

PARALLEL ALGORITHMS FOR CELLULAR MODELS SIMULATION

SHAFAGH JAFER
and

GABRIEL A. WAINER
Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6

ABSTRACT
DEVS is a sound formal modeling and simulation (M&S) framework based on generic dynamic system concepts. Cell-
DEVS is a formalism for cell-shaped models based on DEVS. This work presents a new simulation technique for
execution of DEVS and Cell-DEVS models in parallel environments. These techniques are modifications to the original
Time Warp mechanism offered by WARPED kernel. Time Warp functionalities are revised to include two new algorithms
namely, Local Rollback Frequency Model (LRFM) and Global Rollback Frequency Model (GRFM). The resulting
simulator is used as new simulation engine for CD++, an M&S toolkit that implements DEVS and Cell-DEVS theories.
The results obtained allowed us to achieve considerable speedups due to the reductions that LRFM and GRFM protocols
perform on number of rollbacks and anti-messages.

KEYWORDS: Cellular Automata, Parallel Simulator, Cell-DEVS, Optimistic Simulator.

1. Introduction
Modeling and simulation (M&S) methodologies have become crucial for implementing, designing, and

analyzing a broad verity of systems. Among the existing simulation techniques, the DEVS (Discrete Event
System Specification) formalism [1] provides a discrete-event M&S approach which allows construction of
hierarchical models in a modular manner. DEVS is a sound formal framework based on generic dynamic
systems concepts that allows model reuse, and reduction in development and testing time due to its
hierarchical approach in constructing models. Cell-DEVS [2] is an extension to DEVS which integrates
DEVS and cellular automata by presenting each cell as an atomic DEVS model.

Cell-DEVS introduced a novel mechanism for computation based on asynchronous cellular models with
explicit timing constructions. The technique has been used to develop a wide variety of models in different
fields, ranging from environmental sciences, traffic, biology and physics. When large complex models are
defined, the computing power of a parallel simulator can improve execution times. Here, we present new
techniques for executing DEVS and Cell-DEVS models in parallel and distributed environments based on
the WARPED kernel [3], an implementation of the Time Warp protocol [4]. Our optimistic simulator,
called as PCD++, is built as a new simulation engine for CD++ [5], an M&S toolkit that implements the
DEVS and Cell-DEVS formalisms. Algorithms in CD++ and the WARPED kernel are redesigned based on
Near Perfect State Information technique to carry out optimistic simulations using a non-hierarchical
approach that reduces the communication overhead. Two new algorithms namely, Local Rollback
Frequency Model (LRFM) and Global Rollback Frequency Model (GRFM) have been implemented and
used by our PCD++ simulator. These two algorithms have been tested using different Cell-DEVS models.
Here we present in details an evacuation model of a ship and a model of the Synapsin-Vesicle reaction in
neurons. Also, a brief description of two other models namely Fire Propagation model, and Game of Life
model are provided.

We have designed many Cell-DEVS models which vary in size, complexity, and functionality. As the
main contribution of this work, we have implemented two new optimism control mechanisms based on
NPSI protocols. These two protocols, namely LRFM and GRFM were integrated into the existing optimistic
PCD++ simulator and therefore two distinct optimism controlling simulators were modeled. This led to

creating a workbench consisting of four different simulators; Conservative, Pure Optimistic, LRFM-based
Optimistic, and GRFM-based Optimistic simulators. This workbench serves as simulation environment that
can be used as the base in studying parallel simulations of DEVS and Cell-DEVS. On the other hand, the
precise and detailed testing scenarios that we are presenting can be used along with this workbench to
analyze the capability, performance, and robustness of PCD++ simulators.

2. Background

DEVS [1] is a formalism for modeling and simulation for Discrete Events Dynamic Systems that
provides a framework for the definition of hierarchical models in a modular way by decomposing the real
system into behavioral (atomic) and structural (coupled) components. DEVS theory provides a rigorous
methodology for representing models, and it does present an abstract way of thinking about the world with
independence of the simulation mechanisms, underlying hardware and middleware. A DEVS atomic model
is formally defined by:

M = <X, Y, S, δint, δext, λ, ta>,
where
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values;
S is the set of sequential states;
δint: S →→→→ S is the internal state transition function;
δext: Q × X →→→→S is the external state transition function, where
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the time elapsed since the last state transition;
λ: S →→→→Y is the output function;
ta: S →→→→ R+

0,∞ is the time advance function.
 The semantics for this definition is given as follows. At any time, a DEVS coupled model is in a state s ∈
S. In the absence of external events, the model will stay in this state for the duration specified by ta(s).
When the elapsed time e=ta(s), the state duration expires and the atomic model will send the output λ(s) and
performs an internal transition to a new state specified by δint(s). Transitions that occur due to the expiration
of ta(s) are called internal transitions. However, state transition can also happen due to arrival of an external
event which will place the model into a new state specified by δext(s,e,x); where s is the current state, e is the
elapsed time, and x is the input value. The time advance function ta(s) can take any real value from 0 to ∞.

A DEVS coupled model is composed of several submodels and it is formally defined by:
CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>,

where
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values;
D is the set of the component names, and the following requirements are imposed on the components, which
must also be DEVS models:
For each d ∈ D, Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS model.
Select: 2D → D is the tie-breaking function for imminent components.

Due to the closure property, a coupled model is regarded as a new DEVS model [1]. This property
clarifies that the overall behavior of a coupled model is equivalent to a basic atomic model, and therefore
allows hierarchical model construction.

Cell-DEVS [2] is an extension to DEVS which integrates DEVS and cellular automata by presenting
each cell as an atomic DEVS model. Two types of timing delays can be used, namely transport and inertial
[6]. When transport delay is used, the future value is added to queue sorted by output time, allowing the

previous values that were scheduled for output but have not yet been sent to be kept. On the other hand,
inertial delays allow a preemptive policy at which any previous scheduled output value will be deleted and
the new value will be scheduled. Cell-DEVS formalism is defined by:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >
where X is a set of external input events; Y is a set of external output events; I represents the model's

modular interface; S is the set of sequential states for the cell; θ is the cell state definition; N is the set of
states for the input events; d is the delay for the cell; δint is the internal transition function; δext is the external
transition function; τ is the local computation function; λ is the output function; and D is the state's duration
function. The model uses N inputs to compute its next state. These inputs, which are received through the
model's interface (X, Y), activate the local computing function (ττττ). State (s) changes can be transmitted to
other models, but only after the consumption of a delay (d). Two kinds of delays can be defined: transport
delays model a variable commuting time, and inertial delays, which have preemptive semantics (scheduled
events can be discarded). Once the cell behavior is defined, a coupled Cell-DEVS is created by putting
together a number of cells interconnected by a neighborhood relationship.

By integrating atomic Cell-DEVS, coupled models can be constructed representing the cell space. A
coupled Cell-DEVS model is formally defined as follows:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >
where Xlist is the input coupling list; Ylist is the output coupling list; I represents the definition of the

model’s interface; X is the set of external input events; Y is the set of external output events; n is the
dimension of the cell space; {t1,...,tn}is the number of cells in each of the dimensions; N is the neighborhood
set; C is the cell space; B is the set of border cells; Z is the translation function; and select is the tie-breaking
function for simultaneous events. The above formalism explains that a coupled model is composed of an
array of atomic cells with given size and dimensions where each cell is connected through standard DEVS
input/output ports to the cells defined in the neighborhood . Since the cell space is finite, the borders of the
cells are either connected to a different neighborhood than the rest of the space, or they are “wrapped” in
which they are connected to those in the opposite one using the inverse neighborhood relationship.
However, border cells have a different behavior due to their particular locations, which result in a non-
uniform neighborhood. A Cell-DEVS coupled model is informally presented in Fig. 1.

Fig. 1. Description of a Cell-DEVS atomic model [6]

CD++ [5] is a modeling tool that implements the DEVS and Cell-DEVS theories by applying the original

formalisms. The toolkit includes facilities to build DEVS and Cell-DEVS models. CD++ toolkit also
includes an interpreter for Cell-DEVS models [6]. The language is based on the formal specifications of

Cell-DEVS. The model specification includes the definition of the size and dimension of the cell space, the
shape of the neighborhood and the type of cell’s bordering. The cell’s local computing function is defined
using a set of rules with the form POSTCONDITION DELAY { PRECONDITION }. These indicate that
when the PRECONDITION is met, the state of the cell will change to the designated POSTCONDITION
after the duration specified by DELAY. If the precondition is not met, then the next rule is evaluated until a
rule is satisfied or there are no more rules.

In parallel and distributed environments the entire task of simulation is divided among the processors or
nodes (Logical Process - LP) and therefore each one of them handles a smaller chunk of the simulation
while the whole process of execution takes place in parallel and as a result in a significantly reduced time.
In sequential simulations, events are executed base on timestamp order; in contrast, parallel and distributed
simulations require a mechanism to ensure that the result of concurrent execution is identical to that of
sequential one [7]. Therefore, synchronization among LPs is needed. The most widely used strategies for
event driven simulations can be classified as Conservative (or Pessimistic), in which causality violations
are strictly avoided [8], and Optimistic [4], in which causality errors are fixed by the notion of rollbacks.

Conservative synchronization can cause deadlocks, which can be avoided by providing lookahead
information (i.e., the smallest time stamp of the new events that a process can schedule in the future). Null
messages are responsible to carry out the lookahead information among LPs. This way each LP, based on
the lookahead information that it receives from all other LPs can derive a lower bound on the time stamp
(LBTS) of the events that it will receive in future. As a result, the LP would know which event is safe to
process. The biggest drawback of the conservative synchronization approach is the time wasting flow of
null messages which degrade the simulation performance significantly. Optimistic techniques [4] consider
that each LP has a Local Virtual Time (LVT) which advances every discrete step as events are executed on
the process. Therefore, time warp processes execute their own portion of the simulation based on LP’s
LVT. Since every LP has its own LVT, causality errors occur when LPs send messages to each other. This
way, an LP may receive a message with time stamp smaller than its current LVT. Such events are referred
to as straggler events. Once a straggler event is received the process will rollback. Rollback is the operation
performed upon reception of a straggler event, where the process recovers from the causality error by
undoing the effects of all the events that were processed and had timestamp greater than the time stamp of
the straggler event. Therefore, these messages were falsely sent to other processes and now must be
cancelled. This cancellation is performed by sending anti-messages.

Optimistic approaches offer two important advantages over conservative techniques:
(i) They have a higher degree of parallelism unlike the conservative approaches where they are

overly pessimistic and force the simulation to behave sequentially when it is not necessary.
(ii) Conservative approaches rely very much on application-specific information when making run-

time decisions on whether it is safe to process the event or not. Optimistic mechanisms allow a
simplified software development and more transparent synchronization.

3. Definition of a Parallel Simulator

PCD++ optimistic simulator implements the DEVS and Cell-DEVS formalisms in parallel and provides
the framework for building and executing DEVS and Cell-DEVS models in parallel environments using the
Time Warp protocol. We have modified CD++ sequential simulator to enable parallel and distributed
simulations by implementing optimistic synchronization protocol [4]. PCD++ executes the simulation via
several Time Warp processes [3] by exchanging time-stamped event messages. The Time Warp protocol

used by PCD++ consists of two parts: the local control mechanism and the global control mechanism. The
local control mechanism which is provided in each Time Warp process is in charge of rollback operations
which include: sending anti-messages, restoring the state of the LP, readjusting Local Virtual Time (LVT),
etc. On the other hand, the global control mechanism takes care of global issues such as memory
management, I/O operations, and termination detection.

We used the WARPED [14] simulation kernel, which is a configuration middleware that implements the
Time Warp mechanism and a variety of optimization algorithms. Warped uses the Message Passing
Interface (MPI), a standard specification of message-passing library for high-performance communications
on both massively parallel machines and on workstations clusters [12]. We have used the MPICH [12]
portable implementation of MPI which provides a vehicle for MPI implementation research and for
developing parallel and distributed applications. CD++ simulation is driven by message passing.

Atomic Coupled

Model

AtomicCell CoupledCell

TDCell IDCell Simulator
Flat

Coordinator

Processor

SimuObj

Root

Coordinator

Node

Coordinator

Fig. 2. Model and Processor hierarchies.

As seen on in Fig. 2, there are four types of PCD++ processors (associated to the Modeling hierarchy):

Simulator, Flat Coordinator (FC), Node Coordinator (NC), and Root Coordinator (RC). When DEVS and
Cell-DEVS models are executed over multiple machines, a distributed processor structure is constructed in
PCD++ to carry out the simulation. Lets consider the following example to see how partitioning takes place
(on two machines). Fig. 3 shows a scenario with four atomic models (A1, A2, A3, and A4) where A1 and
A2 are part of the coupled model C1, and C1, and the other two atomic models A3, and A4 are then part of
the TOP coupled model. Since we will execute the simulation on two machines, we will allocate models by
putting A1 and A2 in Machine 0, and A3 and A4 in Machine1.

Fig. 3. Example model structure and distributed processor structure for the example

In this case, two logical processes are created LP0 and LP1 (one per machine). LPs group together the
PCD++ processors on the machine they belong to. Local messages are handled by the FC, and the remote

messages are handled by the NC and then sent to the appropriate Simulator through the destination FC. The
root coordinator is created only on machine 0. It starts the simulation and handles I/O operations. The NC
on each machine is the local central controller on each LP and the end point of inter-LP communications.
The FC residing between the NC and the Simulators is responsible for synchronizing the execution of its
child Simulators. Finally, the Simulator is responsible for executing DEVS abstract functions defined in the
atomic models. When a Simulator sends a message to another Simulator sitting on a remote machine, the
message is first directed to the FC, then to the local NC through direct communication. Once the message
gets to the NC, it will be forwarded to the destination NC through MPI communication. On the receiving
end, the NC will then forward the message to the destination Simulator through the child FC.

There are two types of communications among LPs: synchronous intra-LP communications, carried out
by all PCD++ processors, and asynchronous inter-LP communications, carried out only by NCs. Since
inter-LP communications are asynchronous, the NCs require a special structure named as NC Message Bag
to handle message passing between LPs with different LVTs. The following properties hold for NC
Message Bag:

(i) Messages inside a Message Bag can have different timestamps.
(ii) The time of a Message Bag is equal to the minimum timestamp among the contained messages. If

the Message Bag is empty, then its time is set to infinity.
(iii) Messages inside a Message Bag are processed based on their timestamp in an increasing order.

Once a message is processed, it is then removed from the bag, and the bag’s time is advanced to
the next minimum value among the timestamps of the remaining messages. Once all the messages
are processed and removed from the bag, the Message Bag’s time is restored back to infinity
implying that the bag is empty.

In contrast, synchronous intra-LP communications are handled by the Simulators and the FC since they
are local to the LP. Similar to the NC Message Bag, for intra-LP messages the FC holds a message bag. In
this case, when two local Simulators (i.e. sitting on the same LP) need to communicate to each other, they
send the message to the local FC, and then the message will be directed to the destination local Simulator by
the FC. There is no direct communications between Simulators, even the ones sitting on the same LP. Local
Simulators can only communicate with each other through their FC.

PCD++ processors exchange content or control messages. The first category includes the external
message (x) and the output message (y), and the second category includes the initialization message (I), the
collect message (@), the internal message (*), and the done message (D). External and output messages are
used to exchange simulation data between the models. Initialization messages start the simulation, collect
and internal messages trigger the output and the state transition functions respectively in the atomic DEVS
models, done messages handle synchronization by carrying the model timing information. Each PCD++
processor defines its own functionality for each type of message, as follows:

Simulator: upon receiving (I, 0) from the parent FC, the current simulation time (tL) and the next
scheduled event (ta) are recorded. Then the simulator initializes the variables defined in its associated
atomic model, and after that, it informs its parent FC of the value of ta by sending a done message stamped
with time 0. When a (@, t) message is received, the Simulator invokes the output function (λ) of the atomic
model and as a result an output message (y, t) is sent to the FC. After this, the Simulator will send (D, t) to
the FC with ta = 0 to indicate that it is imminent. Following the collect message, a (*,t) will arrive to trigger
internal/external/ confluent function of the atomic model depending on the timing of the message and the
status of the Simulator’s message bag. A message (x, t) is simply inserted into the Simulator’s message bag.

Flat Coordinator: when (I, 0) is received, the FC records the total number of its children and forwards
the (I, 0) message to each child. After this, the FC waits for all its children to respond to this initialization
by sending back a (D, 0). The FC will only pass the control over to the NC if all its children have finished
their previous computation and have sent done messages as notification messages. Upon receiving a (@, t)
message, the FC forwards it to all imminent Simulators and will keep a record of this for later use (to know
which children need to do state transitions when (*, t) is received). Moreover, when (y, t) is received, the
FC searches the model coupling information to find out the correct destination. The destination is either an
input port on an atomic model, or an output port on the topmost coupled model. In case of receiving (x, t)
message, the FC will simply insert the message into its message bag. Upon receiving (*, t) message, the
external messages inside the FC’s message bag are flushed to the local receiving Simulators. This will
trigger the imminent Simulators to perform a state transition. Finally, when a (D, t) message is received
from a child Simulator, the FC updates the child’s tN.

Node Coordinator: upon receiving (I, 0), the NC simply forwards it to the child FC. In case of receiving
(x, t), NC will insert this message into the NC Message Bag. These external messages contain values sent
from remote Simulators to local ones. When (y, t) is received the NC simply forward it the Root (it has to be
sent to the environment). Reception of a (D, t) message by the NC from a child FC indicates that this is a
response to a control message that was previously sent out by the NC.

Root Coordinator: this processor only handles environment-oriented output messages during the
simulation. Output to the environment is done through a test file called as output file or OUT file.

Aside from the functionalities of each of the PCD++ processors, we have modified the WARPED [3]
kernel in order to run simulations under different protocols. These protocols are modifications of the
optimistic one that WARPED implements. The idea is to reduce the number of rollbacks by suspending the
LP that has large number of rollbacks and therefore stopping it from flooding the net with anti-messages.
However, the LP will still be able to receive input events and they will be inserted into the corresponding
message bags. After a predefined duration, the suspend LP is released and will go on simulating. These two
protocols [15], namely Local Rollback Frequency Model (LRFM) and Global Rollback Frequency Model
(GRFM) are based on the “Near Perfect State Information - NPSI” protocol [16]. The NPSI protocol
implements the Elastic Time mechanism. Briefly, Elastic Time is composed of two parts: (i) identifying the
NPSI of the simulation, and (ii) translating the NPSI in optimism on the simulation objects.

Each part can be implemented in many ways. The main concept is to associate each LP with a potential
error (PE) to control the optimism of LPi. During the simulation run, the value of each PE is kept updated
by evaluating a function called M1 which uses state information that is received from the feedback system.
Then, the function M2 translates dynamically every update of PEi in delays in the execution events.

3.1. Local Rollback Frequency Model

The Local Rollback Frequency Model (LRFM) protocol is only based on local information of the logical
processes. That is, the simulation object within a LP will be suspended or allowed to continue simulating
only based on the number of rollbacks it had. First, M1 and M2 functions must be defined:

Function M1: The error potential of a simulation object is the number of rollbacks that the object had
from a time T1 until the actual time T2, having that T2 - T1 ≤ T, where T is the interval after which the
local number of rollbacks of the simulation object gets restarted back to zero.

Function M2: If the number of rollbacks for a simulation object at the interval T is greater than a
specified value, then the object is suspended, adopting a conservative behavior. By suspending the

simulation object, the LP where the object resides on will still be able to receive incoming events, but the
events are not processed until the simulation object is again given the permission to resume. However, if the
number of rollbacks of the simulation object is less than the predefined value, then the object simulates
aggressively, adopting its usual optimistic behavior (as in Time Warp).

To implement this protocol each LP has to be informed the maximum number of allowed rollbacks
before suspension of the simulation object (max_rollback), and the duration for which the simulation object
will stay suspended (period). The algorithm is presented in Fig. 4.

Fig. 4. LRFM algorithm

From the LRFM algorithm we see the following three possible scenarios:

• The LRFM period has expired, therefore the simulation object starts a new period, its number of
rollbacks gets reset to zero, and it is given the permission to continue its execution.

• The period has not yet expired. If the number of rollbacks of the simulation object is less than
the allowable range (i.e. max_rollbacks), it continues its normal execution.

• The LRFM period has not yet expired, but the number of rollbacks has exceeded
max_rollbacks, thus it gets suspended for the entire duration of the current LRFM period.

With the inclusion of this protocol, in every simulation cycle an object will simulate the lowest timestamp
event if the number of its rollbacks in the period T is smaller than the maximum allowable rollbacks; if not,
the object suspends executing until the new period of time T, after which Warped restarts the rollbacks
number to zero. In order for an LP to be able to simulate objects that mustn't be delayed, we have modified
the scheduler policy to choose the next object to simulate. It chooses the first object of the input event list
(that is, the object with the lowest input event timestamp) only if its rollbacks count does not exceed
max_rollbacks; else, the scheduler checks the next object of the input event list and so on, until it finds an
object in condition to be simulated or until it reaches the end of the list.

3.2. Global Rollback Frequency Model

In the Global Rollback Frequency Model (GRFM) protocol each simulation object uses global
information in such a way that among all the simulation objects residing on all LPs, the one with greatest
number of rollbacks must be suspended for the duration of time defined at the beginning of the simulation.
Therefore, at each simulation cycle all the LPs must broadcast the information regarding the rollback counts
of all of their simulation objects. As in LRFM, M1 and M2 functions must first be defined:

Function M1: The error potential of a simulation object is the number of rollbacks that the object had
minus the maximum number of rollbacks of the other simulation objects (both local and remote ones)
participating in the simulation, from a time T1 until the actual time T2, having that T2 - T1 ≤ T, where T is
the interval after which the local number of rollbacks of the simulation object gets restarted.

Function M2: If the number of rollbacks for a simulation object at the interval T is greater than other
number of rollbacks of the other simulation objects, then the object is suspended, adopting a conservative
behavior. By suspending the simulation object, the LP where the object resides on will still be able to
receive incoming events, but the events are not processed until the simulation object is again given the
permission to resume. However, if the number of rollbacks of the simulation object is less than the
predefined value, then the object simulates aggressively, adopting its usual optimistic behavior (as in Time
Warp). The algorithm is presented in Fig. 5.

Fig. 5. GRFM algorithm

As in LRFM, the GRFM algorithm yields three different scenarios:
- The GRFM period has expired, therefore the simulation object starts a new period, its number of

rollbacks gets reset to zero, and it is given the permission to continue its execution.
- The GRFM period has not yet expired, if the number of rollbacks of the simulation object is less than

the allowable range (i.e. max_rollbacks), then the simulation object continues its normal execution.

UU (-2,0)

U (-1,0)

(0,0)

D (1,0)

UL (-1, -1)

L (0, -1)

DL (1, -1) DR (1, 1)

R (0, 1) RR (0, 2)

UR (-1, 1)

- The GRFM period has not yet expired, but the number of rollbacks has exceeded max_rollbacks, thus
the simulation object gets suspended for the entire duration of the current GRFM period.

The main difference of GRFM and LRFM is the way max_rollbacks is initialized. In LRFM, the
maximum allowable rollbacks are predefined by the user at run time, while in GRFM maximum allowable
rollbacks is set to the largest number of rollbacks of all participating simulation objects. That is, whenever a
simulation objects is scheduled to execute, it must send the number of rollbacks it had so far to all other
simulation objects, both local and remote ones. As a result, at any time max_rollbacks is the largest number
of rollbacks among all the existing simulation objects.

By implementing LRFM and GRFM protocols in our optimistic PCD++ simulator, different simulation
results can be collected since the RFM period (and in case of LRFM the max_rollbacks) can be modified
very easily at the beginning of the simulation. This is done by changing these values in the configuration
files right before the simulation starts and therefore, there is no need to rebuild the whole simulator in order
for these modifications to have effect.

4. Testing models

In this section we introduce the description of different models we used to carry out the testing of the
simulation engine, including a Synapsin-Vesicle Reaction at Nerve Terminal (which represents the
interaction of synapsin with vesicles at nerve terminal), Fire Spread (illustrates fire propagation in a forest),
and Ship Evacuation (an emergency ship evacuation scenario). We have run a variety of tests to analyze the
performance of our existing PCD++ simulators; the optimistic and the conservative as well as our LRFM
and GRFM Time Warp-based protocols.

4.1. Ship Evacuation Model

The first model we used represents an evacuation scenario of a ship under emergency [9]. The rules
defining the model are based on the following restrictions:

(i) Each cell representing a person on the ship, calculates its shortest path toward the exit. During
initialization phase, people are placed randomly in any empty cell.

(ii) People run in their initial direction until they encounter another person or an obstacle (e.g. wall).
At the end of simulation, there should be no one left on the ship. The neighborhood of each cell consists

of 10 cells (i.e. they can be walls, exit doors, people, or empty cells) as shown on Fig. 6.

Fig. 6. Cell neighborhood

Each value on the cell space defines a distinct state, such as the type of the cell: wall, empty, exit door, a
moving person. Also each type of movement is given a state value in order to identify the next position.

Table 1. State values and their description

Name Value Comments
N/A 0 Unknown Empty cell.
Wall 1 Represents an obstacle or a wall.

Name Value Comments
Exit 2 Represents an exit (e.g. stairs, door).
ED 3 Empty cell and its down (D) cell is the shortest path to the nearest exit.
ER 5 Empty cell and its right (R) cell is the shortest path to the nearest exit.
EU 7 Empty cell and its up (U) cell is the shortest path to the nearest exit.
EL 9 Empty cell and its left (L) cell is the shortest path to the nearest exit.
FD 4 Full cell (cell with person) and its down (D) cell is the shortest path to the exit.
FR 6 Full cell (cell with person) and its right (R) cell is the shortest path to the exit.
FU 8 Full cell (cell with person) and its up (U) cell is the shortest path to the exit.
FL 10 Full cell (cell with person) and its left (L) cell is the shortest path to the exit.

Based on these values, we define different rules for the movement of people in the vessel. The following

rules initialize the model by calculating the shortest path. When a cell detects that one of its attached cells
has changed its state to “defined”, it would know that the attached cell is the shortest path.

Result Precondition

3 or 4 (ED or FD) (0,0) = Undefined and (1,0) is defined.

5 or 6 (ER or FR) (0,0) = Undefined and (0,1) is defined.

7 or 8 (EU or FU) (0,0) = Undefined and (-1,0) is defined.

9 or 10 (EL or FL) (0,0) = Undefined and (0, -1) is defined.

The following rules define the case when a cell knows that a person will move towards it, which will

occur if it is empty and it is the shortest path to at least one cell with a person occupying it.

Result Precondition
4 → FD state (0,0) = ED and ((0,1) = FL or (-1,0) = FD or (0,-1) = FR)
6 → FR state (0,0) = ER and ((1,0) = FU or (-1,0) = FD or (0,-1) = FR)
8 → FU state (0,0) = EU and ((1,0) = FU or (0,1) = FL or (0,-1) = FR)
10 → FL state (0,0) = EL and ((1,0) = FU or (0,1) = FL or (-1,0) = FD)

The next rules define when a cell occupied with a person is attached to the exit. Then, the cell knows that
a person will leave it and exit.

Result Precondition
 3→ ED state (0,0) = FD and (1,0) is exit
5→ ER state (0,0) = FR and (0,1) is exit
7→ EU state (0,0) = FU and (-1,0) is exit
9→ EL state (0,0) = FL and (0,-1) is exit

Finally, the next rules define when a cell knows that a person will leave it when it is not near an exit. A
person will leave it when the cell is occupied by a person and its shortest path cell is empty. However, only
one person can move to the empty cell when more than one person is trying to move to the same cell. In this
case, the priority is first with the person who is in the upper cell, second the one in the right cell, third the
one in the down cell, and finally the one in the left cell has the lowest priority.

Result Precondition
3→ ED state (0,0) = FD and down (D) cell is empty.
5→ ER state (0,0) = FR and right cell (R) is empty and UR,RR, and DR cells have no person moving to R.
7→ EU state (0,0) = FU and upper cell (U) is empty and UU and UR don’t have a person moving to U.

Result Precondition
9→ EL state (0,0) = FL and left cell (L) is empty and UL doesn’t have a person moving to L.

Fig. 7 shows an extract of the model’s definition in CD++.

Fig. 7. Definition of ship evacuation model in CD++

The ship evacuation model can be modified by adding more exit doors or changing the position of these

cells. As presented in Fig. 8, four different types of cells appear on the grid: empty spaces, walls, people,
and exit doors. The final result of the simulation shows no presence of people, i.e. the ship is evacuated.

Fig. 8. Model Execution Results; initial values; final execution

4.2. Synapsin-Vesicle reaction Model
We built a model representing the reserve pool of synaptic vesicles in a presynaptic nerve terminal,

predicting the number of synaptic vesicles released from the reserve pool as a function of time under the
influence of action potentials at differing frequencies. Time series amounts for the components are
obtained using rule-based methods (the rules defined by Cell-DEVS) [10].

Synapsin is a neuron-specific phosphoprotein that binds to small synaptic vesicles and actin filaments in a
phosphorylation-dependent pattern. Microscopic models have demonstrated that synapsin inhibits

neurotransmitter release either by forming a cage around synaptic vesicles (cage model) or by anchoring
them to the F-actin cytoskeleton of the nerve terminal [11].

We modeled the molecular interaction of synapsin (S) with vesicles (V) which occur inside a nerve cell.
The model describes the behavior of synapsin movements until reaching a vesicle and binding to it. Once
binding has occurred, depending on offrate V and S can again go apart and break their bindings. The onrate
and offrate describe how often bindings occur or break then after. The following formula describes the
nature of the reaction:

S + V ↔ SV
From the above formula, the left hand side of the equation demonstrates the binding scenario where

synapsin and vesicles perform a bind at a rate specified by onrate, while the right hand side of the equation
illustrates the bind-break scenario where an synapsin-vesicle at an offrate which is always smaller than
onrate breaks apart and again synapsin and vesicles get released. Then, synapsin and vesicles can again
perform binding and break apart then after. This equation shows an on-going process of “binding” and
“breaking apart” which depends on offrate/onrate. The larger the offrate is, the more bindings get broken
apart. Similarly, the larger the onrate is, the more V-S binds are produced. Three different scenarios are
modeled: 1) V is stationary (with a fixed position on cell space), and S is mobile, 2) V is mobile and S is
stationary, and 3) V and S are both mobile (leads to maximum number of total movements and therefore
bindings).

The coupled Cell-DEVS model for this application is described as follows.

M=<I,X,Y,Xlist,Ylist, η, N,{m,n}, C, B, Z, select>

Xlist=Φ Ylist=Φ η=9 I=<PX,Py>,with PX={Φ},Py={Φ};

N={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1)(1,0) (1,1)};
X=Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};

m=26; n=22; B={Φ}; C={Cij/i ε[1,26], jε[1,22]}

select ={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) };
Z is defined by Cell-DEVS specifications.

The cell space, the value 1 was used to represent V, and the value 2 was used to represent S. The number
0 represents an empty cell for which a mobile S can occupy. To give direction to the V (although the model
assumes fixed V) or S, a two digit number was used. For example, the following represent:

11 “up” moving V
12 “right” moving V
13 “down” moving V
14 “left” moving V

21 “up” moving S
22 “right” moving S
23 “down” moving S
24 “left” moving S

As we can see, Cell-DEVS provides great support for defining these models, for having independent cell

states and random mobility of cells, provide an excellent environment to simulate the process of synapsin-
vesicles interactions of a nerve. As mentioned earlier, the model constructed can be further extended to
include the movement of both synapsin (S) and vesicles (V) as well as defining different off and on rates.
Aside from V-S reactions, the model can also include Actins, which bind to synapsins. Actins can be
represented as a string of cells being fixed at their cell space position. A summarized version of the
model’s definition in CD++ is as follows:

Fig. 9. Synapsin-Vesicle Reaction model in CD++

The following rules initialize cells with 11-14 (for Vesicles) and 21-24 (for Synapsin), where bindings

have not yet been performed.

rule : {round(uniform(11,14))} 100 { (0,0) = 1 }
rule : {round(uniform(21,24))} 100 { (0,0) = 2 }

Once bindings occur, cells change their values; 11-14 get replaced with 31-34, and 21-24 get replaced
with 41-44. Also for Synapsins, four intermediate values 91-94 are used to represent a moving cell that has
not yet being settled down. Once it settles down its value changes back to 21-24 (depending on its direction
of movement) and gets ready to bind to a vesicle in its neighborhood.

rule : {round(uniform(31,34))} 100 {((0,0)=21 or(0,0)=22 or(0,0)=23 or (0,0)=24) and

(((-1,0)- 10 = 1 or (-1,0)- 10 = 2 or (-1,0)- 10 = 3 or (-1,0)- 10 =4)or
 ((1,0)- 10 = 1 or (1,0)- 10 = 2 or (1,0)- 10 = 3 or (1,0)- 10 = 4) or
 ((0,-1)- 10 = 1 or (0,-1)- 10 = 2 or (0,-1)- 10 = 3 or (0,-1)- 10 = 4) or
 ((0,1)- 10 = 1 or (0,1)- 10 = 2 or (0,1)- 10 = 3 or (0,1)- 10 = 4) or
 ((-1,1)- 10 = 1 or (-1,1)- 10 = 2 or (-1,1)- 10 = 3 or (-1,1)- 10 = 4) or
 ((1,-1)- 10 = 1 or (1,-1)- 10 = 2 or (1,-1)- 10 = 3 or (1,-1)- 10 = 4) or
 ((1,1)- 10 = 1 or (1,1)- 10 = 2 or (1,1)- 10 = 3 or (1,1)- 10 = 4) or

((-1,-1)- 10 = 1 or (-1,-1)- 10 = 2 or (-1,-1)- 10 = 3 or (-1,-1)- 10=4))
and random > 0.10}

The above rule describes the following scenario: if there is a synapsin having the value 21, 22, 23, or 24
(a synapsin that can move up/right/down/left) and there is a vesicle in its neighboring which could be an
adjacent cell or a diagonal cell, then the synapsin (red cells) will move toward this vesicle and a binding
will occur soon, the value of the synapsin gets changed to 31, 32, 33, or 34 (i.e. 21 changes to 31, 22
changes to 32, 23 changes to 33, and 24 changes to 34) to represent a synapsin that is bonded to a vesicle.

rule : {round(uniform(41,44))} 100 {((0,0)=11 or (0,0)=12 or (0,0)=13 or (0,0)=14) and
(((-1,0)- 30 = 1 or (-1,0)- 30 = 2 or (-1,0)- 30 = 3 or (-1,0)- 30 = 4) or
((1,0)- 30 = 1 or (1,0)- 30 = 2 or (1,0)- 30 = 3 or (1,0)- 30 = 4) or
((0,-1)- 30 = 1 or (0,-1)- 30 = 2 or (0,-1)- 30 = 3 or (0,-1)- 30 = 4) or
((0,1)- 30 = 1 or (0,1)- 30 = 2 or (0,1)- 30 = 3 or (0,1)- 30 = 4) or

((-1,1)- 30 = 1 or (-1,1)- 30 = 2 or (-1,1)- 30 = 3 or (-1,1)- 30 = 4) or
((1,-1)- 30 = 1 or (1,-1)- 30 = 2 or (1,-1)- 30 = 3 or (1,-1)- 30 = 4) or
((1,1)- 30 = 1 or (1,1)- 30 = 2 or (1,1)- 30 = 3 or (1,1)- 30 = 4) or
((-1,-1)- 30 = 1 or (-1,-1)- 30 = 2 or (-1,-1)-30 = 3 or (-1,-1)-30=4)) and random > 0.10}

Similarly, the above rule describes the case with a vesicle having the value 11, 12, 13, or 14 (a vesicle
that can move up/right/down/left) and a synapsin in its neighborhood. Then, since the synapsin will come
toward this vesicle and a binding will occur soon, the value of the vesicle gets changed to 41, 42, 43, or 44
(i.e. 11 changes to 41, 12 changes to 42, 13 changes to 43, and 14 changes to 44).

For the movement of synapsin the following four rules are implemented:

rule : 91 100 {(0,0)=21 and (-1,0)=0 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 }
rule : 00 0 {(0,0)=91}

step 1: checking to see if there is an empty cell so the synapsin can move into it, for example if the

synapsin’s direction is upward (value = 21), then at first we need to check if there is an empty cell right
above it. (91 is used as an intermediate value to occupy the empty cell)

step 2: once an empty cell is found, it gets occupied by the synapsin (i.e. the cell’s value changes from 0
to a random number 21-24).

step 3: the previous position of the synapsin that just moved to an empty cell gets cleared by setting the
value of the cell to 0.

The same procedure is used for right, left, and down movement. The following rule is used to break the
S-V bindings using an offrate=0.10. According to this, 10% of the bindings get broken and synapsins get
released to be given another direction and they will move around until finding a vesicle and binding to it.

%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or (0,0)=31 or (0,0)=34) and
random < 0.10}

Fig. 10 shows the grid at the initial case where S and V have not yet interacted. Then, Fig. 11 shows how
bounds are formed and the corresponding cells change their values to represent the binding.

Fig. 10. V and S before binding at Time: 00:00:00:100 (bold boxes represent examples of binding structures)

Fig. 11. V and S after binding at Time: 00:00:00:300

As illustrated above, the bold boxes show bindings between synapsin (31-34) and vesicle (41-44). The

first illustration (Fig. 10) represents the initial scenario where synapsins (21-24) and vesicles (11-14) are
free and have not yet performed bindings. Once synapsins move toward vesicles, the values of the
corresponding cells change to 31-34 (bonded synapsins) and 41-44 (bonded vesicles). Vesicles can be
surrounded by more than one synapsin, but each synapsin can bind to only one vesicle at any time. From the
above figure we can see the following possible binding scenarios:

→ corresponds to: V– S

 → corresponds to: S – V
 |

 S
5. Experiments and Performance Analysis

The main goal of this section is to show the capability of PCD++ in terms of handling the number of
nodes driving the simulation, complexity of the model, and the size of the model. We have selected
different models with distinguishable functionality, complexity, and size to better judge the capability of the
simulators. Our experiments were carried out on a HP PROLIANT DL Server, a cluster of 32 compute
nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2100 266MHz DDR RAM) running Linux WS 2.4.21
interconnected through Gigabit Ethernet and communicating over MPICH 1.2.6.

Each Cell-DEVS model consists of a number of necessary and optional files grouped together in a
package. Since the simulation can be distributed among 1 to 32 nodes of the cluster, we used a partitioning
mechanism implemented earlier in [17,18] which evenly divides the cell space into horizontal rectangles.
Different partitioning strategies can be implemented which in return result in a significant impact on the
performance of the simulation.

5.1. Performance Metrics
The total elapsed time value was collected from the execution environment to measure the performance

of the simulators in terms of execution time. Also, the speedups with respect to changing the number of
simulating nodes were calculated to show how the parallel simulation outperforms the sequential one (using
only one node). The overall speedup for N nodes is given as follows.

Where T (1) represents the serial execution time measured on one node, and T (N) is the total execution

time taken by the simulation running on N nodes. Each of the models which were presented in Chapter 5 is
executed on four different simulators:

• The optimistic PCD++ simulator [18];
• The conservative PCD++ simulator [17];
• The optimistic PCD++ simulator implementing LRFM protocol; and
• The optimistic PCD++ simulator implementing GRFM protocol.

The goal is to identify the execution performance of each simulator as we increase the number of
participating nodes. Due to the partitioning mechanism that is used by our optimistic and conservative
simulators, we can only increase the number of nodes to a certain limit. That is, the maximum number of
nodes that a model can be simulated on is equal to the number of rows of the cell gird for that particular
model. For instance, if we have a model of 400 cells arranged in a 20x20 mesh, we can run the model on 1
to 20 nodes. In order to obtain stable results, for each model, simulations were run on 1 to N nodes and for
each scenario five trials were collected. The execution results which will be presented in the next section
reflect the average of these five trials which are within a confidence interval of 95%.

5.2. Simulation Results

In the following points we will present the simulation results of executing our models.

- Ship Evacuation Model

This model consists of 400 cells arranged in a 20x20 mesh with a total execution time of 6.4327 seconds
when run on standalone CD++. Fig. 12 represents the execution time resulting from running the model with
four different simulators on 1 to 8 nodes.

0

1

2

3

4

5

6

7

8

1 2 3 4

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Fig. 12. Ship evacuation model execution time on 4 different simulators

From the execution time graph, we can see that the conservative simulator outperforms the other three
simulators. This is due to the causality-error avoidance mechanism of this simulator which avoids rollbacks
and anti-message flows. The optimistic and LRFM-based simulators produce very similar results for 2 to 6,

and 8 nodes. However, the GRFM-based simulator does not present good results. This is mainly due to the
huge message-passing mechanism among the LPs who are sending messages back and forth reporting
information about their rollbacks. To prove this, we can see that the GRFM-based simulator reduces the
execution time when there are two computing nodes, but as the number of nodes increases, the performance
degrades.

- Synapsin-Vesicle Reaction Model

This model consists of 676 cells arranged in a 26x26 mesh with a total execution time of 3.7621 seconds
when run on standalone CD++. Fig. 13 represents the execution time resulting from running the model with
four different simulators on 1 to 8 nodes.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Fig. 13. Synapsin-vesicle model execution time on 4 different simulators

We can see that the optimistic and LRFM-based simulators produce very close results on 1 to 8 nodes.
Also, the GRFM-based simulator has similar results for 1, 2, 3, and 5 nodes. However, it degrades the
performance when 4, 6, 7, and 8 nodes are participating. On the other hand, the conservative simulator
shows different behavior as the number of nodes increases. The conservative simulator improves the total
execution time significantly when more than 2 nodes are available. Again, as in the previously discussed
models, as the number of computing nodes increases, the GRFM-based simulator has the lowest
performance among other ones. The main reason is communication overhead among the participating LPs
which leads in a noticeable time added to the duration of the model execution.

- Game of Life Model

This model consists of 1200 cells arranged in a 30x40 mesh with a total execution time of 4.6723
seconds when run on standalone CD++. The Game of Life was created by mathematician John Conway in
1970 [19]. It is the best-known example of cellular automata algorithms. The standard Game of Life uses a
two-dimensional grid. We will use this simple example to show the basic facilities of CD++ to define
model’s rules. Cells can be either on (alive) or off (dead). The key rule is known as “B3/S23”: a new cell is
born when it has exactly 3 neighbors; an existing cell (alive cell) survives if it has 2 or 3 neighbors. In all
other cases the cell dies, either of overcrowding (with more than three live neighbors) or loneliness (with
less than two). At each time step all cells update their state simultaneously. We have modeled the Game of
Life using CD++, on a 20x20 cell grid (400 cells). Fig. 14 illustrates the cell gird at four different time
stamps of the simulation. The first cell grid shows the initial scenario where seventeen alive cells exist. As
the simulation proceeds, either new cells are born or live cells die (based on the “B3/S23” rule).

Fig. 14. Game of life model at four different time steps throughout the simulation

Fig. 15 represents the execution time resulting from running the model with four different simulators on 1

to 6 nodes. From the execution time graph, we can see that the optimistic, LRFM-based, and GRM-based
simulators outperform the conservative one on 1 to 6 nodes and at the same time produce very close results.
However, as the number of machines goes beyond 3, the conservative simulator starts dropping down the
execution time. Among the three optimistic simulators, the GRFM-based simulator takes longer time due to
its time consuming mechanism in broadcasting information about each LP’s rollbacks among the
participating nodes.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Fig. 15. Game of life model execution time on 4 different simulators

- Fire Propagation Model

This model consists of 900 cells arranged in a 30x30 mesh with a total execution time of 6.2145 seconds
when run on standalone CD++. This model represents a fire propagation scenario in forest based on
Rothermel’s mathematical definition [20]. The model computes the ratio of spread and intensity of fire in
forest based on specific environmental and vegetation conditions. Three parameter groups determine the
fire spread ratio: 1) vegetation type (caloric content, mineral content and density); 2) fuel properties; 3)
environmental parameters (wind speed, humidity, and field slope).

Fig. 16. Fire propagation at four different snapshots throughout the simulation

Fig. 16 illustrates snapshots of the simulation results at four different times. Initially, fire starts as fire
spot (the dark cell on the grid). Then as time passes by, fire spreads to the neighboring cells in the direction
of wind. Therefore, each cell, depending on its position and heat, fires its surrounding cells. As presented on

the final scenario of Fig. 16, the wind direction leads the fire from the starting point, cell (19, 10), towards
southeast of the forest. Fig. 17 represents the execution time resulting from running the model with four
different simulators on 1 to 8 nodes.

0

1

2

3

4

5

6

7

1 2 3 4 5

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Fig. 17. Fire propagation model execution time on 4 different simulators

As seen on the graph, our parallel simulators significantly improved the execution time of the fire

propagation model. The three optimistic simulators produced very similar results on 1 to 7 nodes. For this
model, we can definitely remark that the optimistic simulators outperform the conservative one. For the
optimistic simulators the best results were achieved on 5 nodes, while the conservative one had its lowest
execution time on 4 nodes.

6. Conclusions

This work presented the parallel simulation of DEVS and Cell-DEVS models using PCD++, a parallel
and distributed environment based on the Time Warp optimistic synchronization protocol. PCD++ serves as
an extension to the CD++ toolkit which was developed by previous researcher [18] aiming at exploiting
parallelism for the purpose of fast and efficient simulation of complex models. The concept of Parallel and
Distributed Simulation was presented.

We illustrated the software architecture of the purely optimistic parallel CD++ simulator (PCD++). The
layered architecture of the optimistic PCD++ simulator consists of five layers (from top to bottom): model,
PCD++, Time Warp - WARPED, and the operating system, where ach layer was explained in details. A
variety of optimization strategies of the Time Warp kernel were pointed out and discussed thoroughly.
Some optimizations in terms of GVT calculation, dynamic memory management, and state management
were mentioned.

We have analyzed the performance of our two existing parallel CD++ simulators, namely Conservative
PCD++ simulator [17] and Optimistic PCD++ simulator [18]. We looked at the design and implementation
of these two simulators and compared their structures as well as functionalities in parallel and distributed
simulations.

The hierarchical structure of the conservative PCD++ simulator was compared against the flattened
structure of the optimistic PCD++ simulator. The migration from a hierarchical structure to a flattened
structure was illustrated as two major modifications; i.e. the departure from conservative-based simulator to
an optimistic-based simulator, and flattening the structure of the simulator. Then it was illustrated how the
optimistic PCD++ simulator deals with the communication overhead dilemma by using the flattened
structure.

Aiming at improving the performance of the optimistic simulator, we modified the WARPED kernel to
handle rollbacks in a more efficient way. We presented two new algorithms that we have implemented in

WARPED kernel. The Near-perfect State Information protocol was discussed and after that our new
algorithms; Local Rollback Frequency Model (LRFM) and Global Rollback Frequency Model (GFRM)
were presented. Finally, we have run a variety of tests to analyze the performance of our existing PCD++
simulators; the optimistic and the conservative as well as our LRFM and GRFM Time Warp-based
protocols [21].

7. References
[1] Zeigler, B.; Kim, T.; Praehofer, H. “Theory of Modeling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems”. Academic Press. 2000.
[2] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: modeling and simulation of cell spaces “. In “Discrete Event

Modeling & Simulation: Enabling Future Technologies”, Springer-Verlag. 2001.
[3] Martin, D. E.; McBrayer, T. J.; Radhakrishnan, R.; Wilsey, P. A. “WARPED – A Time Warp Parallel Discrete

Event Simulator (Documentation for version 1.0)”.
[4] Jefferson, D. “Virtual Time”. ACM Transactions on Programming Languages and Systems. 7(3):405-425. 1985.
[5] Wainer, G. “CD++: a toolkit to develop DEVS models”. Software – Practice and Experience. Vol. 32, pp. 1261-

1306. 2002.
[6] Wainer, G. "Improved cellular models with Parallel Cell-DEVS". Transactions of the Society for Computer

Simulation International. Vol. 17, No. 2, pp. 73-88. 2000.
[7] Fujimoto, R. M. “Parallel and Distributed Simulation Systems”. Wiley-Interscience. ISBN 0-471-18383-0. 2000.
[8] Bryant, R.E. Simulation of Packet Communication Architecture Computer Systems. Massachusetts Institute of

Technology, Cambridge, MA. USA. 1977.
[9] Klüpfel, W.; Meyer-König, T.; Wahle, J.; Schreckenberg, M. “Microscopic Simulation of Evacuation Processes on

Passenger Ships”, Theoretical and Practical Issues in Cellular Automata, pp. 63-71, Springer-Verlag 2001.
[10] Al-Aubidy, B.; Dias, A.; Bain. R.; Jafer, S.; Dumontier, M.; Wainer, G.; Cheetham, J. ”Advanced DEVS models

with applications to biology”. Artificial Intelligence, Simulation and Planning. Buenos Aires, Argentina. 2007.
[11] Benfenati, F., Valtorta, F., Greengard, P.; “Computer Modelling of Synapsin 1 Binding to Synaptic Vesicles and

F-actin”. Implications for Regulation of Neurotransmitter Release. 1990.
[12] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. “A high-performance, portable implementation of the MPI message-

passing interface standard”. Parallel Computing. Vol. 22, pp. 789-828. 1996.
[13] Glinsky, E. “New Techniques for Parallel Simulation of DEVS and Cell-DEVS Models in CD++”. M. A. Sc.

Thesis. Carleton University. Canada. 2004.
[14] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D. M.; Wilsey, P.A. “An Object-Oriented Time Warp

Simulation Kernel”. Proceedings of the International Symposium on Computing in Object-Oriented Parallel
Environments (ISCOPE’98). Vol. LNCS 1505, pp. 13-23. Springer-Verlag. 1998.

[15] Szulsztein, E.; Wainer, G. “New Simulation Techniques in WARPED Kernel” (in Spanish). Proceedings of
JAIIO, Buenos Aires, Argentina, 2000.

[16] Srinivasan, S.; Reynolds, J., “Elastic Time”, ACM Transactions on Modeling and Computer Simulation, Vol. 8,
No. 2. 103-139. April 1998.

[17] A. Troccoli, G. Wainer. "Implementing Parallel Cell-DEVS". In Proceedings of 36th IEEE/SCS Annual Simulation
Symposium. Orlando, FL. U.S.A. 2003.

[18] Q. Liu, G. Wainer. “Optimistic Simulation of DEVS and Cell-DEVS Models with PCD++”. Accepted for
publication in Simulation, Transactions of the SCS. Accepted: May 2007.

[19] Gardner, M. " Mathematical games: The fantastic combinations of John Conway's new solitaire game "life"".
Scientific American 223: 120 - 123. 1970.

[20] Rothermel, R. "A mathematical model for predicting fire spread in wild-land fuels". Research Paper INT-115. Ogden,
UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 1972.

[21] S. Jafer, G. Wainer. "An infrastructure for computational simulation of cellular models". In Proceedings of
Unconventional Computing 2007 Computational Problems Workshop. Kingston, ON, Canada (2007).

