order to handle the complexity of these systems, much effort has to be put on system 

modeling and simulation during the concept proposal, design, analysis, and verification 

steps.  

 

Historically the state-of-the-art in embedded software development involves a great deal of 

empirical knowledge and previous experience with particular platforms. Along the time, 

various efforts to systematize and generalize this approach have been proposed. However, 

so far none of them fits very well in supporting the design, test, and execution of embedded 
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software from a systematic way. A compilation of some deficiencies of current 

development methods is provided in [11]:  

 

� In the software development lifecycle, most of the time different stages are not 

related to each other, resulting in inconsistencies among analysis, design, test, and 

implementation. For instance, in the analysis stage of complex systems, 

mathematical models are usually built to analyze the control algorithms. However, 

these mathematical models are rarely effectively used by the design stage, which 

uses different modeling languages such as Unified Modeling Language (UML). The 

same happens in the implementation stage, which uses programming languages 

such as C or Java. Because of this constant changing of design and development 

environments, transformation from one type of model to another is needed among 

different stages. However, it is important to note that some tools have been 

developed and improved particularly in the commercial arena, for instance Rational 

Rose Real-Time sold by International Business Machines (IBM) and the Telelogic 

family of software development tools. Both systems provide a framework for code 

generation based on model specification using UML techniques for modeling and 

some other tools for simulation. These toolkits focus on system model analysis and 

design and allow graphical description of the system using use-case models and 

scenarios, activity charts, control block diagram and state-charts. Both environments 

provide support for maintaining consistency among these models, as well as 

providing model-driven development environment for software engineering. The 

formal languages of activity charts and state-charts enable the models’ execution 

and verification using mapping rules. Additionally these products offer, and can 

produce, graphical interfaces for the project being developed, since it utterly 

beneficial for software design stage [12]. 
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� Software test for embedded systems is largely ad-hoc and low level. Although 

control algorithms can be developed and tested in the analysis stage, once they are 

transformed into implementation code, extensive test is still required because of the 

discontinuity problem already mentioned. For this reason, many tests are 

meaningful only after the actual code is generated, and often enough, these tests are 

meaningful only when the software has been deployed to the real hardware. This 

low-level activities result in later detection of inconsistencies between the final 

implementation and the original system specification. 

 

� Despite the continuous need for software to reconfigure itself dynamically in order 

to adapt to new situations or new environments, “there is no effective and 

systematic way to design and analyze these kinds of self-adaptive software” [11]. 

As embedded systems usually operate in real environments, most of them tend to 

exhibit dynamic reconfiguration to change their structures and operation modes in 

response to different situations. Hence, it is desirable for an embedded software 

development method to provide a systematic way to analyze dynamic 

reconfiguration of systems. 

 

� Scalability becomes an important design specification as embedded systems 

increasingly work in ad-hoc networks. To ensure scalability, component based 

technology [13] and suitable software structures and physical topologies are needed. 

Meanwhile, computer-based modeling and simulation (M&S) methodologies are 

required since the scale of systems is well beyond what analytical tools alone can 

handle and it is not always possible to replicate the environments where controlled 

real experiments could be setup. 
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To overcome the problems posed by the different models used in different stages of 

development, the best solution is to provide a formal method during the development 

process. A formal method in this context refers to mathematically rigorous techniques and 

tools for the specification, design and verification of software and hardware systems. 

Where specifications used in formal methods are well-formed statements in a mathematical 

logic and that, the formal operations are rigorous deductions in that logic (i.e. each step 

follows from a rule of inference and therefore can be checked by a mechanical process). 

 

The solution proposed in this thesis deals with the use of a formal method, the Discrete 

Event System Specification (DEVS) formalism, as a basis for the construction of embedded 

system models with the help of an Integrated Development Environment (IDE) tool, where 

the developer can find the required tools to continue with the next design stage from just 

one model. The work done in the thesis provides the tools required for the continuous use 

of a single model throughout the development process, from the conception of the problem 

to the implementation in an embedded target. In order to do so, we made use of the CD++ 

Builder toolkit environment, the embedded version of CD++ [14] and other 

communications tools to create one development environment as a solution. This solution 

allows the development of the model, the consequent test and verification through 

simulation of such model, the development of a control strategy for the variables that need 

to be controlled by the control system, which can be thoroughly tested and verified, and the 

deployment of the final code to the embedded system in charge of the control. The 

proposed solution includes a test case that includes the use of hardware components in the 

simulation.   

 

Since the use of simulation tools was successfully applied in such a variety of applications 

due to the ease of model definition, improved composition and reuse, and hierarchical 

coupling many different simulation tools have arisen. Due to its discrete nature, DEVS 
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provides considerable precision and speedups in the execution time, as models advance 

triggered by instantaneous asynchronous events in contraposition with time stepped 

approaches [15]. The CD++ tool, which is based on the DEVS formalism, allows the rapid 

development of models and their simulation. However, different versions of this tool have 

been developed with many improvements and for different purposes and platforms. With 

every new version, many new features are added to the toolkit but, at the same time, it 

becomes increasingly more complex to keep track of the impact of the changes, or 

additions, in the general performance of the M&S toolkit.  

 

To measure the impact on the performance of the simulator and to generate a common 

metric among different implementation of DEVS simulators, DEVStone [16] was 

developed. DEVStone is a synthetic model generator that uses the Dhrystone Benchmark as 

a basic real-time metric. To provide uniform means for obtaining meaningful 

measurements, the benchmark is based on a large pool of models with different size, 

complexity and behaviour, resembling different kinds of complex applications. Hence, it is 

possible to analyze the efficiency of a simulation engine in relation to the characteristics of 

a category of models of interest. The tool can be used to assess the efficiency of several 

DEVS simulation engines, and it provides a common metric to compare the results using 

different tools.  

 

1.2. Contributions 

 

One of the contributions of this Thesis is the development of a simulation-based Integrated 

Development Environment (IDE) to manage the complexity of developing embedded 

software. This Integrated Development Environment, based on the DEVS framework, with 

a front-end based on Eclipse, provides a smooth transition for the developer to design and 
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test embedded systems on general-purpose computing environments by emphasizing the 

use and reuse of a single model through the development process. Specifically, this IDE has 

been developed so that any control models designed and fully tested in multiple 

simulations, can be deployed, retested and analyzed by emulation in a particular 

development target. 

 

To improve the actual software testing procedure of the Embedded CD++ (ECD++) tool 

(where simulations are run in a virtual environment), a new functionality is provided to 

allow the embedded target to be connected to the real world through sensors and actuators. 

Consequently, any virtual simulation ran with ECD++ can now be run in real mode with 

hardware-in-the-loop. This allows analyzing and validating the control algorithms, or to 

emulate the response of the developed system to a certain event through real actuators.  

 

The Eclipse-based front-end of the CD++ Builder toolkit was populated with the required 

functionality to create complex discrete event models according to the CD++ language and, 

if necessary, create new atomic components as extensions of the basic ECD++ via the C++ 

development plug-in of Eclipse. The IDE provides the binary executable for the appropriate 

target through cross-compilation mechanisms and provides means to download all the 

required files to the target platform to run simulations or an emulation of the model. The 

emulation was done by using real input and output capabilities through an IEEE-1284 

compliant port, which have been added to the original ECD++ simulator in order to allow 

the test of hardware-in-the-loop techniques.  

 

As an example of the use of the new functionalities of ECD++ a simulation and testing 

environment for an autonomous robotic system was developed. This environment applies 

modeling and simulation methodologies and the new testing methods to test a hardware-in-

the-loop robotic system. In particular, the work on an autonomous vehicle simulation 
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allows us to proof the concept of having real and virtual simulations of the developments 

done with ECD++. For instance, when developing a robotic system that includes electric 

DC motors, a real motor can be hooked up to the target to see if the real hardware performs 

as simulated on the computer. 

 

The other important contribution of the thesis comprises a benchmarking tool for 

comparison between different implementations of the DEVS formalism and as a tool to 

compare the performance of CD++ from different versions of itself. DEVStone was 

developed to measure the performance of simulations running in a tool that makes use of 

the Parallel extension of the DEVS formalism. The work done in this thesis first adapted 

the DEVStone benchmark to the standalone implementation of CD++ [17] and then 

extended the tool with a new tool that generates models that are more complex. In addition 

to the implementation of DEVStone adapted to the standalone CD++ version, we also 

tackled the problem of the performance of our tool compared with a different 

implementation of the DEVS formalism named ADEVS (A Discrete Event System) [18]. 

The main advantage that CD++ provides is flexibility, by separating the development of the 

simulator core and the models that use the simulation engine; whereas ADEVS provides a 

single portable library that embeds DEVS functionality in programs developed with C++. 

Both implementations of DEVS have been developed and used in different academic 

environments. 

 

We used the synthetic benchmark to analyze the performance of different models in CD++ 

and ADEVS, which allowed us to show the performance variations of the both 

implementations. Moreover, these results permitted us to characterize the execution time of 

a standard DEVS simulator. The benchmark can be used to determine which directions and 

decisions should be taken when updating or improving either tool’s simulation techniques. 
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Furthermore, DEVStone can be used to aid the measurement and improvement of other 

existing simulation tools. 

 

1.3. Thesis Organization 

 

The Thesis is organized as follows: Chapter 2 provides theoretical background of the 

Thesis discussing the DEVS formalism and the implementations of the formalism in CD++ 

and ADEVS, as well as basic definitions of embedded systems and the current approaches 

in the usage of development tools for embedded systems, simulators and simulators for 

embedded systems. Chapter 3 discusses the original DEVStone, the different models and 

the adaptation to standalone CD++ and ADEVS plus the new model developed for 

DEVStone. Chapter 4 presents the results of the DEVStone benchmark, from CD++ and 

ADEVS, and shows a procedure on how to use the results of the benchmark to improve the 

CD++ simulator. Chapter 5 focuses on the design of the Integrated Development 

Environment for ECD++ with a brief introduction to Eclipse and the CD++ Builder toolkit. 

In Chapter 6 RoboCart is presented, which is the embedded hardware-in-the-loop design 

test case presented; it was developed in its entirety using the new ECD++ IDE. The 

example uses a LEGO Robotic Cart connected to an Embedded PC running an ECD++ 

version capable of simulating and emulating models in real mode. Chapter 7 concludes this 

Thesis report and discusses about future research directions. 
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2. DEVS 

 

DEVS is a mathematical formalism that is used as the basis of a M&S framework. One of 

the many advantages of DEVS is that it allows the construction of hierarchical and modular 

models, coupling of components, and even support for continuous-like discrete event model 

simulation by time approximation. 

 

Given the natural hierarchical platform of DEVS, it allows the coupling of existing models 

modularly in order to build bigger and more complex systems. Because the formalism is 

closed under coupling, a coupled model can be treated as a basic DEVS component. The 

modular specifications of DEVS view every model as blocks with input and output ports 

through which all of the interactions between the exterior, and the internal and middle 

blocks –if any– occur.  

 

A DEVS Atomic Model is formally described as follows: 

M = <X, Y,  S, δint, δext, λ  ,ta> 

Where: 

X = {(p,v)| p ∈ Input Ports, v ∈ Xp}  set of input ports and acceptable values 

Y = {(p,v)| p ∈ Output Ports, v ∈ Yp} set of output ports and acceptable values 

S :  set of sequential states 

δδδδint: S → S’  internal state transition function 

δδδδext: Q × X→ S’ external state transition function, where: 

   Q = {(s,e)| s ∈ S,0 ≤ e ≤ ta} 

  e = total time elapsed since the last state transition 

λλλλ:  S →  Y  output function 

ta: S →  [0, ∞)  time advance function 
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At any time, the system is in some state defined in the set S. In the absence of external 

events, the system will stay in the state for the time specified by ta, which can be any real 

value between [0,∞). When ta is finite and is consumed, the system first outputs the value λλλλ 

and then changes immediately to a new state from the pool of states in S. If an external 

event X is received before the expiration time ta, the new state of the system is determined 

by δδδδext, where e is the time elapsed since the last transition. In other words, the state of the 

model is driven by the internal transition function if no external events are present, if an 

external event is received before the determined timer finishes counting then the state of the 

model changes accordingly. 

 

A DEVS coupled model, composed of several atomic or coupled sub-models, and is 

formally described as: 

M = <X,Y, D, {Mi}, {I i}, EIC | EOC> 

 

Where: 

X = {(p,v)| p ∈ Input Ports, v ∈ Xp}  set of input ports and acceptable values 

Y = {(p,v)| p ∈ Output Ports, v ∈ Yp}  set of output ports and acceptable values 

D = set of component names; the following requirements are imposed 

on the components, which must also be DEVS models: 

For each d ∈ D, Md = <Xd, Yd,  Sd, δint, δext, λ  ,ta> is a DEVS with 

  X = {(p,v)| p ∈ Input Portsd, v ∈ Xp}, and  

Y = {(p,v)| p ∈ Output Portsd, v ∈ Yp}  

 Component couplings are subject to the following requirements: 

External Input Couplings (EIC) connect external inputs to component outputs, 

EIC ⊆ {(N,ipN),(d,ipd)) | ipN ∈ Input Ports, d ∈ D, ipd ∈ Input Portsd} 

External Output Couplings (EOC) connect component outputs to external outputs, 

EOC ⊆ {(d,opd),(d,opN)) | opN ∈ Output Ports, d ∈ D, ipd ∈ Output Portsd} 
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Internal Couplings connect component outputs to component inputs, 

IC ⊆ {(a,ipa),(b,ipb)) | a, b ∈ D, opa ∈ Output Portsa, ipb ∈ Input Portsb} 

Select: 2D – {} →  D is the tie breaking function for imminent components.  

 

X is the set of input events; Y is the set of output events; D is an index for the components 

of the coupled model, and ∀ i ∈ D, Mi is a basic DEVS (i.e., an atomic or coupled model), 

I i is the set of influences of model i (i.e., models that can be influenced by outputs of model 

i), and ∀ j ∈ I i, is the i to j translation function. Coupled models are defined as a set of basic 

components (atomic or coupled) interconnected through the models’ interfaces. The 

coupling specification consisting of the external input coupling (EIC) which connects the 

input ports of the coupled to one or more of the input ports of the components. The external 

output coupling (EOC) which connects the output ports of the components to one or more 

of the output ports of the coupled model; and the internal coupling (IC) which connects 

output ports of components to input ports of other components. The influences of a model 

define to which model outputs must be sent. The translation function converts the outputs 

of a model into inputs for other models. This function defines that the outputs of the model 

Mi are connected to inputs in the model Mj, where j is an element of I i. 

 

The DEVS scene has been very active among several academic institutions, and many of 

them have come up with different implementations of the DEVS formalism. A non-up-to-

date list includes the following implementations of DEVS-based simulators: 

 

◊ ADEVS [18] provides a C++ library based on DEVS. Users can use the classes in 

the library to build their own models. 

◊ CD++ [17] is a modeling and simulation tool implementing DEVS and Cell-DEVS 

theory, which supports stand-alone, parallel [19] and embedded real-time simulation 

[20]. 
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◊ DEVS/HLA [21] is based on the High Level Architecture (HLA) [22] and DEVS. It 

was used to demonstrate how an HLA-compliant DEVS environment could 

improve the performance of large-scale distributed modeling and simulation 

environments.  

◊ DEVSJAVA [23] is a DEVS-based modeling and simulation environment written 

in Java that supports parallel execution. It provides classes for the users to 

implement their own DEVS models.  

◊ DEVS-Scheme [24] is a knowledge-based environment for modeling and 

simulation based on the DEVS formalism, supporting real-time simulation and 

control. 

◊ DEVSim++ [25] is an object-oriented software to simulate DEVS models; which 

was implemented in C++. The tool defines basic classes that can be extended by 

users to define their own atomic and coupled DEVS components. 

◊ GALATEA [26] is a simulation platform that offers a language to model multi-

agent systems using an object-oriented architecture. The tool describes a real system 

as interacting agents.  

◊ JDEVS [27] is a DEVS modeling and simulation environment written in Java. It 

allows general purpose, component-based, object-oriented, visual simulation model 

development and execution.  

◊ PyDEVS uses the ATOM3 tool [28] to construct DEVS models and to create the 

code to be executed. Models are represented as a state graph used to generate 

Python code and then interpreted by PyDEVS. 

◊ SimBeams [29] is a component-based software architecture based on Java and 

JavaBeans. The idea is to provide a set of layered components that can be used in 

model creation, result output analysis and visualization using DEVS. 
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2.1. Embedded systems and simulators 

 

Throughout time many definitions of embedded systems have arisen, the modern definition 

that clearly summarizes the main characteristics of such systems is given by [30]: 

 

“An embedded system is a special-purpose computer system designed to perform a 

dedicated function. Unlike a general-purpose computer, such as a personal computer, an 

embedded system performs one or a few pre-defined tasks, usually with very specific 

requirements, and often includes task-specific hardware and mechanical parts not usually 

found in a general-purpose computer. Since the system is dedicated to specific tasks, [it can 

be optimized], reducing the size and cost of the product. Embedded systems are often mass-

produced, benefiting from economies of scale… In terms of complexity embedded systems 

run from simple, with a single microcontroller chip, to very complex with multiple units, 

peripherals and networks mounted inside a large chassis or enclosure.” 

 

Based on the general definition provided above, it is safe to conclude that embedded 

systems refer to systems that are connected to the real world through sensors and actuators, 

and perform dedicated tasks with varying levels of complexity. Historically embedded 

systems were mechanical or electronic devices, with very low complexity for the former 

and low computational power for the later, which had the advantage of providing a rather 

fast and exclusive response to all or some inputs to the system. In particular, the electronic 

version of this type of systems was completely analog and had their niche in process 

control and automation equipment. With the advent of higher computational power at lower 

prices [31], the use of such systems and their complexity has augmented considerably. 

 

 



 25

Some common characteristics of modern embedded systems include:  

 

� They are often networked amongst themselves, 

� They must interact with concurrent real-world entities, 

� They may contain very large and complex software components, 

� They may contain processing elements that are subject to the constraints of 

computation resources (such as memory, CPU, network speed), cost, size, etc. 

� They more often than not rely on restricted energy availability, 

� They may require an exact and timely output for a given input, 

� Their development is done by higher power computational equipment and then 

downloaded to such systems. 

� They may have one or multiple means for communication with similar or different 

types of systems. 

 

Maybe the most important characteristic of any microprocessor-based embedded system 

regarding its software is the certainty of the system to respond appropriately and 

exclusively to inputs coming from its attached sensors. This last characterization applies to 

a huge variety of systems ranging from purely time-driven to purely event-driven systems. 

 

For these systems, a systematic time handling and time modeling approach is usually not 

feasible to attain because of the multiple variations in the environments where these 

systems work. Since a systematic design is not always possible the validation and 

verification of embedded systems is accomplished through extensive testing, which 

includes heavily use of simulations in the early design phase [32]. The very nature of most 

embedded applications calls for stringent requirements for high reliability, which could be 

formulated by the intrinsic need for dependability and safety. However, and precisely 

because of the non-systematic approach of the design, the original design objectives are 
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usually compromised by non-ideal implementations that, sometimes, bear no resemblance 

with the original design techniques, i.e. the design is initially done with mathematical 

control models whereas the implementation uses UML-based JAVA or C++ tools. 

 

The levels of reliability and safety often require fault-tolerant hardware and software, and 

make the testing of such systems of equal importance, or even of more importance, as the 

design of these systems.  As a result, and given the impracticality of testing every possible 

scenario designers tend to simulate as many real worst-case-scenario tests as possible. 

 

Embedded systems are often real-time systems, meaning that the time at which the system 

produces an output is finitely constrained, with the purpose of providing ‘real-time’ 

response for certain or some system’s responsibilities. For this reason, the terms real-time 

systems and embedded systems are usually referred together as real-time embedded 

systems, because of the exclusive attendance of tasks by embedded systems, they are better 

suited to perform such tasks faster than general-purpose computing systems. The tight 

interaction between hardware and software that exists among many of these systems makes 

it difficult to separate completely one from the other, the software being heavily dependant 

on the hardware platform in which it will be executed. Nevertheless, for the purpose of this 

Thesis, we will refer simply to the software side of embedded systems without major 

concern in the limitations of the underlying hardware. 

 

Most of the current research on embedded systems is focused on the operating system 

mainly because this is the single element that has to provide fast, predictable and 

concurrent services (such as fast response to interrupts and predictable scheduling 

algorithms to the programs running on top of it). These specialized operating systems are 

often stripped-down versions of traditional timesharing operating systems, which are made 

appropriate for the embedded domain [33]. An essential difference, due to the usually 
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unattended nature of embedded applications, is that for external events the related internal 

processes and outputs must be delivered, most of the time within a deadline. For the 

purpose of this research, we will refer to embedded systems that have to respond to external 

events in a real-time manner, since this the usual scenario where embedded systems are 

used. 

 

When designing real-time embedded systems, the most common scheduling algorithms are 

Rate Monotonic scheduling [34], Earliest Deadline First scheduling [35], Minimum-Laxity-

First scheduling [36] and Maximum-Urgency-First scheduling [37]. Included in the middle 

layer are computation models that are widely used in the design, analysis, and 

implementation of real-time embedded software. Formal computation models for embedded 

real-time systems have received growing attentions in the recent years. A formal model is 

an essential ingredient of a sound system-level design methodology because it makes it 

possible to capture the required functionality, verify the correctness of the functional 

specification and synthesize the specification tool-independently [38]. As timeliness is 

often an important feature in real-time embedded systems, computation models can be 

characterized into two categories: models not considering time such as finite state machine, 

Petri Nets, process algebra; and models considering time such as timed automata, timed 

Petri Nets, temporal logic. These computation models provide the basis to capture the 

behaviour and structure of a system under development. Those models considering time 

also capture the timeliness feature of the system. They support time modeling explicitly so 

are naturally fitted into the real-time domain.  

 

While simulation methods help to analyze and design the systems under development, they 

face a common deficiency—that the simulation models are discarded as unusable by the 

implementation stage [39]. More often than not, the implementation techniques are not 

derived in any direct way from the simulation models. This discontinuity between the actual 
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implementation and the analysis, design, and modeling is a common deficiency of most 

design methods. It results in an inherent inconsistency among the different phases of 

design, implementation and test. 

 

The simulation-based approach can be defined as a methodology that models a real system, 

and based on this abstract representation control models are constructed and tested through 

heavy use of computer simulations [40]. This approach can be used as a general tool for the 

design of a complete complex system or a specific tool, i.e. the design of an independent 

component of a complex system. During different development stages, different models of 

the same process are used depending on the purpose and design methodology used. 

 

Ensuring consistency among different development phases it is an ongoing research topic in 

various areas of design. In software engineering, traceability, in the form of requirements 

traceability [41] or design-code traceability [42], has been advocated to ensure consistency 

among software blocks of subsequent phases of the development cycle. Boyd [43] shows 

how traceability can be achieved when designing reactive systems. In hardware/software 

co-design, Janka et al. [44] described a methodology that allows the specification stage and 

design stage to work together coherently when designing embedded real-time signal 

processing systems. These approaches use different methodologies for different stages. 

Design of real-time embedded systems can be improved by supporting consistent 

methodologies among all the design phases. For complex real-time embedded systems 

where multiple crews of engineers work on different aspects of the design, implementation 

and validation, it is very difficult to manage the software’s complexity during development 

without the support of a continuous model. 

 

The explanation given by Zeigler and Hu about model continuity indicates a methodology 

that keeps consistency among all development stages because “the same control models 
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that are designed and tested by simulation methods can be deployed to the real target 

system for execution”. Because the control model remains unchanged from the design stage 

to implementation stage, no transformation or reconstruction is needed, more over the 

originally designed and simulated control algorithms can be deployed to operation 

seamlessly. This gives the simulation-based approach a decisive advantage among other 

methodologies, with it, designers can be confident that the final system in operation is the 

system that was designed and that the system will carry out the functions as tested by 

simulation. 

 

The Thesis is based on different efforts closely related by applying simulation-based 

design. The conceptual approach presented supports the design of distributed systems via 

iterative refinement of a partially implemented design where some components exist as 

simulation models and others as operational subsystems. In [45] the authors present a 

simulation and control tool that provides the capability to model, as well as to control, real-

world systems. Part of this research focuses in the development of a continuous model 

Integrated Design Environment framework, based on Eclipse, and the required adaptation 

of real-world control capabilities for the current version of the CD++ DEVS tool 

 

Other methods for real-time software system development have focused on exploring the 

modeling capabilities for real-time embedded systems. For example, the unified modeling 

language for real time (UML-RT) [46] extends UML models to address special aspects of 

designing real-time systems. Kim [47] uses the time-triggered message-triggered object 

(TMO) model to capture the timeliness and concurrency properties of real-time. 

 

The simulators used in this thesis make use in one form or another the DEVS modeling 

formalism as the basis for the construction of models and the consequent simulators. Both 

simulators run under Linux and are optimized, to certain degree, to make the best use of 
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system resources when running. Both simulators differ in the implementation although both 

are written in C++. A short description of each simulator, and their different versions is 

given next. 

 

2.2. ADEVS  

 

ADEVS (A Discrete EVent System) simulator was developed by Jim Nutaro of the 

University of Arizona. ADEVS is a C++ library for constructing discrete event simulations 

based on the Parallel DEVS and Dynamic DEVS formalisms. The models are constructed 

based on a template of classes in C++ and then compiled and linked to the library to 

produce the simulation executable. The latest stable version of the ADEVS template, as of 

this writing, is 2.0.5.1. 

 

Every atomic or coupled model in ADEVS is comprised of two files: 

 

- A library file (.h); where the name of the model, input and output ports and local 

variables are defined for the particular atomic model. 

- A source code file (.cpp); where the actual model is built based on a template, 

common elements of the class include: constructor, internal transition function, 

external transition function, time advance function, output function, and destructor. 

 

Once the model is written as a C++ file the main() function needs to be created in a new 

file. When compiling and linking all the code, the resulting file is an executable that has the 

simulator embedded in the model file. As a result, the model binary file is generally of 

larger size than the counterpart in CD++. In addition, the compilation time for medium to 

large models, which is negligible for CD++ compared to the simulation time, is not 
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negligible in ADEVS for some models might take more time to compile than to execute. . 

In the executable file, where the macro-model was defined and the simulator was created 

for the model, there is something to notice: destructors are inside the model itself and not in 

the main function, which the simulator is created, and the ‘destruction’ process is started 

from the inside out as usual but with one quirk, the simulator relinquishes its resources after 

the model has done it first. 

 

Additionally, due to the self-contained characteristic of ADEVS, the compilation can be 

done with any ISO 14882 compliant C++ compiler without major problems. However, 

ADEVS was developed in Linux for UNIX like environments and the reality is that some 

caution has to be taken even when compiling with different versions of the GNU C++ 

Compiler.  

 

2.3. CD++ 

 

DEVS is a formal Modeling and Simulation framework based on generic dynamic systems 

concepts. One of the main advantages of DEVS in respect to some other techniques is that 

it allows the implementation of the simulation core engine and the incumbent model to be 

completely separated from each other. In particular the CD++ [48] implementation, takes 

advantage of this characteristic because by doing it the verification and validation of both, 

simulator and model (the simulator is essentially another DEVS model), can be done 

independently. As a result, CD ++ permits reuse of prior built models, therefore if there 

could be a fairly big library of elementary atomic models it is possible to say that bigger 

and more complex models can be built from the existing ones and this coupled models in 

turn can be used as ‘atomic’ models for even more complex model constructions with as 

many interconnections among coupled and atomic models as the model requires. 



 32

 

The CD++ tool and the Eclipse-based front end CD++ Builder are ongoing research 

projects that implement the DEVS formalism for discrete event simulations. On the other 

hand, the CD++ tool and the Embedded CD++ version share common design roots, with 

the exception that Embedded CD++ is an optimized version of CD++ designed for reduced 

footprint in Embedded Systems. To avoid repetition, we will proceed to explain the 

Embedded CD++ tool, emphasising that the same functional description holds true for 

CD++. 

 

2.4. Embedded CD++ 

 

As stated Embedded CD++ [49] is a stripped-down version of the more general CD++ tool, 

both tools are built as a hierarchy of classes in C++, where each class corresponds to DEVS 

defined entities. The two main abstract classes are the Model and the Processor. The former 

used to represent the behaviour of the atomic and coupled models, and the later deals with 

the simulation mechanisms. Figure 1 shows a simplified structure of both. 

 

 

 

 

(a) 

 

 

 

(b) 

The Atomic class implements the behaviour of atomic components and the Coupled class 

implements the equivalent mechanics for coupled models.  

 

Figure 1: CD++ (a) Model hierarchy, (b) Processor hierarchy 
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A Simulator object manages an associated atomic block, handling the execution of δint, δext, 

δcon, and λ(s) functions. A Coordinator block manages an associated coupled object. Only 

one Root Coordinator exists in a simulation and is manages the global aspects of the 

simulation. It is connected to the higher-level component(s) of the model, the Root 

Coordinator also controls the global time and starts and stops the simulation process. In 

addition, it is the one in charge of receiving the outputs of the model. 

The simulation is accomplished by the exchange of messages among the components, for 

example, processors exchange messages to advance the execution of the model. Each 

message contains information to identify the sender and the receiver. A time-stamp for the 

message and an associated value are also included in the packet. For our purpose, it suffices 

to say that two categories of messages exist and each category contains several types of 

inter-component messages and administrative messages. 

 

All versions of CD++ provide a unique specification language that allows describing 

coupling of models, initial values and external input events (in the real-time 

implementations of CD++,  the expected output port and the expected completion time for 

an external transition can also be defined). For Embedded CD++ the complete development 

process was done in an entirely text-mode environment under Linux; whereas for the 

particular case of the standalone version of CD++ Builder for Windows or Linux, Atomic 

models are developed in an Eclipse-based environment in the C++ language; in this toolkit 

the combined use of an IDE for the development of C++ code provides greater flexibility. 

When adding new atomic models, each of them must inherit from the Atomic class in order 

to extend their basic behaviour. The Atomic class defines different methods for the initial 

function, internal and external functions and output function. 

 

Until now, the only way to compare the performance among different versions of the CD++ 

simulator is by creating different sample models. Nevertheless, a benchmarking tool could 
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help better distinguish the advantages between one version of the simulator and another, 

while permitting comparisons with other DEVS simulators. The next section presents a 

short introduction to benchmarks and in particular a common benchmarking technique. 

 

2.5. Benchmarking for Simulations and Simulators 

 

As computer systems evolve is becoming more difficult to analyze the global performance 

of a system. Computer components on the other hand have developed separately their own 

benchmarking and performance measures. Standards and vendor specific synthetic 

benchmarks exist for processors, hard disk drives, random access memory (RAM), external 

peripheral buses, protocols, and operating systems. However, and due to the general-

purpose nature of computers it is not possible to provide a general benchmark for a wide 

range of applications. 

 

When it comes to test computer systems in particular, application benchmarks are preferred 

to synthetic benchmarks, because they reflect a real performance of the systems under test 

by running real-world applications [50]. In cases where is unfeasible to run a batch of real-

world applications synthetic benchmarks come on handy given that, they can provide with 

an approximate degree of certainty the performance of a computer system under test by 

executing artificially  designed workloads that resemble the real-world application’s 

workload. 

 

Very few efforts have been derived on the performance analysis of simulators, and in 

particular of discrete event simulators. Most commercial simulators are compared against 

each other based on the amount of features or suitability-to-task [51] rather than on a 

systematic way. In the case of academic efforts, the comparison between different 
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implementations of same algorithms varies from well-grounded scientifically based 

benchmarking to non-existent. This because analyzing simulators can be an extremely 

complex task; end-users can create a wide variety of models with different structures, levels 

of complexity and mixed degrees of interaction between models. Most studies of simulation 

techniques are focused on very specific tools and algorithms. In particular, existing 

performance studies devoted to DEVS-based simulators cover almost exclusively parallel 

and distributed implementations. For instance in [52], the performance measures of Cell-

DEVS models in a parallel environment; in [53], a watershed model is used to demonstrate 

performance improvements in parallel and distributed architectures; in [54], the 

performance of DEVSCluster is compared with the performance of D-DEVSSim++; for the 

comparison of DEVS-based simulators against continuous-time type of simulators Zeigler 

[55] demonstrates that DEVS is more efficient when simulating natural and artificial 

systems. In the particular case of the CD++ implementation of DEVS, an interesting 

approach was introduced as DEVStone. 

 

DEVStone is a synthetic benchmark that provides thorough analysis for the execution of 

models with different characteristics; in addition, it provides a common metric to compare 

results among different DEVS-based simulators. The accuracy of DEVStone results is 

based on a large pool of models that when combined can provide a robust test set. 

DEVStone is able to generate different models that vary in size, complexity and behaviour 

that have the same functionally of different kinds of real world applications. Based on 

predefined synthetic model it is possible to analyze the efficiency of a simulation engine, 

may it be a new version of CD++ or a different DEVS-based simulator, with relation to the 

characteristic of a category of interest. 
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DEVStone allows the developer to have control over the key factors of performance 

metrics in a simulator: the size of the model and the workload carried out in the transition 

functions. DEVStone produces models require the following parameters as input: 

 

• Type: defines the different internal structure and interconnection schemes between 

the components. 

• Depth: the number if coupled components or levels in the modeling hierarchy. 

• Width: the number of Atomic components in each coupled component or level. 

• Internal transition time: the execution time spent by internal transition functions, 

measured in Dhrystones per second. 

• External transition time: the execution time spent by external transition functions, 

measured in Dhrystones per second. 

 

With the flexibility provided by the benchmark, the original DEVStone showed how it can 

be used to test and optimize better algorithms or improved features of CD++. By using 

DEVStone to generate a set of small and large models with different parameters and 

running simulations of these models with the normal version and a modified version of the 

simulator, it was demonstrated that the creation of intermediate coordinators/simulators and 

the passing of messages among them created an excessive overhead in the Parallel 

implementation of CD++. To reduce such overhead, improve resource utilization and, in 

general, optimize the performance of the tool, flattened coordinator and simulator were 

used in the modified version of the Parallel CD++. 

 

On the other hand, another step towards the design of an integrated, self-contained 

development tool is the development of an interface with the designer, which would include 

a mechanism for activating the different components of the simulation engine, including the 

Benchmarking tool. An Integrated Development Environment (IDE) would help to display 
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all relevant information on the screen as soon as is it produced by the system. In the case of 

the simulation of an embedded system this interface is of the utmost importance, since it 

might be the only way to analyze the intermediate and output states of the system being 

analyzed. The development of such interface for the embedded version of CD++ is 

discussed in the next chapter. 
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3. Embedded CD++ Builder Integrated Development 

Environment in ECLIPSE 

 

Working on ECD++ requires writing C++ code in a text-based Linux environment with 

open source tools. In order to improve the development and simulation experience, CD++ 

provides a IDE for the simulator core, which was developed for the CD++ Standalone 

version; the IDE plus the simulator was called CD++ Builder [REF1], and it was built on 

the Eclipse Environment [56] as a plug-in. 

 

In the case of Embedded CD++ (ECD++) an IDE is necessary, because ECD++ will most 

likely be running on embedded platforms with minimum, or even none, output peripherals, 

therefore the information required during development is rather limited for the developer 

from the intended platform. We have extended the IDE provided by CD++ Builder, adding 

Embedded CD++ functionality. The concept behind this is to permit the developer to port 

seamlessly already written code (code reuse) from CD++ Builder to Embedded CD++ 

without worrying about compatibility problems. 

 

In order to have this environment integrated with the original CD++ Builder tool some 

basic requirements and design considerations need to be fulfilled: 

 

- The IDE for ECD++ should permit code reuse from the original CD++ Standalone 

version, ideally sharing all the possible resources that the development environment 

has to offer from the later. Ideally, it would be integrated within the actual 

environment. 

- Since ECD++ will be deployed in a different platform other than the one where it is 

being developed, cross-compilation will be necessary. 
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- Means of communication to the Target platform have to be part of the tool, in order 

to download the executable binary file, running the executable and for remote 

debugging and maintenance if required. 

- In order to make the tool easy to work with, it should remember important 

‘preferences’, i.e. last IP Address used if the connection is established through a 

Local Area Network, or other important information that remains constant 

throughout the development process. 

 

The graph in Figure 2 summarizes the additional tools needed to achieve the functionality 

that the design objectives state. From the CD++ Builder plug-in, five new processes need to 

be spawned, each one parallel to the others but also following a certain order among 

themselves, for instance the project needs to be edited first in order to be compiled and 

generate an executable file. Only when this file is obtained it can be deployed to the 

embedded target, and only when this file is present in the target it can be run remotely 

thorough a remote shell connection or remotely via a remote command. However, each 

process is separated from the other to give the user complete control over the development, 

for instance, the project can be compiled but not deployed and a previous version of such 

project can be executed for testing purposes. 
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Based on these requirements and the actual implementation of Embedded CD++ and CD++ 

Builder, there are some limitations of the design, which are: 

 

- To allow flexibility on the Target, the cross-compiling implementation is setup by 

modifying three files, in other words before using the tool a working cross-compiler 

must be set up, then the path to compiler needs to be updated to three configuration 

files that come with the plug-in. 

- The link to the Target relies on services provided by different kernel services and 

additional software, therefore the Eclipse IDE provides a ‘hassle-free’ experience 

for the model developer, after the initial required software components have been 

installed; some of the services that IDE makes use for the Embedded CD++ Builder 

version are: telnet, ssh, java, bash, X-server, etc. 

Figure 2: ECD++ Builder IDE as Eclipse plug-in – requirements 

ECD++ Builder – Requirements’ Diagram 
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- Most of the communication’s functionality used in the development is only 

available to the root  user by default; therefore the IDE assumes that any developer 

using the tool has root  access, or equivalent, to the system. 

 

3.1. Embedded CD++ IDE - Development 

 

Four new features need to be added to the tool: 

 

- Compile2Target - Allows the compilation of the software with the cross-compiler, 

with a similar methodology as the one used for the Standalone version, with some 

modifications to adapt the automated process to the ECD++ tool. 

 

- Download2Target - A new feature inside the plug-in that allows the downloading 

of the binary file to the Target platform by establishing a Network File System 

(NFS) mount between Host and Target. Whenever NFS ‘mount’ is set up the Host 

downloads up to three files: the ECD++ simulation binary, the model file and the 

external event file if any or both are selected, when the copying of the files is 

finalized the NFS folder is ‘unmounted’. 

 

- Run Simulation on Target – Allows the execution of the simulation remotely from 

the Host machine, with user selectable parameters, redirecting the display output of 

the Target machine to a non-interactive Console window in Eclipse. 

 

- Telnet2Target – The last feature offers a way to establish a remote connection with 

the Target, which can be used to execute the simulation, to debug such simulation 
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remotely by using standard Linux remote debugging tools or for maintenance 

purposes, i.e. to configure network parameters on the Target. 

 

In the end of the development process the IDE main window looks like the one shown in 

Figure 3, where the buttons providing the new features are circled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the Compile2Target feature, keeping consistency with standalone CD++, the first 

question that the developer is asked is if it is necessary to have a verbose output or not. 

Once the user selects the preference, this is stored in a preference field and the user gets no 

more questions about on screen information of all the process. Next the feature checks the 

availability of new model files (models and libraries) within the project folder, if found 

they should be moved temporarily to the folder that has the required files to generate the 

simulator executable. 

Figure 3: New CD++ Builder environment window – Embedded CD++ functionality 
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In Linux the compilation and linking is done automatically through a makefile script file, 

for the successful compilation of the new model components in the simulator this file needs 

to be created based on a template that includes the new components of the project. Once the 

script is created the make command needs to be executed with the new file as a parameter. 

 

For accomplishing these tasks the Compile2Target makes intensive use of some Eclipse 

services as well as of JAVA components. For instance, all the windows are made using 

JAVA graphical services, plus the output of all the required process running in the 

background are redirected to a JAVA Console window where all the messages are available 

to the user. The search for project files is done through Eclipse by checking the project file 

and looking-up the list of files based on the “.cpp” and “.h” extensions. The JAVA 

threading capability built in Eclipse is used to execute shell programs in a different in the 

background, for instance the copying of the new project files, temporarily, to the internal 

directory where the compilation will be done. In addition, the threading is used to launch 

commands for moving the executable for the project into the original folder as well as 

temporary files. The generation of the makefile script is done using the JAVA file I/O 

functionality and, based on a template, copy the template character by character including 

the new files where necessary at the end of line. Finally the threading capability is called 

upon again and the make command executed in a separate thread with the generated script 

file as a parameter. The Compile2Embedded feature, like all the rest of the new features, 

is a self contained JAVA class that is called through the plug-in eXtensible Markup 

Language (XML) script. When one of the buttons is clicked on, the XML script launches 

the corresponding JAVA class, which contains all the required components to draw the 

required window and executes the task that was designed for. The class diagram of the new 

features of the CD++ Builder for Linux can be seen in Figure 4. 
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The Compile2Target functionality needs supporting software running underneath Eclipse 

to perform all the required tasks. As stated, Eclipse gathers information on behalf of the 

new tool about the location of the files and the existence of such files. Once basic 

information is made available to the Compile2Target feature, it makes use of the JAVA 

threading capability that comes in Eclipse and initiates basic commands (i.e. cp, mv, make) 

to place project files in a temporary location. It also uses creates a text file based on a 

template using basic File I/O from JAVA. All the editing of the files is done using the IDE 

of the CD++ Builder plug-in. A diagram of the supporting software and its interaction with 

the Compile2Target feature is shown in Figure 5. 

 

 

 

 

 

 

 

Figure 4: ECD++ Builder Compile2Target – Classes Diagram 

 
 Embedded CD++ - Class Diagram 
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Running the feature three different windows will be presented to the user, the first one 

asking for the verbosity option, which only occurs at the begging of the Eclipse session. 

Then a Console window redirects the output from the process running in different threads 

in the background, and a bar-graph progress window shows the advancing of the process. 

Finally the progress window is closed and the results and error messages if any are 

presented in the Console windows. The whole process is depicted in Figures 6 to 8. 

 

 

 

 

 

 

 

 

 

Figure 5: ECD++ Builder Compile2Target – software support diagram 

Compile2Target – Software support diagram 

CD++ Builder Plug-in 
- Project Edition (Environment Layout) 

Compile2Target 

Eclipse 
- Capture project folder (PATH) 
- Check file’s existence (from PATH) 

JAVA 
- Input/Output text file. 
- Display background 

process output in 
Console window. 

 

JAVA Thread 
 
Shell commands: cp, 
make ‘makefile’, mv.  
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Figure 6: ECD++ Builder Compile2Target first window 

Figure 7: ECD++ Builder Compile2Target progress window 
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The Download2Target functionality uses the NFS mount feature of Linux. Initially the 

plug-in looks for the existence of the binary file, if found it creates a folder within the 

project directory where the Target will be mounted. By calling the mount service on Linux 

much of the problems related to authentication and connection over the network are dealt 

by the mount utility and the operating system. One detail that was found during the 

development is that when executing the copy commands in different threads from Java, the 

execution is too fast for the scheme used, resulting in many threads trying to use the results 

of a command in a previous thread, i.e. the copy command at the same time that the mount 

NFS folder. As a result, the last task that is in charge of demounting the NFS folder is 

called for during the copying of the files, which throws an error of the network device 

being busy. 

 

Figure 8: ECD++ Builder Compile2Target – IDE when Compile2Target finishes 
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To overcome such a problem, a scheme that forces sequential execution of the threads was 

implemented. In general terms this scheme does not allow the threads calling for an 

execution of external commands to run in parallel, forcing the main thread to remain 

waiting in itself until the thread that was first created is terminated; i.e. the main thread 

waits for the NFS folder to be mounted and then waits for each file to be copied into the 

Target before copying the next file or before demounting the NFS resource. The IP Address 

field of the IDE is saved in the preferences file of the plug-in to save the developer the 

hassle of introducing the IP address every time he needs to download a new version of the 

embedded simulator. A remote folder field was created in case there is the need to have 

multiple versions of different simulators on the embedded device, if it has enough memory. 

Such configuration though, would require that the user create new access permissions for 

multiple folders on the Target before using them. The advanced options field provides 

flexibility and permits the use of virtual Targets of available, i.e. the virtual device is inside 

a folder or is a file that needs to be mounted with different parameters than an NFS mount. 

 

The Download2Target feature design chart shown in Figure 9 depicts the relationship 

between the feature and the supporting software for the deployment of the executable file 

and the required files needed to run a simulation on the Target Platform. Initially the feature 

gathers information through a JAVA window with options fields where the user can 

explicitly type in the desired destination folder where the binary should be copied. Plus it 

gathers information about the location of the files that will be copied. To check the 

existence of the files introduced, an Eclipse service is summoned to check the in the 

project’s path the files introduced. With this information the feature uses a JAVA 

background thread to ‘mount’ a networked folder on the Host. If this connection is 

established successfully then the feature initiates additional threads and copies the required 

files, one after the other, to the destination folder, as a last step the feature ‘unmounts’ the 
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NFS directory from the local folder tree. This feature does not use any functionality of the 

plug-in directly. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 shows a snapshot of the options window that pops up every time that the 

Download2Target feature is executed, the target IP address and options fields can be seen. 

The selection checkboxes for the files are checked enabling the text boxes to accept inputs 

(the boxes are disabled when the selection checkboxes are unchecked). Something similar 

happens with the advanced options checkbox. 

 

 

 

 

 

 

Figure 9: ECD++ Builder Download2Target – software support diagram 

Download2Target – Software support diagram 
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variable, kernel services. 



 50

 

 

 

 

 

 

 

 

 

 

 

 

Once the executable binary file for the appropriate Target plus the model and, if required, 

external events files have been downloaded there is still the need to remotely run the 

simulation on the Target platform. A solution to this problem is provided by a third new 

functionality that automatically generates a script file based on the options introduced by 

the user in a new ECD++ Builder window and then runs it and displays the remote output 

information in a non-interactive CD++ ConsoleView window. This functionality works for 

any model that is downloaded into the default /simulation/  directory, if the executable 

file and the additional files were downloaded in different directories other than the default 

then the best alternative to run the simulation is to connect remotely to the Target and 

execute the simulation from a remote shell. 

 

The method used to execute the remote command uses a secure shell call, therefore prior to 

the use of this functionality an ssh-keyword needs to be generated and shared by both 

Figure 10: ECD++ Builder Download2Target window screenshot 



 51

platforms [57]. This setup allows the execution of single commands from a registered host 

in the Target platform without the introduction of passwords or authentication. 

 

The process for the remote execution of the simulation is rather simple. On pressing the 

remote execution button in Eclipse the class RunSimuRemotely() is summoned and, an 

option window pops up, allowing the user to introduce all the parameters desired for the 

simulation. After introducing all the parameters and the execute button is pressed in the 

options window, the feature mounts the Target default destination folder as a NFS device in 

the default Target folder (/Target ) and a script file is created based on a template with the 

parameters introduced by the user. Using different sequential threads, this file is 

immediately made executable, copied to the NFS directory and the Target folder 

unmounted. Upon termination the feature runs a remote command execution (ssh ) in a 

separate JAVA thread, redirecting the output of the process running in the thread to a 

Console Window. 

 

Figure 11 shows the supporting software required to complete all the steps needed. The 

basic information is provided by Eclipse itself (preferences) then the feature executes 

different shell commands in a sequential manner, none of the steps can be executed in 

parallel, and the execution of one after the other is enforced. The commands executed only 

present a message if some thing goes wrong with the mounting of the folder or the creation 

of the file. On simulation the output of the simulation takes precedence and all the 

messages are redirected through JAVA to an existent Console Window in the Eclipse 

Environment. A picture of the parameters window for remote execution can be seen in 

Figure 12. 

 

 

 



 52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: ECD++ Builder Run Simulation Remotely – software support diagram 

Figure 12: ECD++ Run Simulation Remotely – Parameter‘s Input Box 

Run Simulation Remotely – Software support diagram 

CD++ Builder Plug-in 
- Options Window 

Run Simulation Remotely 

Eclipse 
- Capture project folder (PATH) 

JAVA 
- Options Window 
- Display background 

process output in 
ConsoleView 
window. 

- Create script file. 
 

JAVA Threads 
Shell commands: mount 
NFS, cp ‘script file’, 
umount, ssh. 
   

Linux Network services, secure shell interface client, shell commands in 
PATH environment variable, kernel services. 
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The last feature added to the CD++ IDE is called Telnet2Embedded. The primary function 

of this new functionality is to establish a communication channel form the Host to the 

Target to perform different tasks within the target device. The communication is 

established using Telnet mainly because the footprint of a Telnet server in the Target is 

small enough to be present in any type of embedded device; since these kinds of devices are 

known to have limited memory space; however, Telnet also increases the vulnerability of 

the system [58] providing less security in the authentication and communication than other 

types of network communication, in this project’s the security of the Target system is not 

critical therefore it can be traded-off for smaller footprint. 

 

Another advantage of Telnet is that is simpler to setup and modify the Telnet server side 

with minor effort from the developer, also there is the need to consider that there is a Telnet 

implementation for every kind of Linux distribution as well as Windows environments and 

other Embedded Real-Time operating systems. In order to work, this connection scheme 

requires the user to have prior access to the Target by other means other than the 

development tool to set up the Telnet server as well as the NFS server and permissions.  

 

Figure 13 summarizes the required software support of the Telnet2Target feature. A 

window is presented to the user filled with information extracted from the plug-in 

preference’s file. In the options window the last IP Address used to connect with the Target 

is displayed and the user is set to the root user by default. The feature executes the telnet 

command in a terminal window that is dependant of the X-server system. In Fedora there 

are two common options: GNOME and KDE. This is the reason why the options checkbox 

allows the user to change the Desktop Environment. The selection allows either one of 

them but not both, neither none. The selection of one will force the non-selection of the 

other. Once the information is accepted the main class is launch which consists of a single 

task: run the telnet command in the appropriate Terminal window for the Desktop 
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Environment. Figure 14 shows the options window that comes up when the 

Telnet2Embedded feature is summoned with the checkbox selecting Gnome as Desktop 

Environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: ECD++ Builder Telnet2Target – software support diagram 

Figure 14: ECD++ Builder Telnet2Target window screenshot 

Telnet2Target – Software support diagram 
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Having built the interface for an embedded system, a good way of testing it is by 

developing a simulation with a medium level of complexity, for example the use of 

Hardware-in-the-Loop simulations require the modification of the simulator’s core system, 

including timely response to inputs and the adequate handling of input and output data. 

Therefore, to show the capabilities of the new development tool and the flexibility of 

ECD++ when dealing with external events a common model was built, a semi-autonomous 

robotic cart which is capable to go around obstacles when they are found in its path, 

through the use of a touch sensor. The construction and testing of the model is given in the 

next section. 
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4 RoboCart  

 

The fundamental use of CD++ is to be used as an academic tool for discrete event 

simulation learning. Though most simulators provide enough abstraction for the student to 

understand the principles, there is always the 'real factor' missing in this approach. At the 

same time, interfacing through a computer printer port has been, probably, the most used 

type of interfacing throughout the history of computing ranging from rather simple 

communication protocols via the standard parallel port or data intensive communication 

using enhanced version of the parallel port as described in the standard IEEE 1284. This 

port emits and receives TTL (transistor-transistor-logic) signals of 0 [V] and 5 [V]. The 

outputs of this port are latched by flip-flops, thus conserving the last value written to the 

port.  

 

There has been a steady ongoing work in the Embedded CD++ front to run Real-Time 

simulations. Until now, the work done on Embedded CD++ provided us with a special 

option to run simulations in real time, using the computer's real-time wall-clock [51]. 

 

Using the new IDE for Embedded CD++ tour goal was to build a test system as quickly as 

possible with a medium level of complexity, which includes the development of Hardware-

in-the-Loop simulation test system. By using automated common tasks during 

development, that had to be manually coded or typed in prior to the existence of the new 

ECD++ IDE tool, a project that would have a relative lead time of a couple of weeks was 

finished in 5 days since the conception of the model to the test and debug stage (including 

the development of the hardware and software components). MARCELO: SI PODES 

AQUI PONE UN DETALLE DE CUANTO TARDASTE EN EL SOFTWARE SOLO, Y 

SI PODES, DIVIDILO EN DEVELOPMENT/TESTING. For the development of the HIL 
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system, DEVS models of all the components used where created and coded accordingly the 

standard CD++ template. Because CD++ was also developed DEVS models, and is a 

DEVS model in itself, new DEVS models that dealt with the interaction of external events 

and the simulator’s internal behaviour were also created. 

 

In general, Hardware-In-the-Loop simulation is a dynamic test technique that simulates the 

I/O behaviour of a physical system that interfaces to a computer control system in real-

time. It is dynamic because the values of stimulus signals generated by a simulator are a 

function of a computer’s response from the previous cycle.  

 

However, due to the slow nature of the peripherals compared to the processing speed of the 

computer's microprocessor there are some technical challenges at the time of the 

implementation. In the ECD++ case, when the simulator is running in real time mode, an 

event file is read at the beginning of the simulation and according to the information 

contained in the file the simulator engine asserts an external event when the real-time clock 

reaches the predefined time. 

 

To be able to respond to external events is obvious that the simulator needs to be run in real 

time; otherwise, the simulation would evolve in a time scale too fast compared to the time 

scale of the real process making it impossible for the slower real events to catch up with the 

simulation. When running in real time, the ECD++ simulator requires the time-stamp of the 

external event and the time stamp of the expected finalization time of the simulator’s 

response. 

 

The approach presented in this Thesis modifies the loading of events running the simulation 

individually for each received external event. This method is also DEVS-based and can be 

easily cast in a DEVS atomic model: 
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Parallel port read = <X, Y, S, ta, δint, δext, λ> 

 

X: Parallel port external event: is a new event coming from the parallel port. 

Y: output port: is a new external event with all the data required by the root 

coordinator to perform a complete run of the simulation, timestamp of the event, 

expected completion time, port name and value.   

S: system states: forward external event from the parallel port; wait for next external 

event. 

ta: time advance function: the time advance is provided as real time count from the 

computer’s real time clock. 

δδδδint: internal transition function: is the total time for the simulation to run, if infinite 

then this atomic component can only respond to external events. 

δδδδext: external transition function: since there is no direct method to generate interrupts 

to the processor from the parallel port, the external transition function is implemented 

as constant polling and comparing the acquired value to the last value in memory, if 

these values are different then an external event is generated. 

λλλλ: output function: sends the value of the external event to the list of external events 

managed by the root coordinator along with the time stamp of the event, the expected 

finalization time, the input port and the value as a floating-point number. 

 

Program Code 1 highlights the main sections of the code that deal with the polling of the 

parallel port and the subsequent generation of external events from the parallel port to the 

model, only when there as a change in the state of the input register in the parallel port.  

This is done only when two conditions are met. The first one involves the non-existence of 

an event file, only when this field is left blank can the polling mechanism work. The second 
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condition has been added to ECD++, and is the definition of another flag “-g” at runtime 

that instructs the simulator, through the function isRealRun() from the loader() class, that 

the simulation being performed will use the memory space destined for the parallel port, 

which is usually protected by the kernel [59]. When executing the simulation with the “-g” 

flag, some portion of the code that request permission for the software to use restricted 

memory space is executed; once the request is granted it starts to execute an additional 

thread that will ultimately control the memory positions that change the assertion of bits in 

the parallel port. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program Code 1: Parallel Port read atomic DEVS implementation 

 
MainSimulator &MainSimulator::loadExternalEvents( i stream  &fileIn ) 
{ 
Root::Instance().initialize(); 
 
if (loader()->isRealRun()&&loader()->EmptyEventFile ()) 

                     //real run and real events ena bled 
{ 
  try { 
  tnow = Time::currentTime(); 
  if (tnow < Time::Zero) tnow = Time::Zero; 
  deadline = Time::currentTime(); 
  deadline+=loader()->endeventTime(); 

if (deadline < Time::Zero) deadline = Time::Zero + 
loader()->endeventTime(); 

  inportName = "in";  // the names of the ports are  fixed 
  outportName = "out"; 
  parvaluetemp =  pport.readfromParallel(); 

if(parvaluetemp != parvalue){ 
//values should be different to activate the event 

     Port &port( Root::Instance().top().port(inport Name) ) ; 
     Port &outport(Root::Instance().top().port(outp ortName) ) ; 
     convalue = parvaluetemp / 1.0; 
     std::cout << "Event occurs @: " << tnow.asStri ng() << " " 
   << "Deadline @: " << deadline.asString() << " " 
   << "Value: " << convalue << "\n"; 
     Root::Instance().addExternalEvent( tnow, deadl ine, 
      port, outport, convalue ) ; 
     parvalue = parvaluetemp; 
  } else { 
 //Do Nothing 
 } 
  } catch( InvalidPortRequest &e ) { 
    e.addLocation( MEXCEPTION_LOCATION() ) ; 
    throw e ;} 
} else {... read external events from file...} 
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The next Program Code 2 deals with the initialization and loading of the type of simulation, 

i.e. if the simulation is executed with the “-g” flag then the executable file will start a new 

thread and send the signals for the initialization of the motor, plus the loading of each 

external event as a single external event instead of a pool of events (if no event file is 

defined), this is done through a do…while structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program Code 2: Main simulator code with real input capability. Added code in italics. 

 
MainSimulator &MainSimulator::run() 
{ 
  if( !loader() ) 
  { 
  MException e( "The MainSimulator loader not found !" ) ; 
  e.addText( "The loader must be set before running  the simulation."); 
  MTHROW( e ) ; 
  } 
  if (loader()->isRealTimeRun()){//initialization of the motor 
    pport.spinclockwise = false; 
    pport.spincounterclockwise = false; 
    pthread_create( &thread1, NULL, control_motor_, (void*) NULL); 
    } //initialization ends 
  loader()->loadData(); 
  DBG( "Loading Models..."); 
  loadModels( loader()->modelsStream(), loader()->p rintParserInfo() ); 
   
  Root::Instance().stopTime( loader()->stopTime() ) ; 
  startTime_m = elapsedTime(); 
 // run the following code at least once 
do{ 
// at the end decide to contiune looping or not 
  DBG("Loading ExternalEvents..."); 
  loadExternalEvents( loader()->eventsStream() ); 
   
  DBG("Running Root::Instance().simulate()...\n"); 
  DBG("startTime_m = " << startTime_m.asString()); 
  Root::Instance().simulate(); 
 if(loader()->isRealRun()&&loader()->EmptyEventFile()) 
  {if(Time::currentTime()>=loader()->stopTime()) break;} 
} while (loader()->isRealRun()&&loader()->EmptyEventFile()); 
//real run and real events enabled 
  loader()->writeResults(); 
  if (loader()->isRealRun()) 
{if(!pport.close()) std::cout << "\nCannot close LPT1 port!" << 
std::endl;} 
  return *this; 
} 
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Whenever the simulation runs in normal mode (i.e. without the ‘-g’ flag) the simulator 

loads all the external events from an external events (.ev) text file, and then the simulation 

is executed having a list of all the future external events in memory. 

 

In the case where the inputs are changing in real time, it is not possible to anticipate future 

changes neither have a list of future timestamps that signal when the next event will take 

place. For this reason, whenever the simulation runs in real time, with real inputs, the 

simulator treats each external event as a single and unique external event, i.e. runs a 

complete simulation every time an external event is received. This whole approach takes 

considerable more time to execute than the normal execution, but considering the speed of 

the external events, this does not have major impact. 

 

4.1. ECD++ with Hardware-In-the-Loop 

 

The parallel port is tremendously slow for today’s standards, and because there is a lot 

going on between readings, it is just not possible to have an accurate measure of the 

sampling frequency. One of the main reasons for this is that the code developed by the end 

user, the model developer, will run between readings. However, it is possible to measure 

the sampling frequency when there is no change in the input.  

 

The sampling period measured on the platform was of 0.022 (s) which gives an 

approximate sampling frequency of 46 reads per second. As stated this number is only 

given as the empirical maximum frequency at which the simulator performs, any code 

developed by the user is executed between samples and will affect the sampling frequency 

parameter, making it much slower. 
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On the other hand, in the case of the ‘writes’ to the parallel port the contrary happens, 

because is very likely that the electro-mechanical interface, i.e. a motor, will be several 

times slower than the port frequency; therefore in some cases, there is the need to create 

delays between port-updates. For example, the original proof of concept of the output 

through the parallel port was to drive a small 2-coil stepper motor; the type of motor 

commonly found in toys, CD-ROMs and hard disk drives, for spinning this type of motor a 

defined sequence of switches (bits) need to be turn-on and off and a delay needs to be 

introduced between changes to accommodate the system’s speed to the motor. In the final 

implementation the time between updates to the motor is done in the user software or it can 

be done in the model, because the motor used is a brushless DC motor that only needs one 

switch (bit) for each direction. 

 

4.2. Motor Driver  

 

The main difference of using a stepper motor is that the speed, spin direction and position 

of the rotor can be controlled with trains of pulses that can be easily generated by a 

computer, while a continuous brushless DC motor requires polarity inversion to switch the 

direction of spin (which is done via hardware), and to position the rotor accurately requires 

slightly more elaborated electronics. Despite this consideration, a single general driver can 

be built for both types of motors. For an initial test setup, in a four-wire stepper motor the 

coils can be connected in such a way that every time that they are energized with a 

predefined set of binary numbers the rotor spins ¼ of a turn, therefore by keeping track of 

any number in the set is possible to know the position of the rotor. 
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According to the schematic shown in the Figure 15, three input-bits are required for the 

motor to spin: two of them are connected to the motor through a quad push-pull driver and 

the other is connected to the enable pin of the same driver to enable the outputs of it. The 

logic inverter is only used to minimize the wires coming from the computer to two. All the 

capacitors are in place to limit the ac-ripple on the dc power source. The low value resistors 

limit the current that is fed to the motor and the high value resistors are set in a pull-down 

configuration. Figure 16 shows the circuit mounted on a breadboard. 

 

 

 

 

 

 

 

 

Figure 15: Stepper motor test circuit layout [63] 
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Since the simulator is performing multiple different tasks and because the actual drive of 

the motor implies outputting a value, wait for a considerable time and output a new value 

according to a predetermined sequence. An easy implementation of these control system 

would assume that a specific processor is dedicated only to generate the write-and-wait 

sequences, while it communicates with a different control processor that sends enable and 

control signals. A good abstraction of this concept makes use of a new thread that only runs 

the motor and leaves the main simulator thread ample time and flexibility to do any kind of 

control it needs to do without having to make major changes to the architecture of the 

system. 

 

4.3. Implementation 

 

During the development of this test case, the new IDE environment was used and proved 

useful in the debugging and optimization of the project. Additionally, the information 

Figure 16: Stepper Motor test circuit 
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presented on the IDE made the design process easier and much quicker than a purely text 

based environment. 

 

The control of the sequence of steps for the motor can be done through a new thread that 

behaves as a completely isolated processor, which its only task is to generate the steps and 

delays required for the motor to spin. This is depicted in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 shows that when ‘real simulation’ (when the “-g” flag) is selected, the simulator 

creates a new thread and defines shared variables in it; it is through these variables that the 

main thread is capable to control the execution of the code required for the motor to spin in 

either direction. The slave thread reads the values of these variables in an infinite loop, and 

Figure 17: Spin motor thread implementation – pseudo code 

  New thread 
 
Spinmotorclockwise; 
Spinmotorcounterclokwise; 
 

If spinmotorclockwise ==1 
 {spin_motor_clockwise;} 
If spinmotorcounterclockwise ==1 
 {spin_motor_counter_clockwise;} 
If spinmotorclockwise ==0 && 
    spinmotorcounterclockwise ==0 
 {motor_stop;} 
 

Original Simulator Process (Main thread) 
 
Real time execution enabled (-g) + real time advance (-W) 

(Main thread) 
Termination the process, save logging and output files if set; perform garbage collection 
and destruct remaining processes. 

Main thread 
//developer code 
 
MainSimu::Spinmotorclockwise; 
: 
MainSimu::Spinmotorcounterclockwise; 
: 
Main::MotorStop; 
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then uses them as flags to execute defined sequences of writings to the Parallel Port output 

register. For a stepper motor four updates are required, and occur after a short delay and 

then are repeated indefinitely until there is a change in one of the control variables. For a 

DC motor the updates are written in every execution of the thread, this is obviously not 

necessary since it is possible to set the register just once to keep the motor running, but then 

the flexibility of having a second thread is lost. Additional care has been taken to avoid 

unknown states, i.e. both control bits asserted, hence, the implemented condition for the 

motor to spin is to have only one of the Boolean variables asserted (true) while the other is 

unasserted (false). 

 

The implementation of writing to the Parallel port and generating the sequence that moves 

the motor can also be cast as a DEVS atomic model: 

 

Spin Motor = <X, Y, S, ta, δint, δext, λ> 

 

X: Parallel port external events: these are the changes in the state of four inputs: 

 - Spin_Motor_Clockwise, Spin_Motor_CounterClockwise, Turn_Left, Turn_Right 

Y: output port: is the Parallel port.  

S: system states: - Spin Motor Clockwise, 

    - Spin Motor Counter Clockwise. 

    - Stop motor. 

    - Turn Left. 

    - Turn Right. 

ta: time advance function: handled externally from the simulator. 

δδδδint: internal transition function: not required for this implementation. 

δδδδext: external transition function: checks for changes on either one of the control bits. 
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λλλλ: output function: Writes a predefined 3-bit data from a pool of values to the Parallel 

port depending on the state of the control variables. 

 

The implementation of the initialization and closing of the parallel port can be easily taken 

from the explanation from above by first requesting permission to the system to access the 

memory space destined to the parallel port. The Program Code 3 shows how such scheme is 

implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

Once the proof of concept test was successfully finished, a more complete test platform was 

required to test different scenarios. Small carts are widely used in the manufacturing plants, 

warehouses and almost any industry in general, as transport vehicles for the relocation of 

goods in short distances. In a very simplified automation scheme, we would be interested in 

making this carts change direction when they sense some obstacle in their way. Based on 

this concept, and to provide a complete implementation of the RoboCart system, a LEGO 

Program Code 3: Parallel port setup and termination 

 

bool parallelPort::setup(void){ 
if(ioperm(DATA,3,1)) return (0); 
// if access granted initialize DATA to 0x00 
outb(0x00,DATA); 
//initialize all control pins to low (c0, c2 and c3  are inverted) 
// c0 being the LSB 
outb(0x0B, CONTROL); 
// return 1(true) is successful 
return (1); 
} 
 
bool parallelPort::close(void){ 
//set pins to 0 and set control pins to low 
outb(0x00,DATA); 
outb(0x0B,CONTROL); 
//Remove access permision to 3 I/O addresses (DATA,  STATUS, CONTROL) 
//starting from the DATA address 
if(ioperm(DATA,3,0)) return(0); 
//if successful return true = 1 
return (1); 
} 
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NXT Robotic Kit was acquired, and a small cart was built. The advantage of this 

prototyping tool is that it provides all the electro-mechanical support required by small to 

medium proof-of-concept projects and small prototypes. The standard NXT kit comes with 

three DC motors and sound, touch, infrared and temperature sensors plus a special ‘brick’ 

that contains a microcontroller and electronics capable of receive information from the 

sensors and drive the motors. For the test case, the basic robotic cart was assembled without 

the controller brick, and the motors connected to the parallel port through a slightly 

modified version of the circuit used to drive the stepper motor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

From the modified version of the driver circuit, in Figure 18, the same motor driver that 

controls one stepper motor is used to control two DC motors, the synchronization is done 

via software. The spin direction of each motor is controlled by one bit,  C0 controls the left 

Figure 18: Modified DC Motor Driver Circuit 
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motor and C1 the right motor, and the whole system is turned on or off by asserting a third 

enable bit (C3), which can also be used to brake. 

 

In the software side of the implementation, the Parallel port atomic block acts as a driver 

providing the required code to initialize the Parallel port for subsequent use, and it closes 

the port when the program finishes by calling a close() function that restores all port 

outputs to zero. The Parallel port block was created as a separate class and is called from 

the new thread, this way it is easier to make modifications, i.e. change stepper or dc motors, 

or upgrade the control algorithm in future developments; i.e. if there is the need to change 

the controlling method to some other control algorithm, then the class file is the only one 

that needs to be changed. 

 

The excerpted code in 4, shown above demonstrates the use of the methods used to spin the 

motor so that the cart moves forward and backward. The methods to turn left and right are 

set in a way that minimum resolution for turning is 90 degrees, this because the constructed 

prototype is only capable of sensing obstacles with the only one push-sensor available in 

the kit, located at the front of it. Therefore, to avoid completely crashing into an obstacle 

constantly, the cart rotates 90 degrees to position itself parallel to the obstacle and 

continues rolling forward.  
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The turn-left and turn-right methods are implemented in such a way that whenever they are 

summoned they restore the control bit automatically after enough time to complete a 90-

degree turn to either side. 

Program Code 4: Motor spin driver - parallel port 

 
 
void parallelPort::output2P_CONTROL(int cValue){ 
 int cV = cValue; 
     if(spinclockwise&&!spincounterclockwise){ 
  outb(0x03,CONTROL); // for DC motors this is enou gh 
 //if it's a stepper motor uncomment these lines 
/*    delay(cV); 
      outb(0x02,CONTROL); 
      delay(cV); 
      outb(0x00,CONTROL); 
      delay(cV); 
      outb(0x01,CONTROL); 
      delay(cV); */     } 
 
     if(!spinclockwise&&spincounterclockwise){ 
  outb(0x00,CONTROL); // for DC motors this is enou gh 
 //if it's a stepper motor uncomment these lines 
/*    delay(cV); 
      outb(0x02,CONTROL); 
      delay(cV); 
      outb(0x03,CONTROL); 
      delay(cV); 
      outb(0x01,CONTROL); 
      delay(cV);*/ 
      } 
         
     if(!spinclockwise&&!spincounterclockwise) 

 outb(0x08,CONTROL); 
 
 if(turn_left&&!turn_right) 
  { 
  outb(0x02,CONTROL); 
  delay(150000000); 
  turn_left = false; 
  }  
 
     if(turn_right&&!turn_left) 
  { 
  outb(0x01,CONTROL); 
  delay(150000000); 
  turn_right = false; 

 } 
//end of parallelPort::output2P_DATA 
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The model of the robotic cart is rather simple and can be better explained by the use of a 

diagram like the one in Figure 19. When the controller receives an input form the touch 

sensor, meaning that the cart is facing an obstacle; the control code moves the RoboCart 

backwards to have more space for taking the turn. Due to the availability of a single sensor 

the turning is done alternating the direction of the turn (i.e. the RoboCart turns either side 

twice to the left, but once to the left and the next one to the right); by increasing the number 

of sensors or, even better, having the provided ultrasonic sensor would make the direction 

decision more accurate, but the system’s software driver would have to increase in 

complexity, because this sensor uses the Inter-Integrated Circuit (I2C) communication 

protocol. Therefore, the minimum turn that the RoboCart can take to be completely sure 

that it is perpendicular to the obstacle is 90 degrees. The turning is done by spinning the 

wheel of the turning side clockwise while the other wheel is rotating counter clockwise.  

 

 

 

 

 

 

 

 

 

This behaviour can be easily represented by a CD++ model. The C++ code for the 

RoboCart is shown in the Program Code 5.  

 

 

Figure 19: Robotic Cart – pseudo code model 

Robotic cart 
Initialize = Move forward; 
 
If (touch sensor == pressed) 
{move backwards; 
  change direction 90 degrees} 

 
Move forward. 

Touch sensor 

 Actuator1 → 
 Actuator2 → 
  
 Actuator1 ←   ←/→ 
 Actuator2 ←   →/← 

 Actuator1 → 
 Actuator2 → 
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In the above Program Code, the initialization function sets the motors to start spinning 

forward, and initializes some intermediate variables. If an external transition function is 

triggered by the touch sensor (an external event is generated), the RoboCart model moves 

backwards for a certain time-period given by the time advance function entry in the model 

Program Code 5: Model file. 

/************************************************** ***************** 
* CLASS RTPport 
*************************************************** ******************/ 
 
/************************************************** ***************** 
* Function Name: RTPport::RTPport() 
* Description: Constructor 
*************************************************** *****************/ 
RTPport::RTPport( const std::string &name ) : Atomi c( name ) 
, in( addInputPort( "in" ) ) 
, out( addOutputPort( "out" ) ) 
, preparationTime( 0, 0, 0, 1 ) 
 
{ 
std::string time( MainSimulator::Instance().getPara meter( description(), 
"preparation" ) ) ; 
//we can get some parameters that we might need for m the model file 
 if( time != "" ) 
 preparationTime = time ; 
 MainSimulator::Instance().Spin_Motor_Clockwise(); 
} 
 
/************************************************** ***************** 
* Function Name: RTPport::initFunction() 
* Description: Initialization Function 
*************************************************** *****************/ 
Model &RTPport::initFunction() 
{ 
 ackNum = 0; // to recover the input value from the  external event 
 return *this ; 
} 
 
/************************************************** ***************** 
* Function Name: RTPport::externalFunction() 
* Description: External Function handler 
*************************************************** *****************/ 
Model &RTPport::externalFunction( const ExternalMes sage &msg ) 
{ 
 ackNum = static_cast < int > (msg.value()); 
 if (msg.value()==216) { //checks if the external e vent comes from the touch 
sensor 
 MainSimulator::Instance().Spin_Motor_CounterClockw ise(); //move back for  
     holdIn( Atomic::active, preparationTime ); //t he preparationTime from 
the model file 
 } 
 else passivate(); //if not go to sleep 
 return *this; 
} 
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file (.ma). This also triggers the internal transition function (ITF), which is activated after 

the time advance function has elapsed, the code inside the ITF turns the RoboCart to a 

different side based on the last direction of the turn. Finally the model continues moving 

forward (the component goes to rest) and waits for an external event that indicates that a 

new obstacle has been found and an evasive action is required to overcome such obstacle. 

This is presented in the Program Code 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also in the Program Code 6 the output function records or displays, depending on the 

selection mode of the simulation, the time at which the external event was received and the 

value of the external even, this is last value is very useful because, if multiple sensors are 

used then we can tell the controller the direction to which it should go. If a more advanced 

Program Code 6: Model file (cont) 

/************************************************** ***************** 
* Function name: RTPport::internalFunction() 
* Description: Internal Function handler 
*************************************************** *****************/ 
Model &RTPport::internalFunction( const InternalMes sage & )  
{ 
test = 1^test; //ex-or toggles the bit, thus 'remem bering' the last turn 
// and turning in the opposite direction. 
if (!test) MainSimulator::Instance().Turn_V_Left();  //turn left or right 
if (test) MainSimulator::Instance().Turn_V_Right();  
MainSimulator::Instance().Spin_Motor_Clockwise(); / / move forward again 
passivate(); //go to sleep 
return *this ; 
} 
 
/************************************************** ***************** 
* Function Name: RTPport::outputFunction() 
* Description: Output function handler - writes inf o about time and events 
*************************************************** *****************/ 
Model &RTPport::outputFunction( const InternalMessa ge &msg ) 
{ 
 sendOutput( msg.time(), out, ackNum) ; 
 return *this ; 
} 
 
RTPport::~RTPport() 
{ 
 // N/A 
} 
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sensor is used (i.e. ultrasonic sensor) then many measures can be taken from many 

directions to find which way presents the least obstacles.  The cart built for the project and 

the driver circuit can be seen in Figures 20, 21 and 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: RoboCart top view 

Figure 21: RoboCart – side view 
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Initially the RoboCart was tested with the external events coming from an event file with 

random times and event values, some of them spread in time and some others were closely 

spaced in time. The events in the file that were close together created confusing behaviour 

in the RoboCart emulation, mostly because the event generation was too fast for the 

dynamics of the motors of the RoboCart and the time limits of ECD++ could not be met, 

sometimes this led to a random behaviour and the parallel port remains enabled even after 

the termination of the program. 

 

For sufficiently spaced external events the results are the expected ones, when an external 

events occurs the RoboCart moves backwards according to the time defined in the model 

(measured in seconds) to allow sufficient space to turn, then the internal transition is fired 

and the RoboCart turns right or left based on the last turn, finally it displays or prints the 

event information to the screen or file and moves forward. This process is repeated for all 

external events coming from the event file. 

 

When running the simulation in real mode, i.e. receiving input form the parallel port and 

generating an external event as soon as a change in the input register of the parallel port is 

Figure 22: RoboCart – System view (AMPRO board inside CPU case, Monitor not used) 



 76

detected, the RoboCart behaves as expected, moving back and then turning to either side 

depending on the last turn. However, the touch sensor is simply a mechanical switch that 

switches between high impedance and ground, to keep the circuit simple no provisions 

were made for the bouncing effect typical of this switches. Whenever the repetition of 

changes of the input register is too fast (i.e. artificially pressing and releasing the sensor 

very fast), the system can keep up with this repetition and the same erroneous behaviour is 

present, that is to say that the port stays enabled even after the termination of the program. 

 

For a normal execution of the simulation, a small maze-like path was constructed, the 

RoboCart was placed at the beginning and the program executed. The RoboCart went 

through the maze and every time it hit a wall the control algorithm developed in CD++ took 

control of the situation; forcing the RoboCart to move backwards for the time given in the 

model, then turn to a wall free side based on the last turn and move forward again until a 

new obstacle pushes the touch sensor, when the process is repeated. 

 

To develop the Development Environment tool further, it is possible to create a 

performance measure that can be used to compare the speed and accuracy of different 

versions of CD++ against other DEVS-based simulators. Such comparison can be based on 

the benchmarking of the performance of the simulators when running similar simulations of 

identical models. With the information provided by the benchmark and the use of common 

debugging tools it is, also possible to find the cause of performance problems of one 

simulator versus another. Once the cause of any problem is found, multiple solution 

strategies can be analyzed, and the simulator under test can be improved. The creation of 

the benchmark and the strategy of analysis are discussed further in the next Chapters. 
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