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ABSTRACT 
DEVS is a sound formal modeling and simulation (M&S) framework based on generic dynamic system concepts. Cell-
DEVS is a formalism for cell-shaped models based on DEVS. This work presents a new simulation technique for 
execution of DEVS and Cell-DEVS models in parallel environments. These techniques are modifications to the original 
Time Warp mechanism offered by WARPED kernel. Time Warp functionalities are revised to include two new algorithms 
namely, Local Rollback Frequency Model (LRFM) and Global Rollback Frequency Model (GRFM). The resulting 
simulator is used as new simulation engine for CD++, an M&S toolkit that implements DEVS and Cell-DEVS theories. 
The results obtained allowed us to achieve considerable speedups due to the reductions that LRFM and GRFM protocols 
perform on number of rollbacks and anti-messages. 
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1. Introduction 
Modeling and simulation (M&S) methodologies have become crucial for implementing, designing, and 

analyzing a broad verity of systems. Among the existing simulation techniques, the DEVS (Discrete Event 
System Specification) formalism [1] provides a discrete-event M&S approach which allows construction of 
hierarchical models in a modular manner. DEVS is a sound formal framework based on generic dynamic 
systems concepts that allows model reuse, and reduction in development and testing time due to its 
hierarchical approach in constructing models. Cell-DEVS [2] is an extension to DEVS which integrates 
DEVS and cellular automata by presenting each cell as an atomic DEVS model.  

Cell-DEVS introduced a novel mechanism for computation based on asynchronous cellular models with 
explicit timing constructions. The technique has been used to develop a wide variety of models in different 
fields, ranging from environmental sciences, traffic, biology and physics. When large complex models are 
defined, the computing power of a parallel simulator can improve execution times. Here, we present new 
techniques for executing DEVS and Cell-DEVS models in parallel and distributed environments based on 
the WARPED kernel [3], an implementation of the Time Warp protocol [4]. Our optimistic simulator, 
called as PCD++, is built as a new simulation engine for CD++ [5], an M&S toolkit that implements the 
DEVS and Cell-DEVS formalisms. Algorithms in CD++ and the WARPED kernel are redesigned based on 
Near Perfect State Information technique to carry out optimistic simulations using a non-hierarchical 
approach that reduces the communication overhead. Two new algorithms namely, Local Rollback 
Frequency Model (LRFM) and Global Rollback Frequency Model (GRFM) have been implemented and 
used by our PCD++ simulator. These two algorithms have been tested using different Cell-DEVS models. 
Here we present in details an evacuation model of a ship and a model of the Synapsin-Vesicle reaction in 
neurons. Also, a brief description of two other models namely Fire Propagation model, and Game of Life 
model are provided.  

We have designed many Cell-DEVS models which vary in size, complexity, and functionality. As the 
main contribution of this work, we have implemented two new optimism control mechanisms based on 
NPSI protocols. These two protocols, namely LRFM and GRFM were integrated into the existing optimistic 
PCD++ simulator and therefore two distinct optimism controlling simulators were modeled. This led to 



 
 

creating a workbench consisting of four different simulators; Conservative, Pure Optimistic, LRFM-based 
Optimistic, and GRFM-based Optimistic simulators. This workbench serves as simulation environment that 
can be used as the base in studying parallel simulations of DEVS and Cell-DEVS. On the other hand, the 
precise and detailed testing scenarios that we are presenting can be used along with this workbench to 
analyze the capability, performance, and robustness of PCD++ simulators.  

 
2. Background 

DEVS [1] is a formalism for modeling and simulation for Discrete Events Dynamic Systems that 
provides a framework for the definition of hierarchical models in a modular way by decomposing the real 
system into behavioral (atomic) and structural (coupled) components. DEVS theory provides a rigorous 
methodology for representing models, and it does present an abstract way of thinking about the world with 
independence of the simulation mechanisms, underlying hardware and middleware. A DEVS atomic model 
is formally defined by: 

M = <X, Y, S, δint, δext, λ, ta>, 
where 
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
S is the set of sequential states; 
δint: S →→→→ S is the internal state transition function; 
δext: Q × X →→→→S is the external state transition function, where 
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the time elapsed since the last state transition; 
λ: S →→→→Y is the output function; 
ta: S →→→→ R+

0,∞ is the time advance function. 
   The semantics for this definition is given as follows. At any time, a DEVS coupled model is in a state s ∈ 
S. In the absence of external events, the model will stay in this state for the duration specified by ta(s). 
When the elapsed time e=ta(s), the state duration expires and the atomic model will send the output λ(s) and 
performs an internal transition to a new state specified by δint(s). Transitions that occur due to the expiration 
of ta(s) are called internal transitions. However, state transition can also happen due to arrival of an external 
event which will place the model into a new state specified by δext(s,e,x); where s is the current state, e is the 
elapsed time, and x is the input value. The time advance function ta(s) can take any real value from 0 to ∞.  

A DEVS coupled model is composed of several submodels and it is formally defined by:  
CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>, 

where 
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D is the set of the component names, and the following requirements are imposed on the components, which 
must also be DEVS models: 
For each d ∈ D, Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS model. 
Select: 2D → D is the tie-breaking function for imminent components. 

Due to the closure property, a coupled model is regarded as a new DEVS model [1]. This property 
clarifies that the overall behavior of a coupled model is equivalent to a basic atomic model, and therefore 
allows hierarchical model construction.  

Cell-DEVS [2] is an extension to DEVS which integrates DEVS and cellular automata by presenting 
each cell as an atomic DEVS model. Two types of timing delays can be used, namely transport and inertial 
[6]. When transport delay is used, the future value is added to queue sorted by output time, allowing the 



 
 

previous values that were scheduled for output but have not yet been sent to be kept. On the other hand, 
inertial delays allow a preemptive policy at which any previous scheduled output value will be deleted and 
the new value will be scheduled. Cell-DEVS formalism is defined by: 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
where X is a set of external input events; Y is a set of external output events; I represents the model's 

modular interface; S is the set of sequential states for the cell; θ is the cell state definition; N is the set of 
states for the input events; d is the delay for the cell; δint is the internal transition function; δext is the external 
transition function; τ is the local computation function; λ is the output function; and D is the state's duration 
function. The model uses N inputs to compute its next state. These inputs, which are received through the 
model's interface (X, Y), activate the local computing function (ττττ). State (s) changes can be transmitted to 
other models, but only after the consumption of a delay (d). Two kinds of delays can be defined: transport 
delays model a variable commuting time, and inertial delays, which have preemptive semantics (scheduled 
events can be discarded). Once the cell behavior is defined, a coupled Cell-DEVS is created by putting 
together a number of cells interconnected by a neighborhood relationship. 

By integrating atomic Cell-DEVS, coupled models can be constructed representing the cell space. A 
coupled Cell-DEVS model is formally defined as follows: 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 
where Xlist is the input coupling list; Ylist is the output coupling list; I represents the definition of the 

model’s interface; X is the set of external input events; Y is the set of external output events; n is the 
dimension of the cell space; {t1,...,tn}is the number of cells in each of the dimensions; N is the neighborhood 
set; C is the cell space; B is the set of border cells; Z is the translation function; and select is the tie-breaking 
function for simultaneous events. The above formalism explains that a coupled model is composed of an 
array of atomic cells with given size and dimensions where each cell is connected through standard DEVS 
input/output ports to the cells defined in the neighborhood . Since the cell space is finite, the borders of the 
cells are either connected to a different neighborhood than the rest of the space, or they are “wrapped” in 
which they are connected to those in the opposite one using the inverse neighborhood relationship. 
However, border cells have a different behavior due to their particular locations, which result in a non-
uniform neighborhood. A Cell-DEVS coupled model is informally presented in Fig. 1. 

 

 
Fig. 1. Description of a Cell-DEVS atomic model [6] 

 
CD++ [5] is a modeling tool that implements the DEVS and Cell-DEVS theories by applying the original 

formalisms. The toolkit includes facilities to build DEVS and Cell-DEVS models. CD++ toolkit also 
includes an interpreter for Cell-DEVS models [6]. The language is based on the formal specifications of 



 
 

Cell-DEVS. The model specification includes the definition of the size and dimension of the cell space, the 
shape of the neighborhood and the type of cell’s bordering. The cell’s local computing function is defined 
using a set of rules with the form POSTCONDITION DELAY { PRECONDITION }. These indicate that 
when the PRECONDITION is met, the state of the cell will change to the designated POSTCONDITION 
after the duration specified by DELAY. If the precondition is not met, then the next rule is evaluated until a 
rule is satisfied or there are no more rules.  

In parallel and distributed environments the entire task of simulation is divided among the processors or 
nodes (Logical Process - LP) and therefore each one of them handles a smaller chunk of the simulation 
while the whole process of execution takes place in parallel and as a result in a significantly reduced time. 
In sequential simulations, events are executed base on timestamp order; in contrast, parallel and distributed 
simulations require a mechanism to ensure that the result of concurrent execution is identical to that of 
sequential one [7]. Therefore, synchronization among LPs is needed. The most widely used strategies for 
event driven simulations can be classified as Conservative (or Pessimistic), in which causality violations 
are strictly avoided [8], and Optimistic [4], in which causality errors are fixed by the notion of rollbacks. 

Conservative synchronization can cause deadlocks, which can be avoided by providing lookahead 
information (i.e., the smallest time stamp of the new events that a process can schedule in the future). Null 
messages are responsible to carry out the lookahead information among LPs. This way each LP, based on 
the lookahead information that it receives from all other LPs can derive a lower bound on the time stamp 
(LBTS) of the events that it will receive in future. As a result, the LP would know which event is safe to 
process. The biggest drawback of the conservative synchronization approach is the time wasting flow of 
null messages which degrade the simulation performance significantly. Optimistic techniques [4] consider 
that each LP has a Local Virtual Time (LVT) which advances every discrete step as events are executed on 
the process. Therefore, time warp processes execute their own portion of the simulation based on LP’s 
LVT. Since every LP has its own LVT, causality errors occur when LPs send messages to each other. This 
way, an LP may receive a message with time stamp smaller than its current LVT. Such events are referred 
to as straggler events. Once a straggler event is received the process will rollback. Rollback is the operation 
performed upon reception of a straggler event, where the process recovers from the causality error by 
undoing the effects of all the events that were processed and had timestamp greater than the time stamp of 
the straggler event. Therefore, these messages were falsely sent to other processes and now must be 
cancelled. This cancellation is performed by sending anti-messages.  

Optimistic approaches offer two important advantages over conservative techniques: 
(i) They have a higher degree of parallelism unlike the conservative approaches where they are 

overly pessimistic and force the simulation to behave sequentially when it is not necessary. 
(ii)  Conservative approaches rely very much on application-specific information when making run-

time decisions on whether it is safe to process the event or not. Optimistic mechanisms allow a 
simplified software development and more transparent synchronization. 

 
3. Definition of a Parallel Simulator 

PCD++ optimistic simulator implements the DEVS and Cell-DEVS formalisms in parallel and provides 
the framework for building and executing DEVS and Cell-DEVS models in parallel environments using the 
Time Warp protocol. We have modified CD++ sequential simulator to enable parallel and distributed 
simulations by implementing optimistic synchronization protocol [4]. PCD++ executes the simulation via 
several Time Warp processes [3] by exchanging time-stamped event messages. The Time Warp protocol 



 
 

used by PCD++ consists of two parts: the local control mechanism and the global control mechanism. The 
local control mechanism which is provided in each Time Warp process is in charge of rollback operations 
which include: sending anti-messages, restoring the state of the LP, readjusting Local Virtual Time (LVT), 
etc. On the other hand, the global control mechanism takes care of global issues such as memory 
management, I/O operations, and termination detection.  

We used the WARPED [14] simulation kernel, which is a configuration middleware that implements the 
Time Warp mechanism and a variety of optimization algorithms. Warped uses the Message Passing 
Interface (MPI), a standard specification of message-passing library for high-performance communications 
on both massively parallel machines and on workstations clusters [12]. We have used the MPICH [12] 
portable implementation of MPI which provides a vehicle for MPI implementation research and for 
developing parallel and distributed applications. CD++ simulation is driven by message passing. 
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Fig. 2. Model and Processor hierarchies. 

 
As seen on in Fig. 2, there are four types of PCD++ processors (associated to the Modeling hierarchy): 

Simulator, Flat Coordinator (FC), Node Coordinator (NC), and Root Coordinator (RC). When DEVS and 
Cell-DEVS models are executed over multiple machines, a distributed processor structure is constructed in 
PCD++ to carry out the simulation. Lets consider the following example to see how partitioning takes place 
(on two machines). Fig. 3 shows a scenario with four atomic models (A1, A2, A3, and A4) where A1 and 
A2 are part of the coupled model C1, and C1, and the other two atomic models A3, and A4 are then part of 
the TOP coupled model. Since we will execute the simulation on two machines, we will allocate models by 
putting A1 and A2 in Machine 0, and A3 and A4 in Machine1. 

         
Fig. 3. Example model structure and distributed processor structure for the example 

In this case, two logical processes are created LP0 and LP1 (one per machine). LPs group together the 
PCD++ processors on the machine they belong to. Local messages are handled by the FC, and the remote 



 
 

messages are handled by the NC and then sent to the appropriate Simulator through the destination FC. The 
root coordinator is created only on machine 0. It starts the simulation and handles I/O operations. The NC 
on each machine is the local central controller on each LP and the end point of inter-LP communications. 
The FC residing between the NC and the Simulators is responsible for synchronizing the execution of its 
child Simulators. Finally, the Simulator is responsible for executing DEVS abstract functions defined in the 
atomic models. When a Simulator sends a message to another Simulator sitting on a remote machine, the 
message is first directed to the FC, then to the local NC through direct communication. Once the message 
gets to the NC, it will be forwarded to the destination NC through MPI communication. On the receiving 
end, the NC will then forward the message to the destination Simulator through the child FC.  

There are two types of communications among LPs: synchronous intra-LP communications, carried out 
by all PCD++ processors, and asynchronous inter-LP communications, carried out only by NCs. Since 
inter-LP communications are asynchronous, the NCs require a special structure named as NC Message Bag 
to handle message passing between LPs with different LVTs. The following properties hold for NC 
Message Bag: 

(i) Messages inside a Message Bag can have different timestamps. 
(ii)  The time of a Message Bag is equal to the minimum timestamp among the contained messages. If 

the Message Bag is empty, then its time is set to infinity.  
(iii)  Messages inside a Message Bag are processed based on their timestamp in an increasing order. 

Once a message is processed, it is then removed from the bag, and the bag’s time is advanced to 
the next minimum value among the timestamps of the remaining messages. Once all the messages 
are processed and removed from the bag, the Message Bag’s time is restored back to infinity 
implying that the bag is empty. 

In contrast, synchronous intra-LP communications are handled by the Simulators and the FC since they 
are local to the LP. Similar to the NC Message Bag, for intra-LP messages the FC holds a message bag. In 
this case, when two local Simulators (i.e. sitting on the same LP) need to communicate to each other, they 
send the message to the local FC, and then the message will be directed to the destination local Simulator by 
the FC. There is no direct communications between Simulators, even the ones sitting on the same LP. Local 
Simulators can only communicate with each other through their FC.  

PCD++ processors exchange content or control messages. The first category includes the external 
message (x) and the output message (y), and the second category includes the initialization message (I), the 
collect message (@), the internal message (*), and the done message (D). External and output messages are 
used to exchange simulation data between the models. Initialization messages start the simulation, collect 
and internal messages trigger the output and the state transition functions respectively in the atomic DEVS 
models, done messages handle synchronization by carrying the model timing information. Each PCD++ 
processor defines its own functionality for each type of message, as follows: 

Simulator: upon receiving (I, 0) from the parent FC, the current simulation time (tL) and the next 
scheduled event (ta) are recorded. Then the simulator initializes the variables defined in its associated 
atomic model, and after that, it informs its parent FC of the value of ta by sending a done message stamped 
with time 0. When a (@, t) message is received, the Simulator invokes the output function (λ) of the atomic 
model and as a result an output message (y, t) is sent to the FC. After this, the Simulator will send (D, t) to 
the FC with ta = 0 to indicate that it is imminent. Following the collect message, a (*,t) will arrive to trigger 
internal/external/ confluent function of the atomic model depending on the timing of the message and the 
status of the Simulator’s message bag. A message (x, t) is simply inserted into the Simulator’s message bag. 



 
 

Flat Coordinator: when (I, 0) is received, the FC records the total number of its children and forwards 
the (I, 0) message to each child. After this, the FC waits for all its children to respond to this initialization 
by sending back a (D, 0). The FC will only pass the control over to the NC if all its children have finished 
their previous computation and have sent done messages as notification messages. Upon receiving a (@, t) 
message, the FC forwards it to all imminent Simulators and will keep a record of this for later use (to know 
which children need to do state transitions when (*, t) is received). Moreover, when (y, t) is received, the 
FC searches the model coupling information to find out the correct destination. The destination is either an 
input port on an atomic model, or an output port on the topmost coupled model. In case of receiving (x, t) 
message, the FC will simply insert the message into its message bag. Upon receiving (*, t) message, the 
external messages inside the FC’s message bag are flushed to the local receiving Simulators. This will 
trigger the imminent Simulators to perform a state transition. Finally, when a (D, t) message is received 
from a child Simulator, the FC updates the child’s tN. 

Node Coordinator: upon receiving (I, 0), the NC simply forwards it to the child FC. In case of receiving 
(x, t), NC will insert this message into the NC Message Bag. These external messages contain values sent 
from remote Simulators to local ones. When (y, t) is received the NC simply forward it the Root (it has to be 
sent to the environment). Reception of a (D, t) message by the NC from a child FC indicates that this is a 
response to a control message that was previously sent out by the NC.  

Root Coordinator: this processor only handles environment-oriented output messages during the 
simulation. Output to the environment is done through a test file called as output file or OUT file.  

Aside from the functionalities of each of the PCD++ processors, we have modified the WARPED [3] 
kernel in order to run simulations under different protocols. These protocols are modifications of the 
optimistic one that WARPED implements. The idea is to reduce the number of rollbacks by suspending the 
LP that has large number of rollbacks and therefore stopping it from flooding the net with anti-messages. 
However, the LP will still be able to receive input events and they will be inserted into the corresponding 
message bags. After a predefined duration, the suspend LP is released and will go on simulating. These two 
protocols [15], namely Local Rollback Frequency Model (LRFM) and Global Rollback Frequency Model 
(GRFM) are based on the “Near Perfect State Information - NPSI” protocol [16]. The NPSI protocol 
implements the Elastic Time mechanism. Briefly, Elastic Time is composed of two parts: (i) identifying the 
NPSI of the simulation, and (ii) translating the NPSI in optimism on the simulation objects.  

Each part can be implemented in many ways. The main concept is to associate each LP with a potential 
error (PE) to control the optimism of LPi. During the simulation run, the value of each PE is kept updated 
by evaluating a function called M1 which uses state information that is received from the feedback system. 
Then, the function M2 translates dynamically every update of PEi in delays in the execution events.  

 
3.1. Local Rollback Frequency Model 

The Local Rollback Frequency Model (LRFM) protocol is only based on local information of the logical 
processes. That is, the simulation object within a LP will be suspended or allowed to continue simulating 
only based on the number of rollbacks it had. First, M1 and M2 functions must be defined: 

Function M1: The error potential of a simulation object is the number of rollbacks that the object had 
from a time T1 until the actual time T2, having that T2 - T1 ≤ T, where T is the interval after which the 
local number of rollbacks of the simulation object gets restarted back to zero. 

Function M2: If the number of rollbacks for a simulation object at the interval T is greater than a 
specified value, then the object is suspended, adopting a conservative behavior. By suspending the 



 
 

simulation object, the LP where the object resides on will still be able to receive incoming events, but the 
events are not processed until the simulation object is again given the permission to resume. However, if the 
number of rollbacks of the simulation object is less than the predefined value, then the object simulates 
aggressively, adopting its usual optimistic behavior (as in Time Warp).  

To implement this protocol each LP has to be informed the maximum number of allowed rollbacks 
before suspension of the simulation object (max_rollback), and the duration for which the simulation object 
will stay suspended (period). The algorithm is presented in Fig. 4. 

 

 
Fig. 4. LRFM algorithm 

 
From the LRFM algorithm we see the following three possible scenarios: 

• The LRFM period has expired, therefore the simulation object starts a new period, its number of 
rollbacks gets reset to zero, and it is given the permission to continue its execution. 

• The period has not yet expired. If the number of rollbacks of the simulation object is less than 
the allowable range (i.e. max_rollbacks), it continues its normal execution. 

• The LRFM period has not yet expired, but the number of rollbacks has exceeded 
max_rollbacks, thus it gets suspended for the entire duration of the current LRFM period. 

With the inclusion of this protocol, in every simulation cycle an object will simulate the lowest timestamp 
event if the number of its rollbacks in the period T is smaller than the maximum allowable rollbacks; if not, 
the object suspends executing until the new period of time T, after which Warped restarts the rollbacks 
number to zero. In order for an LP to be able to simulate objects that mustn't be delayed, we have modified 
the scheduler policy to choose the next object to simulate. It chooses the first object of the input event list 
(that is, the object with the lowest input event timestamp) only if its rollbacks count does not exceed 
max_rollbacks; else, the scheduler checks the next object of the input event list and so on, until it finds an 
object in condition to be simulated or until it reaches the end of the list. 

 
3.2. Global Rollback Frequency Model 



 
 

In the Global Rollback Frequency Model (GRFM) protocol each simulation object uses global 
information in such a way that among all the simulation objects residing on all LPs, the one with greatest 
number of rollbacks must be suspended for the duration of time defined at the beginning of the simulation. 
Therefore, at each simulation cycle all the LPs must broadcast the information regarding the rollback counts 
of all of their simulation objects. As in LRFM, M1 and M2 functions must first be defined: 

Function M1: The error potential of a simulation object is the number of rollbacks that the object had 
minus the maximum number of rollbacks of the other simulation objects (both local and remote ones) 
participating in the simulation, from a time T1 until the actual time T2, having that T2 - T1 ≤ T, where T is 
the interval after which the local number of rollbacks of the simulation object gets restarted. 

Function M2: If the number of rollbacks for a simulation object at the interval T is greater than other 
number of rollbacks of the other simulation objects, then the object is suspended, adopting a conservative 
behavior. By suspending the simulation object, the LP where the object resides on will still be able to 
receive incoming events, but the events are not processed until the simulation object is again given the 
permission to resume. However, if the number of rollbacks of the simulation object is less than the 
predefined value, then the object simulates aggressively, adopting its usual optimistic behavior (as in Time 
Warp). The algorithm is presented in Fig. 5. 

 
Fig. 5. GRFM algorithm 

 
As in LRFM, the GRFM algorithm yields three different scenarios: 
- The GRFM period has expired, therefore the simulation object starts a new period, its number of 

rollbacks gets reset to zero, and it is given the permission to continue its execution. 
- The GRFM period has not yet expired, if the number of rollbacks of the simulation object is less than 

the allowable range (i.e. max_rollbacks), then the simulation object continues its normal execution. 
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- The GRFM period has not yet expired, but the number of rollbacks has exceeded max_rollbacks, thus 
the simulation object gets suspended for the entire duration of the current GRFM period. 

The main difference of GRFM and LRFM is the way max_rollbacks is initialized. In LRFM, the 
maximum allowable rollbacks are predefined by the user at run time, while in GRFM maximum allowable 
rollbacks is set to the largest number of rollbacks of all participating simulation objects. That is, whenever a 
simulation objects is scheduled to execute, it must send the number of rollbacks it had so far to all other 
simulation objects, both local and remote ones. As a result, at any time max_rollbacks is the largest number 
of rollbacks among all the existing simulation objects. 

By implementing LRFM and GRFM protocols in our optimistic PCD++ simulator, different simulation 
results can be collected since the RFM period (and in case of LRFM the max_rollbacks) can be modified 
very easily at the beginning of the simulation. This is done by changing these values in the configuration 
files right before the simulation starts and therefore, there is no need to rebuild the whole simulator in order 
for these modifications to have effect.  

 
4. Testing models 

In this section we introduce the description of different models we used to carry out the testing of the 
simulation engine, including a Synapsin-Vesicle Reaction at Nerve Terminal (which represents the 
interaction of synapsin with vesicles at nerve terminal), Fire Spread (illustrates fire propagation in a forest), 
and Ship Evacuation (an emergency ship evacuation scenario). We have run a variety of tests to analyze the 
performance of our existing PCD++ simulators; the optimistic and the conservative as well as our LRFM 
and GRFM Time Warp-based protocols. 

 
4.1. Ship Evacuation Model 

The first model we used represents an evacuation scenario of a ship under emergency [9]. The rules 
defining the model are based on the following restrictions: 

(i) Each cell representing a person on the ship, calculates its shortest path toward the exit. During 
initialization phase, people are placed randomly in any empty cell. 

(ii)  People run in their initial direction until they encounter another person or an obstacle (e.g. wall).  
At the end of simulation, there should be no one left on the ship. The neighborhood of each cell consists 

of 10 cells (i.e. they can be walls, exit doors, people, or empty cells) as shown on Fig. 6.  
 

 
 
 
 
 
 
 
 

Fig. 6. Cell neighborhood  

Each value on the cell space defines a distinct state, such as the type of the cell: wall, empty, exit door, a 
moving person. Also each type of movement is given a state value in order to identify the next position.  

Table 1. State values and their description 

Name Value Comments 
N/A 0 Unknown Empty cell. 
Wall 1 Represents an obstacle or a wall. 



 
 

Name Value Comments 
Exit 2 Represents an exit (e.g. stairs, door). 
ED 3 Empty cell and its down (D) cell is the shortest path to the nearest exit. 
ER 5 Empty cell and its right (R) cell is the shortest path to the nearest exit. 
EU 7 Empty cell and its up (U) cell is the shortest path to the nearest exit. 
EL 9 Empty cell and its left (L) cell is the shortest path to the nearest exit. 
FD 4 Full cell (cell with person) and its down (D) cell is the shortest path to the exit. 
FR 6 Full cell (cell with person) and its right (R) cell is the shortest path to the exit. 
FU 8 Full cell (cell with person) and its up (U) cell is the shortest path to the exit. 
FL 10 Full cell (cell with person) and its left (L) cell is the shortest path to the exit. 

 
Based on these values, we define different rules for the movement of people in the vessel. The following 

rules initialize the model by calculating the shortest path. When a cell detects that one of its attached cells 
has changed its state to “defined”, it would know that the attached cell is the shortest path. 

 
Result Precondition  

3 or 4 (ED or FD)  (0,0) = Undefined and (1,0) is defined. 

5 or 6 (ER or FR) (0,0) = Undefined and (0,1) is defined. 

7 or 8 (EU or FU) (0,0) = Undefined and (-1,0) is defined. 

9 or 10 (EL or FL) (0,0) = Undefined and (0, -1) is defined. 

 
The following rules define the case when a cell knows that a person will move towards it, which will 

occur if it is empty and it is the shortest path to at least one cell with a person occupying it. 
 

Result Precondition 
4 → FD state (0,0) = ED and ((0,1) = FL or (-1,0) = FD or (0,-1) = FR ) 
6 → FR state (0,0) = ER and ((1,0) = FU or (-1,0) = FD or (0,-1) = FR) 
8 → FU state (0,0) = EU and ( (1,0) = FU or (0,1) = FL or (0,-1) = FR ) 
10 → FL state (0,0) = EL and ( (1,0) = FU or (0,1) = FL or (-1,0) = FD ) 

The next rules define when a cell occupied with a person is attached to the exit. Then, the cell knows that 
a person will leave it and exit. 

Result Precondition 
 3→ ED state (0,0) = FD and (1,0) is exit 
5→ ER state (0,0) = FR and (0,1) is exit 
7→ EU state (0,0) = FU and (-1,0) is exit 
9→ EL state (0,0) = FL and (0,-1) is exit 

Finally, the next rules define when a cell knows that a person will leave it when it is not near an exit. A 
person will leave it when the cell is occupied by a person and its shortest path cell is empty. However, only 
one person can move to the empty cell when more than one person is trying to move to the same cell. In this 
case, the priority is first with the person who is in the upper cell, second the one in the right cell, third the 
one in the down cell, and finally the one in the left cell has the lowest priority. 

Result Precondition 
3→ ED state (0,0) = FD and down (D) cell is empty. 
5→ ER state (0,0) = FR and right cell (R) is empty and UR,RR, and DR cells have no person moving to R. 
7→ EU state (0,0) = FU and upper cell (U) is empty and UU and UR don’t have a person moving to U. 



 
 

Result Precondition 
9→ EL state (0,0) = FL and left cell (L) is empty and UL doesn’t have a person moving to L. 

Fig. 7 shows an extract of the model’s definition in CD++. 

 
Fig. 7. Definition of ship evacuation model in CD++ 

 
The ship evacuation model can be modified by adding more exit doors or changing the position of these 

cells. As presented in Fig. 8, four different types of cells appear on the grid: empty spaces, walls, people, 
and exit doors. The final result of the simulation shows no presence of people, i.e. the ship is evacuated. 

 

                            
Fig. 8. Model Execution Results; initial values; final execution 

 

4.2. Synapsin-Vesicle reaction Model 
We built a model representing the reserve pool of synaptic vesicles in a presynaptic nerve terminal, 

predicting the number of synaptic vesicles released from the reserve pool as a function of time under the 
influence of action potentials at differing frequencies. Time series amounts for the components are 
obtained using rule-based methods (the rules defined by Cell-DEVS) [10]. 

Synapsin is a neuron-specific phosphoprotein that binds to small synaptic vesicles and actin filaments in a 
phosphorylation-dependent pattern. Microscopic models have demonstrated that synapsin inhibits 



 
 

neurotransmitter release either by forming a cage around synaptic vesicles (cage model) or by anchoring 
them to the F-actin cytoskeleton of the nerve terminal [11]. 

We modeled the molecular interaction of synapsin (S) with vesicles (V) which occur inside a nerve cell. 
The model describes the behavior of synapsin movements until reaching a vesicle and binding to it. Once 
binding has occurred, depending on offrate V and S can again go apart and break their bindings. The onrate 
and offrate describe how often bindings occur or break then after. The following formula describes the 
nature of the reaction: 

S + V ↔ SV 
From the above formula, the left hand side of the equation demonstrates the binding scenario where 

synapsin and vesicles perform a bind at a rate specified by onrate, while the right hand side of the equation 
illustrates the bind-break scenario where an synapsin-vesicle at an offrate which is always smaller than 
onrate breaks apart and again synapsin and vesicles get released. Then, synapsin and vesicles can again 
perform binding and break apart then after. This equation shows an on-going process of “binding” and 
“breaking apart” which depends on offrate/onrate. The larger the offrate is, the more bindings get broken 
apart. Similarly, the larger the onrate is, the more V-S binds are produced. Three different scenarios are 
modeled: 1) V is stationary (with a fixed position on cell space), and S is mobile, 2) V is mobile and S is 
stationary, and 3) V and S are both mobile (leads to maximum number of total movements and therefore 
bindings). 

The coupled Cell-DEVS model for this application is described as follows. 

M=<I,X,Y,Xlist,Ylist, η, N,{m,n}, C, B, Z, select> 

Xlist=Φ Ylist=Φ η=9 I=<PX,Py>,with PX={Φ},Py={Φ}; 

N={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1)(1,0) (1,1)}; 
X=Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44}; 

m=26; n=22; B={Φ}; C={Cij/i ε[1,26], jε[1,22]} 

select ={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) }; 
Z is defined by Cell-DEVS specifications. 

The cell space, the value 1 was used to represent V, and the value 2 was used to represent S. The number 
0 represents an empty cell for which a mobile S can occupy. To give direction to the V (although the model 
assumes fixed V) or S, a two digit number was used. For example, the following represent: 

 
11    “up” moving V 
12    “right” moving V 
13    “down” moving V 
14    “left” moving V 

21  “up” moving S 
22  “right” moving S 
23  “down” moving S 
24  “left” moving S 

 
As we can see, Cell-DEVS provides great support for defining these models, for having independent cell 

states and random mobility of cells, provide an excellent environment to simulate the process of synapsin-
vesicles interactions of a nerve. As mentioned earlier, the model constructed can be further extended to 
include the movement of both synapsin (S) and vesicles (V) as well as defining different off and on rates. 
Aside from V-S reactions, the model can also include Actins, which bind to synapsins. Actins can be 
represented as a string of cells being fixed at their cell space position. A summarized version of the 
model’s definition in CD++ is as follows: 



 
 

 
Fig. 9. Synapsin-Vesicle Reaction model in CD++ 

 
The following rules initialize cells with 11-14 (for Vesicles) and 21-24 (for Synapsin), where bindings 

have not yet been performed.  
 

rule : {round(uniform(11,14))} 100 { (0,0) = 1  } 
rule : {round(uniform(21,24))} 100 { (0,0) = 2  } 

 

Once bindings occur, cells change their values; 11-14 get replaced with 31-34, and 21-24 get replaced 
with 41-44. Also for Synapsins, four intermediate values 91-94 are used to represent a moving cell that has 
not yet being settled down. Once it settles down its value changes back to 21-24 (depending on its direction 
of movement) and gets ready to bind to a vesicle in its neighborhood.  

 
rule : {round(uniform(31,34))} 100 {((0,0)=21 or(0,0)=22 or(0,0)=23 or (0,0)=24) and  

(((-1,0)- 10 = 1 or (-1,0)- 10 = 2 or (-1,0)- 10 = 3 or (-1,0)- 10 =4 )or 
  ((1,0)- 10 = 1 or (1,0)- 10 = 2 or (1,0)- 10 = 3 or (1,0)- 10 = 4)     or 
  ((0,-1)- 10 = 1 or (0,-1)- 10 = 2 or (0,-1)- 10 = 3 or (0,-1)- 10 = 4) or 
  ((0,1)- 10 = 1 or (0,1)- 10 = 2 or (0,1)- 10 = 3 or (0,1)- 10 = 4 )    or 
  ((-1,1)- 10 = 1 or (-1,1)- 10 = 2 or (-1,1)- 10 = 3 or (-1,1)- 10 = 4) or 
  ((1,-1)- 10 = 1 or (1,-1)- 10 = 2 or (1,-1)- 10 = 3 or (1,-1)- 10 = 4) or 
  ((1,1)- 10 = 1 or (1,1)- 10 = 2 or (1,1)- 10 = 3 or (1,1)- 10 = 4)     or 

((-1,-1)- 10 = 1 or (-1,-1)- 10 = 2 or (-1,-1)- 10 = 3 or (-1,-1)- 10=4))   
and random > 0.10} 
 

The above rule describes the following scenario: if there is a synapsin having the value 21, 22, 23, or 24 
(a synapsin that can move up/right/down/left) and there is a vesicle in its neighboring which could be an 
adjacent cell or a diagonal cell, then the synapsin (red cells) will move toward this vesicle and a binding 
will occur soon, the value of the synapsin gets changed to 31, 32, 33, or 34 (i.e. 21 changes to 31, 22 
changes to 32, 23 changes to 33, and 24 changes to 34) to represent a synapsin that is bonded to a vesicle. 

 
rule : {round(uniform(41,44))} 100 {((0,0)=11 or (0,0)=12 or (0,0)=13 or (0,0)=14) and 
( ((-1,0)- 30 = 1 or (-1,0)- 30 = 2 or (-1,0)- 30 = 3 or (-1,0)- 30 = 4)  or 
((1,0)- 30 = 1 or (1,0)- 30 = 2 or (1,0)- 30 = 3 or (1,0)- 30 = 4)        or 
((0,-1)- 30 = 1 or (0,-1)- 30 = 2 or (0,-1)- 30 = 3 or (0,-1)- 30 = 4)   or 
((0,1)- 30 = 1 or (0,1)- 30 = 2 or (0,1)- 30 = 3 or (0,1)- 30 = 4 )    or 



 
 

((-1,1)- 30 = 1 or (-1,1)- 30 = 2 or (-1,1)- 30 = 3 or (-1,1)- 30 = 4)  or 
((1,-1)- 30 = 1 or (1,-1)- 30 = 2 or (1,-1)- 30 = 3 or (1,-1)- 30 = 4)  or 
((1,1)- 30 = 1 or (1,1)- 30 = 2 or (1,1)- 30 = 3 or (1,1)- 30 = 4)    or 
((-1,-1)- 30 = 1 or (-1,-1)- 30 = 2 or (-1,-1)-30 = 3 or (-1,-1)-30=4)) and random > 0.10} 

 

Similarly, the above rule describes the case with a vesicle having the value 11, 12, 13, or 14 (a vesicle 
that can move up/right/down/left) and a synapsin in its neighborhood. Then, since the synapsin will come 
toward this vesicle and a binding will occur soon, the value of the vesicle gets changed to 41, 42, 43, or 44 
(i.e. 11 changes to 41, 12 changes to 42, 13 changes to 43, and 14 changes to 44).  

For the movement of synapsin the following four rules are implemented: 
 

rule : 91 100 {(0,0)=21 and (-1,0)=0 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 } 
rule : 00 0 {(0,0)=91} 

 
step 1: checking to see if there is an empty cell so the synapsin can move into it, for example if the 

synapsin’s direction is upward (value = 21), then at first we need to check if there is an empty cell right 
above it. (91 is used as an intermediate value to occupy the empty cell) 

step 2: once an empty cell is found, it gets occupied by the synapsin (i.e. the cell’s value changes from 0 
to a random number 21-24). 

step 3: the previous position of the synapsin that just moved to an empty cell gets cleared by setting the 
value of the cell to 0. 

The same procedure is used for right, left, and down movement. The following rule is used to break the 
S-V bindings using an offrate=0.10. According to this, 10% of the bindings get broken and synapsins get 
released to be given another direction and they will move around until finding a vesicle and binding to it. 

 
%release 0.1 of the S (the offrate is 0.1) 
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or (0,0)=31 or (0,0)=34) and 
random < 0.10} 

 

Fig. 10 shows the grid at the initial case where S and V have not yet interacted. Then, Fig. 11 shows how 
bounds are formed and the corresponding cells change their values to represent the binding.  

 
Fig. 10. V and S before binding at Time: 00:00:00:100 (bold boxes represent examples of binding structures) 



 
 

 

Fig. 11. V and S after binding at Time: 00:00:00:300 

 
As illustrated above, the bold boxes show bindings between synapsin (31-34) and vesicle (41-44). The 

first illustration (Fig. 10) represents the initial scenario where synapsins (21-24) and vesicles (11-14) are 
free and have not yet performed bindings. Once synapsins move toward vesicles, the values of the 
corresponding cells change to 31-34 (bonded synapsins) and 41-44 (bonded vesicles). Vesicles can be 
surrounded by more than one synapsin, but each synapsin can bind to only one vesicle at any time. From the 
above figure we can see the following possible binding scenarios: 

 

→  corresponds to:         V– S  
  

   →            corresponds to:       S – V       
                             | 

                       S 
5. Experiments and Performance Analysis 

The main goal of this section is to show the capability of PCD++ in terms of handling the number of 
nodes driving the simulation, complexity of the model, and the size of the model. We have selected 
different models with distinguishable functionality, complexity, and size to better judge the capability of the 
simulators. Our experiments were carried out on a HP PROLIANT DL Server, a cluster of 32 compute 
nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2100 266MHz DDR RAM) running Linux WS 2.4.21 
interconnected through Gigabit Ethernet and communicating over MPICH 1.2.6.  

Each Cell-DEVS model consists of a number of necessary and optional files grouped together in a 
package. Since the simulation can be distributed among 1 to 32 nodes of the cluster, we used a partitioning 
mechanism implemented earlier in [17,18] which evenly divides the cell space into horizontal rectangles. 
Different partitioning strategies can be implemented which in return result in a significant impact on the 
performance of the simulation.  



 
 

5.1. Performance Metrics 
The total elapsed time value was collected from the execution environment to measure the performance 

of the simulators in terms of execution time. Also, the speedups with respect to changing the number of 
simulating nodes were calculated to show how the parallel simulation outperforms the sequential one (using 
only one node). The overall speedup for N nodes is given as follows.  

 
Where T (1) represents the serial execution time measured on one node, and T (N) is the total execution 

time taken by the simulation running on N nodes. Each of the models which were presented in Chapter 5 is 
executed on four different simulators: 

• The optimistic PCD++ simulator [18]; 
• The conservative PCD++ simulator [17]; 
• The optimistic PCD++ simulator implementing LRFM protocol; and 
• The optimistic PCD++ simulator implementing GRFM protocol. 

The goal is to identify the execution performance of each simulator as we increase the number of 
participating nodes. Due to the partitioning mechanism that is used by our optimistic and conservative 
simulators, we can only increase the number of nodes to a certain limit. That is, the maximum number of 
nodes that a model can be simulated on is equal to the number of rows of the cell gird for that particular 
model. For instance, if we have a model of 400 cells arranged in a 20x20 mesh, we can run the model on 1 
to 20 nodes. In order to obtain stable results, for each model, simulations were run on 1 to N nodes and for 
each scenario five trials were collected. The execution results which will be presented in the next section 
reflect the average of these five trials which are within a confidence interval of 95%. 
 
5.2. Simulation Results 

In the following points we will present the simulation results of executing our models.  
 
- Ship Evacuation Model 

This model consists of 400 cells arranged in a 20x20 mesh with a total execution time of 6.4327 seconds 
when run on standalone CD++. Fig. 12 represents the execution time resulting from running the model with 
four different simulators on 1 to 8 nodes.  
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Fig. 12. Ship evacuation model execution time on 4 different simulators 

 

From the execution time graph, we can see that the conservative simulator outperforms the other three 
simulators. This is due to the causality-error avoidance mechanism of this simulator which avoids rollbacks 
and anti-message flows. The optimistic and LRFM-based simulators produce very similar results for 2 to 6, 



 
 

and 8 nodes. However, the GRFM-based simulator does not present good results. This is mainly due to the 
huge message-passing mechanism among the LPs who are sending messages back and forth reporting 
information about their rollbacks. To prove this, we can see that the GRFM-based simulator reduces the 
execution time when there are two computing nodes, but as the number of nodes increases, the performance 
degrades.  

 
- Synapsin-Vesicle Reaction Model 

This model consists of 676 cells arranged in a 26x26 mesh with a total execution time of 3.7621 seconds 
when run on standalone CD++. Fig. 13 represents the execution time resulting from running the model with 
four different simulators on 1 to 8 nodes.  
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Fig. 13. Synapsin-vesicle model execution time on 4 different simulators 

 

We can see that the optimistic and LRFM-based simulators produce very close results on 1 to 8 nodes. 
Also, the GRFM-based simulator has similar results for 1, 2, 3, and 5 nodes. However, it degrades the 
performance when 4, 6, 7, and 8 nodes are participating. On the other hand, the conservative simulator 
shows different behavior as the number of nodes increases. The conservative simulator improves the total 
execution time significantly when more than 2 nodes are available. Again, as in the previously discussed 
models, as the number of computing nodes increases, the GRFM-based simulator has the lowest 
performance among other ones. The main reason is communication overhead among the participating LPs 
which leads in a noticeable time added to the duration of the model execution. 

 
- Game of Life Model  

This model consists of 1200 cells arranged in a 30x40 mesh with a total execution time of 4.6723 
seconds when run on standalone CD++. The Game of Life was created by mathematician John Conway in 
1970 [19]. It is the best-known example of cellular automata algorithms. The standard Game of Life uses a 
two-dimensional grid. We will use this simple example to show the basic facilities of CD++ to define 
model’s rules. Cells can be either on (alive) or off (dead). The key rule is known as “B3/S23”: a new cell is 
born when it has exactly 3 neighbors; an existing cell (alive cell) survives if it has 2 or 3 neighbors. In all 
other cases the cell dies, either of overcrowding (with more than three live neighbors) or loneliness (with 
less than two). At each time step all cells update their state simultaneously. We have modeled the Game of 
Life using CD++, on a 20x20 cell grid (400 cells). Fig. 14 illustrates the cell gird at four different time 
stamps of the simulation. The first cell grid shows the initial scenario where seventeen alive cells exist. As 
the simulation proceeds, either new cells are born or live cells die (based on the “B3/S23” rule).  



 
 

 
Fig. 14. Game of life model at four different time steps throughout the simulation 

 
Fig. 15 represents the execution time resulting from running the model with four different simulators on 1 

to 6 nodes. From the execution time graph, we can see that the optimistic, LRFM-based, and GRM-based 
simulators outperform the conservative one on 1 to 6 nodes and at the same time produce very close results. 
However, as the number of machines goes beyond 3, the conservative simulator starts dropping down the 
execution time. Among the three optimistic simulators, the GRFM-based simulator takes longer time due to 
its time consuming mechanism in broadcasting information about each LP’s rollbacks among the 
participating nodes. 
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Fig. 15. Game of life model execution time on 4 different simulators 

 
- Fire Propagation Model 

This model consists of 900 cells arranged in a 30x30 mesh with a total execution time of 6.2145 seconds 
when run on standalone CD++. This model represents a fire propagation scenario in forest based on 
Rothermel’s mathematical definition [20]. The model computes the ratio of spread and intensity of fire in 
forest based on specific environmental and vegetation conditions. Three parameter groups determine the 
fire spread ratio: 1) vegetation type (caloric content, mineral content and density); 2) fuel properties; 3) 
environmental parameters (wind speed, humidity, and field slope).  

 
Fig. 16. Fire propagation at four different snapshots throughout the simulation 

Fig. 16 illustrates snapshots of the simulation results at four different times. Initially, fire starts as fire 
spot (the dark cell on the grid). Then as time passes by, fire spreads to the neighboring cells in the direction 
of wind. Therefore, each cell, depending on its position and heat, fires its surrounding cells. As presented on 



 
 

the final scenario of Fig. 16, the wind direction leads the fire from the starting point, cell (19, 10), towards 
southeast of the forest. Fig. 17 represents the execution time resulting from running the model with four 
different simulators on 1 to 8 nodes.  
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Fig. 17. Fire propagation model execution time on 4 different simulators 

 
As seen on the graph, our parallel simulators significantly improved the execution time of the fire 

propagation model. The three optimistic simulators produced very similar results on 1 to 7 nodes. For this 
model, we can definitely remark that the optimistic simulators outperform the conservative one. For the 
optimistic simulators the best results were achieved on 5 nodes, while the conservative one had its lowest 
execution time on 4 nodes.  
 
6. Conclusions 

This work presented the parallel simulation of DEVS and Cell-DEVS models using PCD++, a parallel 
and distributed environment based on the Time Warp optimistic synchronization protocol. PCD++ serves as 
an extension to the CD++ toolkit which was developed by previous researcher [18] aiming at exploiting 
parallelism for the purpose of fast and efficient simulation of complex models. The concept of Parallel and 
Distributed Simulation was presented. 

We illustrated the software architecture of the purely optimistic parallel CD++ simulator (PCD++). The 
layered architecture of the optimistic PCD++ simulator consists of five layers (from top to bottom): model, 
PCD++, Time Warp - WARPED, and the operating system, where ach layer was explained in details. A 
variety of optimization strategies of the Time Warp kernel were pointed out and discussed thoroughly. 
Some optimizations in terms of GVT calculation, dynamic memory management, and state management 
were mentioned. 

We have analyzed the performance of our two existing parallel CD++ simulators, namely Conservative 
PCD++ simulator [17] and Optimistic PCD++ simulator [18]. We looked at the design and implementation 
of these two simulators and compared their structures as well as functionalities in parallel and distributed 
simulations.  

The hierarchical structure of the conservative PCD++ simulator was compared against the flattened 
structure of the optimistic PCD++ simulator. The migration from a hierarchical structure to a flattened 
structure was illustrated as two major modifications; i.e. the departure from conservative-based simulator to 
an optimistic-based simulator, and flattening the structure of the simulator. Then it was illustrated how the 
optimistic PCD++ simulator deals with the communication overhead dilemma by using the flattened 
structure. 

Aiming at improving the performance of the optimistic simulator, we modified the WARPED kernel to 
handle rollbacks in a more efficient way. We presented two new algorithms that we have implemented in 



 
 

WARPED kernel. The Near-perfect State Information protocol was discussed and after that our new 
algorithms; Local Rollback Frequency Model (LRFM) and Global Rollback Frequency Model (GFRM) 
were presented. Finally, we have run a variety of tests to analyze the performance of our existing PCD++ 
simulators; the optimistic and the conservative as well as our LRFM and GRFM Time Warp-based 
protocols [21].  
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