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ABSTRACT: We introduce Embedded CD++ (eCD++), 
an engine that can execute DEVS models in embedded 
environments. It deploys a Flat Coordinator and the 
GGAD Graphical Modeling tool, which supports the 
Parallel DEVS formalism. Its real-time extensions al-
low users to develop hardware-in-the-loop applications 
with ease, being able to integrate them in DEVS-based 
environments. 
 
1. Introduction 
 
Modeling and simulation (M&S) has gained popularity 
in a wide variety of fields ranging from biotechnology 
to digital circuits design, from aerospace engineering to 
environmental studies, from economics to national de-
fense. Scientists and engineers use M&S mythologies 
and tools to understand and analyze complex problems. 
Different M&S techniques have been introduced with 
success. Among these, the DEVS formalism [ZPK00] 
provides a framework for the construction of hierarchi-
cal models in a modular manner, allowing for model 
reuse and reducing development time and testing. It de-
fines a way to specify systems whose states change ei-
ther upon the reception of an input event or due to the 
expiration of a time delay. Furthermore, it allows hier-
archical decomposition of the model by defining a way 
to couple existing DEVS models. The CD++ toolkit 
[Wai02] is an object-oriented software that implements 
the DEVS simulation mechanism. 
 
Simulation tools such as CD++, are only used in the 
simulated world. In other words, it is very difficult for 
the modeller to validate his or her simulated solution in 
the real world. Moreover, this separation makes solu-
tions developed in the simulated world unable to pre-
cisely solve real world problems, because for many 
complex problems, such as real-time systems, the simu-
lated models cannot describe their real world counter-
parts in 100% accuracy.  
 
Here, we present a new mechanism to overcome this 
limitation. We start the problem analysis by developing 
solutions entirely in the simulated world, and we can 
execute the same model in the real world by an embed-
ded version of the CD++ (named eCD++) running on a 
Single Board Computer (SBC). The simulated results 
are compared with that from the real world. If the two 
results fail to agree, the simulated solution can be re-

vised in the simulated world for retest. The DEVS 
models are modular. Thus, subcomponents of larger 
models can be validated individually. If a subcompo-
nent is validated in the real world, it can be replaced by 
real hardware. This technique enables incremental tran-
sition from the simulated models to the actual hardware 
counterparts. This is a low-risk and cost-effective ap-
proach to develop hardware-in-the-loop applications. 
 
DEVS technology has been usually applied to large-
scale dynamic systems, with implementations, such as 
CD++, running on workstations and servers. As these 
systems focus on the high level modeling and simula-
tion, another branch of DEVS application is on real-
time event-based control [HZC01]. These low level ap-
plications exist largely on embedded systems, which are 
usually characterized as “intelligent devices” consisting 
of computer hardware and real-time software. This 
work mainly studies how to use DEVS technology to 
design real-time embedded systems.  
In the following sections, we will present the design 
and development of eCD++. eCD++ can run on embed-
ded systems and can execute DEVS models that interact 
with real world events. This capability makes eCD++ 
become a useful tool to develop real-time applications 
with hardware-in-the-loop [LTW03]. This work repre-
sents a hardware-in-the-loop simulation methodology 
that uses eCD++ to develop hybrid hardware and soft-
ware systems. The technique enables incremental tran-
sition from simulated models to the actual hardware 
counterparts and supports experimental frameworks to 
facilitate testing in a risk-free environment. To demon-
strate this methodology, this work used eCD++ to build 
a hybrid automated manufacturing system (AMS) with 
both real hardware and simulated DEVS models. 
 
2. Background 
 
DEVS (Discrete EVents Systems Specification) 
[ZPK00] is a formalism originally created for modeling 
and simulating discrete event dynamic systems. In 
DEVS, a model is specified as a black box with a state 
and a duration for that state. DEVS models can be put 
together by linking the outputs of a model to inputs of 
other models to form coupled models. Models made 
out of only one component are called atomic models.  
 



A Parallel DEVS (P-DEVS) model [Cho94a] is de-
scribed as a set of basic and coupled models. Atomic 
models are still the most basic constructions, which can 
be combined with other models into coupled models. 
The P-DEVS atomic model has the following struc-
ture: 

M = < X M , Y M , S, δ ext , δ int, δ con, λ, ta > 
where 
X M ={(p,v)| p ∈ IPorts, v ∈ X p }  is the set of input 
ports and values; 
Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output 
ports and values; 
S is the set of sequential states; 
δ ext: Q x XM

b → S is the external state transition func-
tion; 
δ int: S →  S is the internal state transition function; 
δcon: Q x XM

b → S is the confluent transition function; 
λ : S → YM

b is the output function; 
ta : S → R0 + ∪ ∞ is the time advance function; with 
Q := { (s,e) | s ∈ S , 0≤e≤ta(s) } the set of total states. 
 
The semantics of the P-DEVS definition are as follows. 
At any given time, a basic model is in a state s. And in 
the absence of external events, it will remain in that 
state for a period of time as defined by ta(s). When an 
internal transition takes place, the system outputs the 
value λ(s), and changes to state δint(s). If one or more 
external events E = { x1 .. xn / x ∈?XM } occurs before 
ta(s) expires, i.e., when the system is in the state (s, e) 
with e ≤ ?ta(s), the new state will be given by δext(s, e, 
E). Suppose that an external and an internal transition 
collide, i.e., an external event E arrives when e = ta(s), 
the new system’s state could either be given by 
δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler can de-
fine the most appropriate behavior with the δconf func-
tion. As a result, the new system’s state will be the one 
defined by δconf(s, E).  
 
A P-DEVS coupled model (CM) is defined by: 

 
CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC> 
where 
X = {(p,v)| p ∈ IPorts, v ∈ X p } is the set of input 
ports and values; 
Y = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output 
ports and values; 
M d is a set of atomic models, and D is a set of the 
atomic models’ names, where for each d ∈ D,  M d = (X 
d , Y d , S, δ ext , δ int, δ con, λ, ta) is a DEVS basic struc-
ture with Xd = {(p,v)| p ∈ IPorts, v ∈ X p } ;  
Yd = {(p,v)| p ∈ OPorts, v ∈ Y p } ; 
The couplings are subject to the following conditions: 
• external input couplings (EIC) connect external in-

puts to component inputs: EIC⊆ {((N, ipN ), (d, ipd )) | 
ip N ∈ IPorts, d ∈ D, ip d ∈ IPorts d } 

• external output couplings (EOC) connect component 
outputs to external outputs: EOC ⊆ {((d, op d ), ( N, 
op N )) | op N ∈ OPorts, d ∈ D, op d ∈ OPorts d } 

• internal couplings (IC) connect component outputs to 
component inputs: IC ⊆ {((a, op a ), (b, ip b )) | a, b ∈ 
D, op a ∈ OPorts a , ip b ∈ IPorts b } 

 
DEVS also defines an abstract simulation mechanism 
that is independent of the model itself and that can be 
easily implemented by computer software. This mecha-
nism provides a high level description of how the simu-
lation of DEVS models should be executed by a simu-
lator. Two kinds of simulators are defined, one for 
atomic and the other one for coupled models, this latter 
known as a coordinator. These simulators progress 
through the simulation by exchanging messages as de-
scribed by the abstract simulation mechanism. CD++ 
[Wai02] is a simulation software which implements the 
DEVS simulation formalism. In CD++, simulators and 
coordinators progress through the simulation by ex-
changing messages as described by the abstract simula-
tion mechanism. 
 
While P-DEVS provides sound modeling principles to 
characterize structural and behavior aspects of real-time 
systems, recent research suggests that transforming (or 
mapping) DEVS models to actual designs of real-time 
embedded systems is non-trivial [HS04]. Recent re-
search, therefore, has been focusing on developing 
schemes to support the transformation from simulation 
modeling to designs of real systems. One attempt was 
the DEVS-on-a-chip approach, which implements 
DEVS on a microprocessor that has limited memory 
and processing ability [HZC01]. It creates a just-as-
needed real time environment. This effort, however, did 
not implement a full scale of RT-DEVS specifications 
on the chip. As a result, it only demonstrates the capa-
bility of creating real-time embedded systems that have 
relatively simple compositions. Another research effort 
in this area focused on how to use RT-DEVS as a 
framework to develop hardware-in-the-loop applica-
tions [LPW03]. These applications are complex as a re-
sult of the high degree of interaction between software 
and hardware components. Therefore, the development 
of these applications is a challenging process in which 
M&S can become essential. The technique of applying 
RT-DEVS to develop hardware-in-the-loop applications 
seamlessly integrates simulation models with hardware 
components and also enables incremental transition 
from the simulated models to the actual hardware coun-
terparts. 
 
3. eCD++ functionality 
 
eCD++ provides four main functionalities: a Flat Coor-
dinator, Parallel DEVS (P-DEVS) simulation, a GGAD 
(Generic Graphical advanced environment for DEVS 
modeling and simulation) interpreter, and a real-time 



extension. The Flat Coordinator technique simplifies 
the simulation hierarchy by eliminating the coordinators 
in the hierarchy and by making direct messaging com-
munications between the Flat Coordinator and the 
simulators [Kim00], as shown in the following figure. 
 

   Coupled Model # 1 
  

Coupled Model # 2  Atomic Model # 1  Atomic Model # 2  Atomic Model # 3  
A tomic Model # 4 

  Atomic Model # 5 
   

(a) 
 

 
(b) 

Figure 1. Flat Coordinator (a) Example of a model 
hierarchy, (b) Associated processor hierarchy  

The following are the implementation details of the Flat 
Coordinator technique: 

q The Flat Coordinator must transform the hier-
archical structure of the model to a flattened 
structure in order to reduce the overhead in-
curred by message passing. The resulting non-
hierarchical structure is used by the Flat Coor-
dinator. 

q Due to the absence of the usual coordinators, 
any port links that link to coordinators’ ports 
must be re-wired to reach the far-end atomic 
ports. Then, the component links are handled 
by the Flat Coordinator, which forwards the 
events as needed.  

q The Flat Coordinator must receive and send 
messages directly with the Root Coordinator in 
order to carry out the simulation process. 

 
The CD++ toolkit contains a tool that provides a 
graphical user interface (GUI) for modellers to specify 
atomic models graphically, enabling non-expert users to 
define atomic models in a easier and more intuitive 
way. The tool generates textual specifications of the 
models represented graphically in the GUI. According 
to the specifications of the graphical notation 
[HSKP97], an atomic model is placed inside a box. An 
external state transition is represented by a dotted line 
above which the input event is represented by “?”. 
Similarly, an internal state transition is represented by a 
solid line above which the output event is represented 
by “!”. For example, an input event in?m means that a 
message m is input at the input port in, and an output 
event out!m means that a message m is output at port 
out. Input and output ports are denoted by black trian-
gles. 

 
The following figure includes a graphical representation 
of an atomic model called coin. This model simulates 
the behaviour of the coins displayer in a vending ma-
chine. It has one input port, namely coin_in, represent-
ing the input coins slot and one output port called 
coin_out which represents the display of the inserted 
coins’ amount. When coins are inserted into the coins 
slot, it takes one second for the coins displayer to dis-
play the coins’ amount. 
 

 
Figure 2. Graphical definition of an atomic model 
 
4. eCD++ Software Architecture 
 
eCD++ is modularized in the way that systems’ objects 
(written in C++) run as separate software modules with 
well-defined behaviours and independent functionality. 
The following are the major components: 

• Main Simulator 
• DEVS Modeling Subsystem 
• Simulation Subsystem 
• Messaging Subsystem 

 
Main Simulator manages the overall aspects of the 
simulation. It is the first object that is created when the 
simulation starts. In general, it does the following tasks 
in sequence: 

• Registers Atomic model objects, which are 
C++ objects derived from the Atomic class; 

• Reads in the external events and builds an ex-
ternal events table (if one is created); 

• Reads in the model file and builds the model 
hierarchy; 

• Creates the Root Coordinator and trigger it 
start to run 

The class diagram of the MainSimulator is shown in 
the following figure. 
 

 
Figure 3. Main Simulator Class 

Simulator #1 Simulator #2 Simulator #3 Simulator #4 Simulator #5 

Flat Coordinator 

Root Coordinator 



The DEVS Modeling Subsystem provides a logical rep-
resentation of the DEVS models defined by the model-
ler. The subsystem is composed by the Models Man-
ager and the DEVS Models Hierarchy Tree. The Mod-
els Manager manages the models hierarchy. More pre-
cisely, it does the following 2 tasks: 
• Main Simulator registers Atomic model objects, 

and Models Manager creates and manages the 
Atomic models objects database (a dictionary data 
structure that stores Atomic model string name-
Atomic object pairs). It also creates the Models Hi-
erarchy Tree which is composed by atomic and 
coupled models; 

• Employs the Processor Manager to create Proces-
sor class objects when the Main Simulator loads 
atomic models. 

 

 
Figure 4. DEVS Modeling Subsystem Class Diagram 

 
The Models Manager is implemented by the ModelAd-
min class, while the implementations for the atomic and 
coupled models are encapsulated by the Atomic and 
Coupled class respectively.  
 
The Simulation Subsystem consists of Simulators, co-
ordinators, and the Processors Manager. The Proces-
sors Manager, which is implemented by the Proces-
sorAdmin class, manages the Processor class objects. It 
maintains a hashing table of pointers to Processor class 
objects, such that actions, such as searching, can be per-
formed upon those objects. 
 

 
Figure 5. Simulation Subsystem Class Diagram 

The Processor class implements the DEVS simulation 
framework in which Atomic and Coupled models run. 
It defines message handlers that respond to various 
DEVS messages, such as internal and external state 
transition messages. The Simulator and Coordinator 
class are subclasses of Processor. The Root Coordinator 
is a special Coordinator that manages and controls the 
simulation cycles. It receives the incoming external 
events and sends the corresponding External Messages 
to the Top Coordinator. It also advances the Global 
Simulation Time. The following figure is the class dia-
gram for the Simulation Subsystem. 
 
The Messaging Subsystem consists of the Message 
Manager and various Messages class objects. Proces-
sors and coordinators send messages via the Messages 
Manager (implemented by the MessageAdmin class), 
which is responsible for delivering messages. The in-
coming messages are first buffered into the Message 
Queue and are processed by the Messages Manager in 
FIFO order. Each Message object contains information 
to identify the sender and the receiver. A time-stamp 
for the message and an associated value are also in-
cluded in the packet. The class diagram of the Messag-
ing Subsystem is shown in the following figure. 
 



 
Figure 6. Messaging Subsystem Class Diagram 

 
eCD++ also incorporates a GGAD model loader that 
parses GGAD files and builds equivalent atomic mod-
els. The GGAD model loader is a software module that 
consists of a front-end and back-end. The front-end is a 
GGAD parser, written in lex and yacc, that parses the 
input GGAD files and builds the syntax tree and the 
symbol table in a similar way as what a typical com-
piler’s front-end would do. The parse() method in the 
GgadParser class calls GGADparse() which is the main 
function generated by lex and yacc. 
 
The back-end builds the GGAD atomic models based 
on the syntax tree and the symbol table. The GGAD 
models behave exactly the same as if they were written 
C++. This is achieved by GGAD models providing the 
same API as that provided by the Atomic class. Provid-
ing a consistent API makes the integration of the 
GGAD model loader with the rest of the eCD++ code 
become easy. 
 
The GGAD Parser is written in Lex and Yacc, which 
are the tools used to define the context-free grammar of 
GGAD model files. The GGAD Parser parses the 
GGAD model file and builds the syntax tree and the 
Symbol Table. The implementation of the GGAD 
Parser is encapsulated in the GgadParser class. The 
Syntax Tree, built by the GGAD Parser based on the 
GGAD file, is a tree structure of GgadSyntaxNode class 
objects. The GgadSyntaxNode class has 6 subclasses: 
GgadFunctionNode, GgadConstantNode, GgadInput-
Node, GgadPortInNode, GgadVariableNode, and 
GgadActionNode. These classes form a C++ presenta-
tion of the GGAD language definition. In other words, 
the Syntax Tree, which is the composition of the 
GGAD syntax nodes, provides the behaviours of the 
atomic model which is described by the input GGAD 
model file in terms of C++ objects that can be executed 
during run time. The compositions of an atomic model, 

such as inputs and outputs ports, variables, and transi-
tion functions, are represented by various subclasses of 
GgadSyntaxNode. The Syntax Tree is used by the Ggad 
Transitions Execution Engine. 
 

 
Figure 7. GGAD Syntax Tree Class Diagram 

 
The GGAD Transitions Execution Engine is the main 
body of the GGAD Model Loader. It is responsible for 
the executions of external, internal, output, and initiali-
zation transition functions of the GGAD models. It in-
teracts with the GGAD syntax nodes objects and carries 
out the calculation results of those atomic model func-
tions. The implementation of the execution engine is 
encapsulated in the GgadImpl class, of which the class 
diagram is shown in the Figure 8. 
 
A real-time solution is defined as a solution whose cor-
rectness depends not only on the computational results, 
but also on the time at which the results are produced 
[Sta96]. If a system delivers the correct answer after a 
certain deadline, it could be regarded as an unsuccessful 
response. Consequently, a real-time simulator must 
handle events in a timeliness fashion where time con-
straints can be stated and validated. eCD++ allows real-
time simulation. It also allows interaction between the 
simulator and the surrounding environment. The inputs 
of the eCD++ can be received by ports connected to 
real input devices such as sensors, timers, thermome-
ters, or data collected from human interaction. The out-
puts can be sent through output ports connected to de-
vices such as motors, transducers, gears, valves, or any 
other component. 
 
In order to implement the real-time extension, advance 
of the simulation-clock must be tied to the wall-clock 



(i.e. physical time). To do so, the root coordinator has 
been modified to provide this functionality. The root 
coordinator, inherited from the coordinator class, man-
ages the time advance along the execution of a simula-
tion. It is also responsible for starting each new simula-
tion cycle by issuing the corresponding message. When 
the virtual time approach is used, the messages are im-
mediately generated and sent by the root coordinator to 
initiate the new cycle. For the real-time simulation, 
however, the coordinator must wait until the physical 
time reaches the next event time to initiate the new cy-
cle. This implies that the periods of inactivity are not 
skipped in the real-time extension. The simulation 
process remains quiescent while these periods are being 
experienced. Instead of logically advancing the virtual 
time up to the next programmed event and thus antici-
pating the execution of a programmed task, as what’s 
done by the virtual time approach, the root coordinator 
expects the scheduled wall-clock time to be reached and 
only then starts the new simulation cycle. In other 
words, a new simulation cycle can be started either due 
to the reception of an external event, or due to the con-
sumption of the time indicated by ta(s) of the root coor-
dinator. Hence, messages interchanged between proces-
sors are sent at their actual scheduled time. 
 

 
Figure 8. GGAD Transitions Execution Engine Class 

Diagram 
 
To achieve this in implementation, the eCD++ creates a 
state machine and uses standard UNIX timer facilities 
provided by the <linux/time.h> library. The starting 
state is the “inactive state” in which the simulator is 

completed passive. When the simulator reads in exter-
nal events file, it calls add_timer() to add timers with 
the associate expiry timestamps for all the external 
events, and then it calls interruptible_sleep_on() to put 
the simulator into the sleep state in which the simulator 
is also passive except that the timers start to count 
down. As the wall-clock time advances, those timers 
will expire at the exact moments when the external 
events arrive, their timeout functions will be invoked. 
The timeout functions call wake_up_interruptible() to 
wake up the simulator to start a new simulation cycle. 
When the simulator finishes processing an external 
event, it calls del_timer_sync() to delete the timer asso-
ciated with that event and then calls interrupti-
ble_sleep_on() to go to the sleep state. It will be waken 
up upon the arrival of the next external event. 
 
The other situation where the UNIX timers are used is 
the consumption of the time indicated by ta(s) of the 
root coordinator. If ta(s) is set to infinity, then inter-
ruptible_sleep_on() is called to deactivate the simulator. 
Otherwise, a new timer with the expiry timestamp set to 
ta(s) is created, so that the simulator will be waken up 
after ta(s) time, and the timer is deleted upon expiry. 
 
5. A sample application: building an Automated 
Manufacturing System 
 
eCD++ has been used to implement an Automated 
Manufacturing System (AMS) defined earlier in 
[WGM04]. The AMS was built with both hardware and 
simulated components. The system is composed by 
dedicated workstations, such as painting or baking ma-
chines, that perform tasks on products being assembled 
and conveyors that transport the products to or from 
those workstations. The production cycle is organized 
by a scheduler, which depends on the type of piece be-
ing assembled. The scheduler determines which station 
should receive and work on the product. 
 

 
Figure 9. Layout of the AMS 

The DEVS model for the AMS system is composed by 
two coupled components (conveyors), and five atomic 
components (a controller system, a scheduler, a display 
controller, and 2 notification bells). Each conveyor is 
formed by two atomic models (an engine and a senor 
controller). We have made four atomic components in 



hardware: the scheduler, the display controller, and the 
2 bells. The rest of the AMS are still in simulation. The 
resulting configuration is shown in the following figure. 
The scheduler, the display controller and the bell inter-
act with the simulated Controller Unit through the real 
I/O ports on the development board (i.e., SBC). And the 
Controller Unit interacts with the three hardware com-
ponents the same way as if they were simulated atomic 
components.  
 

 
Figure 10. Scheme of AMS (scheduler and display in 

hardware) 

Initially, a product is placed in station 1 of each con-
veyor belt, and there are no pending events. The sched-
uler hardware is a microcontroller that generates events 
to the simulated model, indicating that a product has to 
be sent to a destination station. The following Figure is 
a sample event file sent to the controller unit by the 
scheduler.  
 

Event 
time 

Associated 
deadline 

input 
port 

associated 
output port 

value 

00:02:100 00:05:300 Btn3A bellA 1 
00:06:130 00:10:300 Btn4B bellB 1 

Figure 11. An experimental event schedule 
 
The first event in the figure represents a job scheduled 
for product A in station 3. The event occurs at time 
00:02:100, of which is the format is read as 
hh:mm:ss:msec, and the simulator receives it via input 
port btn3A, which denotes for station 3A. Assuming the 
AMS is at its initial state, the first event requires con-
veyor A transport its product from station 1 to station 3 
before the deadline 00:05:300. The second event in 
Figure 11 shows that conveyor B will start to move its 
product at time 00:06:130 to station 4, and the given 
deadline is 00:10:300.  
 
There are two notification bells, one for each conveyor. 
Once the conveyor finishes transporting the product to 

the destination station, the bell associated with that 
conveyor will ring indicating the completion. The ac-
tual completion time is then checked against the speci-
fied deadline of the event. 
 
The Control Unit (CU) receives input signals from sen-
sors and the scheduler and determines where to dispatch 
each piece activating the engines of the conveyor belts. 
The Display Controller handles the digital display 
based on the signals from the controller unit. It displays 
the moving directions of the 2 conveyers and the posi-
tion statuses of the moving products. The moving direc-
tions are displayed by the output ports dirn_disp_a and 
dirn_disp_b, with the output value 0, 1, or 2 indicating 
stopping, moving forward, or moving backward, re-
spectively. The position status of a moving piece is 
shown on the display via the output port stn_disp, 
which outputs the value ij to indicate that the product in 
conveyor j has reached station i. The display controller 
also has four LEDs output ports, namely Led1, Led2, 
Led3, and Led4. These LEDs are destination indicators, 
and each LED port is associated with one station. If, for 
instance, Led3 is on (with value being 1), that means a 
product needs to be transported to station 3. And the 
LED will be turned off (with value being 0) when the 
product reaches its destination. 
 
eCD++ running on the SBC interacts with the scheduler 
chip via I/O ports and prints the actual output time and 
the associated deadline for each event in the output 
file. The following figure shows the corresponding out-
put file generated by the eCD++ based on the event file 
shown earlier. 
 
output 
time  

Deadline result output port  

00:02:300  No deadline Led3 1 
00:02:300  No deadline dirn_disp_a 1 
00:03:350  No deadline Stn_disp_a 21 
00:04:350  No deadline Stn_disp_a 31 
00:04:350  No deadline dirn_disp_a 0 
00:04:350  No deadline Led3 0 
00:04:360 00:05:300 Succeeded Bell_A 1 
00:06:330  No deadline Led4 1 
00:06:330  No deadline dirn_disp_b 1 
00:07:380  No deadline Stn_disp_b 22 
00:08:380  No deadline Stn_disp_b 32 
00:09:380  No deadline Stn_disp_b 42 
00:09:380  No deadline dirn_disp_b 0 
00:09:380  No deadline Led4 0 
00:09:380 00:100:300 Succeeded Bell_B 1 

Figure 12. Output of the Display Controller 
 
The result in the first column shows the actual time at 
which the output has been sent, which is the wall-clock 
value at that time (the time elapsed since the beginning 
of the simulation execution). The second column shows 



the associated deadline time for the given event. The 
third column indicates whether the deadline has been 
met (i.e. the actual output time = the associated dead-
line). Finally, the output port and the obtained value are 
shown in the remaining columns. 
 
The following figure shows an execution example of 
the previous model. As we can see, the different com-
ponents are activated according to the model specifica-
tion, and executed in real-time (these results log the 
execution results on an AMPRO LB700 board). 
 
MSG:I/00:000/Root TO flattop 
MSG:D/00:000/flattop/... TO Root 
MSG:X/00:02:100/Root/btn3a/1.0 TO flattop 
MSG:*/00:02:100/Root TO flattop 
MSG:X/00:02:100/flattop/b3a/1.0 TO cu 
MSG:*/00:02:100/flattop TO cu 
MSG:D/00:02:100/cu/00:00:200 TO flattop 
MSG:D/00:02:100/flattop/00:00:200 TO Root 
MSG:@/00:02:300/Root TO flattop 
MSG:@/00:02:300/flattop TO cu 
MSG:Y/00:02:300/flattop/led3/1.0 TO Root 
MSG:Y/00:02:300/flattop/dirn_disp_a/1 TO Root 
MSG:X/00:02:300/flattop/engdirection/1 TO enga 
MSG:X/00:02:300/flattop/startstop/1.0 TO enga 
MSG:D/00:02:300/cu/... TO flattop 
MSG:D/00:02:300/flattop/00:000 TO Root 
MSG:*/00:02:300/Root TO flattop 
MSG:*/00:02:300/flattop TO enga 
MSG:*/00:02:300/flattop TO cu 
MSG:D/00:02:300/enga/00:00:050 TO flattop 
MSG:D/00:02:300/cu/... TO flattop 
MSG:D/00:02:300/flattop/00:00:050 TO Root 
MSG:@/00:02:350/Root TO flattop 
MSG:@/00:02:350/flattop TO enga 
MSG:D/00:02:350/enga/... TO flattop 
MSG:D/00:02:350/flattop/00:000 TO Root 
MSG:*/00:02:350/Root TO flattop 
MSG:*/00:02:350/flattop TO enga 
MSG:D/00:02:350/enga/00:01:000 TO flattop 
MSG:D/00:02:350/flattop/00:01:000 TO Root 
... 

Figure 13. Simulation Results 
  

6. Conclusion 
 
We presented the design and implementation of 
eCD++, a modeling and simulation tool that can run on 
embedded systems and can execute DEVS models that 
interact with real world events. This capability makes 
eCD++ become a useful tool to develop real-time ap-
plications with hardware-in-the-loop. The technique en-
ables incremental transition from simulated models to 
the actual hardware counterparts and supports experi-
mental frameworks to facilitate testing in a risk-free en-
vironment.  
 
This new development cycle proved to be both useful 
and effective to develop real-time applications. The use 

of the P-DEVS formalism, provided a better simulation 
framework for real-time systems modeling and was 
able to handle conflicts arising by the execution of si-
multaneous events. 
 
References 
 
[Cho94] Chow, A.; Kim D.; Zeigler, B. “Parallel 
DEVS: A parallel, hierarchical, modular modeling for-
malism”. In Proceedings of Winter Simulation Confer-
ence, Orlando, Florida, 1994. SCS. 
[LPW03] Li, L.; Pearce, T.; Wainer, G. “Interfacing 
Real-time DEVS models with a DSP platform”. In Pro-
ceedings of the Industrial Simulation Symposium. Va-
lencia, Spain. 2003. 
[HS04] Huang, D., H.S. Sarjoughian. "Software and 
Simulation Modeling for Real-time Software-intensive 
System". The 8th IEEE International Symposium on 
Distributed Simulation and Real Time Applications, pp. 
196-203, Oct., Budapest, Hungary. 2004 
[HSKP97] Hong, J. S.; Song, H. S.; Kim, T. G.; Park, 
K. H. “A real-time Discrete Event System Specification 
formalism for seamless real-time software develop-
ment”. Discrete Event Dynamic Systems 7 (4): 355-75. 
1997 
[HZC01] Hu, X.; Zeigler, B.P.; Couretas, J. “DEVS-on-
a-Chip: Implementing DEVS in Real-time Java on a 
Tiny Internet Interface For Scalable Factory Automa-
tion”. In Proceedings of the 2001 IEEE Systems, Man, 
and Cybernetics Conference. 2001. 
[Kim00] Kim, K.; Kang W.; Sagong, B.; Seo, H. “Effi-
cient Distributed Simulation of Hierarchical DEVS 
Models: Transforming Model Structure into a Non-
Hierarchical One”. In Proceedings of the 33rd Annual 
Simulation Symposium. Washington DC, USA. 2000. 
 [Sta96] Stankovic J.; “Strategic Directions in Real-
Time and Embedded Systems”. ACM Computing Sur-
veys, 50th Anniversary Issue, Vol. 28, No. 4, pp. 751-
763, December, 1996. 
[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS 
models”. Software – practice and Experience. Vol. 32, 
pp. 1261 – 1306. 2002. 
[WGM05] G. Wainer, E. Glinsky, P. MacSween. 
“Model-Driven Architecture of Real-Time Systems”. In 
Model-driven Software Development - Volume II of Re-
search and Practice in Software Engineering. S. 
Beydeda and V. Gruhn eds., Springer-Verlag. 2005. 
[ZKP00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of 
Modeling and Simulation: Integrating Discrete Event 
and Continuous Complex Dynamic Systems. 2nd Edi-
tion. Academic Press. 2000. 

 


