
eCD++: an engine for executing DEVS models in embedded platforms

Yinfeng Henry Yu Gabriel Wainer

Department of Systems and Computer Engineering. Carleton University.
4456 Mackenzie Building. 1125 Colonel By Drive

Ottawa, ON. K1S 5B6
gwainer@sce.carleton.ca

ABSTRACT: We introduce Embedded CD++ (eCD++),
an engine that can execute DEVS models in embedded
environments. It deploys a Flat Coordinator and the
GGAD Graphical Modeling tool, which supports the
Parallel DEVS formalism. Its real-time extensions al-
low users to develop hardware-in-the-loop applications
with ease, being able to integrate them in DEVS-based
environments.

1. Introduction

Modeling and simulation (M&S) has gained popularity
in a wide variety of fields ranging from biotechnology
to digital circuits design, from aerospace engineering to
environmental studies, from economics to national de-
fense. Scientists and engineers use M&S mythologies
and tools to understand and analyze complex problems.
Different M&S techniques have been introduced with
success. Among these, the DEVS formalism [ZPK00]
provides a framework for the construction of hierarchi-
cal models in a modular manner, allowing for model
reuse and reducing development time and testing. It de-
fines a way to specify systems whose states change ei-
ther upon the reception of an input event or due to the
expiration of a time delay. Furthermore, it allows hier-
archical decomposition of the model by defining a way
to couple existing DEVS models. The CD++ toolkit
[Wai02] is an object-oriented software that implements
the DEVS simulation mechanism.

Simulation tools such as CD++, are only used in the
simulated world. In other words, it is very difficult for
the modeller to validate his or her simulated solution in
the real world. Moreover, this separation makes solu-
tions developed in the simulated world unable to pre-
cisely solve real world problems, because for many
complex problems, such as real-time systems, the simu-
lated models cannot describe their real world counter-
parts in 100% accuracy.

Here, we present a new mechanism to overcome this
limitation. We start the problem analysis by developing
solutions entirely in the simulated world, and we can
execute the same model in the real world by an embed-
ded version of the CD++ (named eCD++) running on a
Single Board Computer (SBC). The simulated results
are compared with that from the real world. If the two
results fail to agree, the simulated solution can be re-

vised in the simulated world for retest. The DEVS
models are modular. Thus, subcomponents of larger
models can be validated individually. If a subcompo-
nent is validated in the real world, it can be replaced by
real hardware. This technique enables incremental tran-
sition from the simulated models to the actual hardware
counterparts. This is a low-risk and cost-effective ap-
proach to develop hardware-in-the-loop applications.

DEVS technology has been usually applied to large-
scale dynamic systems, with implementations, such as
CD++, running on workstations and servers. As these
systems focus on the high level modeling and simula-
tion, another branch of DEVS application is on real-
time event-based control [HZC01]. These low level ap-
plications exist largely on embedded systems, which are
usually characterized as “intelligent devices” consisting
of computer hardware and real-time software. This
work mainly studies how to use DEVS technology to
design real-time embedded systems.
In the following sections, we will present the design
and development of eCD++. eCD++ can run on embed-
ded systems and can execute DEVS models that interact
with real world events. This capability makes eCD++
become a useful tool to develop real-time applications
with hardware-in-the-loop [LTW03]. This work repre-
sents a hardware-in-the-loop simulation methodology
that uses eCD++ to develop hybrid hardware and soft-
ware systems. The technique enables incremental tran-
sition from simulated models to the actual hardware
counterparts and supports experimental frameworks to
facilitate testing in a risk-free environment. To demon-
strate this methodology, this work used eCD++ to build
a hybrid automated manufacturing system (AMS) with
both real hardware and simulated DEVS models.

2. Background

DEVS (Discrete EVents Systems Specification)
[ZPK00] is a formalism originally created for modeling
and simulating discrete event dynamic systems. In
DEVS, a model is specified as a black box with a state
and a duration for that state. DEVS models can be put
together by linking the outputs of a model to inputs of
other models to form coupled models. Models made
out of only one component are called atomic models.

A Parallel DEVS (P-DEVS) model [Cho94a] is de-
scribed as a set of basic and coupled models. Atomic
models are still the most basic constructions, which can
be combined with other models into coupled models.
The P-DEVS atomic model has the following struc-
ture:

M = < X M , Y M , S, δ ext , δ int, δ con, λ, ta >
where
X M ={(p,v)| p ∈ IPorts, v ∈ X p } is the set of input
ports and values;
Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output
ports and values;
S is the set of sequential states;
δ ext: Q x XM

b → S is the external state transition func-
tion;
δ int: S → S is the internal state transition function;
δcon: Q x XM

b → S is the confluent transition function;
λ : S → YM

b is the output function;
ta : S → R0 + ∪ ∞ is the time advance function; with
Q := { (s,e) | s ∈ S , 0≤e≤ta(s) } the set of total states.

The semantics of the P-DEVS definition are as follows.
At any given time, a basic model is in a state s. And in
the absence of external events, it will remain in that
state for a period of time as defined by ta(s). When an
internal transition takes place, the system outputs the
value λ(s), and changes to state δint(s). If one or more
external events E = { x1 .. xn / x ∈?XM } occurs before
ta(s) expires, i.e., when the system is in the state (s, e)
with e ≤ ?ta(s), the new state will be given by δext(s, e,
E). Suppose that an external and an internal transition
collide, i.e., an external event E arrives when e = ta(s),
the new system’s state could either be given by
δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler can de-
fine the most appropriate behavior with the δconf func-
tion. As a result, the new system’s state will be the one
defined by δconf(s, E).

A P-DEVS coupled model (CM) is defined by:

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC>
where
X = {(p,v)| p ∈ IPorts, v ∈ X p } is the set of input
ports and values;
Y = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output
ports and values;
M d is a set of atomic models, and D is a set of the
atomic models’ names, where for each d ∈ D, M d = (X
d , Y d , S, δ ext , δ int, δ con, λ, ta) is a DEVS basic struc-
ture with Xd = {(p,v)| p ∈ IPorts, v ∈ X p } ;
Yd = {(p,v)| p ∈ OPorts, v ∈ Y p } ;
The couplings are subject to the following conditions:
• external input couplings (EIC) connect external in-

puts to component inputs: EIC⊆ {((N, ipN), (d, ipd)) |
ip N ∈ IPorts, d ∈ D, ip d ∈ IPorts d }

• external output couplings (EOC) connect component
outputs to external outputs: EOC ⊆ {((d, op d), (N,
op N)) | op N ∈ OPorts, d ∈ D, op d ∈ OPorts d }

• internal couplings (IC) connect component outputs to
component inputs: IC ⊆ {((a, op a), (b, ip b)) | a, b ∈
D, op a ∈ OPorts a , ip b ∈ IPorts b }

DEVS also defines an abstract simulation mechanism
that is independent of the model itself and that can be
easily implemented by computer software. This mecha-
nism provides a high level description of how the simu-
lation of DEVS models should be executed by a simu-
lator. Two kinds of simulators are defined, one for
atomic and the other one for coupled models, this latter
known as a coordinator. These simulators progress
through the simulation by exchanging messages as de-
scribed by the abstract simulation mechanism. CD++
[Wai02] is a simulation software which implements the
DEVS simulation formalism. In CD++, simulators and
coordinators progress through the simulation by ex-
changing messages as described by the abstract simula-
tion mechanism.

While P-DEVS provides sound modeling principles to
characterize structural and behavior aspects of real-time
systems, recent research suggests that transforming (or
mapping) DEVS models to actual designs of real-time
embedded systems is non-trivial [HS04]. Recent re-
search, therefore, has been focusing on developing
schemes to support the transformation from simulation
modeling to designs of real systems. One attempt was
the DEVS-on-a-chip approach, which implements
DEVS on a microprocessor that has limited memory
and processing ability [HZC01]. It creates a just-as-
needed real time environment. This effort, however, did
not implement a full scale of RT-DEVS specifications
on the chip. As a result, it only demonstrates the capa-
bility of creating real-time embedded systems that have
relatively simple compositions. Another research effort
in this area focused on how to use RT-DEVS as a
framework to develop hardware-in-the-loop applica-
tions [LPW03]. These applications are complex as a re-
sult of the high degree of interaction between software
and hardware components. Therefore, the development
of these applications is a challenging process in which
M&S can become essential. The technique of applying
RT-DEVS to develop hardware-in-the-loop applications
seamlessly integrates simulation models with hardware
components and also enables incremental transition
from the simulated models to the actual hardware coun-
terparts.

3. eCD++ functionality

eCD++ provides four main functionalities: a Flat Coor-
dinator, Parallel DEVS (P-DEVS) simulation, a GGAD
(Generic Graphical advanced environment for DEVS
modeling and simulation) interpreter, and a real-time

extension. The Flat Coordinator technique simplifies
the simulation hierarchy by eliminating the coordinators
in the hierarchy and by making direct messaging com-
munications between the Flat Coordinator and the
simulators [Kim00], as shown in the following figure.

 Coupled Model # 1

Coupled Model # 2 Atomic Model # 1 Atomic Model # 2 Atomic Model # 3
A tomic Model # 4

 Atomic Model # 5

(a)

(b)

Figure 1. Flat Coordinator (a) Example of a model
hierarchy, (b) Associated processor hierarchy

The following are the implementation details of the Flat
Coordinator technique:

q The Flat Coordinator must transform the hier-
archical structure of the model to a flattened
structure in order to reduce the overhead in-
curred by message passing. The resulting non-
hierarchical structure is used by the Flat Coor-
dinator.

q Due to the absence of the usual coordinators,
any port links that link to coordinators’ ports
must be re-wired to reach the far-end atomic
ports. Then, the component links are handled
by the Flat Coordinator, which forwards the
events as needed.

q The Flat Coordinator must receive and send
messages directly with the Root Coordinator in
order to carry out the simulation process.

The CD++ toolkit contains a tool that provides a
graphical user interface (GUI) for modellers to specify
atomic models graphically, enabling non-expert users to
define atomic models in a easier and more intuitive
way. The tool generates textual specifications of the
models represented graphically in the GUI. According
to the specifications of the graphical notation
[HSKP97], an atomic model is placed inside a box. An
external state transition is represented by a dotted line
above which the input event is represented by “?”.
Similarly, an internal state transition is represented by a
solid line above which the output event is represented
by “!”. For example, an input event in?m means that a
message m is input at the input port in, and an output
event out!m means that a message m is output at port
out. Input and output ports are denoted by black trian-
gles.

The following figure includes a graphical representation
of an atomic model called coin. This model simulates
the behaviour of the coins displayer in a vending ma-
chine. It has one input port, namely coin_in, represent-
ing the input coins slot and one output port called
coin_out which represents the display of the inserted
coins’ amount. When coins are inserted into the coins
slot, it takes one second for the coins displayer to dis-
play the coins’ amount.

Figure 2. Graphical definition of an atomic model

4. eCD++ Software Architecture

eCD++ is modularized in the way that systems’ objects
(written in C++) run as separate software modules with
well-defined behaviours and independent functionality.
The following are the major components:

• Main Simulator
• DEVS Modeling Subsystem
• Simulation Subsystem
• Messaging Subsystem

Main Simulator manages the overall aspects of the
simulation. It is the first object that is created when the
simulation starts. In general, it does the following tasks
in sequence:

• Registers Atomic model objects, which are
C++ objects derived from the Atomic class;

• Reads in the external events and builds an ex-
ternal events table (if one is created);

• Reads in the model file and builds the model
hierarchy;

• Creates the Root Coordinator and trigger it
start to run

The class diagram of the MainSimulator is shown in
the following figure.

Figure 3. Main Simulator Class

Simulator #1 Simulator #2 Simulator #3 Simulator #4 Simulator #5

Flat Coordinator

Root Coordinator

The DEVS Modeling Subsystem provides a logical rep-
resentation of the DEVS models defined by the model-
ler. The subsystem is composed by the Models Man-
ager and the DEVS Models Hierarchy Tree. The Mod-
els Manager manages the models hierarchy. More pre-
cisely, it does the following 2 tasks:
• Main Simulator registers Atomic model objects,

and Models Manager creates and manages the
Atomic models objects database (a dictionary data
structure that stores Atomic model string name-
Atomic object pairs). It also creates the Models Hi-
erarchy Tree which is composed by atomic and
coupled models;

• Employs the Processor Manager to create Proces-
sor class objects when the Main Simulator loads
atomic models.

Figure 4. DEVS Modeling Subsystem Class Diagram

The Models Manager is implemented by the ModelAd-
min class, while the implementations for the atomic and
coupled models are encapsulated by the Atomic and
Coupled class respectively.

The Simulation Subsystem consists of Simulators, co-
ordinators, and the Processors Manager. The Proces-
sors Manager, which is implemented by the Proces-
sorAdmin class, manages the Processor class objects. It
maintains a hashing table of pointers to Processor class
objects, such that actions, such as searching, can be per-
formed upon those objects.

Figure 5. Simulation Subsystem Class Diagram

The Processor class implements the DEVS simulation
framework in which Atomic and Coupled models run.
It defines message handlers that respond to various
DEVS messages, such as internal and external state
transition messages. The Simulator and Coordinator
class are subclasses of Processor. The Root Coordinator
is a special Coordinator that manages and controls the
simulation cycles. It receives the incoming external
events and sends the corresponding External Messages
to the Top Coordinator. It also advances the Global
Simulation Time. The following figure is the class dia-
gram for the Simulation Subsystem.

The Messaging Subsystem consists of the Message
Manager and various Messages class objects. Proces-
sors and coordinators send messages via the Messages
Manager (implemented by the MessageAdmin class),
which is responsible for delivering messages. The in-
coming messages are first buffered into the Message
Queue and are processed by the Messages Manager in
FIFO order. Each Message object contains information
to identify the sender and the receiver. A time-stamp
for the message and an associated value are also in-
cluded in the packet. The class diagram of the Messag-
ing Subsystem is shown in the following figure.

Figure 6. Messaging Subsystem Class Diagram

eCD++ also incorporates a GGAD model loader that
parses GGAD files and builds equivalent atomic mod-
els. The GGAD model loader is a software module that
consists of a front-end and back-end. The front-end is a
GGAD parser, written in lex and yacc, that parses the
input GGAD files and builds the syntax tree and the
symbol table in a similar way as what a typical com-
piler’s front-end would do. The parse() method in the
GgadParser class calls GGADparse() which is the main
function generated by lex and yacc.

The back-end builds the GGAD atomic models based
on the syntax tree and the symbol table. The GGAD
models behave exactly the same as if they were written
C++. This is achieved by GGAD models providing the
same API as that provided by the Atomic class. Provid-
ing a consistent API makes the integration of the
GGAD model loader with the rest of the eCD++ code
become easy.

The GGAD Parser is written in Lex and Yacc, which
are the tools used to define the context-free grammar of
GGAD model files. The GGAD Parser parses the
GGAD model file and builds the syntax tree and the
Symbol Table. The implementation of the GGAD
Parser is encapsulated in the GgadParser class. The
Syntax Tree, built by the GGAD Parser based on the
GGAD file, is a tree structure of GgadSyntaxNode class
objects. The GgadSyntaxNode class has 6 subclasses:
GgadFunctionNode, GgadConstantNode, GgadInput-
Node, GgadPortInNode, GgadVariableNode, and
GgadActionNode. These classes form a C++ presenta-
tion of the GGAD language definition. In other words,
the Syntax Tree, which is the composition of the
GGAD syntax nodes, provides the behaviours of the
atomic model which is described by the input GGAD
model file in terms of C++ objects that can be executed
during run time. The compositions of an atomic model,

such as inputs and outputs ports, variables, and transi-
tion functions, are represented by various subclasses of
GgadSyntaxNode. The Syntax Tree is used by the Ggad
Transitions Execution Engine.

Figure 7. GGAD Syntax Tree Class Diagram

The GGAD Transitions Execution Engine is the main
body of the GGAD Model Loader. It is responsible for
the executions of external, internal, output, and initiali-
zation transition functions of the GGAD models. It in-
teracts with the GGAD syntax nodes objects and carries
out the calculation results of those atomic model func-
tions. The implementation of the execution engine is
encapsulated in the GgadImpl class, of which the class
diagram is shown in the Figure 8.

A real-time solution is defined as a solution whose cor-
rectness depends not only on the computational results,
but also on the time at which the results are produced
[Sta96]. If a system delivers the correct answer after a
certain deadline, it could be regarded as an unsuccessful
response. Consequently, a real-time simulator must
handle events in a timeliness fashion where time con-
straints can be stated and validated. eCD++ allows real-
time simulation. It also allows interaction between the
simulator and the surrounding environment. The inputs
of the eCD++ can be received by ports connected to
real input devices such as sensors, timers, thermome-
ters, or data collected from human interaction. The out-
puts can be sent through output ports connected to de-
vices such as motors, transducers, gears, valves, or any
other component.

In order to implement the real-time extension, advance
of the simulation-clock must be tied to the wall-clock

(i.e. physical time). To do so, the root coordinator has
been modified to provide this functionality. The root
coordinator, inherited from the coordinator class, man-
ages the time advance along the execution of a simula-
tion. It is also responsible for starting each new simula-
tion cycle by issuing the corresponding message. When
the virtual time approach is used, the messages are im-
mediately generated and sent by the root coordinator to
initiate the new cycle. For the real-time simulation,
however, the coordinator must wait until the physical
time reaches the next event time to initiate the new cy-
cle. This implies that the periods of inactivity are not
skipped in the real-time extension. The simulation
process remains quiescent while these periods are being
experienced. Instead of logically advancing the virtual
time up to the next programmed event and thus antici-
pating the execution of a programmed task, as what’s
done by the virtual time approach, the root coordinator
expects the scheduled wall-clock time to be reached and
only then starts the new simulation cycle. In other
words, a new simulation cycle can be started either due
to the reception of an external event, or due to the con-
sumption of the time indicated by ta(s) of the root coor-
dinator. Hence, messages interchanged between proces-
sors are sent at their actual scheduled time.

Figure 8. GGAD Transitions Execution Engine Class

Diagram

To achieve this in implementation, the eCD++ creates a
state machine and uses standard UNIX timer facilities
provided by the <linux/time.h> library. The starting
state is the “inactive state” in which the simulator is

completed passive. When the simulator reads in exter-
nal events file, it calls add_timer() to add timers with
the associate expiry timestamps for all the external
events, and then it calls interruptible_sleep_on() to put
the simulator into the sleep state in which the simulator
is also passive except that the timers start to count
down. As the wall-clock time advances, those timers
will expire at the exact moments when the external
events arrive, their timeout functions will be invoked.
The timeout functions call wake_up_interruptible() to
wake up the simulator to start a new simulation cycle.
When the simulator finishes processing an external
event, it calls del_timer_sync() to delete the timer asso-
ciated with that event and then calls interrupti-
ble_sleep_on() to go to the sleep state. It will be waken
up upon the arrival of the next external event.

The other situation where the UNIX timers are used is
the consumption of the time indicated by ta(s) of the
root coordinator. If ta(s) is set to infinity, then inter-
ruptible_sleep_on() is called to deactivate the simulator.
Otherwise, a new timer with the expiry timestamp set to
ta(s) is created, so that the simulator will be waken up
after ta(s) time, and the timer is deleted upon expiry.

5. A sample application: building an Automated
Manufacturing System

eCD++ has been used to implement an Automated
Manufacturing System (AMS) defined earlier in
[WGM04]. The AMS was built with both hardware and
simulated components. The system is composed by
dedicated workstations, such as painting or baking ma-
chines, that perform tasks on products being assembled
and conveyors that transport the products to or from
those workstations. The production cycle is organized
by a scheduler, which depends on the type of piece be-
ing assembled. The scheduler determines which station
should receive and work on the product.

Figure 9. Layout of the AMS

The DEVS model for the AMS system is composed by
two coupled components (conveyors), and five atomic
components (a controller system, a scheduler, a display
controller, and 2 notification bells). Each conveyor is
formed by two atomic models (an engine and a senor
controller). We have made four atomic components in

hardware: the scheduler, the display controller, and the
2 bells. The rest of the AMS are still in simulation. The
resulting configuration is shown in the following figure.
The scheduler, the display controller and the bell inter-
act with the simulated Controller Unit through the real
I/O ports on the development board (i.e., SBC). And the
Controller Unit interacts with the three hardware com-
ponents the same way as if they were simulated atomic
components.

Figure 10. Scheme of AMS (scheduler and display in

hardware)

Initially, a product is placed in station 1 of each con-
veyor belt, and there are no pending events. The sched-
uler hardware is a microcontroller that generates events
to the simulated model, indicating that a product has to
be sent to a destination station. The following Figure is
a sample event file sent to the controller unit by the
scheduler.

Event
time

Associated
deadline

input
port

associated
output port

value

00:02:100 00:05:300 Btn3A bellA 1
00:06:130 00:10:300 Btn4B bellB 1

Figure 11. An experimental event schedule

The first event in the figure represents a job scheduled
for product A in station 3. The event occurs at time
00:02:100, of which is the format is read as
hh:mm:ss:msec, and the simulator receives it via input
port btn3A, which denotes for station 3A. Assuming the
AMS is at its initial state, the first event requires con-
veyor A transport its product from station 1 to station 3
before the deadline 00:05:300. The second event in
Figure 11 shows that conveyor B will start to move its
product at time 00:06:130 to station 4, and the given
deadline is 00:10:300.

There are two notification bells, one for each conveyor.
Once the conveyor finishes transporting the product to

the destination station, the bell associated with that
conveyor will ring indicating the completion. The ac-
tual completion time is then checked against the speci-
fied deadline of the event.

The Control Unit (CU) receives input signals from sen-
sors and the scheduler and determines where to dispatch
each piece activating the engines of the conveyor belts.
The Display Controller handles the digital display
based on the signals from the controller unit. It displays
the moving directions of the 2 conveyers and the posi-
tion statuses of the moving products. The moving direc-
tions are displayed by the output ports dirn_disp_a and
dirn_disp_b, with the output value 0, 1, or 2 indicating
stopping, moving forward, or moving backward, re-
spectively. The position status of a moving piece is
shown on the display via the output port stn_disp,
which outputs the value ij to indicate that the product in
conveyor j has reached station i. The display controller
also has four LEDs output ports, namely Led1, Led2,
Led3, and Led4. These LEDs are destination indicators,
and each LED port is associated with one station. If, for
instance, Led3 is on (with value being 1), that means a
product needs to be transported to station 3. And the
LED will be turned off (with value being 0) when the
product reaches its destination.

eCD++ running on the SBC interacts with the scheduler
chip via I/O ports and prints the actual output time and
the associated deadline for each event in the output
file. The following figure shows the corresponding out-
put file generated by the eCD++ based on the event file
shown earlier.

output
time

Deadline result output port

00:02:300 No deadline Led3 1
00:02:300 No deadline dirn_disp_a 1
00:03:350 No deadline Stn_disp_a 21
00:04:350 No deadline Stn_disp_a 31
00:04:350 No deadline dirn_disp_a 0
00:04:350 No deadline Led3 0
00:04:360 00:05:300 Succeeded Bell_A 1
00:06:330 No deadline Led4 1
00:06:330 No deadline dirn_disp_b 1
00:07:380 No deadline Stn_disp_b 22
00:08:380 No deadline Stn_disp_b 32
00:09:380 No deadline Stn_disp_b 42
00:09:380 No deadline dirn_disp_b 0
00:09:380 No deadline Led4 0
00:09:380 00:100:300 Succeeded Bell_B 1

Figure 12. Output of the Display Controller

The result in the first column shows the actual time at
which the output has been sent, which is the wall-clock
value at that time (the time elapsed since the beginning
of the simulation execution). The second column shows

the associated deadline time for the given event. The
third column indicates whether the deadline has been
met (i.e. the actual output time = the associated dead-
line). Finally, the output port and the obtained value are
shown in the remaining columns.

The following figure shows an execution example of
the previous model. As we can see, the different com-
ponents are activated according to the model specifica-
tion, and executed in real-time (these results log the
execution results on an AMPRO LB700 board).

MSG:I/00:000/Root TO flattop
MSG:D/00:000/flattop/... TO Root
MSG:X/00:02:100/Root/btn3a/1.0 TO flattop
MSG:*/00:02:100/Root TO flattop
MSG:X/00:02:100/flattop/b3a/1.0 TO cu
MSG:*/00:02:100/flattop TO cu
MSG:D/00:02:100/cu/00:00:200 TO flattop
MSG:D/00:02:100/flattop/00:00:200 TO Root
MSG:@/00:02:300/Root TO flattop
MSG:@/00:02:300/flattop TO cu
MSG:Y/00:02:300/flattop/led3/1.0 TO Root
MSG:Y/00:02:300/flattop/dirn_disp_a/1 TO Root
MSG:X/00:02:300/flattop/engdirection/1 TO enga
MSG:X/00:02:300/flattop/startstop/1.0 TO enga
MSG:D/00:02:300/cu/... TO flattop
MSG:D/00:02:300/flattop/00:000 TO Root
MSG:*/00:02:300/Root TO flattop
MSG:*/00:02:300/flattop TO enga
MSG:*/00:02:300/flattop TO cu
MSG:D/00:02:300/enga/00:00:050 TO flattop
MSG:D/00:02:300/cu/... TO flattop
MSG:D/00:02:300/flattop/00:00:050 TO Root
MSG:@/00:02:350/Root TO flattop
MSG:@/00:02:350/flattop TO enga
MSG:D/00:02:350/enga/... TO flattop
MSG:D/00:02:350/flattop/00:000 TO Root
MSG:*/00:02:350/Root TO flattop
MSG:*/00:02:350/flattop TO enga
MSG:D/00:02:350/enga/00:01:000 TO flattop
MSG:D/00:02:350/flattop/00:01:000 TO Root
...

Figure 13. Simulation Results

6. Conclusion

We presented the design and implementation of
eCD++, a modeling and simulation tool that can run on
embedded systems and can execute DEVS models that
interact with real world events. This capability makes
eCD++ become a useful tool to develop real-time ap-
plications with hardware-in-the-loop. The technique en-
ables incremental transition from simulated models to
the actual hardware counterparts and supports experi-
mental frameworks to facilitate testing in a risk-free en-
vironment.

This new development cycle proved to be both useful
and effective to develop real-time applications. The use

of the P-DEVS formalism, provided a better simulation
framework for real-time systems modeling and was
able to handle conflicts arising by the execution of si-
multaneous events.

References

[Cho94] Chow, A.; Kim D.; Zeigler, B. “Parallel
DEVS: A parallel, hierarchical, modular modeling for-
malism”. In Proceedings of Winter Simulation Confer-
ence, Orlando, Florida, 1994. SCS.
[LPW03] Li, L.; Pearce, T.; Wainer, G. “Interfacing
Real-time DEVS models with a DSP platform”. In Pro-
ceedings of the Industrial Simulation Symposium. Va-
lencia, Spain. 2003.
[HS04] Huang, D., H.S. Sarjoughian. "Software and
Simulation Modeling for Real-time Software-intensive
System". The 8th IEEE International Symposium on
Distributed Simulation and Real Time Applications, pp.
196-203, Oct., Budapest, Hungary. 2004
[HSKP97] Hong, J. S.; Song, H. S.; Kim, T. G.; Park,
K. H. “A real-time Discrete Event System Specification
formalism for seamless real-time software develop-
ment”. Discrete Event Dynamic Systems 7 (4): 355-75.
1997
[HZC01] Hu, X.; Zeigler, B.P.; Couretas, J. “DEVS-on-
a-Chip: Implementing DEVS in Real-time Java on a
Tiny Internet Interface For Scalable Factory Automa-
tion”. In Proceedings of the 2001 IEEE Systems, Man,
and Cybernetics Conference. 2001.
[Kim00] Kim, K.; Kang W.; Sagong, B.; Seo, H. “Effi-
cient Distributed Simulation of Hierarchical DEVS
Models: Transforming Model Structure into a Non-
Hierarchical One”. In Proceedings of the 33rd Annual
Simulation Symposium. Washington DC, USA. 2000.
 [Sta96] Stankovic J.; “Strategic Directions in Real-
Time and Embedded Systems”. ACM Computing Sur-
veys, 50th Anniversary Issue, Vol. 28, No. 4, pp. 751-
763, December, 1996.
[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS
models”. Software – practice and Experience. Vol. 32,
pp. 1261 – 1306. 2002.
[WGM05] G. Wainer, E. Glinsky, P. MacSween.
“Model-Driven Architecture of Real-Time Systems”. In
Model-driven Software Development - Volume II of Re-
search and Practice in Software Engineering. S.
Beydeda and V. Gruhn eds., Springer-Verlag. 2005.
[ZKP00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. 2nd Edi-
tion. Academic Press. 2000.

