SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2007; 37:1-28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.809

Developing a software toolkit
for urban traffic modeling

Gabriel Wainer*:"

Department of Systems and Computer Engineering, Carleton University,
4456 Mackenzie Building, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B&

SUMMARY

ATLAS is a modeling language that permits a static view of a city section to be defined for simulating
traffic in closed areas. We propose a methodology that is focused ofi the user while being able to improve
the software development activities. The models are formally specified, avoiding a high number of errors
in the application, thus reducing the problem solving time. Streets are characterized by their traffic
direction, number of lanes, etc. Once the urban section is outlined, the traffic flow is antomatically set up.
Specialized behavior is included to model traffic lights, trucks, traffic signs, railways, etc. The basic idea is
to provide a mapping into DEVS and Cell-DEVS models that can hi: easily executed with a simulation
tool. As the modelers can focus on the problem to solve, development times for the simulators can be
dramatically reduced. A front-end system allows the user to draw city sections (and then parse the drawing
to create a valid ATLAS file), and an output subsystem permitting cars to be shown with realistic 3D
graphics. Copyright @ 2007 John Wiley & Sons, Ltd.

Received 20 July 2005; Revised 3 October 2006; Accepted 18 December 2006

KEY WORDS: traffic simulation; DEVS models; cellular models; Cell-DEVS models; modeling methodologies;
simulation support systems; environments

INTRODUCTION

The domain of urban traffic is of such complexity that it is impossible to use traditional analytical
methods for analysis and control. Modgling and simulation techniques, instead, have shown some
success, and they have been gaining popularity in this field, as they allow the analysts to study particular
problems using virtual experimentation. Numerous software environments have been developed to
solve these problems, using a variety of techniques.

*Correspondence to: Gabriel Wainer, Tepartinent of Systems and Computer Engineering, Carleton University, 4456 Mackenzie
Building, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6.
"E-mail: gwainer@sce.carleton.ca

Contract/grant sponsor: NSERC
Contract/grant sponsor: Canadian Foundation for Innovation
Contract/grant sponsor; ‘Ontario Innovation Fund

T $IWILEY
Copyright @© 2007 John Wiley & Sons, Ltd. . InterScience’

DISCOVER SOMETHING GREAT

oo,

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number 1

2 G. WAINER ql') E

The early efforts in this area used macroscopic models to analyze traffic demand and flows on a
traffic network using static parameters (i.e. average of daily traffic or average for peak hours). The goal
was to find long-term forecasts that could be used for investments or dimensioning of the traffic net.
Microscopic simulations are more recent. They require higher computing power, as they describe both
system entities and their interactions at a high level of detail (i.e. a lane change could consider the
nearby cars, as well as detailed driver decisions). Nonetheless, they can repraduce thi real dynamics
of traffic, enabling a modeler to study detailed phenomena as a function of time. Due to the precision
of the results they provide, numerous tools for microsimulation are available, such as HUTSIM [1],
Transims [2,3], Traffic Simulator [4], AIMSUN [5], CORSIM [6] or PARAMICS [7,8].

In most cases, these tools were built using standard software development techniques (including
advanced GUIs) and, in some cases, software agents [9] and object-oriented programming [10].
Although they are usually well-tailored for by civil planners, the software product itself has the
standard problems existing in any complex software application: testability, maintainability, legacy,
etc. Introducing changes in the structure of the simulator requires a serious amount of effort, thus
impeding the introduction of advanced techniques at a reasonable cost. The result is a very expensive
product, difficult to modify and upgrade. In order to avoid these well-known problems in the software
development of tools, different research efforts focused on a different approach based on the use of
formal modeling methods. The idea is to use a formal modeling technique to define the model’s
behavior, and to create a software implementation following the specification. Some of them were
based on queuing networks [7,11], Markov models, cellular automata (CA) [12-15], Discrete-Event
Systems Specifications (DEVS) [16,17] and learning automata [18]. Several other approaches have
also been used, from game theory [19], Petri nets [20], up to fluid or electrical flow models. Modeling
tools based on formal approaches are easier to manage from the software development point of view.
Nevertheless, the users of these tools usually need expertise in the formal techniques used for creating
the modeling environment, which in most cases implies that an expert in the modeling technique used
must interact closely with the traffic team.

Here, we present the results of an effort focused on developing a new environment for traffic
microsimulations, in which the software environment was created using a unique approach, departing
from previously existing tools. The proposed solution deals with the issues just introduced, serving as
a proof of concept for a new methodology in the field. Our goals include the following.

1. Usability: allow the end users (civil planners) to ignore details about the underlying techniques,
being able to focus on the problem to solve.

2. Testability: use formal techniques that make the creation of test cases for the software tool easier.

3. Evolvability: provide a means of changing the mechanisms to create traffic behavior, topology
of the terrain or traffic light control, using an evolvable approach that would allow the traffic
researcher to learn by doing, allowing one to introduce new methods into the toolkit easily.

4. Maintainability: provide facilities that would permit the software tool to be changed and re-tested
easily, allowing improved maintenance.

In order to achieve these goals, we have organized the creation of the software as follows (see Figure 1).
We first defined (and validated) a high-level specification language representing city sections
[21,22]. This language, called ATLAS (Advanced Traffic Language Specifications), focuses on the
detailed specification of traffic behavior (1) from the user’s point of view. This method allows one
elaborate study of traffic flow according to the shape of a city section and its transit attributes.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number 2

DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING

3

ATLAS ATLAS
(1) *I—F-G:I Tac -i—hfﬁ:l MAPS
e —
Cell-DEVS ” > CD++
I,
Parallel f . Rea-Time
Standalone Distnbuted

Figure 1. Structure of the proposed method.

A static view of the city section can be easily described, including definitions for traffic signs, traffic
lights, etc. A city planner can concentrate on the problem o solve, instead of being in charge of
defining a complex simulation, thus allowing us to achieve our first goal. The language constructions
were then mapped into formal constructions using, in this case, the Cell-DEVS [23] and DEVS [24]
formalisms (2). The behavior for each of the constructions presented in ATLAS was validated in terms
of their correctness when built as Cell-DEVS models. Although a Cell-DEVS specification was used,
other modeling approaches could be employed (for instance, CA or flow networks for the traffic, and
Petri nets for the traffic light controllers). The use of these formal techniques improves maintenance
and evolvability, and facilitates testing (this issue was widely discussed in various literature in the
field; some of the related work in this area includes [24-30]). One important fact is that the concept
of closure under coupling (which guarantees that a DEVS coupled model is equivalent to an atomic
model from the point of view of their input/output trajectories), allows coupled models to be integrated
into a model hierarchy, thus reducing testing time and improving the quality of the models.

Then, a compiler was built following the formal specifications of ATLAS (3). The ATLAS Traffic
Simulator Compiler (ATLAS/TSC or TSC) was also built with our goals in mind [31]. The compiler
generates code by using a set of templates that can be redefined by the user, easily adapting the
generation of behavior to different modeling and simulation techniques. The extensible software
architecture of the TSC compiler serves as the core of a complete system for the input, execution
and output of complex traffic microsimulations. This approach also avoids version problems if the
underlying tools are modified, improving maintenance and evolvability. TSC was provided with a set
of templates that generate code that run on the CD++ toolkit (4) [32]. This approach also helps us to
achieve our goals, as DEVS models written in CD++ can execute seamlessly using different engines,
including standalone, embedded real-time and parallel versions (5). Thus, a model can be created on
a workstation using the standalone simulator, validated in large scale using the parallel engine, and
then put to work on the field using specialized embedded hardware. We can also make use of different
libraries built for CD++, which allows varied modeling techniques (including Petri nets, finite state
machines, Modelica, bond graphs, etc.) to be used. In this way, software developers could use the most

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28

DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number 3

Q1

4 G. WAINER ql') E

adequate technique for different model subcomponents. As CD++ follows the formal definitions for
DEVS and Cell-DEVS, we can also guarantee that model execution is correct (the CD++ simulator
was formally verified for correctness). Hence, our activities were mainly devoted to checking whether
the constructions we proposed provided a valid dynamic behavior, which was successfully done in [33].
The separation of modeling and simulation reduced the time spent in testing, as reported in [25-28].
The formal definition permits focusing in the model to develop, whereas the hierarchical modular
definition makes it much easier to find related errors.

Defining very advanced models using TSC can be a tedious process that is exacerhbated when there
are rapid changes to the system input. The outputs of the system also generate text-based log files,
which might be complex to analyze. Thus, we built a front-end application (called MAPS), which
converts TSC constructions into a graphical representation (6). This representation allows the user to
draw a city section with roads, crossings and decorations (potholes, stop signs, etc.), and then (7) parse
the drawing to create a valid TSC file [34]. Likewise, the output went from a single segment of road
with blocks as cars to a full-blown city section with realistic 3D graphics. In the following sections,
we discuss each of the phases in the creation of this environment, focusing on each of the phases, and
discussing the characteristics of the software developed to accomplish the goals in each phase.

BACKGROUND

Our goal is to develop microsimulation-based software to describe the local behavior of traffic with
high precision. We want to allow modelers to analyze the behavior of traffic in closed sections with
complex urban design or in closed traffic conditions (parking, roads in shopping malls, amusement
parks or sports stadiums). The CA formalism has proven useful for these applications, and there is a
wide variety of success stories of traffic simulation with CA [12-15]. CA defines a model as a grid of
cells using discrete variables for time, space and system states [35,36]. The cells are updated according
to a local rule function that uses a finite set of nearby cells (called the neighborhood of the cell) and
is computed synchronously and in parallel for every cell in the space. It has also been shown that
cellular models scale well (models of complete cities were presented in some of the cited work), and
cellular models have the advantage of modeling traffic flow on a microscopic scale while expanding
to large systems due to a simple type of dynamics. In'[3, 12, 14, 37-40] it is also shown in detail that
cellular models provide a good means for modeling microsimulation traffic, as they do represent a quite
intuitive way of analyzing the traffic flow in detail, and they enable good visualization of the results.
Although cellular computing has shown success in modeling traffic, representing some of the most
basic behavior (i.e. vehicle speed) using CA is done in a highly non-intuitive fashion. In addition, most
existing models are constrained to representing simple aspects of the traffic flow, such as standard car
movement in streets and crossings. In addition to these problems, CA are synchronous, a fact that
poses precision constraints and extra computation time. The Cell-DEVS formalism [23] was proposed
as a solution to these problems in which CA cells are defined as DEVS models [24]. First, in [41],
it was shown that using the discrete event nature of DEVS models combined with parallel simulation
techniques can produce specidups in simulations of up to a factor of 1000. In [23], we showed that
Cell-DEVS also provides these advantages. Reducing computation time is particularly important for
traffic models: although cars move at different speeds, we need to be able represent the fastest. Second,
DEVS models permit explicit delays to be set, improving the accuracy of the model’s timing properties.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number 4

C;P E DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 5

Coupled model defiration

r"f‘_”_’_—

AT
@l -
4 _//jl::e]l-DEVS
g il]
@
.'_,,.-4"""-'-]
o P P i ..
/ DEVS model
HH T(8) -+ |
Cell-DEVS atomie call

Figure 2. Informal definition of Cell-DEVS,

Finally, Cell-DEVS provides a formal framework that can he used to validate and verify the models,
opening the door to re-using the models as well as integrating them with other models based on different
formalisms (for instance, using Petri nets or finite state machines to specify the behavior of traffic lights
or railway controllers).

DEVS is a formal specification for modeling discrete event systems. A DEVS model is either atomic
(behavioral) or it is coupled (structural)—a hierarchical and modular composition of other DEVS sub-
models. A DEVS atomic model is a behavioral description of a system into terms of state variables,
input and output events, and functions to compute the next state and output events:

M= (Xa Sv Y, Sinta Sexta)‘" D>

Here, S is the state set, X is the set of extérnal input events received from other models and Y is the
set of output events provided to other models. X and Y define the model’s interface, which is composed
of input and output ports. The model’s behavior is defined by the remaining four functions. Each state
has an associated duration time provided by the lifetime function D. When this duration time elapses,
an internal transition is triggered possibly sending outputs out through the model’s output ports using
the output function A. The internal transition function 8y is then activated to produce internal state
changes. Input events received on the input ports are processed according to the internal transition
function exs.

A DEVS coupled model is a structural composition of atomic models or other coupled models.
DEVS models are closed under coupling, i.e. a DEVS coupled model is equivalent to an atomic model
from a higher level of abstraction. A DEVS coupled model is defined as

CM = (Xa Y’ D’ {Mi}’ {Ii}’ {le}>

As with the atomic model, X and Y define the outer interface of this model and the events
flowing in and out (allowing modular definition and hierarchical composition of the sub-models).

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number 5

Q2

6 G. WAINER ql') E

The remaining attributes describe the inner composition: the set of component madels and the set
of interconnections, known as influencees, between their output and input ports. D is an index of inner
components, and for each i € D, M; is its (atomic or coupled) DEVS model. J; is the set of influencees
of model i (i.e. which component is connected to which). For each j € [;, Z;; is'the i to j translation
function that is in charge of translating outputs of one component’s model into inputs for the others.
To do so, an index of influences is created for each model (/;). For every j in this index, outputs of the
model M; are connected to inputs in the model M ;.

The Cell-DEVS formalism is an extension to DEVS to describe complex discrete-event cellular
models that can be integrated with other DEVS models. Each cell of a space is defined as an atomic
DEVS with explicit timing delays. Cell-DEVS atomic models can be formally specified as

IDC=(X,Y, S, N, delay, d, 8int, Sext, T, A, D)

where X represents the external input events, Y the external outputs, S the cell state definition, N the
set of input events, delay defines the kind of delay for the cell (i.e. transport versus inertial) and d is
its duration. Each cell uses a set of N input values to compute the future state using the function 7.
These values come from the neighborhood or other DEVS models. A delay function can be associated
with each cell to allow the deferral of outputs. A transport delay allows us to model a variable response
time for each cell. Inertial delays are preemptive: a scheduled event is executed only if the delay is
consumed. This behavior is defined by the iy, dext, + and 2 functions. Whenever an event arrives,
the external transition function is activated. In this case, it takes the set of inputs and computes the
cell’s future state using the t function. If the new cell state is different from the previous state, its value
should be sent to the neighbors (that is, the cell’s influencees). Otherwise, the cell is quiescent and its
neighbors must not be activated. In any case, state changes are transmitted only after the consumption
of the delay.
A Cell-DEVS coupled model is defined by

GCC: <X1iSta YliSta Xa Ya n, {[15 c e tl‘l}a Na Ca Ba Z>

Here, Xjisr and)i are input/output coupling lists. X and Y represent the input/output event sets,
which can be used to transfer data from/to other models. The n value defines the dimension of the
cell space, {t1, ..., t,} are the numbers of cells in each dimension and N is the neighborhood shape.
C, together with B (the set of border cells) and Z (the translation function) define the cells in the
space and their interconnection. The cell space defined by this specification is a DEVS coupled model
composed of an array of atomic cells, each of them connected to the cells defined by the neighborhood.
As the cell space is finite, the borders have a different behavior. The Z function allows one to define the
internal and external coupling of cells in the model. This function translates the outputs of mth output
port in cell Cj; into values for the mth input port of cell Cy;.

The formal specifications for DEVS and Cell-DEVS were used to build the CD++ tool [32]. CD++
lets the user define DEVS and Cell-DEVS. DEVS atomic models can be defined as C++ functions
(by defining the behavior of the functions 8int, Sext, » and D). Alternatively, Cell-DEVS models are
built using a specialized built-in language. Cell-DEVS coupled models are defined by their size,
neighborhood and borders (as described in the formal specifications). Then, the cell behavior (defined
by the local transition function) is described using rules with the following syntax: VALUE DELAY
{ CONDITION }. If the CONDITION of a rule is satisfied, the state of the cell changes to the
designated VALUE after a DELAY. If the condition is not valid, the following rule is evaluated.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number 6

Q3

C;P E DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 7

L = Railway

L]

Crossing (Mo TL, no holes)

® Crossing (TL, no hole)

3 16 Q Crossing (Mo TL, holes)
4=
2 O Hale
1 ¢ Johsite
- ‘.L-i 3
0 = | Contral Element
(1] 1 2 3 .| 5 G T 8 9 10 1 12

Figure 3. Shape of a city section

A wide range of functions and operators can be used to define these rules. Input/output ports allow
cellular models to be integrated with other DEVS. CD++ also allows n-dimensional zones to be defined,
in which the behavior is different.

ATLAS

ATLAS is a language for the formal specification of the static structure of a city section defined by
a set of streets connected by crossings. The formal specification for ATLAS constructions (elements
that form a city’s landscape) is first presented using an example. A discussion of the mapping of these
formal specifications to Cell-DEVS is given to demonstrate the translation of the ATLAS constructions
into formal models.

Atlas formal specifications

An ATLAS model is built as a set of different constructions, which are able to represent all standard
elements that form our city landscapes. These canstructions are presented using the example below in
Figure 3, and their generic formal specification (which was used in [21,22] to define the mapping into
Cell-DEVS models) is included.

Figure 3 shows a planar representation of a small city section consisting of segments (single and
double lines named ¢1 . . . 16), crossings fcl . . . ¢3) and decorations (jobsites, potholes, etc.). The list
of constructions includes the following.

o Segments: these represent sections of a street between two corners. Every lane in a given segment
has the same direction (one-way segments) and a maximum speed:

Segments ={ (pl, p2, n, a, dir, max)/pl, p2 € City A n, max € N A a, dir € {0, 1} }

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number7

G. WAINER SP E

Here, pl and p2 represent the boundaries of the segment (City = {(x, ¥)/x, y € R}), n is the
number of lanes and dir represents the vehicle direction. The a parameter (straight=0 or
curve = 1) allows the city shape to be defined more precisely, max is the maximum speed
allowed in the segment. In our example, ¢6 is a straight segment with forward direction
(i.e. (2, 10) — (7, 10)), two lanes and a maximum speed of 60 Km h~l.

Crossings: these represent the places where more than one segments intersect. They are defined
as points in the plane, associated to a maximum speed, and with the constraint of having at least
one segment connected to them, i.e.

Crossings = {(c, max)/c € City Amax € N A 3s, s’ € Segments A s = (pl, p2, n, a, dir, max)
As' = (pl, p2',n', d, dir, max)
AsZES Apl=cvp2=c)A(pl'=cVv p2 =c)}

Jobsites: these define an area over the segment where vehicles cannot advance:

Jobsite = {(s, ni, 8, #n)/s € Segments A s = (c1, ¢2, n, a, dir, max) Ani € [0, n — 1]
ASeNAtnell,n+1—ni]l A#n=1mod2}

Here, each (s, ni, 8, #n) € Jobsite is tied to a segment where-edmstruction works are being done.
It includes the first lane affected (ni), the distance between the center of the jobsite and the
beginning of the segment (§) and the number of lanes occupied by the work (#n).

Traffic lights: crossings with traffic lights are formally defined as TLCrossings = {c/c €
Crossings}. Here, ¢ € TLCrossings defines a set of models representing the traffic lights in an
intersection and its corresponding controller.

Railways: these are built as a sequence of level crossings overlapped with the city segments.
The railwaynetwork is defined by RailNet = {(Station, Rail)/Station is a model, Rail €
RailTrack }. RailNet represents a set of stations, each generating traffic to a nearby RailTrack,
defined as RailTrack = { (s, 8,seq) /s € Segments A8 € NA seq € N }. Each Railtrack associates
a level crossing to a segment, by identifying the segment being crossed (s) and the position of
the level crossing from the beginning of the segment (8). A unique identifier (seq) is assigned to
each level crossing, defining its position in the RailTrack.

Parking: border cells in a segment can he used for parking:

Parking = {(s, n1)/s € Segments A nl € {0, 1} As = (cl, ¢2, n, a, dir, max) An > 1}

Every pair (s, n1) identifies the segment and lane where parking is allowed (n1 = 0, on the left;
nl =1, on the right).

Traffic signs: these are defined by Control = {(s, t, 8)/s € Segments A5 € N At € {bump,
depression, pedestrian crossing, saw, stop, school}}. Each tuple here identifies the segment where
the traffic sign is used, the type of sign and the distance from the beginning of the segment up to
the sign.

Experimental framewarks: these allow experiments to be built on a city section by providing
inputs and outputs to the area to be studied. They are associated with segments receiving inputs,

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28

DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15,2007 Sheet number 8

DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 9

Input

g .0[(0.1)

(0.2)

©.3)

||

0,k-Hf

crossing

or those used as outputs, and are defined as

Figure 4. One-lane segment.

Output
crossing

InputSegments = {s/s € Segments A [(dir=0A (Jv € N : (p2, v} € Crossings))
VvV (dir=1A (v e N:(pl, v) e Crossings))]}
OutputSegments = {s/s € Segments A [(dir=0 A (I € N = (pl, v) € Crossings))
v (dir=1A (Fve N:(p2,v) e Crossings))]}

Translating ATLAS to Cell-DEVS

The ATLAS constructions presented above are formally defined and therefore can be translated into a
formal representation. We translated the constructions into verifiable Cell-DEVS models, thus showing
that ATLAS models themselves are provable (although a Cell-DEVS specification was defined, other
modeling approaches, such as CA or flow networks for the traffic or Petri nets for the traffic light

controllers, could be used when doing the mapping).

A detailed mechanism for the translations of each construction can be found in [21,22,33]. Here, we
give a few brief examples, in order to illustrate the translation mechanism. As each segment can have
a different number of lanes (leading to different border cages in each case), different behavior for the
local computing functions must be provided. Gne-lane segments are the simplest case, and serve as
a good starting point for an explanation of the process. A one-lane/one-way street, such as 3 in our
example in Figure 3, is described as an ATLAS segmentas t3 = ((x1, y1), (x2, p2), n, a, dir, max) =
((3,2), (1,4), 1, 1, 1, 60). The segment is translated into a one-dimensional Cell-DEVS model with
transport delays, informally depicted in Figure 4 with k cells and with the two border cells each
connected to a crossing. It is a one-lane straight segment with ‘go’ direction, and a maximum speed of

60 kmh™1.

Each cell in the one-lane segment is mapped into a corresponding Cell-DEVS atomic model:

S1=(X, S8,Y, N, 8int, dext, delay, d, t, A, ta)

where

X = {(Xy, binary), (X2, binary), (X3, binary)},

1

“ |0 otherwise

if there is a vehicle in the cell

Y = {(Y1, binary), (Y2, binary), (¥3, binary)}

N ={(0, -1y, (0, 0), (0, 1)}, delay = transport, d = speed(max)

Copyright @ 2007 John Wiley & Sons, Ltd.

Marked Proof

Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Ref: SPE809/34464ae January 15, 2007 Sheet number 9

10 G. WAINER ql') E

A, 8int and Sex¢ behave as defined in the Cell-DEVS formalism with transport delays. 7: S x N — S'is
defined as follows:

T (N) N |
1 (0, —-1)=1and (0,0)=0

0 (0,0)=1and (0,1)=0

0,0 TRUE /*Otherwise: state unchanged */ j

As we can see, each cell contains a vehicle or it is empty (S). The cell includes three input (X)
and three output ports (Y'), each prepared to communicate with the cell’s environment: its previous
neighbor (0, —1), itself (0, 0) and its next neighbor (0, 1). The local computing function () uses these
input events to define the movement of a vehicle. The first rule represents a vehicle arriving at an
empty cell from the previous cell. We first check whether the model receives an input event from the
previous cell informing that it has a vehicle ready to move (described by (0, —1) = 1, i.e. the input
event coming into (0, —1) in the N set shows there is a car willing to move from that cell). Then, we
check to see whether the current cell is empty (described by (0, 0) = 0, i.e. the input event coming from
the cell itself shows that there is no car there). If these two conditions are true, then the car arrives into
this cell (¢ (V) = 1). The second rule represents the car abandoning the present cell towards the front.
The final rule, which is not executed unless the first two fail, simply leaves the cell state at its present
value, represented by (0, 0). Transport delays are used to model the time a vehicle spends leaving a
cell and moving into the next. This time is generated by using a céngestion function combined with a
speed function related to the maximum speed in the segment (i.e. the max parameter in the segment
construction; in our example, 60 km h_l).

The atomic models for each of the individual cells within the segment must then be composed
into a Cell-DEVS coupled model for the entire segment. The ¢oupled model is constructed using the
remaining information provided by the segment definition: the position (for ¢3, two cells (3, 2) —
(1, 4)) and shape of the segment (straight). A cell represents a physical length of 7.5 meters, computed
as the average length of a car plus some extra space, as defined in [14,42]. Thus, the number of cells & is
a simple function of the segment’s length which is coniputed using geometry (depending on the value
of a)as £ = |\/|xl — x2|2 4+ |y1 — y2|?| (for'a = straight, i.e. the line length in Cartesian 2D space)
or £ = 2 (|v/]x1 — x22 + |yl — y2|2])/2)/2 (for a = curved, i.e. the circle perimeter):

CS1(k, max) = (Xjist, Yiise. X. Yo n, {t1, ..., ta}, 9, N, C, B, Z)

is the generic coupled model definition for one-lane, with

Yist = Xiise =11(0, 0), (0, k — 1)}
X = {(Xy+1(0, 0}, binary), (X,11(0, kK — 1), binary)}
Y = {{¥y-1(0, 0), binary), (Y541 (0, £ — 1), binary)}
n=1, 1 = ¢computedasexplained, n=23
N={0, =1).(0,0), 0,)}, B={(0,0),(0,k—1)}
Z is built using the neighborhood definition, as specified by Cell-DEVS formalism.
The cells (0, 0) and {0. £ — 1) comprise the external interface of the model, because they must

interchange information with the crossings corresponding to the street corners. The coupling scheme
for these border cells is described in Figure 5.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 10

C;P E DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 11

Crossing Crossing

T
L] Yo |0, D \ > 0.-1) Yn L
.......... > P Honogo

oll (0, k-1
Cell (0, 0) Call (GF1)

Figure 5. Coupling for the cells (0, 0) and (0, £k — 1}.

The port names in the figure are constructed using Cell-DEVS formal specification (parameter i
corresponds to the lane number; in our case, as a one-lane segment model is being considered, then
i = 0). Although we used this formal notation to prove properties ahout the models, in the following
discussion, we will rename the I/O ports in order to make it mare readable, as follows:

Port Name
Xy+1(, 0) x-c-vehicle
Xy, k=1) X-c-space
Y110, 0) y-c-space
Yy, k=1) y=c-vehicle

Notation: x stands for input ports, y for output ports, space means this port is used to inform that
there is room in the cell and vehicle is used to inform that it is occupied (¢ means that those ports are
connected to a crossing).

Remember that the model is for one lane with cars traveling in one direction, from left to right.
We can see that the cell (0, 0) receives a new car from the crossing in the x-c-vehicle port, and informs
the crossing of its state through the y-c-space port. On the other end, cell (0, k — 1) informs the other
crossing of the state of the segment through the port-y-c-vehicle, and receives information from this
crossing through port x-c-space. Hence, cells (0, 0) and (0, £ — 1) in the segment must be redefined to
allow this behavior. Whenever a vehicle wints to leave the crossing (e.g., port x-c-vehicle is 1) and the
receiving cell is empty, the vehicle moves to the cell. Likewise, if both the cell in the crossing to which
the segment is connected to and the previous c¢ll in the crossing are empty, a car can cross. We only
allow a vehicle to move to the crossing if the previous cell in the crossing (x-c-space) is empty, in order
to represent that those cars already in the crossing have higher priority than those trying to cross.
We use an inertial delay to represent that a car can only move into the crossing if there is free space
during the time needed by a vehicle to move to the cell. Therefore, if there is a fast car arriving to the
crossing input cell before the consumption of the delay, the car trying to cross waits.

We defined similar rules for segments of two and more lanes, which are converted into two-
dimensional Cell-DEVS with the structure depicted in Figure 6.

The interface of this model is integrated by all of the cells in the first and last columns, which can
be used to interchange information with the limiting crossings. Port definitions and rules for the border

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 11

12 G. WAINER ql') E

To
From
Output
Input Crossing
Crossing =
(2, 1) (2.2} (2, k1) §.
iMe=1, O T (ae-1, k=11 -

Figure 6. A segment with more than folr lanes.

cells are extensions of those defined previously for the one-lane model (further details can be obtained
in [21]).

Figure 7 depicts the methods for translating the remaining constructions (Specification details of
these models can be found in [21]). As explained in the previous section, the crossings represent places
in the city section where the segments join. Crossings are built as rings of cells with moving vehicles
following the ideas presented in [43], as depicted in Figure 7(a). Each crossing can connect any number
of segments, which are its inputs or outputs. Every crossing in this set is represented as a ring of cells
where the vehicles advance (using the parameters 1 and p2 in the crossing formal definition to define
the position of the crossing, and the max parameter to define the speed of the cars in the crossing).
In any given instant, they can get to another path, using the proposal defined in [3]. The cars advance
continuously in order to avoid deadlocks and, as mentioned before, a car in the crossing has higher
priority to obtain a position into the ring than the cars outside the crossing.

The presence of a jobsite causes vehicles to deviate in a segment. The corresponding segment
(s in the jobsite specification), the first lane affected (ni), the distance between the center of the jobsite
and the beginning of the section (§) and the number of lanes occupied (#n) are used to define a rhombus
over the segment where the vehicles cannot advance, as seen in Figure 7(b). The cars arriving at the
jobsite must deviate. The basic behavior is that cells in the rhombus do not receive cars and those
before it cause cars to deviate.

Figure 7(c) shows the translation of crossings with traffic lights (which are formally defined as any
other crossing: a point in the plane associated to a maximum speed). Each traffic light is a discrete-event
model (a DEVS model in our case) that sends a value representing the color of the traffic light to the cell
inside the crossing that corresponds to the input segment affected by the traffic light. Another DEVS
model is in charge of synchromizing all the lights in the corner. An upper level Cell-DEVS can be built
to coordinate all of the controllers in z city section. The number of traffic lights to be created depends
only on the number of input segments, and it is automatically defined by the number of elements in the
crossing.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 12

C;P E DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 13

——— Tuaffic direction

A (LD X
AlLDX|X|X
20X | XX X[X]
ARDX[X|X
RDRD{ X
A
Tosegment To segment
(a) (b)
Synchronizer
1 : A
/ 1 A
lj Iil IS__l Traffic lights Station |:| | l 1 | | | Railtrack

Segments 4 l‘
)] Segment S
(c) id)
o~ Parking lane
T L —] —> ¢l c2
S

Cqntrol
—> Movement allowed S gﬂ
(e) D

Figure 7. (a) Crossing; (b) jobsite; (c) traffic lights; (d) railways; (e) parking; (f) traffic signs.

For every element in RailNet, twa models are defined: a DEVS model representing a station
(from where a train departs), and a Cell-DEVS with one cell per level crossing. The station generates
trains departing according to the train schedule. The RailTrack model affects the crossed segment as in
Figure 7(d).

Figure 7(e) shows the basic behavior of parking arcas. Every segment identifies the segment (s) and
the lane where car parking is allowed (s21). When a car arrives into a parking lane, it stops for a given
amount of time. This stopping'time is modeled using a long transport delay (several minutes or hours).

Finally, Figure 7(f) shows the basic idea of the traffic signs construction. In this case, according to
the type of sign and the distance to the beginning of the segment, the model changes the duration of
the delay to slow down the speed of the vehicles passing through the zone. A one-cell extension of this
construction allows potholes to be defined in segments and crossings.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 13

14 G. WAINER ql') E

.

After defining the constructions, and prior to building the compiler, it was necessary to study
the validity of the proposed language. A model is considered valid if, for every experiment within
an experimental frame, the behavior of the model and the real system under analysis agree within
acceptable tolerance. In our case, the validity of the model is guaranteed by the use of rules that are a
direct mapping from CA models already proven as valid. The Cell-DEVS specifications were checked
to be equivalent to those that were used at the level of input/output trajectories. We also considered
structural validity: the structure of coupled models is guaranteed to be correct, as they are automatically
built using well-known results in geometry and their coupled behavior is guaranteed by the use of
DEVS. Likewise, we check map properties within the specifications written in ATLAS. Different types
of conditions can be automatically checked:

e at least one segment exists;

o there are no isolated segments or crossings; specifically, every segment has an associated crossing

and every crossing is associated to an existing segment;

there are no crossing-to-crossing or segment-to-segment couplings;

street direction is correct in each of the segments;

a segment does not have the same beginning and end;

no more than one crossing exists at the same point;

railways, potholes, control signals and jobsites should be defined within an existing segment,

and cannot exceed the segment boundaries;

o railways cannot cross the segments close to their borders;

o segments in which parking is permitted must have at least two lanes (to allow parking in one
side) or three lanes (if parking in both sides is allowed).

After carrying out this step, we validated the behavior of city sections consisting of several
components. Because of this phase, we were able to find some constructions whose behavior was not
valid. For instance, our original definitions for parking and railways (which were defined using rules
that were not validated previously) showed incorrect behavior when compared with the real system
involved, and they were fixed.

ATLAS/TSC

With a formal specification in place, a compiler was developed. The novel contribution of ATLAS/TSC
lies in the methodology proposed for developing the microsimulation tool, which also meets our stated
objectives of usability, testability, evolvability and maintainability. The method is based on the use of
templates to define the process of code generation. Templates are orthogonal to the translation process,
and can thus be easily substituted, effectively re-configuring the code generation of the same simulation
model. In this way, the compiler can be adapted to different modeling tools (and, if the underlying tools
change, by modifying the template generation we can redefine the whole model). In order to check the
feasibility of the approach, the constructions presented in the previous section were built using the
CD++ tool, and two different sets of templates were used, each of them adapted to different versions
of the CD++ toolkit [23].

The compiler and its language provide an intuitive format for developing ATLAS models, a direct
mapping to the ATLAS formal specification and model validation, as discussed in previous sections.
Figure 8 is the TSC definition of the sample city section in Figure 3.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 14

DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 15

begin segments

tl = (1,5),(1,1),2,straight,go,21,1100, parkNone
t2 = (1,1),(5,1),2,straight,go,22,1200,parkRight
£3 =

(
((
(3,3),(5,1),1,straight,go, 23,1300, parkNone
t4 = (5,1), (
((
(

10,1),1,straight,go,24,1400, parklane
t5 = (5,1),(8,4),1,curve,go, 25,1500, parkNonea
t6 = (10,8),(10,1),2,straight,back,26,1600, parkLeft

end segments

begin crossings

¢l = (1,1),11, withoutTL, withHole, 221, 111
¢2 = (5,1),12, withTL, withoutHole, 222, 112
¢3 = (10,1),13, withoutTL, withoutHole, 223, 113

end crossings

begin railnets
rnl = (tl,1), (t2,1), (t6,2),331
end railnets

begin jobsites
in t1 : 1,2,1,441
end jobsites

begin holes
in t2 : 1,2,553
in t4 : 1,0,557
in t5 : 1,3,559
end holes

begin ctrElements
in t2 : stop,0,651
in t4 : saw,2,658
end ctrElements

Figure 8. Definition of the city section in TSC.

Figure 8 shows that constructions are grouped into sections according to using begin/end blocks.
Inside each block are one or more sentences for the respective ATLAS construction. The sentence
syntax, summarized in Table I, flows mainly from the formal specification.

The few syntactical differences between 1'SC and the formal definitions lie in providing an intuitive
development environment for the model developer, leaving to the compiler the mechanical translation
into the formal specification syntax. For instance, in Figure 8 we show six segments defined, each with
an identifier (¢1...16). The senience syntax for other components then make use of these segment
identifiers (e.g. in the jobsite for 1) instead of re-stating the specific cell coordinates of the formal
specification (which are needed for the validation process). Another difference is the lack of any explicit
parking constructions; instead, parking is included as an extra qualifier in the syntax for a segment
sentence, because parking is inherently tied to particular segments. Likewise, the crossing sentence
includes a qualifier for traffic lights, instead of a separate traffic light sentence. The compiler performs

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 15

16 G. WAINER ql') E

Table I. TSC syntax.

Construction TSC sentence structure Comments

Segment id = pl,p2, lanes, shape, direction, speed, -pzu'k'[‘ype franslates to a
parkType parkType= [parkNone | parkLeft | parking construction
parkRight | parkBoth]

Crossing id = p, speed, tLight, crossHole, pout A pothole can also be
p and speed represent (p1,p2) and max of the mcinded in a crossing.
formal specification Defines whether a
tLight: [withTL|withoutTL] crassing contains a
crossHole: [withHole |withoutHolel] pothole or a traffic light.

pout: probability of a vehicle abandoning the crossing,
used to simulate random routing

JobSites in t : firstlane, distance, lanes
firstlane, distance and lanes defined as in the
formal specification

Traffic lights Included as tlight in crossing

Railways id = (s1, d1) {,(s1, di)} TSC automatically
84 segment identifier crossed by the railway generates the sequence
d; distance between beginning of the segment s; and railway number in railway

specification

Parking Included as parkType in segment

Traffic signs in t : ctrType, distance Potholes: one cell.
ctrType: [bump | depression | Cressing | Each hole is defined as:
saw | stop | schooll. distance in ¢: lane, distance

to the beginning of the seament

the multiple validity checks in the city map described in the previous section (at least one segment,
only one crossing at the same point, etc.).

We need one template per ATLAS construction. The templates for segments and crossings are
used to define how the behavioral models cotresponding to them are generated (in our case, using
Cell-DEVS). The remaining templates are used to modify the behavior of these basic models, including
new behavior according to the construction to be used. For instance, potholes, railways and traffic signs
affect the behavior of the segment they are decorating; likewise, potholes and traffic lights can affect
crossings.

Every template contains instructions to generate the sentences defining the simulation model.
They are organized in different sections using the format shown in Figure 9.

Each part of the template is associated with a set of generation rules for the compiler.
The after_rules lines must be placed after the rules for segments or crossings if there are other
constructions affecting the basic one, for instance traffic lights (lines to generate the traffic light and
synchronizer models), railways (to generate rails and railnet synchronizer models), input segments
(to define traffic generators) or output segments (to define traffic consumers).

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 16

Q4

DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 17

|--template identif--| ; defines a generic identifier to recognize the type of template
|--top components --| ; these lines are added to the top coupled model
line; ... liney
|--top ports--| ; these lines define input/output ports for the top model
line; ...
|--top links--| ; internal/external couplings for the top model
line; ...
| --before neighbors-- ; lines to included before the definition of the neighborhood.
line; ...
| --neighbors--| ; define the neighborhood shape used for the model
line; ...
| --before portg-- | ; to be included before the definition of the porkts corresponding
line; ... ; to the model defining the construction.
| --ports--| ; define the input/output portsg for the madel geusrated.
line; ...
|--before linkg--| ; to be included before definition of internal/extarinal couplings
line; ...
|--linkg--| ; define the internal and external couplings of the model
line; ... ; corresponding to the constructicn,
| --before zonesg-- ; to be included when we need zones with special behavior.
line; ...
| --zoneg-- |
line; ...
| --before rules--| ; to be included before the rule deflinition for each cell
line; ...
|--rules--|
block; ... blocky ; define the behavior of each acell
|--after rules--| ; must be placed after the rules for other constructions
|--end template--| ; end of template definiticn.

Figure 9. Template definition.

The current version of the compiler is provided with a large list of templates. After parsing the file
containing the map to simulate, TSC parses the file containing the code generation templates and builds
a complete model, as seen in the following figure. For each simulation model, TSC takes the templates
defining the transition functions for the construction, and it intercalates them in an ordered way on all
of the sections according to the template definition, systematically translating ATLAS specifications
into CD++ models without writing any code.

During this process, TSC uses a set’of about 60 different macro-variables that can be included for
each template, and the user can modify them to generate code accordingly. Macros are used to facilitate
the use of the basic information that is repeated in every component: the size of the cell space, basic
behavior, position of railways, etc. The following table shows some examples for macro-variables used
in generating segments:

IDENTIF Replaces the identifier
LANE | Itis replaced by the lane number, once for each lane
FIRST CELL Rep_laces an identifier used for the first cell
LAST_CELL - | Replaces an identifier used for the last cell
WIDTH LAST_CELL + 1
Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28

DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 17

30

32
33
34
35
36
37

18 G. WAINER C"P E

City Map Templates
(TSC syntax)

C i Intercalation ;
- —
CD++

Code

Figure 10. Code generation based on templates.

Macro variable definitions start and finish with ‘&’; i.e. &IDENTIF&. If, for instance, we consider
segment ¢1 in Figure 3 (two lanes and four cells), the translator starts as follows:

[&IDENTIF&] [£1]
width : &WIDTH& width : 4
in : x_.c_vehicle&LANE& in : x_.c_ vehicle0

in : x_.c_ vehiclel
in : x.c. vehicle&LANE&&FIRST CELLE | in : x.c. vehicle00
in : x_c_. vehiclel0

The following lines show the sequence of steps to create the input/output links for the same example,
using the method explained in Figure 5:

link : y ¢ vehicle@&IDENTIF& (&LANE&, &LAST CELL&) y ¢ vehicle&LANE&&LAST CELL&
link : y c vehiclee@tl (&LANE&, &LAST CELL&) y c vehicle&LANE&&LAST CELL&

link : y_c_vehicle@tl (&LANE&,3) y ¢ vehicle&LANE&3

link : y_c_vehicleetl(0,3) y = vehicle03

link : y ¢ vehicleetl(1l,3) y c wehiclel3

[SaI =R VSR S I

Let us suppose, for instance, that the following city section is defined (one segment and its
experimental framework, which is created automatically to test the segment):

begin segments
tl = (0,0),(10,0),2,s8traight,go,200,200, parkNone
end segments

As this specification defines one segment with two lanes, the two-lane template is used. Figure 11
shows how the intermediate code is generated (using the previous definitions).

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 18

DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 19

—template Segment_oTlane_StaortGenerator ——

| -—top components—-|

= . aT o)
components : &IDENTIF&Gen@TSCGenerator cemponents : tlGen@TSCGenerator

|-—top links-—-| link : y t carO@tlGen x yge car00Qtl
link : y t car&LANE&R&IDENTIF&Gen _> link : y t carl@tlGen x ge carlO@tl
x_ge carSLANE&SFIRST CELL&RS&IDENTIFS&

|-—template Segment-2Lane-EndConsumer —-—|

| -—top components—-|
components : &IDENTIF&Cons@TSCConsumer components : tlCons@TSCConsumer

|-~top ports—-| =P out : gtyOutSimu tlCons

out : atxOutSimu &IDENTIF&Cons -

|-—top links——|

link : y co carsLANESSLAST CELL&QRSIDENTIFS .
x_t_carsLANE&@&IDENTIF&Cons _» link : y co car09@tl x t carO@tlCons

link : y ;o carl9@tl t 1Qtic
dilts 8GR O e ll'r’L 3 .ur Litr@t§Con}s<7 EcgitzimuOZiCons
qtyOutSimu &IDENTIF&Cons M oSty vy -

|——template Segment—2Lane ——|

| -—top components—-|

components : &IDENTIF& “+ comporents : tl

| --before neighbors—-| 5
[el]

[&IDENTIF&] —> type : cell

type : cell

Figure 11. Translation hased an templates.

The translation begins by defining the type of template to be used (in this case, a two-lane segment
with a generator in the start of the segmenf). The top components use the specification of the model
to get the model identifier (¢1 in this case) that is used in the following replacements of the identifier
macro (&IDENTIF& = 1). Then, the components of the top model are defined. In this case, we have
ong generator connected to the segment to generate traffic. The link statements are used to define the
internal and external couplings, according to the ATLAS definitions (using templates for the first and
last cell in the segment). In this case, the generators’ output ports (whose names are generated using
macros) are connected to the input ports of the Cell-DEVS representing the two-lane model. The same
procedures are repeated for the couplings in the end model. Finally, Figure 12 shows the complete
Cell-DEVS model created using the Segment-2Lane template.

We can see that a one-line specification automatically expanded into a CD++ model with more than
40 lines, defining the detailed behavior of this model. The model creation follows the specifications
presented in Figures 4 and 6 (following the rules for creating car movement), and the coupled
model uses the ideas presented in Figure 5. In this way, the definition time for traffic models can
be dramatically reduced. Figure 13 shows an excerpt of the simulation results for Figure 11.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 19

G. WAINER

[top]

components : tlGen@TSCGenerator // Experimental Frame: Generator+Consumer
components : tlCons@TSCConsumer

components : tl // tl: segment

out : gtyOutSimu tlCons

link : y_ t_car0@tlGen x_ge car00@tl // External Coupling specification

link : y_t_carl@tlGen x ge carlQ@tl
link : y_co_car(9%etl x_t_car0@tlCons
link : y_co _carl9etl x_t_carl@tlCons
link : quantity@tlCons gtyOQutSimu_ tlCons

[t1] // tl segment Coupled Model Spécification
type : cell width : 4 height : 2 // Model size

delay : transport border : nowrapped

neighbors : (1,-1) (1,0) (1,1) (0,-1) (0,0) (0,1) (-1,-1p {-1,0) (-1,1)

in : x-ge-car00
in : x-ge-carl0
out: y-co-car03
out: y-co-carl3
link : x-ge-car00 x-ge-car@tl(0,0) link : x-ge-garld x-ge-car@tl(l,0)

link : y-co-car@tl(0,3) y-co-car03 link : y-co-car@tl(l,3) y-co-carl3
localtransition : tl-segment2-laneO-rule

[tl-segment2-lanel-rule]

rule : 1 21 { (0,0) = 0 and (0,-1) = 1 }

rule : 1 21 { (0,0) = 0 and (-1,-1) = 1 and {-1,0) = 1 and (0,-1) = 0 }

rule : 0 21 { (0,0) = 1 and (0,1) = 0 }

rule : 0 21 { (0,0) = 1 and (-1,0) = 0 and (-1,1) = o }

rule : {(0,0)} 21 { t }

Figure 12. Resulting definition for #1 in CD4+.
Message Y / 00:00:00:000 / tlgen(0%) / y t vehicle0 / 1.00000 to top (01)
Message D / 00:00:00:000 / tlgen(23) / 00:00:03:000 to top (02)
Message X / 00:00:00:000 / top(0l) / x_ge vehicle00 / 1.00000 to tl (03)
Message X / 00:00:00:000 / tl(p5) / x_ge vehicle / 1.00000 to tl1(0,0) (04)
Message D / 00:00:00:0Q0 / t1(@,0)(06) / 00:00:00:200 to tl (05)
Message X / 00:00:00:000 / topi0l) / arrived / 0.00000 to bigcounter (06)
Message D / 00:00:00:000 / higcounter(02) / 00:01:00:000 to top (07)
Figure 13. Execution results for £1.
Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28

DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 20

C;P E DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 21

-

We can see that, initially, model t1gen generates a vehicle, which is inserted into the port
y-t_vehicle0 (01). The next activity of this generator (a part of the experimental framework) is
scheduled 3 seconds after this (02). The car generated is then transmitted to the segment ¢ I (03), which
puts the vehicle on cell (0, 0) of the segment (04). Then, it schedules an internal transition 200 ms after
that (05), representing the speed of the vehicle. The information is also transmitted to the output port
of the model, so that the experimental framework can record metrics (06)—-(072.

As we can see, we have developed the ATLAS/TSC compiler, based on a new methodology for
developing microsimulation tools, to meet our stated objectives of usability, testability, evolvability
and maintainability. The methodology is based on a set of templates to define the process of code
generation. The constructions were translated and tested on the CD++ tool, and two different sets of
templates were used, each adapted to different versions of the CD++ toolkit [25].

MAPS

As we can see, although the specification of the model in Figure 3 is simple (and it generates
2400 lines of Cell-DEVS specifications to be simulated), its manual definition is tedious. Likewise,
studying the output models using text-based log files is cumbersome. The goal of the MAPS interface
is to allow users to draw small city sections, which are then automatically parsed, into ATLAS files and
to visualize the results in a meaningful way. Users can change the layout of the city section, as well
as ATLAS specific parameters quickly and easily. MAPS eliminates the need to know many details of
the TSC syntax, and it dramatically reduces the time it takes to create ATLAS files. MAPS provide an
intuitive interface, which allows complete roads (instead of segments) to be generated, automating the
generation of crossings and decorations (potholes, stop signs, etc.).

MAPS parses the graphical representation, first removing and storing the crossings information.
City level decorations are then stored (e.g. railnets). The parser then loops through each road to see
whether they intersect with other roads. If a previously generated crossing exists at the crossing point,
then it is used. If not, a new crossing is created. The parser also checks to see whether the road contains
a railnet. If it does, the parser checks to which segment the railnet belongs to as the segments are
created.

A list of breakpoints determines how to cut up the road into segments (a breakpoint is a simple class
storing the location of the cut and its type (e.g. start of the road, end of the road, crossing, parking,
etc.)). This list does not contain crossings that do not form segments (e.g. at the start and end of the
road being segmented). Breakpoints can also be ereated by parking, as there can be parking available
only on certain parts of the road. The parser loops through the parking decorations for each lane of that
road to create breakpoints for that lane. Each segment is given a unique identifier, which is tagged to
other decorations that the lane is affected by (e.g. roadwork spanning multiple lanes, potholes, etc.).
The lane breakpoints are then sorted and the segments are created, named and decorated. The process
is repeated for as many lanes and as many roads as necessary.

The following rules apply to parsing lane decorations:

o there is no parking available at the start and end of a lane;

o parking objects may not overlap;

o parking objects may not be intersected by another road—that is, there is no parking allowed in a
crossing;

e segments with parking may not contain a railnet.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 21

22 G. WAINER C‘!P E

& CH.ifadraw.maps.MAPSApp T ool (£h00% Wed 10010 PM
X X-) MPs
r?le Edit Align Window ATLAS
B 7| MAFS - Raad: janStreet {view) T T T MAPS - Road: Waodside'Way (View)
%2 3486788 WNMA U'ZJJ:l.l?‘!'i"'U”'ZB'!

Hame ShanmonFlace

fainerwan I

Ciricd Start: 3.8

Cirid End: (18,5

2
24 P5 P65 Z7 73 79 30 31 32 33 M4 35 36 37 (S @ Lanex: 2
A - ——
, (
h
8 Speed; 4l
: Eil = =SS == =lStHE = i Delay:
L leted il nfa
0 nilE Curved: Z
i
12
a =l Pathols
MAPE - Road: ShannanPlace {Views)
2348 8T B9 101112941518 'If'.sﬁz-:zi] ; T-Light:
! - | Update Refrask
i
EENNENIEEEEEE NN

¥ seiectian Toct

Figure 14. MAPS graphical interface.

The segments are then modified by looping through the decorations for that lane and checking to see
whether they lay on that particular segmént, adding as many of them as required. Figure 14 presents
a screenshot of a city section using MAPS. Notg the presence of railnets (black rectangle with white
line), crossings (circles, automatically generated), roadwork (light squares), stop signs (dark squares),
parking sections (black rectangles), multiple and bidirectional roads. We also include the definition of
ATLAS parameters such as speed, curvature of the road, etc.

Figure 15 shows the TSC specifications generated by MAPS for the example in Figure 14. As we can
see, the new representation of the model is more intuitive, simpler to modify and faster to understand
and run experiments.

MAPS also includes a GUI that shows traffic flowing through a predefined city section based on
the results of a simulation. MAPS uses the created TSC definition to determine a static view of
the city without cars present, showing the user the various segments and crossings involved in the
ATLAS city section. The GUT uses the results file from a previous simulation by the CD++ simulator,

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 22

Q5

C;P E DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 23

begin segments

BankGOS1=(0,0), (5,0),1,straight,go, 60,0, parkNone
BankGOS2=(5,0), (6,0),1,straight,go, 60,0, parkNone
BankB1=(0,0), (5,0),1,straight,back, 60,0, parkNone
BankB2=(5,0), (6,0),1,straight,back, 60,0, parkNone
LibraryGl=(5,0), (5,2),2,straight,go, 55, 0, parkNone
LibraryGOS2=(5,2), (5,5),2,straight,go, 55, 0, parkNona

AltaVistaBACKS4=(5,5),(6,5),1,straight,back, 44, &, parkNone
BronsonGOS1l=(2,2), (5,2),1,straight,go, 75, 0, parkNone
BronsonGOS2=(5,2), (12,2),1,straight,go, 75,0, parkNone

end segments

begin crossings

Bank&Library = (5,0),60,withoutTL,withoutHale,0,0.5
Library&AltaVista = (5,5),55,withoutTL,withoutHonle,0,0.5
Library&Bronson = (5,2),55,withoutTL,withoutHale,0,0.5

end crossings

Figure 15. Resulting specification in TSC.

and determines the location and direction of specific cars at a particular point in time using a log file
generated by the simulator. A car shape is displayed on the screen in the appropriate cell on a segment
for the time specified in the log file. When that time expires, the car moves to a new cell as per the
results file.

The entire city section operates in this manner with cars moving within segments and from segment
to segment. The user can navigate around the city section as they wish using any tool capable of
displaying VRML files. The time is displayed as it changes according to the log file so that the user
has an idea of the time as cars are moving. This allows the user to see the buildup of traffic on different
segments graphically as time passes, instead of having to interpret the results using the simulation
results.

In order for the system to achieve these goals, it was essential to create VRML objects that represent
cars, segments and crossings. The first issue is that a static view of the city should first be drawn from
the TSC definition with the segments and crossings displayed to the user. We defined a road shape to
be displayed for every cell in the segment, and a crossing shape for crossings. The car shape shown
in Figure 16(a) was used to represent traffic (a slightly modified version of a shape found in [44]).
Crossings can be defined to have traffic lights or stop signs depending on the decoration defined for the
model (Figures 16(b) and (c)).

The different attributes for the segment= (including starting and ending points) must be used to
reconstruct the city section topology. L.t us consider an example of two segments written in TSC,
as follows:

A = (0,0), (10, 10), 1, =mtraight, go, 40, 300, parkNone
Al = (0,0), (10, 10), 1, =mtraight, back, 40, 300, parkNone

There are two segments, ane going from (0, 0) to (10, 10) and the other is going in the opposite
direction. Each of the crossings, segment and cars are one-by-one VRML objects, so the mapping

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 23

24 G. WAINER ql') E

(a) (b) (©)

Figure 16. Car and crossing VRML objects.

from the TSC definition to the VRML world is simple: each of the two segments contain 14 consecutive
segment objects

length = (P, — P2y)? + (Pry — Ps,)?

If the segments do not run parallel to the x- or y-axis, then the segment objects have to be rotated to
make them look consecutive ‘
'sz bl P]’.\;)

rotation = tan ™ -
Pay — Pix

For instance, segments A and Al are rotated by an angle of 45°. Once the angle and length have been
calculated, the segments have to be translated to the appropriate position in the VRML world. The first
step is to translate the segment object to the segment’s start point, then rotate the objects appropriately
as calculated above and, finally, scale the segment object to the calculated length. This is done for every
segment in the TSC definition until the static view of the city section is shown in the VRML. world.
An example of a static view of Carleton University campus is shown in Figure 17.

Once the static view of the section is shown, we verify that each segment and crossing match up with
a Cell-DEVS model in the TSC specification. After the model file has been verified, the user can get a
log file generated by the CD++ simulator in order to visualize the simulation results. MAPS parses the
log file for output messages such as the following:

Message Y/00:00:00:200/t1(0,0) /out/1 to til

which indicates that a car (the 1) has now appeared in cell O of lane O (the 0, 0) of segment ¢1 at
time 200 ms. We also use the logged message saying that a car has disappeared, so that the car can be
removed from the now vacant segment.

When MAPS encounters this message, it creates a VRML car object (Figure 16(a)), then rotates it
by the same amount and translates it to the same location as the segment object (in this case, on lane 0,
cell 0 of segment ¢1) as determined when displaying the static view of the city. Figure 18 shows an
example of the execution of the model defined in Figure 14.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 24

DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 25

] s s]]

ATLAS
Loadng cty: C-\wimlgui\Caileton_Jabste, plar

Mumber of segmerts 45
Mumbei of crotsing:. 16

Load MA File

Loed Flen Fie
LosdMiie |
|58 Lg FiE]

Stop Horeig

Figure 17. Static view of Carleton University campus with segments and crossings.

Figure 18, Dynamic behavior of cars moving within the city.

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28

Marked Proof

DOI: 10.1002/spe

Ref: SPE809/34464ae January 15, 2007 Sheet number 25

26 G. WAINER ql') E

.

CONCLUSION

ATLAS provides an application-oriented specification language, which allows the definition of
complex traffic behavior using simple rules for a modeler. The models are formally specified, avoiding
a high number of errors in the application, thus reducing the problem solving time.

We first defined and validated the ATLAS specification language, representing the city sections as
cell spaces, allowing an elaborate study of traffic flow according to the shape of a city section and its
transit attributes. The language constructions are mapped into formal constructions using Cell-DEVS.
Then, the TSC compiler was built following the formal specifications of the language. The compiler
generates code by using a set of templates that can be redefined by the user. In this way, ATLAS
specifications can be translated into different tools, while avoiding version problems if the underlying
tools are modified. The models that TSC generates can execute on the CD++ toolkit, allowing us to
guarantee that model execution is correct (CD++ simulator was formally verified for correctness).

Although TSC allows very advanced models to be defined, their definition requires manual
generation of text files defining city sections using ATLAS constructions. This tedious process does
not lend itself for rapid changes to the system input. The outputs of the system also generate text-based
log files, which not are user friendly. Thus, we built a front-end application (called ATLAS/MAPS
or MAPS), which allows the user to draw a city section with roads, crossings and decorations.
Likewise, the output went from a single segment of road with blocks as cars to a full-blown city
section with realistic 3D graphics.

Now, a modeler can easily describe a static view of the city section under analysis, including
definitions for traffic signs, traffic lights, etc. A modeler can concentrate on the problem to solve,
instead of being in charge of defining a complex simulation, and it can be simulated efficiently using a
discrete event approach, which can be applied to simulation engines (standalone, parallel, real-time).

We were able to achieve all of the goals discussed in the introduction.

1. ATLAS/TSC is a user-oriented language. The compiler and the visualization tools allow easy
interaction with the end user of the system.

2. Testability is improved thanks to the use of a formal methods (which allows system properties
to be proved before implementation, including guaranteeing the correctness of the simulation
engines, as shown in [23,24]) and a hierarchical modular modeling technique such as DEVS,
which enables standalone testing and reuse.

3. Software developers can easily change the environment by modifying the TSC templates.
Likewise, the simulation engines are easily modifiable. By following the formal approach we
used, it is convenient to formally study the modification of the rules prior modification of the
compiler (as done in our previous experiences), which makes finding problems easier (and allows
them to be tracked up to the specification level).

4. The issues discussed for items 2 and 3 also help to improve maintainability, as we can easily
change the environment according to new needs, or upon finding problems in the simulation
environment.

ACKNOWLEDGEMENTS

This work has been partially supparted by NSERC, the Canadian Foundation for Innovation, and the Ontario
Innovation Fund. Different persons collaborated in different stages, including Professor Cheryl Schramm, Shannon
Borho, Jan Pittner (MAPS), Alejandra Davidson, Alejandra Diaz, Verénica Vazquez (ATLLAS), Mariana Lo Tartaro
and César Torres (TSC).

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 26

0l

-

SP.

P E DEVELOPING A SOFTWARE TOOLKIT FOR URBAN TRAFFIC MODELING 27

REFERENCES

1. KosonenI, Pursula M. A simulation tool for traffic signal control planning. Proceedings of the 3rd International Conference
on Road Traffic Control (IEE Conference Publication, number 320). IEE: London, 1990.

2. Barret C, Beckman R, Berkbigler K. Transportation analysis simulation systems (TRANSIMS), volume O—overview.
Technical Report LA-UR 99-1658, Los Alamos National Laboratory 1999.

3. Nagel K, Stretz P, Pieck M, Leckey S, Donnelly T, Barret C. TRANSIMS traffic flow characteristics. Proceedings of the
Transportation Research Board 77th Annual Meeting, Washington, DC, 1998.

4. Chopard B, Dupuis A, Luthi P. A CA model for urban traffic and its applications to the city of Genoa. Proceedings of
Traffic and Granular Flow, 1997.

5. Barcel6 J, Casas J, Ferrer J, Garcia D. Modeling advanced transport telematic applications with microscopic simulators:
The case of AIMSUN. Proceedings of the 10th SCS European Simulation Symposium, 1998.

6. Bumble M, Coraor L, Elefteriadou L. Exploring CORSIM runtime characteristics: Profiling a traffic simulator. Proceedings
of the 33rd Annual Simulation Symposium. IEEE Press: Washington, DC, 2000.

7. Cameron G, Wylie B, McArthur D. PARAMICS: Moving vehicles on the connection machine. Pioceedings of IEEE
Supercomputing '95, 1995.

8. Sahraoui A, Jayakrishnan R. Microscopic—macroscopic models systems integration: A simulation ¢ase study for ATMIS.
SIMULATION 2005; 81:353-363.

9. Balmer B, Cetin N, Nagel K, Raney B. Towards truly agent-based traffic and mobility simulations. Proceedings of the
Autonomous Agents and Multi-Agent Systems Conference, New York, 2004.

10. Sadoun B. An efficient simulation methodology for the design of traffic lights at crossings in urban areas. SIMULATION
2003; 79:243-251.

I1. Schmidt M. Decomposition of a traffic flow model for a parallel simulation. Proceedings of Al, Simulation and Planning
in High Autonomous Systems (A1S°2000), Tucson, AZ, 2000.

12. Chopard B, Queloz PA, Luthi P. Traffic models of a 2D road network. Priceedings of the 3rd CM Users’ Meeting, Parma,
Italy, 1995.

13. Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical ‘dbservations and microscopic simulations.
Physical Review E 2000; 62:1805-1824.

14. Nagel K. Cellular automata models for transportation applicagicns. Proceedings of the 5th International Conference on
Cellular Automata for Research and Industry, Geneva, Switzerland, 2002 (Lecture Notes in Computer Science, vol. 2493).
Springer: Berlin, 2002.

15. Rodriguez Zamora R. Using de Bruijn diagrams to analyze ld CA traffic models. Proceedings of the 6th International
conference on Cellular Automata for Research and Indusiry, Amsterdam, The Netherlands, 2004 (Lecture Notes in
Computer Science, vol. 3305). Springer: Berlin, 2004.

16. Chi S, Lee J, Kim Y. Using the SES/MB framework to analyze trafﬁ(; flow. Transactions of the SCS 1997, 14(4):211-221.

17. LeeJ, Chi S. Using symbolic DEVS simulation to generate optimal traffic signal timings. SIMULATION 2005; 81:153—-170.

18. Unsal C, Kachroo P, Bay J. Simulation study of muliiple intelligent vehicle control using stochastic learning automata.
Transactions of the SCS 1997, 14(4).

19. Chen O, Ben-Akiva M. Game theoretic formulation of the interaction between dynamic traffic control and dynamic traffic
assignment. Technical Report, ITS, MIT, Cambridge, MA, 1998.

20. Tolba C, Lefebvre D, Thomas P, El Moudni A. Continuous and timed Petri nets for the macroscopic and microscopic traffic
flow modeling. Simulation Modelling Practice dnd Theaiv2005; 13(5):407-436.

21. Davidson A, Wainer G. Specifying control signals in tratfic models. Proceedings of AL, Simulation and Planning in High
Autonomous Systems (A1S°2000), Tucson, AZ, 2000.

22. Davidson A, Wainer G. Specifying truck movement in traffic models using Cell-DEVS. Proceedings of the 33rd Annual
Simulation Symposium. IEEE Press: Washington, DC, 2000.

23. Wainer G, Giambiasi N. N-dimensional Cell-DEVS. Discrete Events Systems: Theory and Applications 2002,
12(1):135-157.

24. Zeigler B, Kim T, Prachofer H. Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. Academic Press: New York, 2000.

25. Wainer G, Giambiasi N. Application of the Cell-DEVS formalism for cell spaces modeling and simulation. SIMULATION
2001.

26. Labiche Y, Wainer G. Towards the verification and validation of DEVS models. Proceedings of the 1st Open International
Conference on Modeling and Simzilation, Clermont-Ferrand, France, 2005.

27. Wainer G, Morihama [., Passuello V. Automatic verification of DEVS models. Proceedings of the SISO Spring
Interoperability Worksnop, 2002.

28. Nutaro J, Hammonds P. Combining the model/view/control design pattern with the DEVS formalism to achieve rigor and

reusability in distributed simulation. Journal of Defense Modeling and Simulation.

Copyright @ 2007 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007, 37:1-28
DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 27

Q6

28

G. WAINER

29

30.

31

32.
33.

34.

39.

40.

41.

42.
43.

44,

. Kim TG, Cho SM, Lee WB. DEVS framework for systems development. Discrete Event Modeling and Simulation:
Enabling Future Technologies. Springer: Berlin, 2001.

Zeigler BP, Fulton D, Nutaro J, Hammonds P. M&S enabled testing of distributed systems: Beyond interoperability to
combat effectiveness assessment. Proceedings of the 9th Annual M &S Workshop. ITEA: White Sanils, NM, 2003.

Lo Tartaro M, Torres C, Wainer G. Defining models of urban traffic using the TSC tool. Proceedings of the 2001 Winter
Simulation Conference. IEEE Press: Washington, DC, 2001.

Wainer G. CD++: A toolkit to define discrete-event models. Software—Practice and Experience 2002; 32(3):1261-1306.
Diaz A, Vazquez V, Wainer G. Application of the ATLAS language in models of urban traftic. Proceedings of the 34rd
Annual Simulation Symposium, Seattle, WA, 2001.

Wainer G, Borho S, Pittner J. Defining and visualizing models of urban traffic. Proceedings af the SCS 1st Mediterranean
Multiconference on Modeling and Simulation, Genoa, Italy, 2004.

. Chopard B, Droz M. Cellular Automata Modeling of Physical Systems. Cambridge University Press: Cambridge, 1998.

. Wolfram S. A New Kind of Science. Wolfram Media, 2002.

. Simon P, Gutowitz H. A cellular automaton model of bi-directional traffic. Physical Review E 1998; 57(2):2441-2444.

. Dupuis A, Chopard B. Parallel simulation of traffic in Geneva using cellular automata. ¥irrual Shared Memory for
Distributed Architectures, Kiihn E (ed.). Nova Science: Commack, NY, 2001; 89-107.

Campari E, Levi G, Maniezzo V. Cellular automata and roundabout traffic simulation. Proceedings of the ACRI’2004,
Amsterdam, Netherlands, 2004 (Lecture Notes in Computer Science, vol, 33(15). Springer: Berlin, 2004.

Li X, Jia B, Gao Z, Jiang R. A realistic two-lane cellular automata traffic model considering aggressive lane-changing
behavior of tast vehicle. Physica A 2006; 367:479-486.

Zeigler B, Moon Y, Kim D, Ball G. The DEVS environment for high-performance modeling and simulation.
IEEE Computational Science and Engineering 1997; 4(3).

Wagner P, Nagel K, Wolf P. Realistic Multi-line traffic rules for cellular automaton. Physica A 1997; 234:687.

Chopard B, Queloz PA, Luthi P. Cellular automata model of car traffic in two-dimensional street networks. Journal of
Physics A: Mathematical and General 1996; 29:2325-2336.

Ames A, Nadeau D, Moreland J. VRML 2.0 Sourcebook. Wiley: New York, 1991,

Copyright @ 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007, 37:1-28

DOI: 10.1002/spe

Marked Proof Ref: SPE809/34464ae January 15, 2007 Sheet number 28

