
Performance Analysis of an Optimistic Simulator for CD++

Qi Liu Gabriel Wainer
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ont., Canada

{liuqi, gwainer}@sce.carleton.ca

Abstract

DEVS is a formalism to describe generic dynamic

systems in a hierarchical and modular way. We pre-
sent new techniques for executing DEVS and Cell-
DEVS models in parallel and distributed environments
based on the warped kernel. The parallel simulator
PCD++ has been extended to support optimistic simu-
lations. A non-hierarchical approach is employed to
reduce the communication overhead. A two-level user-
controlled state-saving mechanism is proposed to
achieve efficient and flexible state saving at runtime. It
is shown that optimistic PCD++ markedly outperforms
other alternatives, and considerable speedups can be
achieved in parallel and distributed simulations.

1. Introduction
Modeling and simulation (M&S) has become an im-
portant tool for analyzing and designing a broad array
of complex systems where a mathematical analysis is
intractable. As a sound formal M&S framework based
on generic dynamic system concepts, the DEVS [1]
formalism supports hierarchical and modular construc-
tion of models, allowing model reuse, reducing devel-
opment and testing time. Since its first formalization,
DEVS has been extended into various directions. The
Parallel DEVS or P-DEVS [2] formalism is an exten-
sion that eliminates the serialization constraints. Cell-
DEVS [3] combines Cellular Automata [4] with DEVS
theory to describe n-dimensional cell spaces as discrete
event models, where each cell is represented as a
DEVS basic model that can be delayed using explicit
timing constructions.

Parallel discrete event simulation (PDES) has re-
ceived increasing interest as simulations become more
time consuming and geographically distributed. Syn-
chronization techniques for PDES systems generally
fall into two categories: conservative approaches that
strictly avoid violating causality [5], and optimistic
approaches [6] that allow violations to occur, but pro-
vide mechanisms to recover from them through a proc-
ess known as rollback. Usually, optimistic approaches

can exploit higher degree of parallelism, whereas con-
servative approaches tend to be overly pessimistic and
force sequential execution when it is not necessary.
Moreover, conservative approaches generally rely on
application-specific information to determine which
events are safe to process. While optimistic algorithms
can execute more efficiently if they exploit such in-
formation, they are less reliant on the application for
correct execution, allowing more transparent
synchronization and simplifying software
development. On the other hand, optimistic algorithms
may require computations with higher overhead,
degrading system performance to a certain extent. The
WARPED simulation kernel [7] is a configurable
middleware that implements the optimistic
mechanisms and various optimizations.

CD++ [8] is an M&S toolkit that implements P-
DEVS and Cell-DEVS formalisms. In [9], a parallel
conservative simulation engine, called as PCD++, was
incorporated into CD++. It uses a centralized synchro-
nization mechanism where the entire simulation is
managed by a single root coordinator. In this work, we
extend the conservative PCD++ to support optimistic
simulations. While the simulator employs the same
layered architecture [9], it adopts a flattened simulation
structure that eliminates the need for intermediate co-
ordinators [10]. The message-passing organization is
analyzed using a high-level abstraction called wall
clock time slice (WCTS). Various enhancements and
optimizations are proposed and integrated into the op-
timistic simulator, showing that this new aproach
markedly outperforms other alternatives.

2. Parallel DEVS

The DEVS [1] formalism provides a framework for
the definition of hierarchical models in a modular way.
A real system modeled using DEVS can be described
as a composition of behavioral (atomic) and structural
(coupled) components. The P-DEVS [2] formalism
eliminates the restrictions that forced the original
DEVS definition to sequential execution. The Cell-
DEVS [3] formalism allows the specification of dis-
crete event cell spaces, improving their definition by

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

using explicit timing delays. Various DEVS-based
M&S toolkits have been implemented, including:
• DEVS/CORBA [12]: a runtime infrastructure on

top of CORBA to support distributed simulation of
DEVS components.

• DEVS/HLA [13]: an HLA-compliant M&S envi-
ronment implemented in C++ that supports high
level model construction.

• DEVSCluster [14]: a CORBA-based, multi-
threaded distributed simulator. It transforms a hi-
erarchical DEVS model into a non-hierarchical
one to ease synchronization.

• DEVS/Grid [15]: an M&S framework imple-
mented using Java and Globus toolkit for Grid
computing infrastructure.

• DEVS/P2P [16]: an M&S framework based on P-
DEVS and P2P message communication protocol.
It uses a customized DEVS simulation protocol to
achieve decentralized inter-node communication.

• DEVS/RMI [17]: provides a fully dynamic re-
configurable infrastructure for handling load bal-
ancing and fault tolerance in distributed simula-
tions. It uses the Java RMI for synchronization.

However, none of them supports optimistic simula-
tion of Cell-DEVS models in parallel and distributed
environments. In [18], a risk-free optimistic simulation
algorithm is presented. In this approach, only correct
outputs with the minimum global time are sent to avoid
the spread of causality errors to remote processes. This
mechanism is well suited for shared memory architec-
tures, but has limitations in distributed heterogeneous
environments. Optimistic PCD++ is built on top of
WARPED, which provides services for defining different
types of processes (simulation objects). Simulation
objects mapped on a physical processor are grouped by
an entity called as logical process (LP). WARPED relies
on the Message Passing Interface (MPI) for both mas-
sively parallel machines and workstation clusters.

3. Optimistic simulation in CD++
PCD++ provides two loosely coupled frameworks: the
modeling and simulation frameworks. The former con-
sists of a hierarchy of classes rooted at Model to define
the behavior of the DEVS and Cell-DEVS models; the
latter defines a hierarchy of classes rooted at Proces-
sor, which, in turn, derives from the abstract simula-
tion object definition in the kernel, to implement the
simulation mechanisms. That is, the PCD++ processors
are concrete implementations of simulation objects to
realize the abstract DEVS simulators. Based on [10],
optimistic PCD++ employs a flat structure with four
DEVS processors: Simulator, Flat Coordinator (FC),
Node Coordinator (NC), and Root. Introducing FC and

NC eliminates the need for intermediary coordinators
in the DEVS processor hierarchy. Root is no longer the
global scheduler in the simulation: the simulation is
managed by a set of NCs running on different ma-
chines in a decentralized manner.

Simulation is message-driven. PCD++ processors
exchange messages that can be classified as content
and synchronization messages. The former includes the
external message (x, t) and output message (y, t), while
the latter includes the initialization message (I, t), col-
lect message (@, t), internal message (*, t), and done
message (D, t). These messages are wrapped in kernel
events and transmitted between the PCD++ processors
using the functions provided by WARPED. Figure 1
shows an example of the processor structure in two
machines. An LP is created on each machine, grouping
PCD++ processors. Root is created only on LP0 (to
start/end the simulation and perform I/O operations).
NC/FC are created on each LP. FC is in charge of in-
tra-LP communications between its child Simulators.
NC is the local central controller on its LP and the end
point of inter-LP communications. Simulators execute
the DEVS functions defined in its atomic model.

Machine 0 Machine 1

Partition Line

 MPI communication
 Direct communication

Simulator1

LP0 LP1

FC0

Simulator2

NC0

Root

Simulator3

FC1

Simulator4

NC1

Figure 1. Distributed processor structure

We show a message-passing scenario using an event
precedence graph, where a vertex (black dot) repre-
sents a message, and an edge (black arrow) represents
the action of sending a message. A line with a solid
arrowhead denotes a (synchronous) intra-LP message
and a line with a stick arrowhead denotes an (asyn-
chronous) inter-LP message. A lifeline (dashed line) is
drawn for each PCD++ processor. Figure 2 illustrates
the flow of messages on a LP with an NC, an FC, and
two Simulators (S1 and S2). We do not consider out-
of-order execution of messages since the rollback op-
erations are performed automatically and transparently
in the kernel.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

Figure 2. An example message-passing scenario on an LP

We can see that the execution of messages at any
simulation time on a LP can be decomposed into at
most three distinct phases: initialization (I), collect
(C), and transition (T), as demarcated by done mes-
sages (bold black arrows) received by the NC. Only
one initialization phase exists at time 0 ([I1, D7]). The
collect phase at time t starts with a (@, t) sent from the
NC to the FC and ends with the following (D, t) re-
ceived by the NC (i.e., the collect phase at 0 comprises
messages [@8, D24]). This phase happens if there are
imminent Simulators on the LP at that time. Finally,
the transition phase at simulation time t begins with the
first (*, t) sent from the NC to the FC and ends at the
last (D, t) received by the NC at time t (messages [*25,
D46] belong to the transition phase at time 0). The tran-
sition phase is mandatory for each individual simula-
tion time. Furthermore, a transition phase may contain
multiple rounds of computations, each starts with (x, t)

followed by a (*, t) sent from the NC to the FC and
ends with a (D, t) returned to the NC (in the example,
the transition phase 0 has three rounds: R0 with mes-
sages [*25, D30], R1 with messages [x31, D38], and R2
with messages [x39, D46]). On each round, state transi-
tions are performed incrementally with additional ex-
ternal messages and/or for potentially extra Simulators.
Hereinafter, we will denote a transition phase of (n+1)
rounds as [R0…Rn].

Sequential simulation on a LP can be viewed as a
sequence of computation units, one for each group of
simultaneous events. Each unit is performed during a
timespan as measured by a physical wall clock. Such
computation unit is referred to as wall clock time slice
(WCTS). A WCTS comprising simultaneous events
occurred at virtual time t is denoted as WCTS-t, and t is
called as the virtual time of the WCTS.

Figure 3. WCTS representation for the simulation on a LP

Figure 3 shows the sequential simulation on an LP
in terms of WCTS. The simulation is viewed as a se-
quence of wall clock time slices linked together along
the time axis, each stands for the execution of simulta-
neous events at a specific simulation time on all the
PCD++ processors associated with the LP. Each
WCTS-t may contain one mandatory transition phase

and one optional collect phase. Several properties of
the WCTS are summarized as follows:
• The simulation on a LP starts with WCTS-0, the

only WCTS with all three phases.
• Wall clock time slices are linked together by mes-

sages sent from NC to FC (black arrows). When
NC determines the next simulation time at the end

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

of a WCTS, it sends out messages to be executed
by FC, initiating the next WCTS on the LP.

• Completion of the simulation on a LP is marked
by a WCTS sending out no linking messages, e.g.
WCTS-tn in the diagram. The whole simulation

finishes only when all participating LPs have com-
pleted their corresponding parts of the simulation.

• Wall clock time slices are atomic computation
units during rollback operations. A typical roll-
back scenario is shown in Figure 4.

Figure 4. Typical rollback scenario shown in terms of wall clock time slices

In the diagram, the simulation on LPi is executing

in WCTS-tn when a straggler with timestamp t2 arrives
at the NC (1). Based on the rollback mechanisms, the
received straggler (2) is inserted into WCTS-t2 (a mes-
sage implosion happens in WCTS-t2 if it is an anti-
message). Then, rollbacks are propagated among the
PCD++ processors, restoring their states to those saved
at the end of WCTS-t1 (3), and all messages in WCTS-
t2 up to WCTS-tn are undone. After, simulation on LPi
resumes forward execution from the unprocessed link-
ing messages between WCTS-t1 and WCTS-t2 (4).

4. Enhancements to PCD++ and Warped
This section covers essential enhancements to the
PCD++ and the WARPED kernel to ensure correct and
efficient execution of simulations.

4.1. Rollbacks at virtual time 0
During rollbacks, the state of a process is restored to a
previously saved copy with virtual time strictly less
than the rollback time. However, the problem of han-

dling rollbacks at virtual time 0 is left unsolved. If a
process receives a straggler with timestamp 0, the state
restoration will fail since no state with negative virtual
time can be found in its state queue. There are two dif-
ferent approaches to solving this problem. One is to
save a special state that has an artificial negative virtual
time at the head of each state queue. The other is to
synchronize the processes at an appropriate stage with
MPI Barriers so that no straggler message with time-
stamp 0 will ever be received. The former approach is
pure optimistic; however, there is a performance haz-
ard in this approach. The probability of rollback echoes
[5] increases significantly at virtual time 0. In this case,
the processes in the system are forced to restart execu-
tion from time 0 repeatedly, resulting in an unstable
situation where there is no progress in simulation time.
The second approach tries to avoid the problem alto-
gether by using explicit synchronizations. In the opti-
mistic PCD++, the best place to implement the MPI
Barrier is after the collect phase in WCTS-0 (Figure 5).

Figure 5. Using MPI Barrier to avoid rollbacks at virtual time 0 in PCD++

As all outgoing inter-LP communication happens in
the collect phases, messages with timestamp 0 are sent
to remote LPs only in the collect phase of WCTS-0.
The LPs are synchronized by a MPI Barrier at the end
of this collect phase so that these messages can be re-
ceived by their destinations before the simulation time
advances beyond time 0. Therefore, no straggler with
timestamp 0 will be received by any LP afterwards.

Once the LPs exit from the barrier, they can safely
continue optimistic execution. The cost of this ap-
proach is small, since the length of the synchronized
execution is trivial when compared with the whole
simulation.
4.2. User-controlled state-saving mechanism
In WARPED, the copy state-saving (CSS) strategy is
implemented using state managers of type StateMan-

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

ager, which saves a process’s state after executing each
event, and the periodic state-saving (PSS) strategy is
realized using state managers of type InfreqStateMan-
ager that only saves a process’s state infrequently
every a number of events. Simulator developers can
choose to use either type of state managers at compile
time. This rigid mechanism has two major disadvan-
tages: (1) it ignores the fact that simulator developers
may have the knowledge as to how to save states more
efficiently to reduce the state-saving overhead; (2) it
eliminates the possibility that different processes may
use different types of state managers to fulfill their
specific needs at runtime. To overcome these short-
comings, we introduced a two-level user-controlled
state-saving (UCSS) mechanism so that simulator de-
velopers can utilize more flexible and efficient state-
saving strategies. The structure of the UCSS mecha-
nism is shown in Figure 6.

skip-state-saving

CSS

Level 0

Level 1

skip-state-saving

do-state-saving

PSS CSS

Level 0

Level 1

(a) UCSS integrated with CSS

(b) UCSS integrated with PSS
Figure 6. UCSS integrated with CSS/PSS

Therefore, a PCD++ processor can make state-
saving decisions based on application-specific criteria.
Further, it can dynamically switch between the CSS
and PSS strategies at level 1. Thus, the UCSS mecha-
nism virtually gives simulator developers the full
power to choose the best possible combination of state-
saving strategies dynamically at runtime.

4.3. Message type-based state saving
During rollbacks, the state of a PCD++ processor is
always restored to the last state saved at the end of a
WCTS with virtual time strictly less than the present
rollback time. Hence, it is sufficient for a processor to
save its state only after processing the last event in
each WCTS for rollback. The state-saving operation
can be safely skipped after executing all the other
events. The last event in a WCTS is processed at the
end of Rn in the transition phase. Although the actual
number of rounds in a transition phase cannot be de-
termined, we can identify the type of the messages
executed by a given processor. For NC and FC, it must

be a (D, t), and for the Simulators, it should be a (*, t).
Therefore, PCD++ processors need to save states only
after processing these particular types of messages.
Since Root only processes output messages, it still
saves state for each event. We call the resultant state-
saving strategy as message type-based state-saving
(MTSS). Considering that there are a large number of
messages executed in each WCTS, and that they are
dominated by external and output messages, MTSS can
significantly reduce the number of states saved during
the simulation. Further, the rollback overhead is re-
duced as well because fewer states need to be removed
from the state queues during rollback operations.
MTSS is risk-free in the sense that there is no penalty
for saving fewer states.

4.5. One log file per node
Previously, one log file is created for each PCD++
processor to log the received messages in a human
readable format. Depending on the size of the model,
this can consume many file descriptors. In addition,
creating these files and transferring data to them con-
stitute a large operational overhead, especially when
the files are accessed via a Network File System (NFS)
during the simulation. To reduce the overhead of file
I/O operations, a new optimization strategy, called as
one log file per node, is implemented. Only one log file
is created for the NC on each node. The NC’s file
queue is shared among all the processors on that node.
Messages received by the NC itself are logged directly
in the NC’s file queue, while the other processors on
that node must first get a reference to the local NC
(which can be done in constant time) and then log their
received messages into the NC’s file queue.

5. Experimental results
Our experiments were conducted on a HP PROLIANT
DL Server, a cluster of 32 compute nodes (dual
3.2GHz Intel Xeon processors, 1GB PC2100 266MHz
DDR RAM) running Linux WS 2.4.21 interconnected
through Gigabit Ethernet and communicating over
MPICH 1.2.6. The Cell-DEVS models tested in our
experiments include a model for forest fire propagation
[19] based on Rothermel’s mathematical definition
[20] and a 3-D watershed model representing a hydrol-
ogy system [19]. The following simulation results are
averages over 10 independent runs. We use two differ-
ent speedups in our analysis: the overall speedup (i.e.,
the total execution time as perceived by the users) and
the algorithm speedup (i.e. without considering the
simulation bootstrap time) that is used to assess the
performance gain attributed to the parallel algorithms
alone.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

5.1. Effect of one log file per node
The performance improvement derived from the one
log file per node strategy is tested using the fire propa-
gation model of 900 cells arranged in a 30×30 mesh.

18.7162
9.657

5.2253 2.6058
0.86140.2121

23.5872

24.3844

0

10

20

30

40

50

1 node
(strategy OFF)

1 node
(strategy ON)

4 nodes
(strategy OFF)

4 nodes
(strategy ON)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Running time Bootstrap time

Figure 7. One log file per node: 1 and 4 nodes

The bootstrap time is even greater than the actual

running time. This clearly indicates that the bootstrap
operation is a bottleneck in the simulation. When the
strategy is turned on, the bootstrap time is reduced by
99.1% on 1 node and by 96.47% on 4 nodes. Further,
the running time is decreased by 72.08% on 1 node and
by 73.02% on 4 nodes due to more efficient communi-
cation, I/O, and rollback operations.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Time(sec)

%
C

PU

0

20

40

60

80

100

120

1 2 3 4 5
Time(sec)

%
C

P
U

Figure 8. CPU use: 1 logfile per node, 1 node

The CPU usage monitored in our experiments also

suggests that the file I/O operation is a major barrier in
the bootstrap phase. As shown in Figure 8, the CPU is
utilized much more efficiently with the one log file per
node strategy. A similar pattern was observed in simu-
lations running on multiple nodes.

5.2. MTSS
The same fire propagation model is used to test the
effect of MTSS strategy. The model was executed on 1
and 4 nodes with and without the MTSS strategy.

42278

21435 17356.75
9070.25

0

10000

20000

30000

40000

50000

1 node
(MTSS OFF)

1 node
(MTSS ON)

4 nodes
(MTSS OFF)

4 nodes
(MTSS ON)N

um
be

r o
f s

ta
te

s
sa

ve
d

1.4295

0.8373
0.6049

2.0394

0

0.5

1

1.5

2

2.5

1 node
(MTSS OFF)

1 node
(MTSS ON)

4 nodes
(MTSS OFF)

4 nodes
(MTSS ON)

St
at

e-
sa

vi
ng

 ti
m

e
(s

ec
)

Figure 9. Number of saved states

Due to the MTSS strategy, the number of states

saved during the simulation is reduced by 49.29% and
47.74% on 1 and 4 nodes respectively. Accordingly,
the time spent on state-saving operations is decreased
by 29.9% and 38.18%. The state-saving time declines
more steeply on 4 nodes due to the distributed man-
agement of the state queues.

6.3447 5.2253
2.821 2.6058

0.2121

0.86140.9257

0.2131

0
1
2
3
4
5
6
7

1 node
(MTSS OFF)

1 node
(MTSS ON)

4 nodes
(MTSS OFF)

4 nodes
(MTSS ON)

Ex
ec

ut
io

n
tim

e
(s

ce
)

Running time Bootstrap time

Figure 10. Running and bootstrap time

The corresponding running and bootstrap times are
shown in Figure 10. While the bootstrap time remains
nearly unchanged, the actual running time is reduced
by 17.64% and 7.63% on 1 and 4 nodes respectively
because fewer states are saved in the state queues and,
potentially, removed from the queues during rollbacks.

Figure 11 shows the time-weighted average and
maximum memory consumption with and without the
strategy on 1 and 4 nodes. The average memory con-
sumption declines by 26% in both cases, while the
peak memory consumption decreases by 25.13% and
27.44% on 1 and 4 nodes respectively.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

445440

52436
969613112

284808

384917

38048

594944

0

100000

200000

300000

400000

500000

600000

700000

1 node (MTSS
OFF)

1 node (MTSS ON) 4 nodes (MTSS
OFF)

4 nodes (MTSS
ON)

M
E

M
 (K

b)

avg. max

Figure 11. Memory consumption

5.3. Performance of the PCD++ toolkit
The key metrics for evaluating the performance of the
PCD++ simulator are the execution time and speedup.
Both the one log file per node and MTSS strategies
were applied to the simulator in the following experi-
ments. For all the Cell-DEVS models, a simple parti-
tion strategy was used that evenly divides the cell
space into horizontal rectangles. First, the fire propaga-
tion model was tested using different sizes of cell
spaces: 20×20 (400 cells), 25×25 (625 cells), 30×30
(900 cells) and 35×35 (1225 cells). The total execution
time and running time of the fire model with different
sizes and executed on 1 up to 4 nodes are listed in Ta-
ble 1.

Table 1. Execution/running times for the fire model
Total Execution Time (sec)

No.nodes 20×20 25×25 30×30 35×35
1 2.0733 3.2949 5.0442 7.8702
2 1.9719 2.7959 3.5232 4.7138
3 1.8787 2.5237 3.1573 3.9667
4 1.9254 2.6091 3.0922 3.8138

Running Time (sec)
No.nodes 20×20 25×25 30×30 35×35

1 1.9515 3.1273 4.3566 7.6428
2 1.4232 2.1225 2.8838 3.9952
3 1.3574 1.8953 2.5237 3.2959
4 1.4296 1.8656 2.3314 3.0224

For any given number of nodes, the execution time

always increases as the size of the model goes up.
Moreover, the execution time rises less steeply when
more nodes are used to do the simulation. For example,
as the model size increases from 400 to 1225 cells, the
execution time ascends sharply by nearly 280% (from
2.0733 to 7.8702 seconds) on 1 node, whereas it
merely rises by 98% (from 1.9254 to 3.8138 seconds)
on 4 nodes. On the other hand, for a fixed model size,
the execution time tends to, but not always, decrease
when more nodes are utilized. However, when the
number of nodes increases further, the downward trend

in execution time is reversed. When a model, espe-
cially a small one, is partitioned onto more and more
nodes, the increasing overhead involved in inter-LP
communication and potential rollbacks may eventually
degrade the performance. Hence, a trade-off between
the benefits of higher degree of parallelism and the
concomitant overhead costs needs to be reached. We
can also find that better performance can be achieved
on a larger number of nodes as the model size in-
creases. The shortest execution time is achieved on 3
nodes for the 20×20 and 25×25 models, while it is ob-
tained on 4 nodes for the other two larger models.

Overall Speedup

1.2628

1.6313

1.0514 1.1036 1.0768

1.1785
1.3056

1.5976

1.4317

2.0636
1.9841

1.6696

0.0

0.5

1.0

1.5

2.0

2.5

2 3 4

Number of nodes20×20 25×25 30×30 35×35

Algorithm Speedup

1.3713 1.4377 1.3650
1.4734

1.6501
1.67631.5107

1.7263 1.8687

2.5288
2.3189

1.9130

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4

Number of nodes20×20 25×25 30×30 35×35

Figure 12. Overall/algorithm speedups

Using the execution and running times, we can cal-

culate the overall and algorithm speedups, as shown in
Figure 12. The algorithm speedup is always higher
than its counterpart overall speedup, an evidence show-
ing that the Time Warp optimistic algorithms are major
contributors to the overall performance improvement.

A more computation-intensive 3-D watershed
model of size 15×15×2 (450 cells) was tested to evalu-
ate the performance of PCD++ for simulating models
of complex physical system. Table 2 shows the result-
ing total execution and running times. The best per-
formance is achieved on 5 nodes with execution and

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

running time of 6.1538 and 5.6743 seconds respec-
tively. The speedups are illustrated in Figure 14. The
best overall and algorithm speedups are 2.7306 and
2.9373 respectively, higher than those obtained with
the fire models.

2.7306

2.2954
2.0176

1.4249

1.4945

2.1592
2.4460

2.9373

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5

Number of nodes

Sp
ee

du
p

Overall speedup Algorithm speedup

Figure 13. 15×15×2 watershed model

6. Conclusion
We tackled the problem of executing DEVS and Cell-
DEVS models in parallel and distributed environments
based on the Time Warp synchronization protocol. The
algorithms for the PCD++ processors and Cell-DEVS
models with transport and inertial delays were redes-
igned to address the need of distributed optimistic
simulation. The simulation process on each LP was
abstracted using the notion of WCTS, which greatly
simplifies the task of analyzing the complex message
exchanges between the PCD++ processors involved in
the simulation. A two-level UCSS mechanism was
proposed so that simulator developers can utilize more
flexible and efficient state-saving techniques during the
simulation. Mechanisms were provided to handle vari-
ous issues in optimistic simulations such as rollbacks at
virtual time 0 and messaging anomalies. Several opti-
mization strategies were implemented in the optimistic
PCD++ such as the MTSS strategy and the one log file
per node strategy. We showed that optimistic PCD++
simulator markedly outperforms the conservative one
in all testing scenarios. Considerable speedups were
observed in our experiments, indicating the simulator
is well-suited for simulating large and complex mod-
els.

7. References
[1] Zeigler, B.; Kim, T.; Praehofer, H. “Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems”. Academic Press. 2000.
[2] Chow, A. C.; Zeigler, B. “Parallel DEVS: A parallel,
hierarchical, modular modeling formalism”. Proc. of Winter
Computer Simulation Conference. Orlando. USA. 1994.
[3] Wainer, G.; Giambiasi, N. “N-dimensional Cell-DEVS
models”. Discrete Event Dynamic Systems. Springer Nether-
lands. ISSN 0924-6703. Vol. 12. No. 2. 2002.

[4] Wolfram, S. “Theory and applications of cellular auto-
mata”. Vol. 1. Advances Series on Complex Systems. World
Scientific. Singapore. 1986.
[5] Fujimoto, R. M. “Parallel and Distributed Simulation
Systems”. Wiley-Interscience publication. 2000.
[6] Jefferson, D. “Virtual Time”. ACM Transactions on Pro-
gramming Languages and Systems. 7(3):405-425. 1985.
[7] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D.
M.; Wilsey, P.A. “An Object-Oriented Time Warp Simula-
tion Kernel”. Proceedings of the International Symposium on
Computing in Object-Oriented Parallel Environments (IS-
COPE’98). Vol. LNCS 1505. 1998.
[8] Wainer, G. “CD++: a toolkit to develop DEVS models”.
Software – Practice and Experience. Vol. 32, pp. 1261-1306.
2002.
[9] Troccoli, A.; Wainer, G. “Implementing Parallel Cell-
DEVS”. Proceedings of the 36th Annual Simulation Sympo-
sium (ANSS’03). IEEE. 2003.
[10] Glinsky, E; Wainer, G. “New parallel simulation tech-
niques of DEVS and Cell-DEVS in CD++”. Proceedings of
the 39th Annual Simulation Symposium. 2006.
[11] Wainer, G. “Improved cellular models with Parallel
Cell-DEVS”. Transactions of the Society for Computer
Simulation International. Vol. 17, No. 2, pp. 73-88. 2000.
[12] Zeigler, B.; Kim, D.; Buckley, S. “Distributed supply
chain simulation in a DEVS/CORBA execution environ-
ment”. Proc. of 1999 Winter Simulation Conference. 1999.
[13] Zeigler, B.; Sarjoughian H. S. “Support for hierarchical
modular component-based model construction in
DEVS/HLA”. Simulation Interoperability Workshop. 1999.
[14] Kim, K.; Kang, W. “CORBA-based, Multi-threaded
Distributed Simulation of Hierarchical DEVS Models: Trans-
forming Model Structure into a Non-hierarchical One”. In-
ternational Conference on Computational Science and Its
Applications. Assisi, Italy. 2004.
[15] Seo C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. “Im-
plementation of distributed high-performance DEVS simula-
tion framework in the Grid computing environment”. Ad-
vanced Simulation Technologies Conference (ASTC). Ar-
lington, VA. USA. 2004.
[16] Cheon, S.; Seo, C.; Park, S.; Zeigler, B. “Design and
implementation of distributed DEVS simulation in a peer to
peer network system”. Advanced Simulation Technologies
Conference – Design, Analysis, and Simulation of Distrib-
uted Systems Symposium. Arlington, USA. 2004.
[17] Zhang, M.; Zeigler, B.; Hammonds, P. “DEVS/RMI –
An auto-adaptive and reconfigurable distributed simulation
environment for engineering studies”. DEVS Integrative
M&S Symposium. Huntsville, Alabama, USA. 2006.
[18] Nutaro, J. “Risk-free optimistic simulation of DEVS
models”. Military Government and Aerospace Simulation
Symposium. 2004.
[19] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of
complex physical systems using Cell-DEVS”. The 34th
IEEE/SCS Annual Simulation Symposium. 2001.
[20] Rothermel, R. “A mathematical model for predicting fire
spread in wild-land fuels”. Research Paper INT-115. Ogden,
UT: U.S. Department of Agriculture, Forest Service, Inter-
mountain Forest and Range Experiment Station. 1972.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Authorized licensed use limited to: Carleton University. Downloaded on April 20, 2009 at 20:41 from IEEE Xplore. Restrictions apply.

