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Abstract 

 
DEVS is a formalism to describe generic dynamic 

systems in a hierarchical and modular way. We pre-
sent new techniques for executing DEVS and Cell-
DEVS models in parallel and distributed environments 
based on the warped kernel. The parallel simulator 
PCD++ has been extended to support optimistic simu-
lations. A non-hierarchical approach is employed to 
reduce the communication overhead. A two-level user-
controlled state-saving mechanism is proposed to 
achieve efficient and flexible state saving at runtime. It 
is shown that optimistic PCD++ markedly outperforms 
other alternatives, and considerable speedups can be 
achieved in parallel and distributed simulations.  
 
1. Introduction 
Modeling and simulation (M&S) has become an im-
portant tool for analyzing and designing a broad array 
of complex systems where a mathematical analysis is 
intractable. As a sound formal M&S framework based 
on generic dynamic system concepts, the DEVS [1] 
formalism supports hierarchical and modular construc-
tion of models, allowing model reuse, reducing devel-
opment and testing time. Since its first formalization, 
DEVS has been extended into various directions. The 
Parallel DEVS or P-DEVS [2] formalism is an exten-
sion that eliminates the serialization constraints. Cell-
DEVS [3] combines Cellular Automata [4] with DEVS 
theory to describe n-dimensional cell spaces as discrete 
event models, where each cell is represented as a 
DEVS basic model that can be delayed using explicit 
timing constructions. 

Parallel discrete event simulation (PDES) has re-
ceived increasing interest as simulations become more 
time consuming and geographically distributed. Syn-
chronization techniques for PDES systems generally 
fall into two categories: conservative approaches that 
strictly avoid violating causality [5], and optimistic 
approaches [6] that allow violations to occur, but pro-
vide mechanisms to recover from them through a proc-
ess known as rollback. Usually, optimistic approaches 

can exploit higher degree of parallelism, whereas con-
servative approaches tend to be overly pessimistic and 
force sequential execution when it is not necessary. 
Moreover, conservative approaches generally rely on 
application-specific information to determine which 
events are safe to process. While optimistic algorithms 
can execute more efficiently if they exploit such in-
formation, they are less reliant on the application for 
correct execution, allowing more transparent 
synchronization and simplifying software 
development. On the other hand, optimistic algorithms 
may require computations with higher overhead, 
degrading system performance to a certain extent. The 
WARPED simulation kernel [7] is a configurable 
middleware that implements the optimistic 
mechanisms and various optimizations. 

CD++ [8] is an M&S toolkit that implements P-
DEVS and Cell-DEVS formalisms. In [9], a parallel 
conservative simulation engine, called as PCD++, was 
incorporated into CD++. It uses a centralized synchro-
nization mechanism where the entire simulation is 
managed by a single root coordinator. In this work, we 
extend the conservative PCD++ to support optimistic 
simulations. While the simulator employs the same 
layered architecture [9], it adopts a flattened simulation 
structure that eliminates the need for intermediate co-
ordinators [10]. The message-passing organization is 
analyzed using a high-level abstraction called wall 
clock time slice (WCTS). Various enhancements and 
optimizations are proposed and integrated into the op-
timistic simulator, showing that this new aproach 
markedly outperforms other alternatives. 

 
2. Parallel DEVS 

The DEVS [1] formalism provides a framework for 
the definition of hierarchical models in a modular way. 
A real system modeled using DEVS can be described 
as a composition of behavioral (atomic) and structural 
(coupled) components. The P-DEVS [2] formalism 
eliminates the restrictions that forced the original 
DEVS definition to sequential execution. The Cell-
DEVS [3] formalism allows the specification of dis-
crete event cell spaces, improving their definition by 
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using explicit timing delays. Various DEVS-based 
M&S toolkits have been implemented, including:  
• DEVS/CORBA [12]: a runtime infrastructure on 

top of CORBA to support distributed simulation of 
DEVS components.  

• DEVS/HLA [13]: an HLA-compliant M&S envi-
ronment implemented in C++ that supports high 
level model construction.  

• DEVSCluster [14]: a CORBA-based, multi-
threaded distributed simulator. It transforms a hi-
erarchical DEVS model into a non-hierarchical 
one to ease synchronization. 

• DEVS/Grid [15]: an M&S framework imple-
mented using Java and Globus toolkit for Grid 
computing infrastructure.  

• DEVS/P2P [16]: an M&S framework based on P-
DEVS and P2P message communication protocol. 
It uses a customized DEVS simulation protocol to 
achieve decentralized inter-node communication.  

• DEVS/RMI [17]: provides a fully dynamic re-
configurable infrastructure for handling load bal-
ancing and fault tolerance in distributed simula-
tions. It uses the Java RMI for synchronization. 

However, none of them supports optimistic simula-
tion of Cell-DEVS models in parallel and distributed 
environments. In [18], a risk-free optimistic simulation 
algorithm is presented. In this approach, only correct 
outputs with the minimum global time are sent to avoid 
the spread of causality errors to remote processes. This 
mechanism is well suited for shared memory architec-
tures, but has limitations in distributed heterogeneous 
environments. Optimistic PCD++ is built on top of 
WARPED, which provides services for defining different 
types of processes (simulation objects). Simulation 
objects mapped on a physical processor are grouped by 
an entity called as logical process (LP). WARPED relies 
on the Message Passing Interface (MPI) for both mas-
sively parallel machines and workstation clusters.  

 
3. Optimistic simulation in CD++ 
PCD++ provides two loosely coupled frameworks: the 
modeling and simulation frameworks. The former con-
sists of a hierarchy of classes rooted at Model to define 
the behavior of the DEVS and Cell-DEVS models; the 
latter defines a hierarchy of classes rooted at Proces-
sor, which, in turn, derives from the abstract simula-
tion object definition in the kernel, to implement the 
simulation mechanisms. That is, the PCD++ processors 
are concrete implementations of simulation objects to 
realize the abstract DEVS simulators. Based on [10], 
optimistic PCD++ employs a flat structure with four 
DEVS processors: Simulator, Flat Coordinator (FC), 
Node Coordinator (NC), and Root. Introducing FC and 

NC eliminates the need for intermediary coordinators 
in the DEVS processor hierarchy. Root is no longer the 
global scheduler in the simulation: the simulation is 
managed by a set of NCs running on different ma-
chines in a decentralized manner.  

Simulation is message-driven. PCD++ processors 
exchange messages that can be classified as content 
and synchronization messages. The former includes the 
external message (x, t) and output message (y, t), while 
the latter includes the initialization message (I, t), col-
lect message (@, t), internal message (*, t), and done 
message (D, t). These messages are wrapped in kernel 
events and transmitted between the PCD++ processors 
using the functions provided by WARPED. Figure 1 
shows an example of the processor structure in two 
machines. An LP is created on each machine, grouping 
PCD++ processors. Root is created only on LP0 (to 
start/end the simulation and perform I/O operations). 
NC/FC are created on each LP. FC is in charge of in-
tra-LP communications between its child Simulators. 
NC is the local central controller on its LP and the end 
point of inter-LP communications. Simulators execute 
the DEVS functions defined in its atomic model. 

 

Machine 0 Machine 1

Partition Line

                     MPI communication
    Direct communication

Simulator1

LP0 LP1

FC0

Simulator2

NC0

Root

Simulator3

FC1

Simulator4

NC1

 
Figure 1. Distributed processor structure  
 

We show a message-passing scenario using an event 
precedence graph, where a vertex (black dot) repre-
sents a message, and an edge (black arrow) represents 
the action of sending a message. A line with a solid 
arrowhead denotes a (synchronous) intra-LP message 
and a line with a stick arrowhead denotes an (asyn-
chronous) inter-LP message. A lifeline (dashed line) is 
drawn for each PCD++ processor. Figure 2 illustrates 
the flow of messages on a LP with an NC, an FC, and 
two Simulators (S1 and S2). We do not consider out-
of-order execution of messages since the rollback op-
erations are performed automatically and transparently 
in the kernel. 
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Figure 2. An example message-passing scenario on an LP 
 

We can see that the execution of messages at any 
simulation time on a LP can be decomposed into at 
most three distinct phases: initialization (I), collect 
(C), and transition (T), as demarcated by done mes-
sages (bold black arrows) received by the NC. Only 
one initialization phase exists at time 0 ( [I1, D7]). The 
collect phase at time t starts with a (@, t) sent from the 
NC to the FC and ends with the following (D, t) re-
ceived by the NC (i.e., the collect phase at 0 comprises 
messages [@8, D24]). This phase happens if there are 
imminent Simulators on the LP at that time. Finally, 
the transition phase at simulation time t begins with the 
first (*, t) sent from the NC to the FC and ends at the 
last (D, t) received by the NC at time t (messages [*25, 
D46] belong to the transition phase at time 0). The tran-
sition phase is mandatory for each individual simula-
tion time. Furthermore, a transition phase may contain 
multiple rounds of computations, each starts with (x, t) 

followed by a (*, t) sent from the NC to the FC and 
ends with a (D, t) returned to the NC (in the example, 
the transition phase 0 has three rounds: R0 with mes-
sages [*25, D30], R1 with messages [x31, D38], and R2 
with messages [x39, D46]). On each round, state transi-
tions are performed incrementally with additional ex-
ternal messages and/or for potentially extra Simulators. 
Hereinafter, we will denote a transition phase of (n+1) 
rounds as [R0…Rn]. 

Sequential simulation on a LP can be viewed as a 
sequence of computation units, one for each group of 
simultaneous events. Each unit is performed during a 
timespan as measured by a physical wall clock. Such 
computation unit is referred to as wall clock time slice 
(WCTS). A WCTS comprising simultaneous events 
occurred at virtual time t is denoted as WCTS-t, and t is 
called as the virtual time of the WCTS. 

 
Figure 3. WCTS representation for the simulation on a LP 
 

Figure 3 shows the sequential simulation on an LP 
in terms of WCTS. The simulation is viewed as a se-
quence of wall clock time slices linked together along 
the time axis, each stands for the execution of simulta-
neous events at a specific simulation time on all the 
PCD++ processors associated with the LP. Each 
WCTS-t may contain one mandatory transition phase 

and one optional collect phase. Several properties of 
the WCTS are summarized as follows: 
• The simulation on a LP starts with WCTS-0, the 

only WCTS with all three phases. 
• Wall clock time slices are linked together by mes-

sages sent from NC to FC (black arrows). When 
NC determines the next simulation time at the end 
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of a WCTS, it sends out messages to be executed 
by FC, initiating the next WCTS on the LP.  

• Completion of the simulation on a LP is marked 
by a WCTS sending out no linking messages, e.g. 
WCTS-tn in the diagram. The whole simulation 

finishes only when all participating LPs have com-
pleted their corresponding parts of the simulation. 

• Wall clock time slices are atomic computation 
units during rollback operations. A typical roll-
back scenario is shown in Figure 4. 

 
Figure 4. Typical rollback scenario shown in terms of wall clock time slices 

 
In the diagram, the simulation on LPi is executing 

in WCTS-tn when a straggler with timestamp t2 arrives 
at the NC (1). Based on the rollback mechanisms, the 
received straggler (2) is inserted into WCTS-t2 (a mes-
sage implosion happens in WCTS-t2 if it is an anti-
message). Then, rollbacks are propagated among the 
PCD++ processors, restoring their states to those saved 
at the end of WCTS-t1 (3), and all messages in WCTS-
t2 up to WCTS-tn are undone. After, simulation on LPi 
resumes forward execution from the unprocessed link-
ing messages between WCTS-t1 and WCTS-t2 (4). 
 
4. Enhancements to PCD++ and Warped 
This section covers essential enhancements to the 
PCD++ and the WARPED kernel to ensure correct and 
efficient execution of simulations. 
 
4.1. Rollbacks at virtual time 0 
During rollbacks, the state of a process is restored to a 
previously saved copy with virtual time strictly less 
than the rollback time. However, the problem of han-

dling rollbacks at virtual time 0 is left unsolved. If a 
process receives a straggler with timestamp 0, the state 
restoration will fail since no state with negative virtual 
time can be found in its state queue. There are two dif-
ferent approaches to solving this problem. One is to 
save a special state that has an artificial negative virtual 
time at the head of each state queue. The other is to 
synchronize the processes at an appropriate stage with 
MPI Barriers so that no straggler message with time-
stamp 0 will ever be received. The former approach is 
pure optimistic; however, there is a performance haz-
ard in this approach. The probability of rollback echoes 
[5] increases significantly at virtual time 0. In this case, 
the processes in the system are forced to restart execu-
tion from time 0 repeatedly, resulting in an unstable 
situation where there is no progress in simulation time. 
The second approach tries to avoid the problem alto-
gether by using explicit synchronizations. In the opti-
mistic PCD++, the best place to implement the MPI 
Barrier is after the collect phase in WCTS-0 (Figure 5). 

 
 

Figure 5. Using MPI Barrier to avoid rollbacks at virtual time 0 in PCD++ 
 

As all outgoing inter-LP communication happens in 
the collect phases, messages with timestamp 0 are sent 
to remote LPs only in the collect phase of WCTS-0. 
The LPs are synchronized by a MPI Barrier at the end 
of this collect phase so that these messages can be re-
ceived by their destinations before the simulation time 
advances beyond time 0. Therefore, no straggler with 
timestamp 0 will be received by any LP afterwards. 

Once the LPs exit from the barrier, they can safely 
continue optimistic execution. The cost of this ap-
proach is small, since the length of the synchronized 
execution is trivial when compared with the whole 
simulation. 
4.2. User-controlled state-saving mechanism 
In WARPED, the copy state-saving (CSS) strategy is 
implemented using state managers of type StateMan-
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ager, which saves a process’s state after executing each 
event, and the periodic state-saving (PSS) strategy is 
realized using state managers of type InfreqStateMan-
ager that only saves a process’s state infrequently 
every a number of events. Simulator developers can 
choose to use either type of state managers at compile 
time. This rigid mechanism has two major disadvan-
tages: (1) it ignores the fact that simulator developers 
may have the knowledge as to how to save states more 
efficiently to reduce the state-saving overhead; (2) it 
eliminates the possibility that different processes may 
use different types of state managers to fulfill their 
specific needs at runtime. To overcome these short-
comings, we introduced a two-level user-controlled 
state-saving (UCSS) mechanism so that simulator de-
velopers can utilize more flexible and efficient state-
saving strategies. The structure of the UCSS mecha-
nism is shown in Figure 6. 

skip-state-saving

CSS

Level 0

Level 1

skip-state-saving

do-state-saving

PSS CSS

Level 0

Level 1

(a) UCSS integrated with CSS

(b) UCSS integrated with PSS  
Figure 6. UCSS integrated with CSS/PSS 

Therefore, a PCD++ processor can make state-
saving decisions based on application-specific criteria. 
Further, it can dynamically switch between the CSS 
and PSS strategies at level 1. Thus, the UCSS mecha-
nism virtually gives simulator developers the full 
power to choose the best possible combination of state-
saving strategies dynamically at runtime. 

 
4.3. Message type-based state saving 
During rollbacks, the state of a PCD++ processor is 
always restored to the last state saved at the end of a 
WCTS with virtual time strictly less than the present 
rollback time. Hence, it is sufficient for a processor to 
save its state only after processing the last event in 
each WCTS for rollback. The state-saving operation 
can be safely skipped after executing all the other 
events. The last event in a WCTS is processed at the 
end of Rn in the transition phase. Although the actual 
number of rounds in a transition phase cannot be de-
termined, we can identify the type of the messages 
executed by a given processor. For NC and FC, it must 

be a (D, t), and for the Simulators, it should be a (*, t). 
Therefore, PCD++ processors need to save states only 
after processing these particular types of messages. 
Since Root only processes output messages, it still 
saves state for each event. We call the resultant state-
saving strategy as message type-based state-saving 
(MTSS). Considering that there are a large number of 
messages executed in each WCTS, and that they are 
dominated by external and output messages, MTSS can 
significantly reduce the number of states saved during 
the simulation. Further, the rollback overhead is re-
duced as well because fewer states need to be removed 
from the state queues during rollback operations. 
MTSS is risk-free in the sense that there is no penalty 
for saving fewer states. 
 
4.5. One log file per node 
Previously, one log file is created for each PCD++ 
processor to log the received messages in a human 
readable format. Depending on the size of the model, 
this can consume many file descriptors. In addition, 
creating these files and transferring data to them con-
stitute a large operational overhead, especially when 
the files are accessed via a Network File System (NFS) 
during the simulation. To reduce the overhead of file 
I/O operations, a new optimization strategy, called as 
one log file per node, is implemented. Only one log file 
is created for the NC on each node. The NC’s file 
queue is shared among all the processors on that node. 
Messages received by the NC itself are logged directly 
in the NC’s file queue, while the other processors on 
that node must first get a reference to the local NC 
(which can be done in constant time) and then log their 
received messages into the NC’s file queue. 
 
5. Experimental results 
Our experiments were conducted on a HP PROLIANT 
DL Server, a cluster of 32 compute nodes (dual 
3.2GHz Intel Xeon processors, 1GB PC2100 266MHz 
DDR RAM) running Linux WS 2.4.21 interconnected 
through Gigabit Ethernet and communicating over 
MPICH 1.2.6. The Cell-DEVS models tested in our 
experiments include a model for forest fire propagation 
[19] based on Rothermel’s mathematical definition 
[20] and a 3-D watershed model representing a hydrol-
ogy system [19]. The following simulation results are 
averages over 10 independent runs. We use two differ-
ent speedups in our analysis: the overall speedup (i.e., 
the total execution time as perceived by the users) and 
the algorithm speedup (i.e. without considering the 
simulation bootstrap time) that is used to assess the 
performance gain attributed to the parallel algorithms 
alone. 
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5.1. Effect of one log file per node 
The performance improvement derived from the one 
log file per node strategy is tested using the fire propa-
gation model of 900 cells arranged in a 30×30 mesh.  
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Figure 7. One log file per node: 1 and 4 nodes 
 
The bootstrap time is even greater than the actual 

running time. This clearly indicates that the bootstrap 
operation is a bottleneck in the simulation. When the 
strategy is turned on, the bootstrap time is reduced by 
99.1% on 1 node and by 96.47% on 4 nodes. Further, 
the running time is decreased by 72.08% on 1 node and 
by 73.02% on 4 nodes due to more efficient communi-
cation, I/O, and rollback operations. 
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Figure 8. CPU use: 1 logfile per node, 1 node 

 
The CPU usage monitored in our experiments also 

suggests that the file I/O operation is a major barrier in 
the bootstrap phase. As shown in Figure 8, the CPU is 
utilized much more efficiently with the one log file per 
node strategy. A similar pattern was observed in simu-
lations running on multiple nodes. 

 
5.2. MTSS 
The same fire propagation model is used to test the 
effect of MTSS strategy. The model was executed on 1 
and 4 nodes with and without the MTSS strategy. 
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Figure 9. Number of saved states  

 
Due to the MTSS strategy, the number of states 

saved during the simulation is reduced by 49.29% and 
47.74% on 1 and 4 nodes respectively. Accordingly, 
the time spent on state-saving operations is decreased 
by 29.9% and 38.18%. The state-saving time declines 
more steeply on 4 nodes due to the distributed man-
agement of the state queues. 
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Figure 10. Running and bootstrap time  
 

The corresponding running and bootstrap times are 
shown in Figure 10. While the bootstrap time remains 
nearly unchanged, the actual running time is reduced 
by 17.64% and 7.63% on 1 and 4 nodes respectively 
because fewer states are saved in the state queues and, 
potentially, removed from the queues during rollbacks. 

Figure 11 shows the time-weighted average and 
maximum memory consumption with and without the 
strategy on 1 and 4 nodes. The average memory con-
sumption declines by 26% in both cases, while the 
peak memory consumption decreases by 25.13% and 
27.44% on 1 and 4 nodes respectively. 
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Figure 11. Memory consumption  
 
5.3. Performance of the PCD++ toolkit 
The key metrics for evaluating the performance of the 
PCD++ simulator are the execution time and speedup. 
Both the one log file per node and MTSS strategies 
were applied to the simulator in the following experi-
ments. For all the Cell-DEVS models, a simple parti-
tion strategy was used that evenly divides the cell 
space into horizontal rectangles. First, the fire propaga-
tion model was tested using different sizes of cell 
spaces: 20×20 (400 cells), 25×25 (625 cells), 30×30 
(900 cells) and 35×35 (1225 cells). The total execution 
time and running time of the fire model with different 
sizes and executed on 1 up to 4 nodes are listed in Ta-
ble 1. 

Table 1. Execution/running times for the fire model 
Total Execution Time (sec) 

No.nodes 20×20 25×25 30×30 35×35 
1 2.0733 3.2949 5.0442 7.8702 
2 1.9719 2.7959 3.5232 4.7138 
3 1.8787 2.5237 3.1573 3.9667 
4 1.9254 2.6091 3.0922 3.8138 

Running Time (sec) 
No.nodes 20×20 25×25 30×30 35×35 

1 1.9515 3.1273 4.3566 7.6428 
2 1.4232 2.1225 2.8838 3.9952 
3 1.3574 1.8953 2.5237 3.2959 
4 1.4296 1.8656 2.3314 3.0224 

 
For any given number of nodes, the execution time 

always increases as the size of the model goes up. 
Moreover, the execution time rises less steeply when 
more nodes are used to do the simulation. For example, 
as the model size increases from 400 to 1225 cells, the 
execution time ascends sharply by nearly 280% (from 
2.0733 to 7.8702 seconds) on 1 node, whereas it 
merely rises by 98% (from 1.9254 to 3.8138 seconds) 
on 4 nodes. On the other hand, for a fixed model size, 
the execution time tends to, but not always, decrease 
when more nodes are utilized. However, when the 
number of nodes increases further, the downward trend 

in execution time is reversed. When a model, espe-
cially a small one, is partitioned onto more and more 
nodes, the increasing overhead involved in inter-LP 
communication and potential rollbacks may eventually 
degrade the performance. Hence, a trade-off between 
the benefits of higher degree of parallelism and the 
concomitant overhead costs needs to be reached. We 
can also find that better performance can be achieved 
on a larger number of nodes as the model size in-
creases. The shortest execution time is achieved on 3 
nodes for the 20×20 and 25×25 models, while it is ob-
tained on 4 nodes for the other two larger models.  
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Figure 12. Overall/algorithm speedups  

 
Using the execution and running times, we can cal-

culate the overall and algorithm speedups, as shown in 
Figure 12. The algorithm speedup is always higher 
than its counterpart overall speedup, an evidence show-
ing that the Time Warp optimistic algorithms are major 
contributors to the overall performance improvement. 

A more computation-intensive 3-D watershed 
model of size 15×15×2 (450 cells) was tested to evalu-
ate the performance of PCD++ for simulating models 
of complex physical system. Table 2 shows the result-
ing total execution and running times. The best per-
formance is achieved on 5 nodes with execution and 
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running time of 6.1538 and 5.6743 seconds respec-
tively. The speedups are illustrated in Figure 14. The 
best overall and algorithm speedups are 2.7306 and 
2.9373 respectively, higher than those obtained with 
the fire models. 

2.7306

2.2954
2.0176

1.4249

1.4945

2.1592
2.4460

2.9373

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5

Number of nodes

Sp
ee

du
p

Overall speedup Algorithm speedup

Figure 13. 15×15×2 watershed model 
 

6. Conclusion 
We tackled the problem of executing DEVS and Cell-
DEVS models in parallel and distributed environments 
based on the Time Warp synchronization protocol. The 
algorithms for the PCD++ processors and Cell-DEVS 
models with transport and inertial delays were redes-
igned to address the need of distributed optimistic 
simulation. The simulation process on each LP was 
abstracted using the notion of WCTS, which greatly 
simplifies the task of analyzing the complex message 
exchanges between the PCD++ processors involved in 
the simulation. A two-level UCSS mechanism was 
proposed so that simulator developers can utilize more 
flexible and efficient state-saving techniques during the 
simulation. Mechanisms were provided to handle vari-
ous issues in optimistic simulations such as rollbacks at 
virtual time 0 and messaging anomalies. Several opti-
mization strategies were implemented in the optimistic 
PCD++ such as the MTSS strategy and the one log file 
per node strategy. We showed that optimistic PCD++ 
simulator markedly outperforms the conservative one 
in all testing scenarios. Considerable speedups were 
observed in our experiments, indicating the simulator 
is well-suited for simulating large and complex mod-
els. 
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