

An Environment for Development and

Benchmarking DEVS applications

By

J. Marcelo Gutierrez-Alcaraz

A thesis submitted to

The Faculty of Graduate Studies and Research

In partial fulfillment for the degree of
Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

Canada

 Copyright 2007, J. Marcelo Gutierrez-Alcaraz

Abstract

Discrete Event System Specification (DEVS) is a formal modeling and simulation (M&S)

framework that supports hierarchical, modular models. DEVS-based M&S environments

have been used successfully to understand, analyze, and develop a variety of systems. Some

of the environments and systems modeled with DEVS are difficult to replicate and analyze;

on the other hand, some others are populated with small, embedded devices that perform

critical operations with dedicated hardware and software. In both cases the design,

simulation and test of these models tend to grow in size and complexity. In each of the

development stages, different methods of modeling, implementation and testing are used

without any relation among them. CD++ is a modeling and simulation toolkit based on the

DEVS formalism. This thesis proposes a modeling, simulation and benchmarking

environment based on the CD++ toolkit. Two different tools are presented to the user of the

CD++ toolkit: a Benchmarking tool for comparison of the modelling and simulation CD++

tool with other simulators including a benchmarking methodology, and an Integrated

Development Environment (IDE) for the conception and construction of models of Real-

Time embedded systems, as well as the final implementation and deployment on an

embedded target. A hardware-in-the-loop example using the embedded version of CD++ is

also described.

 2

Table of Contents

1. INTRODUCTION .. 8

1.1. Background .. 10

1.2. Contributions ... 16

1.3. Thesis Organization .. 19

2. DEVS ... 20

2.1. Embedded systems and simulators .. 24

2.2. ADEVS ... 30

2.3. CD++... 31

2.4. Embedded CD++ ... 32

2.5. Benchmarking for Simulations and Simulators ... 34

3. EMBEDDED CD++ BUILDER INTEGRATED DEVELOPMENT

ENVIRONMENT IN ECLIPSE .. 38

3.1. Embedded CD++ IDE - Development ... 41

4 ROBOCART .. 56

4.1. ECD++ with Hardware-In-the-Loop ... 61

4.2. Motor Driver .. 62

4.3. Implementation.. 64

5. DEVSTONE ... ERROR! BOOKMARK NOT DEFINED.

5.1. DEVStone Implementation Error! Bookmark not defined.

6. DEVSTONE RESULTS ERROR! BOOKMARK NOT DEFINED.

 3

7. CONCLUSIONS AND COMMENTS ERROR! BOOKMARK NOT DEFINED.

8. REFERENCES ... 77

 4

Table of Figures

FIGURE 1: CD++ (A) MODEL HIERARCHY, (B) PROCESSOR HIERARCHY .. 32

FIGURE 2: ECD++ BUILDER IDE AS ECLIPSE PLUG-IN – REQUIREMENTS .. 40

FIGURE 3: NEW CD++ BUILDER ENVIRONMENT WINDOW – EMBEDDED CD++ FUNCTIONALITY 42

FIGURE 4: ECD++ BUILDER COMPILE2TARGET – CLASSES DIAGRAM ... 44

FIGURE 5: ECD++ BUILDER COMPILE2TARGET – SOFTWARE SUPPORT DIAGRAM .. 45

FIGURE 6: ECD++ BUILDER COMPILE2TARGET FIRST WINDOW ... 46

FIGURE 7: ECD++ BUILDER COMPILE2TARGET PROGRESS WINDOW .. 46

FIGURE 8: ECD++ BUILDER COMPILE2TARGET – IDE WHEN COMPILE2TARGET FINISHES 47

FIGURE 9: ECD++ BUILDER DOWNLOAD2TARGET – SOFTWARE SUPPORT DIAGRAM 49

FIGURE 10: ECD++ BUILDER DOWNLOAD2TARGET WINDOW SCREENSHOT ... 50

FIGURE 11: ECD++ BUILDER RUN SIMULATION REMOTELY – SOFTWARE SUPPORT DIAGRAM 52

FIGURE 12: ECD++ RUN SIMULATION REMOTELY – PARAMETER‘S INPUT BOX .. 52

FIGURE 13: ECD++ BUILDER TELNET2TARGET – SOFTWARE SUPPORT DIAGRAM .. 54

FIGURE 14: ECD++ BUILDER TELNET2TARGET WINDOW SCREENSHOT ... 54

FIGURE 15: STEPPER MOTOR TEST CIRCUIT LAYOUT [63] .. 63

FIGURE 16: STEPPER MOTOR TEST CIRCUIT ... 64

FIGURE 17: SPIN MOTOR THREAD IMPLEMENTATION – PSEUDO CODE ... 65

FIGURE 18: MODIFIED DC MOTOR DRIVER CIRCUIT .. 68

FIGURE 19: ROBOTIC CART – PSEUDO CODE MODEL.. 71

FIGURE 20: ROBOCART TOP VIEW ... 74

FIGURE 21: ROBOCART – SIDE VIEW ... 74

FIGURE 22: ROBOCART – SYSTEM VIEW (AMPRO BOARD INSIDE CPU CASE, MONITOR NOT USED) 75

FIGURE 23: DEVSTONE LI MODEL .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 24: DEVSTONE INNER ‘COUPLED ATOMIC MODEL’ ERROR! BOOKMARK NOT DEFINED.

FIGURE 25: DEVSTONE HI MODEL ... ERROR! BOOKMARK NOT DEFINED.

 5

FIGURE 26: DEVSTONE HO MODEL .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 27: DEVSTONE HOMOD MODEL (SHOWN EXPLICITLY FOR W = 3) .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 28: DEVSTONE INITIALIZATION TIME – LI MODEL ERROR! BOOKMARK NOT DEFINED.

FIGURE 29: DEVSTONE INITIALIZATION TIME HI MODEL ERROR! BOOKMARK NOT DEFINED.

FIGURE 30: DEVSTONE INITIALIZATION TIME HO MODEL ERROR! BOOKMARK NOT DEFINED.

FIGURE 31: MINIMUM WIDTH AND MAXIMUM DEPTH OF MODELS ERROR! BOOKMARK NOT DEFINED.

FIGURE 32: LI PLOT FOR δδδδINT = δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 33: LI PLOT FOR δδδδINT < δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 34: LI PLOT FOR δδδδINT > δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 35: LI PLOT FOR δδδδINT = δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 36: LI PLOT FOR δδδδINT < δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 37: LI PLOT FOR δδδδINT > δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 38: HI PLOT FOR δδδδINT = δδδδEXT ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 39: HI PLOT FOR δδδδINT < δδδδEXT ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 40: HI PLOT FOR δδδδINT > δδδδEXT ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 41: HI PLOT FOR δδδδINT = δδδδEXT ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 42: HI PLOT FOR δδδδINT < δδδδEXT ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 43: HI PLOT FOR δδδδINT > δδδδEXT ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 44: HO PLOT FOR δδδδINT = δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 45: HO PLOT FOR δδδδINT < δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 46: HO PLOT FOR δδδδINT > δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 47: HO PLOT FOR δδδδINT = δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 48: HO PLOT FOR δδδδINT < δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 49: HO PLOT FOR δδδδINT > δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 50: HOMOD PLOT FOR δδδδINT = δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 51: HOMOD PLOT FOR δδδδINT < δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 52: HOMOD PLOT FOR δδδδINT > δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

 6

FIGURE 53: HOMOD PLOT FOR δδδδINT = δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 54: HOMOD PLOT FOR δδδδINT < δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 55: HOMOD PLOT FOR δδδδINT > δδδδEXT .. ERROR! BOOKMARK NOT DEFINED.

 7

Table of Acronyms

ADEVS A Discrete EVent System

DDR Double Data Rate

DEVS Discrete EVent System Specification

ECD++ Embedded CD++

EIC External Input Couplings

EOC External Output Couplings

ETF External Transition Function

FSB Front Side Bus

GCC GNU Compiler Collection

GUI Graphical User Interface

HIL Hardware In the Loop

IC Internal Coupling

IDE Integrated Development Environment

IP Internet Protocol

ITF Internal Transition Function

M&S Modeling and Simulation

NFS Network File System

OOM Out Of Memory

OS Operating System

PERL Practical Extraction and Report Language

RAM Random Access Memory

RT Real Time

TMO Time-triggered Message-triggered Object

TTL Transistor-Transistor Logic

UML Unified Modeling Language

XML eXtensible Markup Language

 8

1. Introduction

Different technologies of modeling and simulation are widely used in the industry and the

academy to assist system development. Using abstract models in simple and complex

simulations of most process greatly reduces the development time and significant savings

in resources and cost are made. Reducing the development time also helps the design of

safer systems and environmental-friendly products, since it is possible to test more

scenarios and run simulations on each and every one of them. It is because of this that

Modeling and Simulation techniques have become an important part of system analysis and

later design through history. Mathematical models can be defined as abstract

representations of natural events, for engineers and scientist these models usually represent

different types of phenomena that can be physical, chemical, economical, and social or

many others. And by Simulation (by Computer Simulation in particular), we understand it

as the process that takes those abstract mathematical models, and through a controlled

update of certain defining variables, evolves those models to a different state.

Commonly, the simulation is done through simulation tools that are used at different stages

of system development: the analysis phase to support concept development (i.e. virtual

prototyping) and in the implementation and test stages to provide virtual test environments

(via hardware-in-the-loop techniques) and experimental scenarios for system verification

and evaluation [1]. By using abstract models (which depend on the simulation tool used) of

real systems in the analysis stage, simulation-based design can highlight problems early

enough in the product development process, which in turn may be addressed more cost-

effectively on the production side. Many leading companies, among them Boeing, and

General Dynamics, have saved millions of dollars on fighter planes, and submarines by

replacing physical prototypes with computer mock-ups [2]. Simulation-based test and

 9

verification enable automated test program and test case generation, functional coverage

and checking, etc. This virtual test methodology has been widely used, although still in an

ad-hoc way, by both hardware and software developers. For example, test generation

techniques, tools, and solutions are widely recognized as the main means for hardware

verification of complex designs. The approach of using simulation-based software design

and implementation combined with hardware-in-the-loop simulation techniques greatly

accelerate the embedded software development and integration processes. The effective use

of these techniques will result in a faster product development cycle, lower development

costs, and higher overall product quality [3].

One particular use of modeling and simulations tools is in the development of embedded

systems, usually these systems also have time constraints in which case they are also called

Real-Time Systems. Real-Time Systems must provide reliable outputs to external inputs

within a time limit. Depending on the strictness of the time limit, the systems are usually

separated in soft or hard real time systems [4]. Another characteristic of embedded systems,

is that most of them are application specific, although with the increase in computational

power from microprocessors this trend is somewhat changing [5]; many of these systems

also have a low electrical power constraint because they are deployed in environments

where grid-electricity is not commonly available or it is scarce, i.e. inside cars, space ships

or remote sensors and actuators.

Many development methods and techniques exist for the creation of embedded systems,

with the common denominator that most of them are based on hardware and software that

exceeds the computational power of the intended system to be developed. The most

common developing system is given by a general-purpose computer, a general-purpose

operative system, the target software, which often includes a simulator, and required

hardware to communicate with the embedded platform.

 10

For engineering in particular, Modeling and Simulation (M&S) of embedded systems is of

utmost importance. For example, engineers and scientists make heavy use of simulation

tools when a process is difficult to replicate (because of the cost involved, or if the

environmental conditions for the experiment are difficult to replicate or the danger is too

high) or when the simulation of a natural process is many times faster than the real process.

By using different techniques for modelling, we can predict the behaviour of simple or

complicated phenomena with, most of the time, a high degree of certainty. For systems that

interact with real data, the preferred method for modeling is the use of continuous

differential equations. However, one layer higher in the interaction between systems and

the real world we deal with a different nature of modelling and control which is usually

easy to model using discrete event modeling methods.

1.1. Background

Zeigler in [6] explains a general framework for an M&S process, and defines the basic

entities and their relationships; the basic entities of the M&S process are comprised of a

real or virtual environment under analysis; an experimental frame, which defines the type

of data obtained and the conditions of the system; the model, as stated is an abstract

representation of the system to be simulated and; the simulator, which is any computational

system capable of executing the model to generate or predict its behaviour. In any M&S

framework, it is important to separate the model from the simulator, because this separation

between them allows us:

- to reuse a single model for different purposes and,

 11

- to validate and verify both the simulator and the model for easiness of use; (i.e. once

the simulator is validated and verified we can assume that the simulator is valid for

any simulation that we want to run on it as long as the model is valid as well).

In particular, M&S tools have been useful for the development of embedded systems. Since

the beginning of the electronic era, most of the capabilities of embedded systems were put

on hardware most of the development was done on expensive prototypes. However, with

the advent of more powerful microprocessors and the economy of building digital hardware

compared to analog hardware, the implementation of their functionalities has steadily

shifted to software. This is driven by the fact that software has much more flexibility to

cope with system varieties and requirement changes. Recent studies indicate that up to 60%

of the development time of an embedded real-time system is spent in software coding [7],

[8], [9]. This indicates to us that the existing software development methods are insufficient

to develop real-time systems. Actually, the lack of good design methods and support tools

has made the software development for embedded systems a bottleneck, especially when a

large number of subsystems and task synchronization are involved.

The embedded software developer faces several unique challenges beyond those of

classical software development. First, in the case the system is real-time it needs to meet

both timeliness and reliability requirements and second the system have constrained

resources in terms of memory and processing power. These requirements add extra

complexity to the software design and test. For example, for hard real-time systems, special

test and analysis techniques have to be adapted or, ultimately, developed to test the

correctness of specific control models and to guarantee the system can meet deadlines

under all conditions.

 12

In addition, embedded systems usually operate in constantly changing environments, in

which the environment itself may be unknown during the design time or it could be

continuously evolving as time passes. Therefore, the software that controls these systems

should be able to deal with uncertainties, i.e. it could have to reconfigure itself dynamically

to adapt to a changing environment. This poses great challenges to test the software

effectively under development.

Something else to consider is that the rapid growth of real-time embedded systems brings

two other factors into embedded software’s complexity. First, embedded systems are

making heavy use of networking technologies, among themselves or between them and

wired/wireless access points. In the near future, it will be usual for hundreds of embedded

controllers, smart sensors and actuators to work together to finish a common task.

Consequently, scalability, which was not even considered for this type of systems some

time ago, is becoming an important design issue to deal with. Second, with the rapid

adoption of cheaper and powerful microprocessors, embedded systems are expected to

carry out more and more complex functionalities. It has been foreseen that the new breed of

embedded systems (which have enough computational power and memory to carry out

complex functionalities) will become dominant [10], making it little practical, if not

impossible, to develop physical prototypes in every step of the development process. In

order to handle the complexity of these systems, much effort has to be put on system

modeling and simulation during the concept proposal, design, analysis, and verification

steps.

Historically the state-of-the-art in embedded software development involves a great deal of

empirical knowledge and previous experience with particular platforms. Along the time,

various efforts to systematize and generalize this approach have been proposed. However,

so far none of them fits very well in supporting the design, test, and execution of embedded

 13

software from a systematic way. A compilation of some deficiencies of current

development methods is provided in [11]:

� In the software development lifecycle, most of the time different stages are not

related to each other, resulting in inconsistencies among analysis, design, test, and

implementation. For instance, in the analysis stage of complex systems,

mathematical models are usually built to analyze the control algorithms. However,

these mathematical models are rarely effectively used by the design stage, which

uses different modeling languages such as Unified Modeling Language (UML). The

same happens in the implementation stage, which uses programming languages

such as C or Java. Because of this constant changing of design and development

environments, transformation from one type of model to another is needed among

different stages. However, it is important to note that some tools have been

developed and improved particularly in the commercial arena, for instance Rational

Rose Real-Time sold by International Business Machines (IBM) and the Telelogic

family of software development tools. Both systems provide a framework for code

generation based on model specification using UML techniques for modeling and

some other tools for simulation. These toolkits focus on system model analysis and

design and allow graphical description of the system using use-case models and

scenarios, activity charts, control block diagram and state-charts. Both environments

provide support for maintaining consistency among these models, as well as

providing model-driven development environment for software engineering. The

formal languages of activity charts and state-charts enable the models’ execution

and verification using mapping rules. Additionally these products offer, and can

produce, graphical interfaces for the project being developed, since it utterly

beneficial for software design stage [12].

 14

� Software test for embedded systems is largely ad-hoc and low level. Although

control algorithms can be developed and tested in the analysis stage, once they are

transformed into implementation code, extensive test is still required because of the

discontinuity problem already mentioned. For this reason, many tests are

meaningful only after the actual code is generated, and often enough, these tests are

meaningful only when the software has been deployed to the real hardware. This

low-level activities result in later detection of inconsistencies between the final

implementation and the original system specification.

� Despite the continuous need for software to reconfigure itself dynamically in order

to adapt to new situations or new environments, “there is no effective and

systematic way to design and analyze these kinds of self-adaptive software” [11].

As embedded systems usually operate in real environments, most of them tend to

exhibit dynamic reconfiguration to change their structures and operation modes in

response to different situations. Hence, it is desirable for an embedded software

development method to provide a systematic way to analyze dynamic

reconfiguration of systems.

� Scalability becomes an important design specification as embedded systems

increasingly work in ad-hoc networks. To ensure scalability, component based

technology [13] and suitable software structures and physical topologies are needed.

Meanwhile, computer-based modeling and simulation (M&S) methodologies are

required since the scale of systems is well beyond what analytical tools alone can

handle and it is not always possible to replicate the environments where controlled

real experiments could be setup.

 15

To overcome the problems posed by the different models used in different stages of

development, the best solution is to provide a formal method during the development

process. A formal method in this context refers to mathematically rigorous techniques and

tools for the specification, design and verification of software and hardware systems.

Where specifications used in formal methods are well-formed statements in a mathematical

logic and that, the formal operations are rigorous deductions in that logic (i.e. each step

follows from a rule of inference and therefore can be checked by a mechanical process).

The solution proposed in this thesis deals with the use of a formal method, the Discrete

Event System Specification (DEVS) formalism, as a basis for the construction of embedded

system models with the help of an Integrated Development Environment (IDE) tool, where

the developer can find the required tools to continue with the next design stage from just

one model. The work done in the thesis provides the tools required for the continuous use

of a single model throughout the development process, from the conception of the problem

to the implementation in an embedded target. In order to do so, we made use of the CD++

Builder toolkit environment, the embedded version of CD++ [14] and other

communications tools to create one development environment as a solution. This solution

allows the development of the model, the consequent test and verification through

simulation of such model, the development of a control strategy for the variables that need

to be controlled by the control system, which can be thoroughly tested and verified, and the

deployment of the final code to the embedded system in charge of the control. The

proposed solution includes a test case that includes the use of hardware components in the

simulation.

Since the use of simulation tools was successfully applied in such a variety of applications

due to the ease of model definition, improved composition and reuse, and hierarchical

coupling many different simulation tools have arisen. Due to its discrete nature, DEVS

 16

provides considerable precision and speedups in the execution time, as models advance

triggered by instantaneous asynchronous events in contraposition with time stepped

approaches [15]. The CD++ tool, which is based on the DEVS formalism, allows the rapid

development of models and their simulation. However, different versions of this tool have

been developed with many improvements and for different purposes and platforms. With

every new version, many new features are added to the toolkit but, at the same time, it

becomes increasingly more complex to keep track of the impact of the changes, or

additions, in the general performance of the M&S toolkit.

To measure the impact on the performance of the simulator and to generate a common

metric among different implementation of DEVS simulators, DEVStone [16] was

developed. DEVStone is a synthetic model generator that uses the Dhrystone Benchmark as

a basic real-time metric. To provide uniform means for obtaining meaningful

measurements, the benchmark is based on a large pool of models with different size,

complexity and behaviour, resembling different kinds of complex applications. Hence, it is

possible to analyze the efficiency of a simulation engine in relation to the characteristics of

a category of models of interest. The tool can be used to assess the efficiency of several

DEVS simulation engines, and it provides a common metric to compare the results using

different tools.

1.2. Contributions

One of the contributions of this Thesis is the development of a simulation-based Integrated

Development Environment (IDE) to manage the complexity of developing embedded

software. This Integrated Development Environment, based on the DEVS framework, with

a front-end based on Eclipse, provides a smooth transition for the developer to design and

 17

test embedded systems on general-purpose computing environments by emphasizing the

use and reuse of a single model through the development process. Specifically, this IDE has

been developed so that any control models designed and fully tested in multiple

simulations, can be deployed, retested and analyzed by emulation in a particular

development target.

To improve the actual software testing procedure of the Embedded CD++ (ECD++) tool

(where simulations are run in a virtual environment), a new functionality is provided to

allow the embedded target to be connected to the real world through sensors and actuators.

Consequently, any virtual simulation ran with ECD++ can now be run in real mode with

hardware-in-the-loop. This allows analyzing and validating the control algorithms, or to

emulate the response of the developed system to a certain event through real actuators.

The Eclipse-based front-end of the CD++ Builder toolkit was populated with the required

functionality to create complex discrete event models according to the CD++ language and,

if necessary, create new atomic components as extensions of the basic ECD++ via the C++

development plug-in of Eclipse. The IDE provides the binary executable for the appropriate

target through cross-compilation mechanisms and provides means to download all the

required files to the target platform to run simulations or an emulation of the model. The

emulation was done by using real input and output capabilities through an IEEE-1284

compliant port, which have been added to the original ECD++ simulator in order to allow

the test of hardware-in-the-loop techniques.

As an example of the use of the new functionalities of ECD++ a simulation and testing

environment for an autonomous robotic system was developed. This environment applies

modeling and simulation methodologies and the new testing methods to test a hardware-in-

the-loop robotic system. In particular, the work on an autonomous vehicle simulation

 18

allows us to proof the concept of having real and virtual simulations of the developments

done with ECD++. For instance, when developing a robotic system that includes electric

DC motors, a real motor can be hooked up to the target to see if the real hardware performs

as simulated on the computer.

The other important contribution of the thesis comprises a benchmarking tool for

comparison between different implementations of the DEVS formalism and as a tool to

compare the performance of CD++ from different versions of itself. DEVStone was

developed to measure the performance of simulations running in a tool that makes use of

the Parallel extension of the DEVS formalism. The work done in this thesis first adapted

the DEVStone benchmark to the standalone implementation of CD++ [17] and then

extended the tool with a new tool that generates models that are more complex. In addition

to the implementation of DEVStone adapted to the standalone CD++ version, we also

tackled the problem of the performance of our tool compared with a different

implementation of the DEVS formalism named ADEVS (A Discrete Event System) [18].

The main advantage that CD++ provides is flexibility, by separating the development of the

simulator core and the models that use the simulation engine; whereas ADEVS provides a

single portable library that embeds DEVS functionality in programs developed with C++.

Both implementations of DEVS have been developed and used in different academic

environments.

We used the synthetic benchmark to analyze the performance of different models in CD++

and ADEVS, which allowed us to show the performance variations of the both

implementations. Moreover, these results permitted us to characterize the execution time of

a standard DEVS simulator. The benchmark can be used to determine which directions and

decisions should be taken when updating or improving either tool’s simulation techniques.

 19

Furthermore, DEVStone can be used to aid the measurement and improvement of other

existing simulation tools.

1.3. Thesis Organization

The Thesis is organized as follows: Chapter 2 provides theoretical background of the

Thesis discussing the DEVS formalism and the implementations of the formalism in CD++

and ADEVS, as well as basic definitions of embedded systems and the current approaches

in the usage of development tools for embedded systems, simulators and simulators for

embedded systems. Chapter 3 discusses the original DEVStone, the different models and

the adaptation to standalone CD++ and ADEVS plus the new model developed for

DEVStone. Chapter 4 presents the results of the DEVStone benchmark, from CD++ and

ADEVS, and shows a procedure on how to use the results of the benchmark to improve the

CD++ simulator. Chapter 5 focuses on the design of the Integrated Development

Environment for ECD++ with a brief introduction to Eclipse and the CD++ Builder toolkit.

In Chapter 6 RoboCart is presented, which is the embedded hardware-in-the-loop design

test case presented; it was developed in its entirety using the new ECD++ IDE. The

example uses a LEGO Robotic Cart connected to an Embedded PC running an ECD++

version capable of simulating and emulating models in real mode. Chapter 7 concludes this

Thesis report and discusses about future research directions.

 20

2. DEVS

DEVS is a mathematical formalism that is used as the basis of a M&S framework. One of

the many advantages of DEVS is that it allows the construction of hierarchical and modular

models, coupling of components, and even support for continuous-like discrete event model

simulation by time approximation.

Given the natural hierarchical platform of DEVS, it allows the coupling of existing models

modularly in order to build bigger and more complex systems. Because the formalism is

closed under coupling, a coupled model can be treated as a basic DEVS component. The

modular specifications of DEVS view every model as blocks with input and output ports

through which all of the interactions between the exterior, and the internal and middle

blocks –if any– occur.

A DEVS Atomic Model is formally described as follows:

M = <X, Y, S, δint, δext, λ ,ta>

Where:

X = {(p,v)| p ∈ Input Ports, v ∈ Xp} set of input ports and acceptable values

Y = {(p,v)| p ∈ Output Ports, v ∈ Yp} set of output ports and acceptable values

S : set of sequential states

δδδδint: S → S’ internal state transition function

δδδδext: Q × X→ S’ external state transition function, where:

 Q = {(s,e)| s ∈ S,0 ≤ e ≤ ta}

 e = total time elapsed since the last state transition

λλλλ: S → Y output function

ta: S → [0, ∞) time advance function

 21

At any time, the system is in some state defined in the set S. In the absence of external

events, the system will stay in the state for the time specified by ta, which can be any real

value between [0,∞). When ta is finite and is consumed, the system first outputs the value λλλλ

and then changes immediately to a new state from the pool of states in S. If an external

event X is received before the expiration time ta, the new state of the system is determined

by δδδδext, where e is the time elapsed since the last transition. In other words, the state of the

model is driven by the internal transition function if no external events are present, if an

external event is received before the determined timer finishes counting then the state of the

model changes accordingly.

A DEVS coupled model, composed of several atomic or coupled sub-models, and is

formally described as:

M = <X,Y, D, {Mi}, {I i}, EIC | EOC>

Where:

X = {(p,v)| p ∈ Input Ports, v ∈ Xp} set of input ports and acceptable values

Y = {(p,v)| p ∈ Output Ports, v ∈ Yp} set of output ports and acceptable values

D = set of component names; the following requirements are imposed

on the components, which must also be DEVS models:

For each d ∈ D, Md = <Xd, Yd, Sd, δint, δext, λ ,ta> is a DEVS with

 X = {(p,v)| p ∈ Input Portsd, v ∈ Xp}, and

Y = {(p,v)| p ∈ Output Portsd, v ∈ Yp}

 Component couplings are subject to the following requirements:

External Input Couplings (EIC) connect external inputs to component outputs,

EIC ⊆ {(N,ipN),(d,ipd)) | ipN ∈ Input Ports, d ∈ D, ipd ∈ Input Portsd}

External Output Couplings (EOC) connect component outputs to external outputs,

EOC ⊆ {(d,opd),(d,opN)) | opN ∈ Output Ports, d ∈ D, ipd ∈ Output Portsd}

 22

Internal Couplings connect component outputs to component inputs,

IC ⊆ {(a,ipa),(b,ipb)) | a, b ∈ D, opa ∈ Output Portsa, ipb ∈ Input Portsb}

Select: 2D – {} → D is the tie breaking function for imminent components.

X is the set of input events; Y is the set of output events; D is an index for the components

of the coupled model, and ∀ i ∈ D, Mi is a basic DEVS (i.e., an atomic or coupled model),

I i is the set of influences of model i (i.e., models that can be influenced by outputs of model

i), and ∀ j ∈ I i, is the i to j translation function. Coupled models are defined as a set of basic

components (atomic or coupled) interconnected through the models’ interfaces. The

coupling specification consisting of the external input coupling (EIC) which connects the

input ports of the coupled to one or more of the input ports of the components. The external

output coupling (EOC) which connects the output ports of the components to one or more

of the output ports of the coupled model; and the internal coupling (IC) which connects

output ports of components to input ports of other components. The influences of a model

define to which model outputs must be sent. The translation function converts the outputs

of a model into inputs for other models. This function defines that the outputs of the model

Mi are connected to inputs in the model Mj, where j is an element of I i.

The DEVS scene has been very active among several academic institutions, and many of

them have come up with different implementations of the DEVS formalism. A non-up-to-

date list includes the following implementations of DEVS-based simulators:

◊ ADEVS [18] provides a C++ library based on DEVS. Users can use the classes in

the library to build their own models.

◊ CD++ [17] is a modeling and simulation tool implementing DEVS and Cell-DEVS

theory, which supports stand-alone, parallel [19] and embedded real-time simulation

[20].

 23

◊ DEVS/HLA [21] is based on the High Level Architecture (HLA) [22] and DEVS. It

was used to demonstrate how an HLA-compliant DEVS environment could

improve the performance of large-scale distributed modeling and simulation

environments.

◊ DEVSJAVA [23] is a DEVS-based modeling and simulation environment written

in Java that supports parallel execution. It provides classes for the users to

implement their own DEVS models.

◊ DEVS-Scheme [24] is a knowledge-based environment for modeling and

simulation based on the DEVS formalism, supporting real-time simulation and

control.

◊ DEVSim++ [25] is an object-oriented software to simulate DEVS models; which

was implemented in C++. The tool defines basic classes that can be extended by

users to define their own atomic and coupled DEVS components.

◊ GALATEA [26] is a simulation platform that offers a language to model multi-

agent systems using an object-oriented architecture. The tool describes a real system

as interacting agents.

◊ JDEVS [27] is a DEVS modeling and simulation environment written in Java. It

allows general purpose, component-based, object-oriented, visual simulation model

development and execution.

◊ PyDEVS uses the ATOM3 tool [28] to construct DEVS models and to create the

code to be executed. Models are represented as a state graph used to generate

Python code and then interpreted by PyDEVS.

◊ SimBeams [29] is a component-based software architecture based on Java and

JavaBeans. The idea is to provide a set of layered components that can be used in

model creation, result output analysis and visualization using DEVS.

 24

2.1. Embedded systems and simulators

Throughout time many definitions of embedded systems have arisen, the modern definition

that clearly summarizes the main characteristics of such systems is given by [30]:

“An embedded system is a special-purpose computer system designed to perform a

dedicated function. Unlike a general-purpose computer, such as a personal computer, an

embedded system performs one or a few pre-defined tasks, usually with very specific

requirements, and often includes task-specific hardware and mechanical parts not usually

found in a general-purpose computer. Since the system is dedicated to specific tasks, [it can

be optimized], reducing the size and cost of the product. Embedded systems are often mass-

produced, benefiting from economies of scale… In terms of complexity embedded systems

run from simple, with a single microcontroller chip, to very complex with multiple units,

peripherals and networks mounted inside a large chassis or enclosure.”

Based on the general definition provided above, it is safe to conclude that embedded

systems refer to systems that are connected to the real world through sensors and actuators,

and perform dedicated tasks with varying levels of complexity. Historically embedded

systems were mechanical or electronic devices, with very low complexity for the former

and low computational power for the later, which had the advantage of providing a rather

fast and exclusive response to all or some inputs to the system. In particular, the electronic

version of this type of systems was completely analog and had their niche in process

control and automation equipment. With the advent of higher computational power at lower

prices [31], the use of such systems and their complexity has augmented considerably.

 25

Some common characteristics of modern embedded systems include:

� They are often networked amongst themselves,

� They must interact with concurrent real-world entities,

� They may contain very large and complex software components,

� They may contain processing elements that are subject to the constraints of

computation resources (such as memory, CPU, network speed), cost, size, etc.

� They more often than not rely on restricted energy availability,

� They may require an exact and timely output for a given input,

� Their development is done by higher power computational equipment and then

downloaded to such systems.

� They may have one or multiple means for communication with similar or different

types of systems.

Maybe the most important characteristic of any microprocessor-based embedded system

regarding its software is the certainty of the system to respond appropriately and

exclusively to inputs coming from its attached sensors. This last characterization applies to

a huge variety of systems ranging from purely time-driven to purely event-driven systems.

For these systems, a systematic time handling and time modeling approach is usually not

feasible to attain because of the multiple variations in the environments where these

systems work. Since a systematic design is not always possible the validation and

verification of embedded systems is accomplished through extensive testing, which

includes heavily use of simulations in the early design phase [32]. The very nature of most

embedded applications calls for stringent requirements for high reliability, which could be

formulated by the intrinsic need for dependability and safety. However, and precisely

because of the non-systematic approach of the design, the original design objectives are

 26

usually compromised by non-ideal implementations that, sometimes, bear no resemblance

with the original design techniques, i.e. the design is initially done with mathematical

control models whereas the implementation uses UML-based JAVA or C++ tools.

The levels of reliability and safety often require fault-tolerant hardware and software, and

make the testing of such systems of equal importance, or even of more importance, as the

design of these systems. As a result, and given the impracticality of testing every possible

scenario designers tend to simulate as many real worst-case-scenario tests as possible.

Embedded systems are often real-time systems, meaning that the time at which the system

produces an output is finitely constrained, with the purpose of providing ‘real-time’

response for certain or some system’s responsibilities. For this reason, the terms real-time

systems and embedded systems are usually referred together as real-time embedded

systems, because of the exclusive attendance of tasks by embedded systems, they are better

suited to perform such tasks faster than general-purpose computing systems. The tight

interaction between hardware and software that exists among many of these systems makes

it difficult to separate completely one from the other, the software being heavily dependant

on the hardware platform in which it will be executed. Nevertheless, for the purpose of this

Thesis, we will refer simply to the software side of embedded systems without major

concern in the limitations of the underlying hardware.

Most of the current research on embedded systems is focused on the operating system

mainly because this is the single element that has to provide fast, predictable and

concurrent services (such as fast response to interrupts and predictable scheduling

algorithms to the programs running on top of it). These specialized operating systems are

often stripped-down versions of traditional timesharing operating systems, which are made

appropriate for the embedded domain [33]. An essential difference, due to the usually

 27

unattended nature of embedded applications, is that for external events the related internal

processes and outputs must be delivered, most of the time within a deadline. For the

purpose of this research, we will refer to embedded systems that have to respond to external

events in a real-time manner, since this the usual scenario where embedded systems are

used.

When designing real-time embedded systems, the most common scheduling algorithms are

Rate Monotonic scheduling [34], Earliest Deadline First scheduling [35], Minimum-Laxity-

First scheduling [36] and Maximum-Urgency-First scheduling [37]. Included in the middle

layer are computation models that are widely used in the design, analysis, and

implementation of real-time embedded software. Formal computation models for embedded

real-time systems have received growing attentions in the recent years. A formal model is

an essential ingredient of a sound system-level design methodology because it makes it

possible to capture the required functionality, verify the correctness of the functional

specification and synthesize the specification tool-independently [38]. As timeliness is

often an important feature in real-time embedded systems, computation models can be

characterized into two categories: models not considering time such as finite state machine,

Petri Nets, process algebra; and models considering time such as timed automata, timed

Petri Nets, temporal logic. These computation models provide the basis to capture the

behaviour and structure of a system under development. Those models considering time

also capture the timeliness feature of the system. They support time modeling explicitly so

are naturally fitted into the real-time domain.

While simulation methods help to analyze and design the systems under development, they

face a common deficiency—that the simulation models are discarded as unusable by the

implementation stage [39]. More often than not, the implementation techniques are not

derived in any direct way from the simulation models. This discontinuity between the actual

 28

implementation and the analysis, design, and modeling is a common deficiency of most

design methods. It results in an inherent inconsistency among the different phases of

design, implementation and test.

The simulation-based approach can be defined as a methodology that models a real system,

and based on this abstract representation control models are constructed and tested through

heavy use of computer simulations [40]. This approach can be used as a general tool for the

design of a complete complex system or a specific tool, i.e. the design of an independent

component of a complex system. During different development stages, different models of

the same process are used depending on the purpose and design methodology used.

Ensuring consistency among different development phases it is an ongoing research topic in

various areas of design. In software engineering, traceability, in the form of requirements

traceability [41] or design-code traceability [42], has been advocated to ensure consistency

among software blocks of subsequent phases of the development cycle. Boyd [43] shows

how traceability can be achieved when designing reactive systems. In hardware/software

co-design, Janka et al. [44] described a methodology that allows the specification stage and

design stage to work together coherently when designing embedded real-time signal

processing systems. These approaches use different methodologies for different stages.

Design of real-time embedded systems can be improved by supporting consistent

methodologies among all the design phases. For complex real-time embedded systems

where multiple crews of engineers work on different aspects of the design, implementation

and validation, it is very difficult to manage the software’s complexity during development

without the support of a continuous model.

The explanation given by Zeigler and Hu about model continuity indicates a methodology

that keeps consistency among all development stages because “the same control models

 29

that are designed and tested by simulation methods can be deployed to the real target

system for execution”. Because the control model remains unchanged from the design stage

to implementation stage, no transformation or reconstruction is needed, more over the

originally designed and simulated control algorithms can be deployed to operation

seamlessly. This gives the simulation-based approach a decisive advantage among other

methodologies, with it, designers can be confident that the final system in operation is the

system that was designed and that the system will carry out the functions as tested by

simulation.

The Thesis is based on different efforts closely related by applying simulation-based

design. The conceptual approach presented supports the design of distributed systems via

iterative refinement of a partially implemented design where some components exist as

simulation models and others as operational subsystems. In [45] the authors present a

simulation and control tool that provides the capability to model, as well as to control, real-

world systems. Part of this research focuses in the development of a continuous model

Integrated Design Environment framework, based on Eclipse, and the required adaptation

of real-world control capabilities for the current version of the CD++ DEVS tool

Other methods for real-time software system development have focused on exploring the

modeling capabilities for real-time embedded systems. For example, the unified modeling

language for real time (UML-RT) [46] extends UML models to address special aspects of

designing real-time systems. Kim [47] uses the time-triggered message-triggered object

(TMO) model to capture the timeliness and concurrency properties of real-time.

The simulators used in this thesis make use in one form or another the DEVS modeling

formalism as the basis for the construction of models and the consequent simulators. Both

simulators run under Linux and are optimized, to certain degree, to make the best use of

 30

system resources when running. Both simulators differ in the implementation although both

are written in C++. A short description of each simulator, and their different versions is

given next.

2.2. ADEVS

ADEVS (A Discrete EVent System) simulator was developed by Jim Nutaro of the

University of Arizona. ADEVS is a C++ library for constructing discrete event simulations

based on the Parallel DEVS and Dynamic DEVS formalisms. The models are constructed

based on a template of classes in C++ and then compiled and linked to the library to

produce the simulation executable. The latest stable version of the ADEVS template, as of

this writing, is 2.0.5.1.

Every atomic or coupled model in ADEVS is comprised of two files:

- A library file (.h); where the name of the model, input and output ports and local

variables are defined for the particular atomic model.

- A source code file (.cpp); where the actual model is built based on a template,

common elements of the class include: constructor, internal transition function,

external transition function, time advance function, output function, and destructor.

Once the model is written as a C++ file the main() function needs to be created in a new

file. When compiling and linking all the code, the resulting file is an executable that has the

simulator embedded in the model file. As a result, the model binary file is generally of

larger size than the counterpart in CD++. In addition, the compilation time for medium to

large models, which is negligible for CD++ compared to the simulation time, is not

 31

negligible in ADEVS for some models might take more time to compile than to execute. .

In the executable file, where the macro-model was defined and the simulator was created

for the model, there is something to notice: destructors are inside the model itself and not in

the main function, which the simulator is created, and the ‘destruction’ process is started

from the inside out as usual but with one quirk, the simulator relinquishes its resources after

the model has done it first.

Additionally, due to the self-contained characteristic of ADEVS, the compilation can be

done with any ISO 14882 compliant C++ compiler without major problems. However,

ADEVS was developed in Linux for UNIX like environments and the reality is that some

caution has to be taken even when compiling with different versions of the GNU C++

Compiler.

2.3. CD++

DEVS is a formal Modeling and Simulation framework based on generic dynamic systems

concepts. One of the main advantages of DEVS in respect to some other techniques is that

it allows the implementation of the simulation core engine and the incumbent model to be

completely separated from each other. In particular the CD++ [48] implementation, takes

advantage of this characteristic because by doing it the verification and validation of both,

simulator and model (the simulator is essentially another DEVS model), can be done

independently. As a result, CD ++ permits reuse of prior built models, therefore if there

could be a fairly big library of elementary atomic models it is possible to say that bigger

and more complex models can be built from the existing ones and this coupled models in

turn can be used as ‘atomic’ models for even more complex model constructions with as

many interconnections among coupled and atomic models as the model requires.

 32

The CD++ tool and the Eclipse-based front end CD++ Builder are ongoing research

projects that implement the DEVS formalism for discrete event simulations. On the other

hand, the CD++ tool and the Embedded CD++ version share common design roots, with

the exception that Embedded CD++ is an optimized version of CD++ designed for reduced

footprint in Embedded Systems. To avoid repetition, we will proceed to explain the

Embedded CD++ tool, emphasising that the same functional description holds true for

CD++.

2.4. Embedded CD++

As stated Embedded CD++ [49] is a stripped-down version of the more general CD++ tool,

both tools are built as a hierarchy of classes in C++, where each class corresponds to DEVS

defined entities. The two main abstract classes are the Model and the Processor. The former

used to represent the behaviour of the atomic and coupled models, and the later deals with

the simulation mechanisms. Figure 1 shows a simplified structure of both.

(a)

(b)

The Atomic class implements the behaviour of atomic components and the Coupled class

implements the equivalent mechanics for coupled models.

Figure 1: CD++ (a) Model hierarchy, (b) Processor hierarchy

Model

Atomic Coupled

Processor

Simulator Root

Coordinator

Coordinator

 33

A Simulator object manages an associated atomic block, handling the execution of δint, δext,

δcon, and λ(s) functions. A Coordinator block manages an associated coupled object. Only

one Root Coordinator exists in a simulation and is manages the global aspects of the

simulation. It is connected to the higher-level component(s) of the model, the Root

Coordinator also controls the global time and starts and stops the simulation process. In

addition, it is the one in charge of receiving the outputs of the model.

The simulation is accomplished by the exchange of messages among the components, for

example, processors exchange messages to advance the execution of the model. Each

message contains information to identify the sender and the receiver. A time-stamp for the

message and an associated value are also included in the packet. For our purpose, it suffices

to say that two categories of messages exist and each category contains several types of

inter-component messages and administrative messages.

All versions of CD++ provide a unique specification language that allows describing

coupling of models, initial values and external input events (in the real-time

implementations of CD++, the expected output port and the expected completion time for

an external transition can also be defined). For Embedded CD++ the complete development

process was done in an entirely text-mode environment under Linux; whereas for the

particular case of the standalone version of CD++ Builder for Windows or Linux, Atomic

models are developed in an Eclipse-based environment in the C++ language; in this toolkit

the combined use of an IDE for the development of C++ code provides greater flexibility.

When adding new atomic models, each of them must inherit from the Atomic class in order

to extend their basic behaviour. The Atomic class defines different methods for the initial

function, internal and external functions and output function.

Until now, the only way to compare the performance among different versions of the CD++

simulator is by creating different sample models. Nevertheless, a benchmarking tool could

 34

help better distinguish the advantages between one version of the simulator and another,

while permitting comparisons with other DEVS simulators. The next section presents a

short introduction to benchmarks and in particular a common benchmarking technique.

2.5. Benchmarking for Simulations and Simulators

As computer systems evolve is becoming more difficult to analyze the global performance

of a system. Computer components on the other hand have developed separately their own

benchmarking and performance measures. Standards and vendor specific synthetic

benchmarks exist for processors, hard disk drives, random access memory (RAM), external

peripheral buses, protocols, and operating systems. However, and due to the general-

purpose nature of computers it is not possible to provide a general benchmark for a wide

range of applications.

When it comes to test computer systems in particular, application benchmarks are preferred

to synthetic benchmarks, because they reflect a real performance of the systems under test

by running real-world applications [50]. In cases where is unfeasible to run a batch of real-

world applications synthetic benchmarks come on handy given that, they can provide with

an approximate degree of certainty the performance of a computer system under test by

executing artificially designed workloads that resemble the real-world application’s

workload.

Very few efforts have been derived on the performance analysis of simulators, and in

particular of discrete event simulators. Most commercial simulators are compared against

each other based on the amount of features or suitability-to-task [51] rather than on a

systematic way. In the case of academic efforts, the comparison between different

 35

implementations of same algorithms varies from well-grounded scientifically based

benchmarking to non-existent. This because analyzing simulators can be an extremely

complex task; end-users can create a wide variety of models with different structures, levels

of complexity and mixed degrees of interaction between models. Most studies of simulation

techniques are focused on very specific tools and algorithms. In particular, existing

performance studies devoted to DEVS-based simulators cover almost exclusively parallel

and distributed implementations. For instance in [52], the performance measures of Cell-

DEVS models in a parallel environment; in [53], a watershed model is used to demonstrate

performance improvements in parallel and distributed architectures; in [54], the

performance of DEVSCluster is compared with the performance of D-DEVSSim++; for the

comparison of DEVS-based simulators against continuous-time type of simulators Zeigler

[55] demonstrates that DEVS is more efficient when simulating natural and artificial

systems. In the particular case of the CD++ implementation of DEVS, an interesting

approach was introduced as DEVStone.

DEVStone is a synthetic benchmark that provides thorough analysis for the execution of

models with different characteristics; in addition, it provides a common metric to compare

results among different DEVS-based simulators. The accuracy of DEVStone results is

based on a large pool of models that when combined can provide a robust test set.

DEVStone is able to generate different models that vary in size, complexity and behaviour

that have the same functionally of different kinds of real world applications. Based on

predefined synthetic model it is possible to analyze the efficiency of a simulation engine,

may it be a new version of CD++ or a different DEVS-based simulator, with relation to the

characteristic of a category of interest.

 36

DEVStone allows the developer to have control over the key factors of performance

metrics in a simulator: the size of the model and the workload carried out in the transition

functions. DEVStone produces models require the following parameters as input:

• Type: defines the different internal structure and interconnection schemes between

the components.

• Depth: the number if coupled components or levels in the modeling hierarchy.

• Width: the number of Atomic components in each coupled component or level.

• Internal transition time: the execution time spent by internal transition functions,

measured in Dhrystones per second.

• External transition time: the execution time spent by external transition functions,

measured in Dhrystones per second.

With the flexibility provided by the benchmark, the original DEVStone showed how it can

be used to test and optimize better algorithms or improved features of CD++. By using

DEVStone to generate a set of small and large models with different parameters and

running simulations of these models with the normal version and a modified version of the

simulator, it was demonstrated that the creation of intermediate coordinators/simulators and

the passing of messages among them created an excessive overhead in the Parallel

implementation of CD++. To reduce such overhead, improve resource utilization and, in

general, optimize the performance of the tool, flattened coordinator and simulator were

used in the modified version of the Parallel CD++.

On the other hand, another step towards the design of an integrated, self-contained

development tool is the development of an interface with the designer, which would include

a mechanism for activating the different components of the simulation engine, including the

Benchmarking tool. An Integrated Development Environment (IDE) would help to display

 37

all relevant information on the screen as soon as is it produced by the system. In the case of

the simulation of an embedded system this interface is of the utmost importance, since it

might be the only way to analyze the intermediate and output states of the system being

analyzed. The development of such interface for the embedded version of CD++ is

discussed in the next chapter.

 38

3. Embedded CD++ Builder Integrated Development

Environment in ECLIPSE

Working on ECD++ requires writing C++ code in a text-based Linux environment with

open source tools. In order to improve the development and simulation experience, CD++

provides a IDE for the simulator core, which was developed for the CD++ Standalone

version; the IDE plus the simulator was called CD++ Builder [REF1], and it was built on

the Eclipse Environment [56] as a plug-in.

In the case of Embedded CD++ (ECD++) an IDE is necessary, because ECD++ will most

likely be running on embedded platforms with minimum, or even none, output peripherals,

therefore the information required during development is rather limited for the developer

from the intended platform. We have extended the IDE provided by CD++ Builder, adding

Embedded CD++ functionality. The concept behind this is to permit the developer to port

seamlessly already written code (code reuse) from CD++ Builder to Embedded CD++

without worrying about compatibility problems.

In order to have this environment integrated with the original CD++ Builder tool some

basic requirements and design considerations need to be fulfilled:

- The IDE for ECD++ should permit code reuse from the original CD++ Standalone

version, ideally sharing all the possible resources that the development environment

has to offer from the later. Ideally, it would be integrated within the actual

environment.

- Since ECD++ will be deployed in a different platform other than the one where it is

being developed, cross-compilation will be necessary.

 39

- Means of communication to the Target platform have to be part of the tool, in order

to download the executable binary file, running the executable and for remote

debugging and maintenance if required.

- In order to make the tool easy to work with, it should remember important

‘preferences’, i.e. last IP Address used if the connection is established through a

Local Area Network, or other important information that remains constant

throughout the development process.

The graph in Figure 2 summarizes the additional tools needed to achieve the functionality

that the design objectives state. From the CD++ Builder plug-in, five new processes need to

be spawned, each one parallel to the others but also following a certain order among

themselves, for instance the project needs to be edited first in order to be compiled and

generate an executable file. Only when this file is obtained it can be deployed to the

embedded target, and only when this file is present in the target it can be run remotely

thorough a remote shell connection or remotely via a remote command. However, each

process is separated from the other to give the user complete control over the development,

for instance, the project can be compiled but not deployed and a previous version of such

project can be executed for testing purposes.

 40

Based on these requirements and the actual implementation of Embedded CD++ and CD++

Builder, there are some limitations of the design, which are:

- To allow flexibility on the Target, the cross-compiling implementation is setup by

modifying three files, in other words before using the tool a working cross-compiler

must be set up, then the path to compiler needs to be updated to three configuration

files that come with the plug-in.

- The link to the Target relies on services provided by different kernel services and

additional software, therefore the Eclipse IDE provides a ‘hassle-free’ experience

for the model developer, after the initial required software components have been

installed; some of the services that IDE makes use for the Embedded CD++ Builder

version are: telnet, ssh, java, bash, X-server, etc.

Figure 2: ECD++ Builder IDE as Eclipse plug-in – requirements

ECD++ Builder – Requirements’ Diagram

Eclipse Plug-in

ECD++ Project Edition (*CD++ Builder
interface)

ECD++ Project Generation (C++
compilation)

Delivery of ECD++ executable file and
model and model and events’ file.

ECD ++ Project Remote Execution.

Communication with Target (for
debugging and maintenance)

 41

- Most of the communication’s functionality used in the development is only

available to the root user by default; therefore the IDE assumes that any developer

using the tool has root access, or equivalent, to the system.

3.1. Embedded CD++ IDE - Development

Four new features need to be added to the tool:

- Compile2Target - Allows the compilation of the software with the cross-compiler,

with a similar methodology as the one used for the Standalone version, with some

modifications to adapt the automated process to the ECD++ tool.

- Download2Target - A new feature inside the plug-in that allows the downloading

of the binary file to the Target platform by establishing a Network File System

(NFS) mount between Host and Target. Whenever NFS ‘mount’ is set up the Host

downloads up to three files: the ECD++ simulation binary, the model file and the

external event file if any or both are selected, when the copying of the files is

finalized the NFS folder is ‘unmounted’.

- Run Simulation on Target – Allows the execution of the simulation remotely from

the Host machine, with user selectable parameters, redirecting the display output of

the Target machine to a non-interactive Console window in Eclipse.

- Telnet2Target – The last feature offers a way to establish a remote connection with

the Target, which can be used to execute the simulation, to debug such simulation

 42

remotely by using standard Linux remote debugging tools or for maintenance

purposes, i.e. to configure network parameters on the Target.

In the end of the development process the IDE main window looks like the one shown in

Figure 3, where the buttons providing the new features are circled.

For the Compile2Target feature, keeping consistency with standalone CD++, the first

question that the developer is asked is if it is necessary to have a verbose output or not.

Once the user selects the preference, this is stored in a preference field and the user gets no

more questions about on screen information of all the process. Next the feature checks the

availability of new model files (models and libraries) within the project folder, if found

they should be moved temporarily to the folder that has the required files to generate the

simulator executable.

Figure 3: New CD++ Builder environment window – Embedded CD++ functionality

 43

In Linux the compilation and linking is done automatically through a makefile script file,

for the successful compilation of the new model components in the simulator this file needs

to be created based on a template that includes the new components of the project. Once the

script is created the make command needs to be executed with the new file as a parameter.

For accomplishing these tasks the Compile2Target makes intensive use of some Eclipse

services as well as of JAVA components. For instance, all the windows are made using

JAVA graphical services, plus the output of all the required process running in the

background are redirected to a JAVA Console window where all the messages are available

to the user. The search for project files is done through Eclipse by checking the project file

and looking-up the list of files based on the “.cpp” and “.h” extensions. The JAVA

threading capability built in Eclipse is used to execute shell programs in a different in the

background, for instance the copying of the new project files, temporarily, to the internal

directory where the compilation will be done. In addition, the threading is used to launch

commands for moving the executable for the project into the original folder as well as

temporary files. The generation of the makefile script is done using the JAVA file I/O

functionality and, based on a template, copy the template character by character including

the new files where necessary at the end of line. Finally the threading capability is called

upon again and the make command executed in a separate thread with the generated script

file as a parameter. The Compile2Embedded feature, like all the rest of the new features,

is a self contained JAVA class that is called through the plug-in eXtensible Markup

Language (XML) script. When one of the buttons is clicked on, the XML script launches

the corresponding JAVA class, which contains all the required components to draw the

required window and executes the task that was designed for. The class diagram of the new

features of the CD++ Builder for Linux can be seen in Figure 4.

 44

The Compile2Target functionality needs supporting software running underneath Eclipse

to perform all the required tasks. As stated, Eclipse gathers information on behalf of the

new tool about the location of the files and the existence of such files. Once basic

information is made available to the Compile2Target feature, it makes use of the JAVA

threading capability that comes in Eclipse and initiates basic commands (i.e. cp, mv, make)

to place project files in a temporary location. It also uses creates a text file based on a

template using basic File I/O from JAVA. All the editing of the files is done using the IDE

of the CD++ Builder plug-in. A diagram of the supporting software and its interaction with

the Compile2Target feature is shown in Figure 5.

Figure 4: ECD++ Builder Compile2Target – Classes Diagram

 Embedded CD++ - Class Diagram

 45

Running the feature three different windows will be presented to the user, the first one

asking for the verbosity option, which only occurs at the begging of the Eclipse session.

Then a Console window redirects the output from the process running in different threads

in the background, and a bar-graph progress window shows the advancing of the process.

Finally the progress window is closed and the results and error messages if any are

presented in the Console windows. The whole process is depicted in Figures 6 to 8.

Figure 5: ECD++ Builder Compile2Target – software support diagram

Compile2Target – Software support diagram

CD++ Builder Plug-in
- Project Edition (Environment Layout)

Compile2Target

Eclipse
- Capture project folder (PATH)
- Check file’s existence (from PATH)

JAVA
- Input/Output text file.
- Display background

process output in
Console window.

JAVA Thread

Shell commands: cp,
make ‘makefile’, mv.

 46

Figure 6: ECD++ Builder Compile2Target first window

Figure 7: ECD++ Builder Compile2Target progress window

 47

The Download2Target functionality uses the NFS mount feature of Linux. Initially the

plug-in looks for the existence of the binary file, if found it creates a folder within the

project directory where the Target will be mounted. By calling the mount service on Linux

much of the problems related to authentication and connection over the network are dealt

by the mount utility and the operating system. One detail that was found during the

development is that when executing the copy commands in different threads from Java, the

execution is too fast for the scheme used, resulting in many threads trying to use the results

of a command in a previous thread, i.e. the copy command at the same time that the mount

NFS folder. As a result, the last task that is in charge of demounting the NFS folder is

called for during the copying of the files, which throws an error of the network device

being busy.

Figure 8: ECD++ Builder Compile2Target – IDE when Compile2Target finishes

 48

To overcome such a problem, a scheme that forces sequential execution of the threads was

implemented. In general terms this scheme does not allow the threads calling for an

execution of external commands to run in parallel, forcing the main thread to remain

waiting in itself until the thread that was first created is terminated; i.e. the main thread

waits for the NFS folder to be mounted and then waits for each file to be copied into the

Target before copying the next file or before demounting the NFS resource. The IP Address

field of the IDE is saved in the preferences file of the plug-in to save the developer the

hassle of introducing the IP address every time he needs to download a new version of the

embedded simulator. A remote folder field was created in case there is the need to have

multiple versions of different simulators on the embedded device, if it has enough memory.

Such configuration though, would require that the user create new access permissions for

multiple folders on the Target before using them. The advanced options field provides

flexibility and permits the use of virtual Targets of available, i.e. the virtual device is inside

a folder or is a file that needs to be mounted with different parameters than an NFS mount.

The Download2Target feature design chart shown in Figure 9 depicts the relationship

between the feature and the supporting software for the deployment of the executable file

and the required files needed to run a simulation on the Target Platform. Initially the feature

gathers information through a JAVA window with options fields where the user can

explicitly type in the desired destination folder where the binary should be copied. Plus it

gathers information about the location of the files that will be copied. To check the

existence of the files introduced, an Eclipse service is summoned to check the in the

project’s path the files introduced. With this information the feature uses a JAVA

background thread to ‘mount’ a networked folder on the Host. If this connection is

established successfully then the feature initiates additional threads and copies the required

files, one after the other, to the destination folder, as a last step the feature ‘unmounts’ the

 49

NFS directory from the local folder tree. This feature does not use any functionality of the

plug-in directly.

Figure 10 shows a snapshot of the options window that pops up every time that the

Download2Target feature is executed, the target IP address and options fields can be seen.

The selection checkboxes for the files are checked enabling the text boxes to accept inputs

(the boxes are disabled when the selection checkboxes are unchecked). Something similar

happens with the advanced options checkbox.

Figure 9: ECD++ Builder Download2Target – software support diagram

Download2Target – Software support diagram

CD++ Builder Plug-in

Download2Target

Eclipse
- Capture project folder (PATH)
- Check file’s existence (from PATH)

JAVA
- Generate options

window.
- Display background

process output in
Console.

JAVA Threads
Shell commands: mkdir, cp,
mount NFS, umount.

Linux Network services, shell interface, commands in PATH environment
variable, kernel services.

 50

Once the executable binary file for the appropriate Target plus the model and, if required,

external events files have been downloaded there is still the need to remotely run the

simulation on the Target platform. A solution to this problem is provided by a third new

functionality that automatically generates a script file based on the options introduced by

the user in a new ECD++ Builder window and then runs it and displays the remote output

information in a non-interactive CD++ ConsoleView window. This functionality works for

any model that is downloaded into the default /simulation/ directory, if the executable

file and the additional files were downloaded in different directories other than the default

then the best alternative to run the simulation is to connect remotely to the Target and

execute the simulation from a remote shell.

The method used to execute the remote command uses a secure shell call, therefore prior to

the use of this functionality an ssh-keyword needs to be generated and shared by both

Figure 10: ECD++ Builder Download2Target window screenshot

 51

platforms [57]. This setup allows the execution of single commands from a registered host

in the Target platform without the introduction of passwords or authentication.

The process for the remote execution of the simulation is rather simple. On pressing the

remote execution button in Eclipse the class RunSimuRemotely() is summoned and, an

option window pops up, allowing the user to introduce all the parameters desired for the

simulation. After introducing all the parameters and the execute button is pressed in the

options window, the feature mounts the Target default destination folder as a NFS device in

the default Target folder (/Target) and a script file is created based on a template with the

parameters introduced by the user. Using different sequential threads, this file is

immediately made executable, copied to the NFS directory and the Target folder

unmounted. Upon termination the feature runs a remote command execution (ssh) in a

separate JAVA thread, redirecting the output of the process running in the thread to a

Console Window.

Figure 11 shows the supporting software required to complete all the steps needed. The

basic information is provided by Eclipse itself (preferences) then the feature executes

different shell commands in a sequential manner, none of the steps can be executed in

parallel, and the execution of one after the other is enforced. The commands executed only

present a message if some thing goes wrong with the mounting of the folder or the creation

of the file. On simulation the output of the simulation takes precedence and all the

messages are redirected through JAVA to an existent Console Window in the Eclipse

Environment. A picture of the parameters window for remote execution can be seen in

Figure 12.

 52

Figure 11: ECD++ Builder Run Simulation Remotely – software support diagram

Figure 12: ECD++ Run Simulation Remotely – Parameter‘s Input Box

Run Simulation Remotely – Software support diagram

CD++ Builder Plug-in
- Options Window

Run Simulation Remotely

Eclipse
- Capture project folder (PATH)

JAVA
- Options Window
- Display background

process output in
ConsoleView
window.

- Create script file.

JAVA Threads
Shell commands: mount
NFS, cp ‘script file’,
umount, ssh.

Linux Network services, secure shell interface client, shell commands in
PATH environment variable, kernel services.

 53

The last feature added to the CD++ IDE is called Telnet2Embedded. The primary function

of this new functionality is to establish a communication channel form the Host to the

Target to perform different tasks within the target device. The communication is

established using Telnet mainly because the footprint of a Telnet server in the Target is

small enough to be present in any type of embedded device; since these kinds of devices are

known to have limited memory space; however, Telnet also increases the vulnerability of

the system [58] providing less security in the authentication and communication than other

types of network communication, in this project’s the security of the Target system is not

critical therefore it can be traded-off for smaller footprint.

Another advantage of Telnet is that is simpler to setup and modify the Telnet server side

with minor effort from the developer, also there is the need to consider that there is a Telnet

implementation for every kind of Linux distribution as well as Windows environments and

other Embedded Real-Time operating systems. In order to work, this connection scheme

requires the user to have prior access to the Target by other means other than the

development tool to set up the Telnet server as well as the NFS server and permissions.

Figure 13 summarizes the required software support of the Telnet2Target feature. A

window is presented to the user filled with information extracted from the plug-in

preference’s file. In the options window the last IP Address used to connect with the Target

is displayed and the user is set to the root user by default. The feature executes the telnet

command in a terminal window that is dependant of the X-server system. In Fedora there

are two common options: GNOME and KDE. This is the reason why the options checkbox

allows the user to change the Desktop Environment. The selection allows either one of

them but not both, neither none. The selection of one will force the non-selection of the

other. Once the information is accepted the main class is launch which consists of a single

task: run the telnet command in the appropriate Terminal window for the Desktop

 54

Environment. Figure 14 shows the options window that comes up when the

Telnet2Embedded feature is summoned with the checkbox selecting Gnome as Desktop

Environment.

Figure 13: ECD++ Builder Telnet2Target – software support diagram

Figure 14: ECD++ Builder Telnet2Target window screenshot

Telnet2Target – Software support diagram

CD++ Builder Plug-in

Telnet2Target

Eclipse
- Capture project folder (PATH)

JAVA
- Option window
 JAVA Threads

Shell commands: telnet
 Linux Network services, Desktop Environment Terminal, PATH environment

variable contains all shell commands.

 55

Having built the interface for an embedded system, a good way of testing it is by

developing a simulation with a medium level of complexity, for example the use of

Hardware-in-the-Loop simulations require the modification of the simulator’s core system,

including timely response to inputs and the adequate handling of input and output data.

Therefore, to show the capabilities of the new development tool and the flexibility of

ECD++ when dealing with external events a common model was built, a semi-autonomous

robotic cart which is capable to go around obstacles when they are found in its path,

through the use of a touch sensor. The construction and testing of the model is given in the

next section.

 56

4 RoboCart

The fundamental use of CD++ is to be used as an academic tool for discrete event

simulation learning. Though most simulators provide enough abstraction for the student to

understand the principles, there is always the 'real factor' missing in this approach. At the

same time, interfacing through a computer printer port has been, probably, the most used

type of interfacing throughout the history of computing ranging from rather simple

communication protocols via the standard parallel port or data intensive communication

using enhanced version of the parallel port as described in the standard IEEE 1284. This

port emits and receives TTL (transistor-transistor-logic) signals of 0 [V] and 5 [V]. The

outputs of this port are latched by flip-flops, thus conserving the last value written to the

port.

There has been a steady ongoing work in the Embedded CD++ front to run Real-Time

simulations. Until now, the work done on Embedded CD++ provided us with a special

option to run simulations in real time, using the computer's real-time wall-clock [51].

Using the new IDE for Embedded CD++ tour goal was to build a test system as quickly as

possible with a medium level of complexity, which includes the development of Hardware-

in-the-Loop simulation test system. By using automated common tasks during

development, that had to be manually coded or typed in prior to the existence of the new

ECD++ IDE tool, a project that would have a relative lead time of a couple of weeks was

finished in 5 days since the conception of the model to the test and debug stage (including

the development of the hardware and software components). MARCELO: SI PODES

AQUI PONE UN DETALLE DE CUANTO TARDASTE EN EL SOFTWARE SOLO, Y

SI PODES, DIVIDILO EN DEVELOPMENT/TESTING. For the development of the HIL

 57

system, DEVS models of all the components used where created and coded accordingly the

standard CD++ template. Because CD++ was also developed DEVS models, and is a

DEVS model in itself, new DEVS models that dealt with the interaction of external events

and the simulator’s internal behaviour were also created.

In general, Hardware-In-the-Loop simulation is a dynamic test technique that simulates the

I/O behaviour of a physical system that interfaces to a computer control system in real-

time. It is dynamic because the values of stimulus signals generated by a simulator are a

function of a computer’s response from the previous cycle.

However, due to the slow nature of the peripherals compared to the processing speed of the

computer's microprocessor there are some technical challenges at the time of the

implementation. In the ECD++ case, when the simulator is running in real time mode, an

event file is read at the beginning of the simulation and according to the information

contained in the file the simulator engine asserts an external event when the real-time clock

reaches the predefined time.

To be able to respond to external events is obvious that the simulator needs to be run in real

time; otherwise, the simulation would evolve in a time scale too fast compared to the time

scale of the real process making it impossible for the slower real events to catch up with the

simulation. When running in real time, the ECD++ simulator requires the time-stamp of the

external event and the time stamp of the expected finalization time of the simulator’s

response.

The approach presented in this Thesis modifies the loading of events running the simulation

individually for each received external event. This method is also DEVS-based and can be

easily cast in a DEVS atomic model:

 58

Parallel port read = <X, Y, S, ta, δint, δext, λ>

X: Parallel port external event: is a new event coming from the parallel port.

Y: output port: is a new external event with all the data required by the root

coordinator to perform a complete run of the simulation, timestamp of the event,

expected completion time, port name and value.

S: system states: forward external event from the parallel port; wait for next external

event.

ta: time advance function: the time advance is provided as real time count from the

computer’s real time clock.

δδδδint: internal transition function: is the total time for the simulation to run, if infinite

then this atomic component can only respond to external events.

δδδδext: external transition function: since there is no direct method to generate interrupts

to the processor from the parallel port, the external transition function is implemented

as constant polling and comparing the acquired value to the last value in memory, if

these values are different then an external event is generated.

λλλλ: output function: sends the value of the external event to the list of external events

managed by the root coordinator along with the time stamp of the event, the expected

finalization time, the input port and the value as a floating-point number.

Program Code 1 highlights the main sections of the code that deal with the polling of the

parallel port and the subsequent generation of external events from the parallel port to the

model, only when there as a change in the state of the input register in the parallel port.

This is done only when two conditions are met. The first one involves the non-existence of

an event file, only when this field is left blank can the polling mechanism work. The second

 59

condition has been added to ECD++, and is the definition of another flag “-g” at runtime

that instructs the simulator, through the function isRealRun() from the loader() class, that

the simulation being performed will use the memory space destined for the parallel port,

which is usually protected by the kernel [59]. When executing the simulation with the “-g”

flag, some portion of the code that request permission for the software to use restricted

memory space is executed; once the request is granted it starts to execute an additional

thread that will ultimately control the memory positions that change the assertion of bits in

the parallel port.

Program Code 1: Parallel Port read atomic DEVS implementation

MainSimulator &MainSimulator::loadExternalEvents(i stream &fileIn)
{
Root::Instance().initialize();

if (loader()->isRealRun()&&loader()->EmptyEventFile ())

 //real run and real events ena bled
{
 try {
 tnow = Time::currentTime();
 if (tnow < Time::Zero) tnow = Time::Zero;
 deadline = Time::currentTime();
 deadline+=loader()->endeventTime();

if (deadline < Time::Zero) deadline = Time::Zero +
loader()->endeventTime();

 inportName = "in"; // the names of the ports are fixed
 outportName = "out";
 parvaluetemp = pport.readfromParallel();

if(parvaluetemp != parvalue){
//values should be different to activate the event

 Port &port(Root::Instance().top().port(inport Name)) ;
 Port &outport(Root::Instance().top().port(outp ortName)) ;
 convalue = parvaluetemp / 1.0;
 std::cout << "Event occurs @: " << tnow.asStri ng() << " "
 << "Deadline @: " << deadline.asString() << " "
 << "Value: " << convalue << "\n";
 Root::Instance().addExternalEvent(tnow, deadl ine,
 port, outport, convalue) ;
 parvalue = parvaluetemp;
 } else {
 //Do Nothing
 }
 } catch(InvalidPortRequest &e) {
 e.addLocation(MEXCEPTION_LOCATION()) ;
 throw e ;}
} else {... read external events from file...}

 60

The next Program Code 2 deals with the initialization and loading of the type of simulation,

i.e. if the simulation is executed with the “-g” flag then the executable file will start a new

thread and send the signals for the initialization of the motor, plus the loading of each

external event as a single external event instead of a pool of events (if no event file is

defined), this is done through a do…while structure.

Program Code 2: Main simulator code with real input capability. Added code in italics.

MainSimulator &MainSimulator::run()
{
 if(!loader())
 {
 MException e("The MainSimulator loader not found !") ;
 e.addText("The loader must be set before running the simulation.");
 MTHROW(e) ;
 }
 if (loader()->isRealTimeRun()){//initialization of the motor
 pport.spinclockwise = false;
 pport.spincounterclockwise = false;
 pthread_create(&thread1, NULL, control_motor_, (void*) NULL);
 } //initialization ends
 loader()->loadData();
 DBG("Loading Models...");
 loadModels(loader()->modelsStream(), loader()->p rintParserInfo());

 Root::Instance().stopTime(loader()->stopTime()) ;
 startTime_m = elapsedTime();
 // run the following code at least once
do{
// at the end decide to contiune looping or not
 DBG("Loading ExternalEvents...");
 loadExternalEvents(loader()->eventsStream());

 DBG("Running Root::Instance().simulate()...\n");
 DBG("startTime_m = " << startTime_m.asString());
 Root::Instance().simulate();
 if(loader()->isRealRun()&&loader()->EmptyEventFile())
 {if(Time::currentTime()>=loader()->stopTime()) break;}
} while (loader()->isRealRun()&&loader()->EmptyEventFile());
//real run and real events enabled
 loader()->writeResults();
 if (loader()->isRealRun())
{if(!pport.close()) std::cout << "\nCannot close LPT1 port!" <<
std::endl;}
 return *this;
}

 61

Whenever the simulation runs in normal mode (i.e. without the ‘-g’ flag) the simulator

loads all the external events from an external events (.ev) text file, and then the simulation

is executed having a list of all the future external events in memory.

In the case where the inputs are changing in real time, it is not possible to anticipate future

changes neither have a list of future timestamps that signal when the next event will take

place. For this reason, whenever the simulation runs in real time, with real inputs, the

simulator treats each external event as a single and unique external event, i.e. runs a

complete simulation every time an external event is received. This whole approach takes

considerable more time to execute than the normal execution, but considering the speed of

the external events, this does not have major impact.

4.1. ECD++ with Hardware-In-the-Loop

The parallel port is tremendously slow for today’s standards, and because there is a lot

going on between readings, it is just not possible to have an accurate measure of the

sampling frequency. One of the main reasons for this is that the code developed by the end

user, the model developer, will run between readings. However, it is possible to measure

the sampling frequency when there is no change in the input.

The sampling period measured on the platform was of 0.022 (s) which gives an

approximate sampling frequency of 46 reads per second. As stated this number is only

given as the empirical maximum frequency at which the simulator performs, any code

developed by the user is executed between samples and will affect the sampling frequency

parameter, making it much slower.

 62

On the other hand, in the case of the ‘writes’ to the parallel port the contrary happens,

because is very likely that the electro-mechanical interface, i.e. a motor, will be several

times slower than the port frequency; therefore in some cases, there is the need to create

delays between port-updates. For example, the original proof of concept of the output

through the parallel port was to drive a small 2-coil stepper motor; the type of motor

commonly found in toys, CD-ROMs and hard disk drives, for spinning this type of motor a

defined sequence of switches (bits) need to be turn-on and off and a delay needs to be

introduced between changes to accommodate the system’s speed to the motor. In the final

implementation the time between updates to the motor is done in the user software or it can

be done in the model, because the motor used is a brushless DC motor that only needs one

switch (bit) for each direction.

4.2. Motor Driver

The main difference of using a stepper motor is that the speed, spin direction and position

of the rotor can be controlled with trains of pulses that can be easily generated by a

computer, while a continuous brushless DC motor requires polarity inversion to switch the

direction of spin (which is done via hardware), and to position the rotor accurately requires

slightly more elaborated electronics. Despite this consideration, a single general driver can

be built for both types of motors. For an initial test setup, in a four-wire stepper motor the

coils can be connected in such a way that every time that they are energized with a

predefined set of binary numbers the rotor spins ¼ of a turn, therefore by keeping track of

any number in the set is possible to know the position of the rotor.

 63

According to the schematic shown in the Figure 15, three input-bits are required for the

motor to spin: two of them are connected to the motor through a quad push-pull driver and

the other is connected to the enable pin of the same driver to enable the outputs of it. The

logic inverter is only used to minimize the wires coming from the computer to two. All the

capacitors are in place to limit the ac-ripple on the dc power source. The low value resistors

limit the current that is fed to the motor and the high value resistors are set in a pull-down

configuration. Figure 16 shows the circuit mounted on a breadboard.

Figure 15: Stepper motor test circuit layout [63]

 64

Since the simulator is performing multiple different tasks and because the actual drive of

the motor implies outputting a value, wait for a considerable time and output a new value

according to a predetermined sequence. An easy implementation of these control system

would assume that a specific processor is dedicated only to generate the write-and-wait

sequences, while it communicates with a different control processor that sends enable and

control signals. A good abstraction of this concept makes use of a new thread that only runs

the motor and leaves the main simulator thread ample time and flexibility to do any kind of

control it needs to do without having to make major changes to the architecture of the

system.

4.3. Implementation

During the development of this test case, the new IDE environment was used and proved

useful in the debugging and optimization of the project. Additionally, the information

Figure 16: Stepper Motor test circuit

 65

presented on the IDE made the design process easier and much quicker than a purely text

based environment.

The control of the sequence of steps for the motor can be done through a new thread that

behaves as a completely isolated processor, which its only task is to generate the steps and

delays required for the motor to spin. This is depicted in Figure 17.

Figure 17 shows that when ‘real simulation’ (when the “-g” flag) is selected, the simulator

creates a new thread and defines shared variables in it; it is through these variables that the

main thread is capable to control the execution of the code required for the motor to spin in

either direction. The slave thread reads the values of these variables in an infinite loop, and

Figure 17: Spin motor thread implementation – pseudo code

 New thread

Spinmotorclockwise;
Spinmotorcounterclokwise;

If spinmotorclockwise ==1
 {spin_motor_clockwise;}
If spinmotorcounterclockwise ==1
 {spin_motor_counter_clockwise;}
If spinmotorclockwise ==0 &&
 spinmotorcounterclockwise ==0
 {motor_stop;}

Original Simulator Process (Main thread)

Real time execution enabled (-g) + real time advance (-W)

(Main thread)
Termination the process, save logging and output files if set; perform garbage collection
and destruct remaining processes.

Main thread
//developer code

MainSimu::Spinmotorclockwise;
:
MainSimu::Spinmotorcounterclockwise;
:
Main::MotorStop;

 66

then uses them as flags to execute defined sequences of writings to the Parallel Port output

register. For a stepper motor four updates are required, and occur after a short delay and

then are repeated indefinitely until there is a change in one of the control variables. For a

DC motor the updates are written in every execution of the thread, this is obviously not

necessary since it is possible to set the register just once to keep the motor running, but then

the flexibility of having a second thread is lost. Additional care has been taken to avoid

unknown states, i.e. both control bits asserted, hence, the implemented condition for the

motor to spin is to have only one of the Boolean variables asserted (true) while the other is

unasserted (false).

The implementation of writing to the Parallel port and generating the sequence that moves

the motor can also be cast as a DEVS atomic model:

Spin Motor = <X, Y, S, ta, δint, δext, λ>

X: Parallel port external events: these are the changes in the state of four inputs:

 - Spin_Motor_Clockwise, Spin_Motor_CounterClockwise, Turn_Left, Turn_Right

Y: output port: is the Parallel port.

S: system states: - Spin Motor Clockwise,

 - Spin Motor Counter Clockwise.

 - Stop motor.

 - Turn Left.

 - Turn Right.

ta: time advance function: handled externally from the simulator.

δδδδint: internal transition function: not required for this implementation.

δδδδext: external transition function: checks for changes on either one of the control bits.

 67

λλλλ: output function: Writes a predefined 3-bit data from a pool of values to the Parallel

port depending on the state of the control variables.

The implementation of the initialization and closing of the parallel port can be easily taken

from the explanation from above by first requesting permission to the system to access the

memory space destined to the parallel port. The Program Code 3 shows how such scheme is

implemented.

Once the proof of concept test was successfully finished, a more complete test platform was

required to test different scenarios. Small carts are widely used in the manufacturing plants,

warehouses and almost any industry in general, as transport vehicles for the relocation of

goods in short distances. In a very simplified automation scheme, we would be interested in

making this carts change direction when they sense some obstacle in their way. Based on

this concept, and to provide a complete implementation of the RoboCart system, a LEGO

Program Code 3: Parallel port setup and termination

bool parallelPort::setup(void){
if(ioperm(DATA,3,1)) return (0);
// if access granted initialize DATA to 0x00
outb(0x00,DATA);
//initialize all control pins to low (c0, c2 and c3 are inverted)
// c0 being the LSB
outb(0x0B, CONTROL);
// return 1(true) is successful
return (1);
}

bool parallelPort::close(void){
//set pins to 0 and set control pins to low
outb(0x00,DATA);
outb(0x0B,CONTROL);
//Remove access permision to 3 I/O addresses (DATA, STATUS, CONTROL)
//starting from the DATA address
if(ioperm(DATA,3,0)) return(0);
//if successful return true = 1
return (1);
}

 68

NXT Robotic Kit was acquired, and a small cart was built. The advantage of this

prototyping tool is that it provides all the electro-mechanical support required by small to

medium proof-of-concept projects and small prototypes. The standard NXT kit comes with

three DC motors and sound, touch, infrared and temperature sensors plus a special ‘brick’

that contains a microcontroller and electronics capable of receive information from the

sensors and drive the motors. For the test case, the basic robotic cart was assembled without

the controller brick, and the motors connected to the parallel port through a slightly

modified version of the circuit used to drive the stepper motor.

From the modified version of the driver circuit, in Figure 18, the same motor driver that

controls one stepper motor is used to control two DC motors, the synchronization is done

via software. The spin direction of each motor is controlled by one bit, C0 controls the left

Figure 18: Modified DC Motor Driver Circuit

 69

motor and C1 the right motor, and the whole system is turned on or off by asserting a third

enable bit (C3), which can also be used to brake.

In the software side of the implementation, the Parallel port atomic block acts as a driver

providing the required code to initialize the Parallel port for subsequent use, and it closes

the port when the program finishes by calling a close() function that restores all port

outputs to zero. The Parallel port block was created as a separate class and is called from

the new thread, this way it is easier to make modifications, i.e. change stepper or dc motors,

or upgrade the control algorithm in future developments; i.e. if there is the need to change

the controlling method to some other control algorithm, then the class file is the only one

that needs to be changed.

The excerpted code in 4, shown above demonstrates the use of the methods used to spin the

motor so that the cart moves forward and backward. The methods to turn left and right are

set in a way that minimum resolution for turning is 90 degrees, this because the constructed

prototype is only capable of sensing obstacles with the only one push-sensor available in

the kit, located at the front of it. Therefore, to avoid completely crashing into an obstacle

constantly, the cart rotates 90 degrees to position itself parallel to the obstacle and

continues rolling forward.

 70

The turn-left and turn-right methods are implemented in such a way that whenever they are

summoned they restore the control bit automatically after enough time to complete a 90-

degree turn to either side.

Program Code 4: Motor spin driver - parallel port

void parallelPort::output2P_CONTROL(int cValue){
 int cV = cValue;
 if(spinclockwise&&!spincounterclockwise){
 outb(0x03,CONTROL); // for DC motors this is enou gh
 //if it's a stepper motor uncomment these lines
/* delay(cV);
 outb(0x02,CONTROL);
 delay(cV);
 outb(0x00,CONTROL);
 delay(cV);
 outb(0x01,CONTROL);
 delay(cV); */ }

 if(!spinclockwise&&spincounterclockwise){
 outb(0x00,CONTROL); // for DC motors this is enou gh
 //if it's a stepper motor uncomment these lines
/* delay(cV);
 outb(0x02,CONTROL);
 delay(cV);
 outb(0x03,CONTROL);
 delay(cV);
 outb(0x01,CONTROL);
 delay(cV);*/
 }

 if(!spinclockwise&&!spincounterclockwise)

 outb(0x08,CONTROL);

 if(turn_left&&!turn_right)
 {
 outb(0x02,CONTROL);
 delay(150000000);
 turn_left = false;
 }

 if(turn_right&&!turn_left)
 {
 outb(0x01,CONTROL);
 delay(150000000);
 turn_right = false;

 }
//end of parallelPort::output2P_DATA

 71

The model of the robotic cart is rather simple and can be better explained by the use of a

diagram like the one in Figure 19. When the controller receives an input form the touch

sensor, meaning that the cart is facing an obstacle; the control code moves the RoboCart

backwards to have more space for taking the turn. Due to the availability of a single sensor

the turning is done alternating the direction of the turn (i.e. the RoboCart turns either side

twice to the left, but once to the left and the next one to the right); by increasing the number

of sensors or, even better, having the provided ultrasonic sensor would make the direction

decision more accurate, but the system’s software driver would have to increase in

complexity, because this sensor uses the Inter-Integrated Circuit (I2C) communication

protocol. Therefore, the minimum turn that the RoboCart can take to be completely sure

that it is perpendicular to the obstacle is 90 degrees. The turning is done by spinning the

wheel of the turning side clockwise while the other wheel is rotating counter clockwise.

This behaviour can be easily represented by a CD++ model. The C++ code for the

RoboCart is shown in the Program Code 5.

Figure 19: Robotic Cart – pseudo code model

Robotic cart
Initialize = Move forward;

If (touch sensor == pressed)
{move backwards;
 change direction 90 degrees}

Move forward.

Touch sensor

 Actuator1 →
 Actuator2 →

 Actuator1 ← ←/→
 Actuator2 ← →/←

 Actuator1 →
 Actuator2 →

 72

In the above Program Code, the initialization function sets the motors to start spinning

forward, and initializes some intermediate variables. If an external transition function is

triggered by the touch sensor (an external event is generated), the RoboCart model moves

backwards for a certain time-period given by the time advance function entry in the model

Program Code 5: Model file.

/** *****************
* CLASS RTPport
*** ******************/

/** *****************
* Function Name: RTPport::RTPport()
* Description: Constructor
*** *****************/
RTPport::RTPport(const std::string &name) : Atomi c(name)
, in(addInputPort("in"))
, out(addOutputPort("out"))
, preparationTime(0, 0, 0, 1)

{
std::string time(MainSimulator::Instance().getPara meter(description(),
"preparation")) ;
//we can get some parameters that we might need for m the model file
 if(time != "")
 preparationTime = time ;
 MainSimulator::Instance().Spin_Motor_Clockwise();
}

/** *****************
* Function Name: RTPport::initFunction()
* Description: Initialization Function
*** *****************/
Model &RTPport::initFunction()
{
 ackNum = 0; // to recover the input value from the external event
 return *this ;
}

/** *****************
* Function Name: RTPport::externalFunction()
* Description: External Function handler
*** *****************/
Model &RTPport::externalFunction(const ExternalMes sage &msg)
{
 ackNum = static_cast < int > (msg.value());
 if (msg.value()==216) { //checks if the external e vent comes from the touch
sensor
 MainSimulator::Instance().Spin_Motor_CounterClockw ise(); //move back for
 holdIn(Atomic::active, preparationTime); //t he preparationTime from
the model file
 }
 else passivate(); //if not go to sleep
 return *this;
}

 73

file (.ma). This also triggers the internal transition function (ITF), which is activated after

the time advance function has elapsed, the code inside the ITF turns the RoboCart to a

different side based on the last direction of the turn. Finally the model continues moving

forward (the component goes to rest) and waits for an external event that indicates that a

new obstacle has been found and an evasive action is required to overcome such obstacle.

This is presented in the Program Code 6.

Also in the Program Code 6 the output function records or displays, depending on the

selection mode of the simulation, the time at which the external event was received and the

value of the external even, this is last value is very useful because, if multiple sensors are

used then we can tell the controller the direction to which it should go. If a more advanced

Program Code 6: Model file (cont)

/** *****************
* Function name: RTPport::internalFunction()
* Description: Internal Function handler
*** *****************/
Model &RTPport::internalFunction(const InternalMes sage &)
{
test = 1^test; //ex-or toggles the bit, thus 'remem bering' the last turn
// and turning in the opposite direction.
if (!test) MainSimulator::Instance().Turn_V_Left(); //turn left or right
if (test) MainSimulator::Instance().Turn_V_Right();
MainSimulator::Instance().Spin_Motor_Clockwise(); / / move forward again
passivate(); //go to sleep
return *this ;
}

/** *****************
* Function Name: RTPport::outputFunction()
* Description: Output function handler - writes inf o about time and events
*** *****************/
Model &RTPport::outputFunction(const InternalMessa ge &msg)
{
 sendOutput(msg.time(), out, ackNum) ;
 return *this ;
}

RTPport::~RTPport()
{
 // N/A
}

 74

sensor is used (i.e. ultrasonic sensor) then many measures can be taken from many

directions to find which way presents the least obstacles. The cart built for the project and

the driver circuit can be seen in Figures 20, 21 and 22.

Figure 20: RoboCart top view

Figure 21: RoboCart – side view

 75

Initially the RoboCart was tested with the external events coming from an event file with

random times and event values, some of them spread in time and some others were closely

spaced in time. The events in the file that were close together created confusing behaviour

in the RoboCart emulation, mostly because the event generation was too fast for the

dynamics of the motors of the RoboCart and the time limits of ECD++ could not be met,

sometimes this led to a random behaviour and the parallel port remains enabled even after

the termination of the program.

For sufficiently spaced external events the results are the expected ones, when an external

events occurs the RoboCart moves backwards according to the time defined in the model

(measured in seconds) to allow sufficient space to turn, then the internal transition is fired

and the RoboCart turns right or left based on the last turn, finally it displays or prints the

event information to the screen or file and moves forward. This process is repeated for all

external events coming from the event file.

When running the simulation in real mode, i.e. receiving input form the parallel port and

generating an external event as soon as a change in the input register of the parallel port is

Figure 22: RoboCart – System view (AMPRO board inside CPU case, Monitor not used)

 76

detected, the RoboCart behaves as expected, moving back and then turning to either side

depending on the last turn. However, the touch sensor is simply a mechanical switch that

switches between high impedance and ground, to keep the circuit simple no provisions

were made for the bouncing effect typical of this switches. Whenever the repetition of

changes of the input register is too fast (i.e. artificially pressing and releasing the sensor

very fast), the system can keep up with this repetition and the same erroneous behaviour is

present, that is to say that the port stays enabled even after the termination of the program.

For a normal execution of the simulation, a small maze-like path was constructed, the

RoboCart was placed at the beginning and the program executed. The RoboCart went

through the maze and every time it hit a wall the control algorithm developed in CD++ took

control of the situation; forcing the RoboCart to move backwards for the time given in the

model, then turn to a wall free side based on the last turn and move forward again until a

new obstacle pushes the touch sensor, when the process is repeated.

To develop the Development Environment tool further, it is possible to create a

performance measure that can be used to compare the speed and accuracy of different

versions of CD++ against other DEVS-based simulators. Such comparison can be based on

the benchmarking of the performance of the simulators when running similar simulations of

identical models. With the information provided by the benchmark and the use of common

debugging tools it is, also possible to find the cause of performance problems of one

simulator versus another. Once the cause of any problem is found, multiple solution

strategies can be analyzed, and the simulator under test can be improved. The creation of

the benchmark and the strategy of analysis are discussed further in the next Chapters.

 77

7. References

1. Schludermann, Harald; Kirchmair, Thomas; Vorderwinkler, Markus. "Soft-

Commissioning: Hardware-In-the-Loop-Based Verification of Controller Software".

Winter Simulation Conference 2000: Proceedings of the 32nd conference on Winter

simulation. Orlando, FL, USA. Society for Computer Simulation International.

2000.

2. Puttré, Michael. “Simulation-based design puts the virtual world to work”.

DesignNews. February 16, 1998

3. Hu, Xiaolin. “A Simulation-Based Software Development Methodology for

Distributed Real-Time Systems”. PhD Thesis Dissertation. Department of Electrical

and Computer Engineering – University of Arizona.

4. Liu, Jane W.S. Real-time Systems. Prentice Hall. Upper Saddle River, NJ. 2000.

5. Jerraya, A.A.; Wolf, W. "Hardware/software interface co-design for embedded

systems". Computer Volume 38, Issue 2, Feb. 2005 Page(s):63 - 69. IEEE

Computer Society.

6. Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and Simulation: Integrating

Discrete Event and Continuous Complex Dynamic Systems. Academic Press. 2000.

7. Morse, J.; Hargrave, S. “The increasing importance of software”. Electronic Design,

Vol. 44 (1), Jan. 1996.

8. P. Paulin, M. Cornero, C. Liem, F. Nacabal, C. Donawa, S. Sutarwala, T. May and

C. Valderrama, “Trends in embedded systems technology: An Industrial

Perspective”. NATO ASI on Hardware/software co-design, Lake Como, Italy, 1995.

9. P. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Coossens, “Embedded software

in real-time signal processing systems: Application and architectural trends”. Proc.

of IEEE, vol. 85(3), Mar. 1997, pp. 419-435

 78

10. Paul Robertson, Robert Laddaga, and Howie Shrobe, "Introduction: The First

International Workshop on Self-Adaptive Software", Lecture Notes in Computer

Science, Volume 1936/2001, pp. 1-10, Springer Berlin, 2001.

11. Hu, Xiaolin. Ziegler, B. “Model Continuity in the Design of Dynamic Distributed

Real-Time Systems”. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6,

NOVEMBER 2005.

12. Huang, D. and Sarjoughian, H. "Software and Simulation Modeling for Real-Time

Software-Intensive Systems". Proceedings of the Eighth IEEE international

Symposium on Distributed Simulation and Real-Time Applications (Ds-Rt'04) -

Volume 00 (October 21 - 23, 2004). DS-RT. IEEE Computer Society, Washington,

DC, 196-203.

13. Rastofer, U.; Bellosa, F., “Component-based software engineering for distributed

embedded real-time systems”. Software, IEE Proceedings, Volume: 148 Issue: 3,

June 2001.

14. Wainer, G.; Glinsky, E. “Model-Based Development of Embedded Systems with

RT-CD++”. RTAS 2004. IEEE Real-Time and Embedded Technology and

Applications Symposium May 25-28, 2004. Toronto, Canada.

15. Zeigler, B.; Moon, Y.; Kim, D.; Ball, G. “The DEVS Environment for High-

Performance Modeling and Simulation” IEEE Computational Science and

Engineering, vol. 4 (3), pp. 61 -71. 1997.

16. Glinsky, E.; Wainer, G.; "DEVStone: a benchmarking technique for studying

performance of DEVS modeling and simulation environments". Distributed

Simulation and Real-Time Applications, 2005. DS-RT 2005 Proceedings. Ninth

IEEE International Symposium on 10-12 Oct. 2005 Page(s):265 – 272.

17. Wainer, G. “CD++: a toolkit to develop DEVS models”. Software - Practice and

Experience. vol. 32, pp. 1261-1306. 2002.

 79

18. Nutaro, J. ADEVS Internet Homepage. Available on

http://www.ornl.gov/~1qn/adevs/index.html. Accessed on Oct. 12, 2006.

19. Troccoli, A.; Wainer, G. “Implementing Parallel Cell-DEVS”. Proceedings of 36th

IEEE/SCS Annual Simulation Symposium. Orlando, USA. 2003.

20. Glinsky, E.; Wainer, G. “Definition of Real-Time simulation in the CD++ toolkit”.

Proceedings of the SCS Summer Computer Simulation Conference. San Diego,

USA. 2002.

21. Zeigler, B.P.; H.S. Sarjoughian, “Support for Hierarchical Modular Component-

based Model Construction in DEVS/HLA”. Simulators Interoperability Workshop,

99S-SIW-066.

22. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture

(HLA) — Framework and Rules. IEEE Std. 1516-2000. September 2000.

23. Sarjoughian, H.S.; Zeigler, B.P. “DEVSJAVA: Basis for a DEVS-based

collaborative M&S environment”. Proceedings of the SCS International Conference

on Web-Based Modeling and Simulation, vol. 5, pp. 29-36. San Diego, USA. 1998.

24. Zeigler, B.P.; Kim, J. “Extending the DEVS-scheme knowledge-based simulation

environment for real-time event-based control”. IEEE Transactions on Robotics and

Automation. 1993.

25. Kim, T.G. “DEVSim++: C++ based Simulation with Hierarchical Modular DEVS

Models”. User’s Manual CORE Lab, EE Dept, KAIST, Taejon, Korea. 1994.

26. Dávila, J.; Uzcágegui, M. “GALATEA: A multi-agent, simulation platform”.

Proceedings of the International Conference on Modeling, Simulation and Neural

Networks. Mérida, Venezuela. 2000.

27. Filippi, J-B.; Bernardi, F.; Delhom, M. “The JDEVS environmental modeling and

simulation environment” Proceedings of the the IEMSS’02 Conference on

Integrated Assessment and Decision Support. Lugano, Switzerland. 2002.

 80

28. de Lara, J.; Vangheluwe, H. “ATOM3: A Tool for Multi-Formalism Modeling and

Meta-Modeling". European Joint Conferences on Theory And Practice of Software.

Grenoble, France 2002.

29. Praehofer, H.; Sametinger, J.; Stritzinger, A. “Discrete Event Simulation using the

JavaBeans Component Model”. Proceedings of International Conference On Web-

Based Modeling & Simulation. California. 1999.

30. Barr, Michael. Embedded Systems Glossary – Netrino Technical Library.

http://www.netrino.com/Publications/Glossary/index.php. Accessed on 2007-04-18.

31. Moore, G. "Cramming more components onto integrated circuits". Electronics

Magazine 1965. 19 April 1965.

32. Thoen, Filip; Catthoor, Francky. “Modeling, Verification, and Exploration of task-

level concurrency in real-time embedded systems”. Kluwer Academic Publishers,

2000, pp.46.

33. K. Ghosh, B. Mukherjee, K. Schwan, "A Survey of Real-Time Operating Systems",

Technical report, Atlanta, Georgia 30332-0280, College of Computing, Georgia

Institute of Technology,1994.

34. Liu, C. L.; Layland, James W. “Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment”. Journal of the ACM, Vol. 20, Nr. 1, pgs. 46-61,

1973.

35. Zhao, Wei; Ramamritham, Krithi; Stankovic, J. A. "Preemptive scheduling under

time and resource constraints". IEEE Transactions on Computers, C-36(8):949-960,

August 1987.

36. Stewart, D. B.; Khosla, P. K. "Real time scheduling of sensor based control

systems". In Eighth IEEE Workshop on Real-Time Operating Systems and

Software, May 1991.

 81

37. Dertouzos, Michael L.; Mok, Aloysius K. "Multiprocessor on line scheduling of

hard real time tasks". IEEE Transactions on Software Engineering, 15(12):1497-

1506, December 1989.

38. Sgroi, M.; Lavagno, L.; Sangiovanni-Vincentelli, A., "Formal models for embedded

system design", Design & Test of Computers, IEEE , Volume: 17 Issue: 2 , April-

June 2000.

39. Hu, X.; Zeigler, B. P. "An Integrated Modeling and Simulation Methodology for

Intelligent Systems Design and Testing". Performance Metrics for Intelligent

Systems Workshop, August, 2002.

40. Washington, Chris; "HIL simulation boosts automotive design efficiency".

Automotive DesignLine, Accessed on May 09, 2007.

http://www.planetanalog.com/showArticle?articleID=199501368

41. Ramesh, B.; Jarke, M. “Toward reference models for requirements traceability”.

Software Engineering, IEEE Transactions on , Volume: 27, Issue: 1 , Jan. 2001.

42. Antoniol, G.; Caprile, B.; Potrich, A.; Tonella, P. “Design-code traceability for

object-oriented systems”. Annals of Software Engineering vol. 9: 35-58 (2000).

43. Boyd, Joanne L.; Karam, Gerald M. “Designing reactive systems for strong

traceability”. International Workshop on Software Specifications & Design.

Proceedings of the 7th international workshop on Software specification and design

Carleton University, 1993.

44. Janka, R. S.; Wills, L. M.; Baumstark, L. B. “Virtual Benchmarking and Model

Continuity in Prototyping Embedded Multiprocessor Signal Processing Systems”,

IEEE Transactions on Software Engineering, Vol. 28, No. 9, September 2002.

45. Li, Lidan; Wainer, Gabriel; Pearce, Trevor. “Hardware In The Loop Simulation

Using Real-Time CD++”. Department of Systems and Computer Engineering.

Carleton University. Accessed on 2007-05-02.

 82

46. Del Bianco, Vieri; Lavazza, Luigi; Mauri, Marco; et al. "Towards UML-based

formal specifications of component based real-time software" pp. 118 - 134 Lecture

Notes in Computer Science Publisher: Springer-Verlag Heidelberg Volume:

Volume 2621 / 2003.

47. Kim, K.H., “Object Structures for Real-Time Systems and Simulators”. IEEE

Computer, August 1997, pp.62-70.

48. See [16].

49. Wainer, Gabriel; Yu, Henry. “ECD++: An Engine for Executing DEVS Models in

Embedded Platforms”. Summer Computer Simulation Conference 2007 (SCSC

2007). San Diego, California (USA), July 15-18, 2007.

50. Joshua J. Yi, Lieven Eeckhout, David J. Lilja, Brad Calder, Lizy K. John, James E.

Smith, "The Future of Simulation: A Field of Dreams". Computer, vol. 39, No. 11,

pp. 22-29, Nov., 2006. IEEE Computer Society.

51. Glinsky, E.; Wainer, G. “Performance Analysis of Real-Time DEVS Models”.

Proceedings of the SCS Winter Simulation Conference. San Diego, CA. 2002.

52. Troccoli, A.; Wainer, G. “Performance Analysis of Cellular Models with Parallel

Cell-DEVS”. Proceedings of the SCS Summer Computer Simulation Conference.

Florida. 2001.

53. Chiari, F.; Delhom, M.; Filippi, J-B.; Santucci, J-F. “A GIS based methodology for

the modeling and the simulation of watersheds”. Proceedings of the ATW 2000

Conference. Corsica, France. 2000.

54. Kim, K.; Kang, W. "CORBA-Based, Multi-Threaded Distributed Simulation of

Hierarchical DEVS Models: Transforming Model Structure into a Non-hierarchical

One". International Conference on Computational Science and its Applications.

Assisi, Italy, 2004.

55. Zeigler, B.; Moon, Y.; Kim, D. “DEVS-C++: A High Performance Modeling and

Simulation Environment”. 29th Hawaii International Conference on System

 83

Sciences (HICSS'96) Volume 1: Software Technology and Architecture. Hawaii,

USA. 1996.

56. ECLIPSE. Eclipse 3.1 Online Manual. www.eclipse.org.

57. OpenSSH. "OpenSSh Manual Pages". http://www.openssh.org/manual.html.

Accessed on May 02, 2007.

58. SecuriTeam. "Multiple Vendors Telnet Vulnerability".

http://www.securiteam.com/unixfocus/5RP0D2K4UQ.html. Accessed on January

10, 2007.

59. Corbet, Jonathan; Kroah-Hartman, Greg; Rubini, Alessandro. “Linux Device

Drivers, 3rd Edition”. O'Reilly. February 2005.

60. Weicker, R. P. “Dhrystone: A synthetic systems programming benchmark”.

Communications of the ACM, volume 27, pages 1013-1030, 1984.

61. Wainer, G. et al. "CD++ A tool for DEVS and Cell-DEVS Modelling and

Simulation. User's Guide". Draft. August 2004.

62. Felanson, Jay; Stallman, Richard. "GNU gprof - The GNU Profiler User's Guide".

Free Software Foundation. 1998.

63. Department of Systems and Computer Engineering, Carleton University. Ottawa,

Canada.

64. http://www.sce.carleton.ca/faculty/wainer/papers/ISC03RTDEVS.pdf

65. Li, L.; Pearce, T.; Wainer, G. “Interfacing Real-Time DEVS models with a DSP

platform”. Proc. Of Industrial Simulation Symposium. Valencia, Spain. 2003.

66. STMicroelectronics. “L293B Push-Pull Four Channel Driver". Datasheet.

67. Texas Instruments. "SN74LS04 Hex Inverter". Datasheet.

68. Harries, Ian. "Interfacing to the IBM-PC Parallel Printer Port".

http://www.doc.ic.ac.uk/~ih/doc/par/. Accessed on April - 10 - 2007.

69. Martin, Fred G. “Robotic Explorations, A Hands-On Introduction to Engineering”.

Prentice Hall, Upper Saddle River 2001.

 84

70. [REF1] REFORMATEAR!!! “CD++Builder: a toolkit to develop DEVS models”.

C. Chidisiuc, G. Wainer. In Proceedings of DEVS Symposium 2007. Norfolk, VA.

2007.

