

Abstract— Cell-DEVS is an extension to the DEVS formalism

that allows the definition of cellular models. CD++ is a modeling
and simulation tool that implements DEVS and Cell-DEVS formal-
isms. It was successfully employed to define a variety of models
for complex applications using a cell-based approach. In order to
improve model validation and analysis, we introduced a 3D visu-
alization engine, which is based on the Maya 3D visualization tool
and its scripting language. The application allows virtual worlds to
be developed using the Maya visualization environment, and per-
mits interaction with DEVS models built in CD++. The result is an
enhanced simulation environment, which permits improved ex-
perimentation. We discuss how to apply this environment to
evacuation processes.

Index Terms—evacuation, cell-devs, 3D visualization, Maya

I. INTRODUCTION

N recent years, many simulation models of real systems
have been represented as cell spaces. Cellular Automata [1]
is a well-known formalism to describe these systems, de-

fined as infinite n-dimensional lattices of cells whose values
are updated according to a local rule. Cell-DEVS [2] was de-
fined as a combination of cellular automata and DEVS (Dis-
crete Events Systems specifications) [3]. The goal is to im-
prove execution speed building discrete-event cell spaces, and
to improve their definition by making the timing specification
more expressive. Various efforts have focused on the cell-
space simulation of evacuation processes ([4],[5],[6],[7],[9],
[9]). Here, we discuss a recent model which represents people
moving through a room or group of rooms, trying to get out
through an exit door. The goal is to understand where the bot-
tlenecks can occur, and which solutions are effective to pre-
vent congestion. The basic idea was to simulate the behavior
and movement of every single person involved in the evacua-
tion process. We also discuss the use of these techniques in ar-
chitecture and construction. To do so, we have integrated our
Cell-DEVS model with a 3D visualization environment used
for architectural reconstruction, using Autodesk Maya [10].
We will show how advanced evacuation can be modeled visu-
alized using this environment. The basic idea was to simulate
the behavior and movement of every single person involved in
the evacuation process. A Cell-DEVS model was chosen with
a minimum set of rules to characterize a person's behavior:
• A normal person goes to the closest exit.
• A person in panic goes in opposite direction to the exit.
• People move at different speeds.

G. Wainer and E. Poliakov are with the Dept. of Systems and Computer
Engineering., Carleton University (email: gwainer@sce.carleton.ca)

E. Poliakov, J. Hayes and M. Jemtrud are with Carleton Immersive Media
Studio, Carleton University.

Address: 1125 Colonel By Dr. Ottawa, ON. K1S 5B6. Canada.

• If the way is blocked, people can decide to move away and
look for another way.

We also defined an advanced visualization model of evacua-
tion. These models that could predict and present the results of
human beings evacuating structures, such as buildings, ships
and houses etc, during an emergency. We will show how the
results of our visualization environment facilitate and ease the
interpretation of the simulation results.

II. BACKGROUND

DEVS is a systems theoretical approach that allows the
definition of hierarchical modular models [3]. A real system
modeled using DEVS can be described as a set of atomic or
coupled submodels. The atomic model is the lowest level and
defines dynamics, while the coupled are structural models
composed of one or more atomic and/or coupled models. Cou-
pled models are defined as a set of basic components (atomic
or coupled), which are interconnected through the models’ in-
terfaces. The models’ coupling defines how to convert the out-
puts of a model into inputs for the others, and how to handle
inputs/outputs from/to external models

Cell-DEVS has extended the DEVS formalism, allowing
the implementation of cellular models with timing delays [2].
Once the behavior of a cell is defined, a coupled Cell-DEVS
can be created by putting together a number of cells intercon-
nected with their neighbors. Each cell is defined as a DEVS
atomic model, and it can be later integrated to a coupled model
representing the cell space. Each cell uses N inputs to compute
its next state. These inputs, which are received through the
model's interface, activate a local computing function (t). A
delay (d) can be associated with each cell.

Fig. 1. Informal definition of Cell-DEVS

CD++ [11] is a modeling and simulation toolkit that im-

plements DEVS and Cell-DEVS theory. Cell-DEVS models
are defined using a built –in specification language.

Our model represents people moving through a room or
group of rooms, trying to gather their belongings or related
persons and to get out through an exit door. The goal is to un-

A Busy day at the SAT building

Gabriel Wainer Emil Poliakov James Hayes Michael Jemtrud

I

derstand where the bottlenecks can occur, and which solutions
are effective to prevent congestion. We defined a model to
simulate the behavior and movement of every single person
involved in the evacuation process. The Cell-DEVS model
characterizes a person's behavior. People move at different
speeds; if the way is blocked, people can decide to move away
and look for another way [12], [13]. In Fig. 2 the state value
“1” represents walls or obstacles, and the state value “2”
represents exits. The even state values are occupied cells and
the odd ones are empty cells. Each state value also represents
the shortest direction to the exit.

Fig. 2. A Ship Evacuation Visualization

III. VISUALIZATION OF CELL-DEVS MODELS IN MAYA

As seen in Fig. 2, this visualization is complex to understand.
In order to improve this, we created a 3D visualization using
Maya [10], a powerful application for three dimensional mod-
eling and animation, using special effects and rendering. Maya
allows one to create digital imagery, three dimensional anima-
tion and visual effects. The Maya software interface is fully
customizable and it allows users to extend their functionality
within Maya by providing access to the Maya Embedded Lan-
guage (MEL). Using MEL, programmers can tailor the user in-
terface to their needs and to add in-house tools. Since MEL is
recognized by embedded web browsers, MEL commands can
also be issued form a webpage. Maya’s modeling and anima-
tion tools were used to create three-dimensional environments
for Cell-DEVS and DEVS models. The current version of the
CD++/Maya Simulations focuses on separating the functions
by their functionality. This makes for cleaner code as well as
easier future development. Aside from the main log file read-
ers, there are three supporting functions:
1. CellPosition – responsible for reading the coordinates off

the log file and translating them to the real 3D plane
2. translateTime – responsible for reading the time off the log

file and translating it to the Maya timeline. This function
is required to allow the simulation to follow the proper
timing of events as described in the log file

3. createShader – this function is used to add colors to the
scenes. Due to the wide variety of simulations and scenes
that need to be created this file can be easily modified to
reflect the materials currently under consideration. It can
be set to draw out anything from marble to wood and
grass as defined by the user.

Fig. 3. Maya/CD++ Simulations Architecture

 Fig. 3 above illustrates the order of events which occur for
CD++ simulation visualization to be created. In the beginning,
the user creates the MA (VAL Files) depending on the type of
simulation to be executed. These files are then passed on to
CD++ for simulation execution. During the simulation, CD++
records all events, cell values and time variables into a LOG
file, which in the end is saved under a user defined name.
Once the LOG file is created, we may proceed to execute the
MAYA visualization engine. Depending on the simulation
type, the program may need the MA file for proper grid ini-
tialization. In the case where the simulation is applied to an al-
ready created Maya scene, the MA file is ignored. The LOG
file however, is an essential part of this process. It contains the
cell values and time in which these values change. The entire
Maya visualization engine is based on the LOG file. Once the
log file is passed to the Maya scripts, they go through it and
extract the required values. The translateTime function reads
the time variables off the LOG file and recreates them to
match the Maya movie time format.

Fig. 4. Architecture of the visualization environment

Fig. 4 shows the relationships between these procedures.

The logFileAnimator method acts as an interface requesting
the user to select a particular model. The user has two choices
after providing the required information; the “Print File Con-
tents” button will instantiate readFile and the “Animate” but-
ton will instantiate animator. The readFile method locates and
opens the file corresponding to the file name provided for the
express purpose of reading it and printing the contents to the
Script Editor Window in Maya. In this way, the user can ana-
lyze the detailed results found in the log files. The animator
method instantiates the animation procedure for that particular

DistancesPeople and
Boundaries

model, associating CD++ simulation results with graphic
scenes defined in Maya. Each instance of the animation proce-
dure opens the log File, reads it and stores pertinent informa-
tion, which is then used to animate the objects in the three di-
mensional scene opened. All the information pertaining to a
particular object from the log file is used to animate that same
object in the scene file. The translateTime method is in charge
of accurately following the log File, and making the animation
to match time with the time present in the simulation log.

IV. EVACUATION MODEL FOR SAT BUILDING

Sophisticated evacuation models have been developed to assist
rescue and emergency response crews with proper situation
analysis and prompt reaction procedures. The ability to simu-
late and represent such situations increases the training effi-
ciency and creates the opportunity for better condition under-
standing. For the purpose of our simulation we use the SAT
building’s floor plan.

The Society for Arts and Technology (SAT) building is
located on blvd. St. Laurent in downtown Montreal. This
building is a center devoted to the creation, development and
conservation of digital culture. We have created an advanced
model to studying evacuation in the SAT building. This model
uses variables such as panic level, distance from exits, etc.
Taking these into consideration one can create sample situa-
tions using the rules described in Fig. 5.

[floor]
type : cell dim : (49,27,2) delay : INERTIAL
defaultDelayTime : 1 border : wrapped
localtransition : EvaRule

neighbors : (-1,-1,0) (-1,0,0) (-1,1,0) (0,-1,0)
(0,0,0) (0,1,0) (1,-1,0) (1,0,0) (1,1,0) (-1,-1,1)
(-1,0,1) (-1,1,1) (0,-1,1) (0,0,1) (0,1,1) (1,-1,1)
(1,0,1) (1,1,1)

[EvaRule]
% Rules to control the movement of each individual
rule:{#pos1+1}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...
rule:{#pos1+3}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...
rule:{#pos1+5}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...
rule:{#pos1+7}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...
rule:{#pos1+6}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...
rule:{#pos1+8}{1000/#pos0}{((0,0,0)>0 AND #pos0=0...

Fig. 5. Evacuation rules as set in the CD++ Model file

The above defined rules have two separate major parts:
the initialization function defines the size of the cell space, the
neighborhood, the initial values of the cells and the name of
the function responsible for the cell behavior. The model uses
two layers. The coordinates of each object are divided in two.
Layer 0 is responsible for the boundaries (walls, exits, etc) and
people. Layer 1 is responsible for the objects (not people – i.e.
internal walls, chairs, columns etc) and the distance numbers.

 Fig. 6. Dual layer setup of the CD++ evacuation
simulation.

The first set of rules in Fig. 5 serves to define what path a
person should follow using the orientation plane. The basic
idea is to take the direction that decrease the potential of a cell,
building a path following the lower value of the neighbors. We
have 8 rules to control the people’s movement, one per direc-
tion. In all cases the rule analyze the 8 near neighbors to un-
derstand what direction the person should take (if all the 8 near
neighbors have the same value, the movement is at random).
Besides these basic rules, we have included a different set of
rules governs the panic behavior: a person will take a wrong
path or will not follow the orientation path. In that case, the di-
rection will be calculated taking the path where the cell’s po-
tential is increased. In this case also we analyze the 8 near
neighbors, and we also avoid people collisions. The values of
the cells containing the people are set using the following
number rules [6]:

Fig. 7. Cell value digit description

- dn represents responsible for the direction of movement of
the entities (1:W; 2:SW; 3:S; 4:SE; 5:E; 6:NE; 7:N; 8:NW).
- v is responsible for the speed of an entity. This allows us to
implement different people speeds, which makes for a more
realistic evacuation (expressed in cells per second: 1 to 5)
- dp is the Last movement direction (from 1 to 8, as in dn).
- p represents the emotional state of the person: the higher this
value is the lower the probability that a person gets in panic.
- m represents a person’s moving potential. A person moves to
decrease the movement potential by decreasing the distance to
the exit. If there is no available move decreasing the potential,
a person will try to move to a neighboring cell that has the
same potential. Otherwise, the person will move further away
in an attempt to find another route, as seen in Fig. 8.
- np defines the panic level (represent the number of cells that
a person will move increasing the cell potential). A situation
where p is low and np is high will represent a high panic situa-
tion in which the entity will very likely choose a wrong move.

Fig. 8. Movements decreasing / increasing potential

V. EVACUATION SIMULATION RESULTS

In this section we discuss the results of different
simulations we executed. They are all based on the same

model (defined in Section 4), but all use different cell values
which correspond to different human behaviors – speed, panic
etc. Our first example considers a basic model consisting of

eight people without panic behavior. They are initially placed
at random inside the building, and as the level of complexity is
small, we could observe that they follow the second layer to
exit the building. The building is almost empty (which is a
normal condition for SAT); however, there are people in each
sector. This evacuation is designed to give us a general idea of
the exit directions people will follow, which will help us in de-
veloping the successive simulations. Initially, there is no panic,
and we did not change the movement potential, using a high
level of patience. As we can see, the building is evacuated in
13:015s.

Figure 9. a) SAT at time: 00:000–Initial placement of people;
b) time: 13:015–Last person to leave the building

 The example presented in Figure 10 represents the place-
ment of eight people; however they are all located in the down
left hand corner of the plan. The panic level is still 0 to follow
an organized simulation and show us how people would
evacuate under normal conditions. In this case, we can see a
bottleneck situation, and we can visualize a pile up around one
specific exit. Although the total evacuation time is 04:005, this
occurs because of the proximity of the entities to the exit.

Figure 10-a) time: 00:000; b) time: 04:005

 As we can see, the building is also evacuated in an or-
derly fashion. We then used the same model, and included
panic effect into one of the people’s initial value. If we analyze
the execution results on Figure 11, we can notice that a person
move away from the exit due to a blocked move for this per-
son. The rest of the people leave the building normally. The
total evacuation time is 05:004s. In order to observe the effect
of panic on the simulation time we used the exact same num-
ber of people and their positions as specified above. This time
however we introduce a full panic level which could corre-
spond to a very close proximity event etc.

Figure 11- Evacuation with panic (one person): 05:004s.

 We can notice an increase in evacuation time up to three
times larger than that observed in the previous simulation
(which shows us how important for the outcome the panic
level is). Figure 12 below illustrates these results. The initial
values are the same as specified above with the only difference
being the introduction of the panic digit for every person.
 We then increased the number of people but we added
more people to the other two exits on the right, which offer an
interesting evacuation situation: two totally separate exits in
very close proximity to each other. This would allow us to fol-
low people’s behavior and proper choice of closest exit. In
case of no panic the people would follow the second layer and
decide where the closest exit is. However, if panic is intro-
duced the chaotic movements result in longer traveling times.

Figure 12- Evacuation with panic. 15:519s.

 The simulation on Figure 13 has low panic levels intro-
duced to all people. We introduce a larger number of entities
at a low panic level. This will help us study a regular exit
situation. The lack of panic will allow us to focus on the entity
pile up part of the problem rather than the incorrect choice of
exit and chaotic movements. The increased amount of people
does not necessarily mean an increased evacuation time as we
can see from Figure 13. As long as the panic level is low, the
evacuation is properly controlled.

Figure 13-Low level of panic.

 In the last example, we implement the same initial posi-
tions for the entities. At this point we introduce the panic fac-
tor into the cell values. Once we have figured out that a bottle-
neck would in fact occur in front of the two exits on the right
side of the plan, we can proceed to see how panic levels will
affect that. We notice chaotic movements of the entities. The
total evacuation time of 25:029 also speaks of that. As can be
seen in Figure 14, due to the blocked exits, people move in di-
rections that increase their movement potential.

Figure 14- High level of panic

The starting positions are kept the same and the only dif-

ference between the two results is the panic level. We can no-
tice a difference of about 10 seconds between the two -> the

second evacuation being slower due to the panic which causes
confusion and chaotic movements.

VI. 3D VISUALIZATION OF THE EVACUATION SIMULATIONS

 Once the log file has been completely generated, we use
Maya to visualize the model in 3D. We start by defining the
simulation type, the coordination files (in our case completed
scene) and the file locations into the user interface (which can
be activated through web services, allowing us to remotely
execute the CD++ simulations to obtain the log files over the
internet). After rendering the SAT scene we can see better de-
tail on the building to give us better familiarity with the set-
ting. The plan as displayed in Error! Reference source not
found. the origin of the plan as implemented by the CD++
simulations. Once the building has been loaded, the
CD++/Maya Simulations proceeds to load the initial values for
the cell spaces – in our case people inside the building.

Figure 15: Different angles of visibility within Maya.

 In order to visualize the scene properly, we setup different
rendering cameras in Maya. This allows us to follow the enti-
ties motion throughout the building. Once the script has been
initiated it reads through the log file looking for the Y mes-
sages. Every Y message carries information about the current
cell values and locations. The MEL script uses these values
and coordinates to relocate the human figures. This results in a
frame based motion of the human figures and hence makes for
an easy to see evacuation model. The following are five ren-
dered images of five separate frames that demonstrate the pro-
gressive motion of the human figures towards the dedicated
building exits as can be seen in Figure 16.

Figure 16. Rendered images of the evacuation for Figure 9

 The last figure we present shows an evacuation scenario in
which there is a large number of people in the building which
allows us to see the potential application of this environment
into crowd situations.

Figure 17. A busy day at the SAT building.

VII. CONCLUSION

Simulation is becoming increasingly important in the analysis
and design of complex systems. CD++ is a tool for the simula-
tion of complex physical systems that can be used to simulate a
variety of models. To facilitate the users to use the CD++
simulator, we extended its design to provide a number of ser-
vices. The 3D visualization GUI enables sophisticated visuali-
zation of DEVS and Cell-DEVS models. To better understand
the results, the user can select shapes to represent a node in the
3D space, select different colors, shapes, edit scenes, etc. The

current facilities have highly improved the use of the previ-
ously existing tools, thus enhancing the analysis experience of
the modelers using the toolkit. The high level language of
CD++ reduces the algorithmic complexity for the modeler
while allowing complex cellular timing behaviors. DEVS al-
lows independence of the simulator, the models developed, the
experiment conducted and the visual engine, while maintaining
unity in the model specification and tool interoperation.
 The 3D visualization GUI enables sophisticated visualiza-
tion to better understand the results. The current facilities have
highly improved the use of the previously existing tools, thus
enhancing the analysis experience of the modelers using the
toolkit. The visual models have visual state transition systems,
which define how the simulation models are graphically repre-
sented during visualization. The visual models also have event
animation rules to create animations for certain events.

REFERENCES

[1] S. Wolfram. “Theory and applications of cellular automata”.
Vol. 1, Advances Series on Complex Systems. World Scientific,
Singapore, 1986.

[2] G. Wainer; N. Giambiasi,. "Timed Cell-DEVS: modelling and
simulation of cell spaces". In Discrete Event Modeling & Simu-
lation: Enabling Future Technologies. 2000. Springer-Verlag.

[3] B. Zeigler, H. Praehofer, T. Kim. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. 2000. Academic Press.

[4] Treiber, M.; Hennecke, A.; Helbing, D. “Congested Traffic
States in Empirical Observations and Microscopic Simulations”.
Physical Review E 62, 2000, 1805-1824.

[5] Klüpfel, H.; Meyer-König, T.; Wahle J.; Schreckenberg, M.
“Microscopic Simulation of Evacuation Process on Passenger
Ships”. In "Theoretical and Practical Issues on Cellular Auto-
mata”, Springer-verlag 2001.

[6] Meyer-König, T.; Klüpfel, H.; Schreckenberg, M. “A micro-
scopic model for simulating mustering and evacuation processes
onboard passenger ships”. In Proceedings of TIEMS 2001,
Oslo, Norway. 2001.

[7] Hongtae Kim, Dongkon Lee, Jin-Hyoung Park, Jong-Gap Lee,
Beom-Jim Park and Seung-Hyun Lee. “Establishing the Meth-
odologies for Human Evacuation Simulation in Marine Acci-
dents”. Proceedings of 29th Conference on Computers and In-
dustrial Engineering. Montréal, QC. Canada. 2001.

[8] J. R. Weimar. “Cellular automata model for ship evacuation”,
http://www.jweimar.de/jcasim/schiff1.html), [June 2006].

[9] C&CA. Proceedings of the 1st Workshop on Crowds and Cellu-
lar Automata. ACRI 2006. Perpignan, France. 2006.

[10] Autodesk Corp. "Maya 6 Features in Detail,”
http://www.alias.com/eng/products-services/maya/file
/maya6_features _in_detail.pdf. 2004,

[11] Wainer, G. "CD++: a toolkit to define discrete-event models".
Software, Practice and Experience. Wiley. Vol. 32, No.3. pp.
1261-1306. November 2002.

[12] Braunstein, M; Ameghino, J; Wainer, G.. “Modeling evacuation
processes using Cell-DEVS”. Internal report. Computer Science
Department. Universidad de Buenos Aires. 2003.

[13] J. Ameghino; G. Wainer: “Application of the Cell-DEVS for-
malism for modeling cell spaces” In Proceedings of AIS’2004,
Jeju Island, Korea, Lecture Notes in Computer Science, 2004.

[14] G. Wainer and W. Chen. "A framework for remote execu-
tion and visualization of Cell-DEVS models". Simulation.
Vol. 79, pp. 626-647. November 2003.

