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Abstract 

The DEVS (Discrete Event System Specification) formalism defines a formal Modelling 

and Simulation (M&S) framework for Discrete Event Dynamic Systems (DEDS). The 

RT-DEVS formalism is a real-time extension to DEVS. RT-DEVS is adequate to model 

Real-time Embedded Systems (RTES). This work introduces the Embedded CD++ (E-

CD++) toolkit. It provides an execution engine that can run DEVS models in embedded 

environments. E-CD++ supports the RT-DEVS formalism, and can be used as a 

development tool for RTES. The target system can be first studied and modelled entirely 

in DEVS. The DEVS models are then executed by E-CD++ on embedded platforms 

where they can interact with the real-world events in real time. In E-CD++ execution 

environment, the DEVS models can also interact with real hardware surrogates. When a 

DEVS component is fully tested in the embedded environment, it can be replaced by its 

physical counterpart, and this step can be repeated until all the components are replaced 

by their target counterparts. This development approach enables instantaneous transition 

from modelling to implementation. We also made more efforts than just implementing 

RT-DEVS in order to make E-CD++ an adequate real-time execution engine. We 

improved E-CD++ performance by deploying the Flattened Coordinator Technique. We 

also implemented the GGAD Graphical Modelling tool, so that the modeller can define 

DEVS models using graphical notations. Lastly, to illustrate with real applications, we 

used E-CD++ to built an Automated Manufacturing System (AMS), which is a real-time 

application consisting of microprocessors and mechanical devices.  
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Chapter 1  Introduction 

Real-time systems (RTS) can be characterized as those whose correctness of operation 

depends not only upon the logical correctness but also upon the time at which it is 

performed. Current state-of-the-art RTS are typically embedded systems, which are 

advanced computer applications consisting of hardware, software, and various 

mechanical and electrical devices. Examples are like nuclear power stations, Automated 

Manufacturing Systems and car airbags. These Real-Time Embedded Systems (RTES) 

typically deliver data from/to devices interacting with the surrounding environment 

within deadlines ranging at millisecond scales.  

Due to unique characteristics of RTES, the RTES design needs to face several special 

challenges that need not to be dealt with by that of other systems: 

• The design needs to meet the timeliness requirements. RTES must provide correct 

outputs to external events or inputs within a time limit. A RTES can be 

categorized as either a soft or a hard real-time system, depending on the strictness 

of its timeliness requirements. For hard real-time, the design must meet the 

timeliness requirements with zero tolerance on delay, while, for soft real-time, 

limited tolerance can be allowed for very small delays.  

• The design needs to meet the constraints on resources requirements (e.g., limited 

memory and processing power). Many RTES may also have constraints on power 

consumption, because they are deployed in environments where grid-electricity is 

not commonly available (e.g., inside mobile phones or remote devices).  

• The design needs to deal with the hardware/software partition problem. The 

embedded system design space is formed by combinations of hardware and 

software components, which is also referred to as hardware/software codesign. 

The design decision on dividing the target system into hardware and software 
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components is referred to as hardware/software partitioning. The 

hardware/software partition problem is NP-complete [KS03], which is why an 

optimal design for a RTES can be very hard to achieve. 

• The design needs to cope with the target systems’ increasing scalability 

requirements. With the advance of the manufacturing technologies, more and 

more hardware components (e.g., ASICs and FPGAs) are integrated to form a 

single RTES. Furthermore, RTES are making use of networking technologies to 

exchange information or inter-work among each other. Networking makes it 

possible for hundreds of devices working together to complete larger tasks. 

Consequently, scalability becomes an important design issue.  

• The design needs to cope with the target systems’ increasing complexity. With the 

rapid deployment of cheaper and more power microprocessors, RTES are capable 

of supporting more and more complex applications. 

We find that, due to the challenges listed above, no adequate and robust design 

framework exists today that is capable of carrying out optimal design solutions to RTES. 

Our study show that the deficiencies of the existing development methods of RTES 

mainly come from two weak areas: the development lifecycle and the system verification. 

The deficiencies in the development cycle could be attributed to the fact that no unified 

methodology or design framework exists today that can be adequately applied throughout 

the entire design cycle. Some tools/methods are better in one development stage, while 

others are better in other stages. Consequently, different tools and methods are used in 

different development stages, resulting in inconsistencies among analysis, design, test, 

and implementation. Consequently, when the development tasks switch towards the 

target environment, the early models are often abandoned [WG02]. For example, in the 

analysis stage, MATLAB may be used to build mathematical models to analyze data and 

algorithms. However, these mathematical models are rarely used at the design stage, 

where UML (Unified Modelling Language) is a more commonly used tool. However, for 

the implementation phase, UML models are inadequate comparing with programming 
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languages, such as C, because UML models cannot be directly executed on the target 

systems with real-time performance. 

Another area of deficiencies is system verification. Since the current state-of-the-art 

RTES are complex systems that consist of a mix of software embedded in and interacting 

with hardware components and that also need to respond to real-world events in real 

time, correctness of RTES design is very difficult to achieve. Although formal methods 

for RTES design are promising, they have difficulties in scaling up when the complexity 

of the system increases. Modelling and Simulation (M&S) techniques, instead, are 

adequate for testing particular conditions, regardless of the application’s size. However, 

no M&S technique exists today that can provide the same degree of adequacy to study 

RTES as that provided by mathematical methods to study continuous variable systems. 

The lack of adequate formal modelling methods makes RTES development become an 

ad-hoc process that is expensive, time consuming and error prone. For example, current 

methods for software construction for RTES require a difficult and expensive testing 

effort with no guarantee for a bug-free product. [LG05] listed three current approaches to 

RTES testing, with none of them being adequate: 

• Formal specifications. When applying formal specifications, the requirements of 

the System of Interest are formally defined, and formal methods are subsequently 

applied to prove correctness. These techniques have had some success, but they 

are difficult to apply when the complexity of the system scales up.  

• M&S techniques. M&S techniques and tools are proved to be to be helpful in 

designing complex systems. Nevertheless, no practical or automatable approach 

exists to perform the transition that exists between the modelling and the 

development phases, and this often results in model artefacts being abandoned, 

resulting in increased initial costs. Consequently, even though they provide 

improved products, M&S studies are not carried out, or they are used for 

analyzing individual subsystems, later discarding the developed software. 
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Simultaneously, M&S frameworks are not as robust as their formal counterparts 

are.  

• A third kind of technique widely used to ensure that a RTS conforms to a 

specification is Software Testing, i.e., the execution of the software system with 

actual values. Although this method cannot guarantee the correctness of the 

application, it provides a practical solution that tries covering the largest possible 

number of system use scenarios. 

To overcome these problems, the solution is to develop a formal methodology that is 

adequate to be applied to every design stage throughout the entire development lifecycle. 

Modelling and Simulation-based Development of RTES relies on simulation based 

modelling for developments of RTES. We propose a novel Simulation-based 

Development framework for RTES, based on a formal method called DEVS (Discrete 

Event Systems specification) [Zei76, Zei00]. To be used as the final target architecture 

for products, DEVS provides a formal foundation to M&S that has been proven to be 

successful in different complex systems. We choose DEVS to model RTES because of 

the following reasons:  

• The DEVS formalism is a formal method based on mathematical theories. So, the 

correctness of DEVS models can be formally validated. 

• DEVS has well-defined concepts for coupling of components and hierarchical, 

modular model composition, which makes it adequate to model RTES.  

• DEVS not only proposes a framework for model construction, but also defines an 

abstract simulation mechanism that is independent of the model itself. This 

mechanism provides a high level description of how the simulation of DEVS 

models should be executed. Based on this mechanism, it is possible to develop a 

real-time embedded execution environment in which DEVS models are run and 
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interact with the real hardware surrogates, so that the target system can be 

developed in hardware-in-the-loop.  

Our methodology is based on successive prototyping and refinement, which combines the 

advantages of a simulation-based approach with the rigor of a formal methodology, 

which is well suited for RTES development. It consists of the following steps: Modelling 

phase, model verification phase, and Incremental Model replacement phase.  

1. Modelling phase: The modeler defines the DEVS model for the target system. 

The modeler may have a choice to define the DEVS models using a high-level 

graphical notation, which makes it easier to understand system structure and 

behaviors. 

2. Model Verification phase: This phase is concerned with the transformation of the 

model specification into an executable model. The models obtained from the 

previous phase are used to automatically derive simulation, and experimentation 

is done in a virtual environment. The simulation runs on high processing power 

workstations. 

3. Incremental Model Replacement phase: Once the models are verified in a virtual 

environment, they are then executed in a real-time environment. The tested 

components are incrementally replaced by their target counterparts interacting 

with the actual setting. 

4. This cycle is incrementally repeated up to the moment where the system is fully 

developed and tested. 

This new methodology defines a unified design process for RTES. By simulating the 

models, RTES designers will be able to used formal methods analyze every detail of 

system status and requirements. Furthermore, tested models will be directly replaced by 

their real counterparts, so that instantaneous transition from modelling to development 

can take place.  
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The proposed simulation-based development framework overcomes the design 

deficiencies that we found in other design methods. Our methodology covers every 

aspect of the RTES design and provides a consistent design framework throughout the 

entire development lifecycle. Early design models will no longer be abandoned at the 

development phase. Rather, they are directly applied to the implementation, as our 

approach creates a seamless transition from modelling to development. Furthermore, the 

automation of the transition from model definition to real-time execution eliminates 

source level coding and ad-hoc program tailoring, and thus reduces the design efforts. 

The proposed methodology also provides a sound mechanism for system verification. 

Since the DEVS formalism is derived from formal mathematical methods, the DEVS-

based system design can be formally validated against the target system’s specification. 

In addition, since the DEVS models are modular, subcomponents of larger models can be 

validated individually. Moreover, when the validated models are translated to RT 

executives running in the real world, their behaviours can also be easily verified by 

comparing the execution results with that obtained in the simulated world. If the two 

results fail to agree, the simulated solution can be revised in the simulated world for 

retest. If, on the other hand, a subcomponent is verified in the real world, it can be 

replaced by real hardware. This technique enables incremental transition from the 

simulated models to the actual hardware counterparts. As a result, all the subcomponents 

of the system-under-develop are formally verified when the development is finally 

finished. 

1.1 Contributions 

The DEVS real-time execution engine plays an important role in the proposed 

methodology. The design starts entirely in the simulated world. However, with the help 

of the execution engine, the simulated models can be executed in the real world 

environment. This is one of the major differences between our method and the traditional 

M&S methodology. This work focused on developing the DEVS real-time execution 

engine.  
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• We developed an embedded toolkit called Embedded CD++ (E-CD++). E-CD++ 

integrates the execution of DEVS models with hardware surrogates and allows the 

simulated models to interact with other real components in a real-time embedded 

environment. 

• The model execution by E-CD++ complies with the RT-DEVS (Real-Time 

DEVS) specification. RT-DEVS is a real-time extension of the DEVS formalism. 

It provides a sound theoretical foundation for modelling RT systems. 

Furthermore, it provides a framework for the construction of hierarchical models 

in a modular manner, allowing for model reuse and reducing development time 

and testing. It also allows hierarchical decomposition of the model by defining a 

way to couple existing DEVS models.  

• Performance is an important factor for the success of E-CD++, because it must 

execute the DEVS models in real-time. We devoted lots of efforts to improve the 

performance of E-CD++. We implemented a technique that simplifies the model 

hierarchy while preserving the original model relations. By simplifying the model 

hierarchy, E-CD++ reduces the runtime overhead incurred by the traversal of the 

hierarchy. We also did the mathematical analysis on performance improvements 

of this technique. 

• Since E-CD++ runs in the real world, we implemented wall-clock time in E-

CD++. So, the activities run by E-CD++ are measured against the physical time. 

This is another difference between E-CD++ and other DEVS simulation toolkits, 

which use virtual time for simulation. 

• E-CD++ also supports DEVS graphical notations; so, DEVS models generated by 

the graphical modelling tool can be directly executed in E-CD++. 

1.2 Thesis Organization 

The rest of this work is organized as follows: 
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Chapter 2 reviews the state-of-the-art in the M&S field. The chapter surveys the existing 

M&S technologies used in RTES field. It then describes the specifications of DEVS, P-

DEVS, and RT-DEVS. It also provides a brief survey on the DEVS-based toolkits 

existing today. We conclude, based on the review of the state-of-the-art, that no M&S 

methodologies or toolkits exists today that is adequate to develop RTES formally. We, 

therefore, develops E-CD++ which servers as the DEVS RT executive in our new 

methodology.  

Chapter 3 discusses the functionalities of E-CD++. The discussion covers four major 

functionalities: GGAD graphical notation, P-DEVS realization, Flattened Coordinator 

technique, and finally the realization of Time Interval Function. 

Chapter 4 reveals the design and implementation details of E-CD++. It provides a 

software architecture overview, followed by the detailed descriptions of four major 

software modules: the Main Simulator, modelling subsystem, simulation subsystem, and 

messaging subsystem.  

Chapter 5 is a case study in which we put all the pieces together to show how E-CD++ is 

used in the new methodology to develop a real application. The development of an AMS 

is demonstrated in detail. The case study illustrates step-by-step how the AMS is 

designed using hardware-in-the-loop. In addition, the experimental results are used to test 

the E-CD++ functionalities including GGAG graphical modelling, performance 

improvements by Flattened Coordinator, and P-DEVS’ confluent functions. 

Finally Chapter 6 states the conclusions of this work and outlines the possible future 

work. 
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Chapter 2 M&S for Embedded Systems Design 

This chapter explores the state-of-the-art in the use of M&S for embedded systems 

design. Many different M&S methodologies exist for embedded systems. We will survey 

on these methodologies and compare their strengths and limitations. From there, we will 

aim to find the best methodology for the RTES development. We will first provide an 

exposure to DEVS (Discrete EVent Systems Specification), an M&S formalism that 

supports hierarchical and modular modelling. We will show both the strengths and the 

limitations of DEVS. Then we will introduce Parallel DEVS, which is an extension to 

DEVS, and how it can overcome those DEVS limitations. Thirdly, we will introduce 

another DEVS extension called Real-time DEVS. It provides a formal modelling 

framework for real-time systems, making it an ideal choice for RTES development. We 

will also show how Real-time DEVS can be realized based on Parallel DEVS. Finally, to 

make use of DEVS models in embedded systems design, DEVS simulators must be 

developed. At the end of this chapter, therefore, a brief survey on the existing DEVS-

based simulation toolkit will be given. 

2.1 M&S Methodologies 

As the results of the increasing embedded systems design complexity and the shortening 

of the time-to-market design window, two revolutionary changes have emerged in this 

field [Ern98]. First, the concurrent design of hardware and software has displaced the 

traditional sequential design. Further, hardware and software design begins before the 

system architecture, or even the specification, is finalized. As a result of these changes, 

M&S have become a very important step in embedded systems design [CEP99]. 

This section provides a survey on various existing M&S methodologies for modelling 

embedded systems. The M&S process, in general, begins with defining the constraints 

imposed on the system under design, for example constraints on cost, performance, and 

physically dimensions. An experimental frame captures these constraints. Within the 

constraints, the M&S process captures the features of the system under design and 
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describes its functionality. In this step, entities are identified, and an abstract 

representation, a model, is constructed. Once the model is constructed, it needs to be 

executed. This is done by a simulator, which consists of a computer system that executes 

the model’s instructions to generate its behaviour. To complete the cycle, the results 

obtained are compared to those of the real system for model validation.  

 
Figure 1 The basic entities and their relationships [Zei00] 

The basic entities are linked by two relations [Zei00] (Figure 1): 

� modelling relation. Links the real system and model, defining how well the model 

represents the system or entity being modeled. In general terms a model can be 

considered valid if the data generated by the model agrees with the data produced by the 

real system in an experimental frame of interest. 

� simulation relation. Links the model and simulator. It represents how faithfully the 

simulator is able to carry out the instructions of the model. 

Several M&S methodologies have been used for creating embedded systems. A brief 

description of a non-comprehensive list is given below. 
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• Unified Modelling Language (UML) . UML is a standardized specification 

language for object modelling. UML is a widely adopted general-purpose 

modelling language that includes a graphical notation used to create an abstract 

model of a system, referred to as a UML model . UML provides a suite of 

methods that are well suited for generic software construction. However, while 

UML is a widely adopted methodology to model software architecture, it is 

neither adequate nor intended to be used to design hardware components. 

Therefore, UML may not be suitable for software-hardware codesign [Mar02]. 

Another drawback of the UML model is the lack of formal proofs of its 

correctness; so validation and verification efforts become non-trivial, especially 

for complex UML models.  

• UML for Real-Time (UML-RT).  UML-RT is an extension of UML. It offers 

additional modelling constructs based on Real-time Object-Oriented Modelling, 

such as event, action, resource, and schedule. UML-RT is targeted for modelling 

complex, event-driven, and distributed real-time systems [HS04]. However, 

UML-RT does not fundamentally solve the limitations inherited from the original 

UML. First, UML-RT supports concurrency to the same extent as defined by 

UML. An important shortcoming of this is the inability to guarantee processing 

of events using priority settings [HS04]. Secondly, UML-RT does not provide 

formal simulation algorithms – it simply executes the models’ logical 

specifications – which undermines having a well-defined relationship between 

model specifications and model simulations. Moreover, UML-RT runs on top of 

the target system’s real-time operation system (RTOS). Consequently, the 

resolution of time and the multi-task schedule are dependent on the underlying 

RTOS.  

• Finite State Machines (FSM). FSM is well known for describing control 

systems [CEP99]. This model consists of a set of states, a set of inputs, a set of 

outputs, a function which defines the outputs in terms of inputs and states, and a 

next-state function. FSM do not allow concurrency of states, nor does it support 
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hierarchical constructions. Another shortcoming is the exponential growth of the 

number of states as the system complexity rises. Nevertheless, a number of 

extensions and variations of FSM have been proposed attempting to overcome 

the weakness of FSM. Statecharts, with its commercially available simulator 

StateMate [Har96], is the most widely adopted FSM extension for modelling 

embedded systems. Statecharts have the structure of finite-state automata 

enhanced with three important features: hierarchy, concurrency, and broadcast 

communication. One of the disadvantages of Statecharts, however, is the lack of 

formal modelling capability [SER00]. Statecharts employs UML to specify 

models, as opposed to using formal models. This may make the synthesis process 

difficult, as synthesis can be applied only if the precise mathematical meaning of 

a design description is applied [SLS00]. Also, Statecharts do not formally specify 

explicit timing, which is an important aspect in embedded systems. 

• Dataflow Graphs. A dataflow graph consists of a set of compute nodes and 

directed links connecting them representing the flow of data [Alu03]. Dataflow 

graphs are quite popular in modelling data-dominated systems, such as signal 

processing [LDNA03]. While dataflow graphs are well capable of modelling 

dataflow systems, their semantics, however, do not well support event-driven 

reactive systems [Ern98].  

• MATLAB . MATLAB is a simulation toolkit (http://www.mathworks.com), 

which provides a technical computing and data analysis development platform 

for system designers. It features integrated tools that provide user access to its 

math, analysis, visualization, and programming capabilities. MATLAB was built 

upon solid mathematical schematics. It is often used to solve differential 

equations and/or provide Fourier transformations. Therefore, MATLAB is 

suitable for modelling Continuous Variable Dynamic Systems (CVDS), whose 

behaviours can be best described and studied by differential equations. For 

instance, [RCL00] used MATLAB to model and simulate Neuro-Fuzzy systems, 

in which differential equations and Fourier Transformation functions were used 
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for the modelling. MATLAB has its limitations as well. It cannot adequately 

model discrete event systems, such as event-driven reactive systems and dataflow 

systems, where differential equations are inadequate to serve as the modelling 

schematics. Another limitation is that MATLAB is unable to adequately perform 

when many objects existed in the model [JRH03], limiting its ability to model 

large complex systems. 

• Discrete Event Simulation. In contrast to CVDS, Discrete Event Dynamic 

Systems (DEDS) are systems whose variables are discrete and whose time 

advance is continuous. Simulation mechanisms for DEDS systems assume that 

changes of state will take place at discrete points of time, upon the occurrence of 

an event. An event is a change of state that occurs at a specific point of time ti ∈ 

R. The occurrences of events are asynchronous. In between event occurrences, 

states of DEDS are unaffected.  

Due to the nature of digital computing, most of the embedded systems are DEDS. 

Therefore, DEDS simulation is well capable of describing embedded systems. 

This is the primary reason why our research adopted discrete event simulation as 

our M&S methodology. 

Discrete event simulators are concurrent software that simulate DEDS. 

Communication between processes in DE simulators is accomplished by message 

passing. A message is an artificial event that occurs in some instance of physical 

time. Thus, each message has an event’s value and is marked with a time stamp. 

Each process in a DE simulator is executed when it receives a message (i.e., input 

events) and produces output events (messages) with the same (zero delay) or a 

larger time tag. The order of execution of multiple processes that have events at 

the same time is unspecified. Different DE simulators resolve this problem in 

different manner. Thus, [SLS00] states that the DE model is ambiguous, in case of 

simultaneous events.  
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Although using M&S to design RTES has a promising potential [CEP99], this survey 

shows that none of the surveyed methodologies is perfect for RTES development. 

However, due to the DEDS nature of the RTES, Discrete Event Simulation seems to be 

most suitable for RTES. Our focus, therefore, becomes to find the solution to resolve 

Discrete Event Simulation’s limitation on ambiguity, to make it adequate for modelling 

RTES. That is, we want to find a discrete event modelling formalism that gives the 

modeller the full control of defining a deterministic behaviour of the model upon the 

occurrence simultaneous events.  

2.2 The Original DEVS formalism 

DEVS (Discrete EVents Systems Specification) [Zei76, Zei00] is a Discrete Event 

Simulation formalism for modelling and simulating DEDS systems. In DEVS, a model is 

specified as a black box with a state and a duration for that state. When the duration time 

for the state expires, an output event is sent, an internal transition takes place and the 

model changes its current state. A change of state can also occur when an external event 

is received. Then, a complete model is defined by describing the set of states a model 

goes through, the internal and external transition functions, the output function, and the 

state duration function. DEVS models can be put together by linking the outputs of a 

model to inputs of other models to form coupled models. Models made out of only one 

component are called atomic models.  

DEVS not only proposes a framework for model construction, but also defines an 

abstract simulation mechanism that is independent of the model itself. This mechanism 

is high level description of how the simulation of DEVS models should be executed by a 

simulator. Two kinds of simulators are defined, one for atomic and another one for 

coupled models, this latter known as a coordinator. These simulators progress through 

the simulation by exchanging messages as described by the abstract simulation 

mechanism. 

A real system modeled using DEVS can be described as a composition of atomic and 

coupled components. An atomic model (M) is defined by: 
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M = < X, S, Y, δint, δext, λ, ta > 

where 

X is the set of external events; 

Y is the set of internal events; 

S is the set of sequential states; 

δext: Q x X → S is the external state transition function; 

 where Q = { (s,e) / s ∈ S, e ∈ [0, ta(s)] } and e is the 

elapsed time since the last state transition. 

δint: S → S is the internal state transition function; 

λ: S → Y is the output function; 

ta: S → R0
+ U ∞  is the time advance function; 

A DEVS model is in a state s ∈ S at any given time. In the absence of external events, it 

remains in that state for a lifetime defined by ta(s). A transition that occurs due to the 

consumption of time indicated by ta(s) is called an internal transition . When ta(s) time 

expires, the system outputs the value λ(s) and then changes to a new state given by δint(s). 

On the other hand, an external transition occurs due to the reception of an external 

event. In this case, the external transition function determines the new state, given by 

δext(s, e, x) where s is the current state, e is the time elapsed since the last transition and x 

∈ X is the external event that has been received. 

The time advance function can take any real value between 0 and ∞. A state for which 

ta(s) = 0 is called a transient state. In contrast, if the ta(s) = ∞ then s is said to be a 

passive state, in which the system will remain perpetually unless an external event is 

received.  

The following figure in [Gli04] shows the description of states and variables in DEVS 

models: 
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Figure 2 DEVS Semantics [Gli04] 

A DEVS coupled model (CM) is composed of several atomic or coupled submodels. It 

is formally defined by: 

CM = <Xself, Yself, D, {Mi}, {I i}, {Zij},select > 

where 

D Is a set of components; 

for each i in D,  

Mi is a basic DEVS component (i.e. a coupled or atomic model); 

for each i in D U { self },  

I i is the set of influencees of i (i.e. models that can be influenced by 

outputs of model i); 

for each j in I i,  

Zi, j is the i-to-j output-input translation function 

Select is the tie-breaker function; 

This structure is subject to the constraints that for each i in D, 

M i = <Xi, Yi, Si, , δi int, δi ext, λi, tai >    is a DEVS model 

I i is a subset of D U { self }, i is not in I i. 
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Zself, j: Xself → X j 

Zi,self: Yi → Yself  

Zi,j: Yi → X j 

select: subset of D → D 

 such that for any non-empty subset E, select (E) ∈ E. 

A coupled model groups several DEVS into a compound model that can be regarded, due 

to the closure property, as a new DEVS model. This allows hierarchical model 

construction.  

In addition, each coupled model has its own input and output events, as defined by the 

Xself and Yself sets. When external events are received, the coupled model has to redirect 

the inputs to one or more components. Similarly, when a component produces an output, 

it may have to map it as an input to another component, or as an output of the coupled 

model itself. Mapping between ports is defined by the Z function. 

Two types of ambiguities may rise in DEVS simulations. The ambiguity rises when 

multiple components are scheduled for internal transitions at the same time in a coupled 

model. The way the DEVS formalism solves this ambiguity is by the use of the select 

function. The function defines an order over the components so that only one component 

of the group of imminent models is allowed to have e = 0. The other imminent models are 

divided in two groups: those that receive an external output from this model, and the rest. 

The former will execute their external transition functions with e = ta(s), and the latter 

will be imminent during the next simulation cycle which may require again the use of the 

select function to decide which model will execute first. This tie-breaking approach, 

however, is a potential source of errors since the serialization produce may not reflect the 

correct system’s behaviour upon the occurrence of simultaneous events. 

The second type of the ambiguities may rise in an atomic model when it receives an 

external event at the exact time when an internal transition is scheduled. It is not clear 

which transition this model should execute first, for the DEVS formalism does not 
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specify the order. So, two alternatives exist: to execute the external transition first with e 

= ta(s) and then the internal transition, or else to execute the internal transition first 

followed by the external transition with e = 0. It is up to the simulation software to decide 

which alternative to choose. This serialization constraint, however, may again cause 

errors. 

2.3 Parallel DEVS Formalism 

While the DEVS formalism suffers from its serialization constraints, the Parallel DEVS 

(P-DEVS) formalism [Cho94a] was introduced to resolve this issue. A P-DEVS model is 

described as a set of basic and coupled models. In addition, the model’s interface was 

also revised. A model will now have input and output ports through which all interaction 

with the environment takes place. Events determine values appearing on such ports. A 

model receives outside events through its input ports. Upon reception of such events, the 

model description must determine how it responds to them. In addition, internal events 

arising within the model change its state, and manifest themselves as events on the output 

ports to be transmitted to other model components. 

Atomic models are still the most basic constructions, which can be combined with other 

models into coupled models. A Parallel-DEVS coupled model satisfies the closure 

property [Cho94b], so it can be seen as another basic model. Therefore, Parallel-DEVS 

preserves the hierarchical properties of the original DEVS formalism.  

The P-DEVS atomic model has the following structure: 

M = < X  M , Y M , S, δ ext , δ int, δ con, λ, ta > 

where 

X M = {(p,v)| p ∈ IPorts, v ∈ X p }  is the set of input ports and values; 

Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output ports and values; 

S     is the set of sequential states; 

δ ext: Q x XM
b

 → S   is the external state transition function; 
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δ int: S →  S    is the internal state transition function; 

δ con: Q x XM
b

 → S  is the confluent transition function; 

λ : S → YM
b    is the output function; 

ta : S → R0 
+ ∪ ∞   is the time advance function; 

  with Q := { (s, e) | s ∈ S , 0 ≤ e ≤ ta(s) } the set of total states. 

The semantics of the P-DEVS definition are as follows. At any given time, a basic model 

is in a state s. And in the absence of external events, it will remain in that state for a 

period of time as defined by ta(s). When an internal transition takes place, the system 

outputs the value λ(s), and changes to state δint(s). If one or more external events E = { x1 

.. xn / x ∈ XM } occurs before ta(s) expires, i.e., when the system is in the state (s, e) with e 

≤ ta(s), the new state will be given by δext(s, e, E). Suppose that an external and an 

internal transition collide, i.e., an external event E arrives when e = ta(s), the new 

system’s state could either be given by δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler 

can define the most appropriate behavior with the δconf function. As a result, the new 

system’s state will be the one defined by δconf(s, E).  

A P-DEVS coupled model (CM) is defined by: 

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC> 

where 

             X = {(p,v)| p ∈ IPorts, v ∈ X p }   is the set of input ports and values; 

            Y = {(p,v)| p ∈ OPorts, v ∈ Y p }   is the set of output ports and values; 

         M d is a set of atomic models, and D is a set of the atomic models’ names, where 

                        for each d ∈ D 

                                  M d = (X d , Y d , S, δ ext , δ int, δ con, λ, ta) is a DEVS basic structure 

                                with X d = {(p,v)| p ∈ IPorts, v ∈ X p }  ; 

                                           Y d = {(p,v)| p ∈ OPorts, v ∈ Y p } ; 

The couplings are subject to the following conditions: 
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• external input couplings (EIC) connect external inputs to component inputs: 

EIC ⊆  {((N, ip N ), (d, ip d )) | ip N ∈ IPorts, d ∈ D, ip d ∈ IPorts d } 

• external output couplings (EOC) connect component outputs to external outputs: 

EOC ⊆ {((d, op d ), ( N, op N )) | op N ∈ OPorts, d ∈ D, op d ∈ OPorts d } 

• internal couplings (IC) connect component outputs to component inputs: 

IC ⊆ {((a, op a ), (b, ip b )) | a, b ∈ D, op a ∈ OPorts a , ip b ∈ IPorts b } 

No direct feedback loops are allowed, i.e., no output port of a component may be 

connected to an input port of the same component i.e., 

((d, opd), (e, ipd)) ∈ IC implies d ≠ e. 

• Range inclusion constraints: the values sent from a source port must be within the 

range of accepted values of a destination port, i.e., 

∀((N, ip N ), (d, ip d )) ∈ EIC : X ipN ⊆ X ipd 

∀ ((a, op a ), (N, op N )) ∈ EOC : Y opa ⊆ Y opN 

∀ ((a, op a ), (b, ip b )) ∈ IC : Y opa ⊆ X ipb. 

Comparing with DEVS, P-DEVS has the following 2 capabilities that DEVS lacks of: 

• Be able to give the modeller a complete control over the collision behaviour when 

a component receives events at the time of its internal transition via the use 

confluent function δcon. This function will define a new model’s state when there 

is a collision between internal and external transitions. Basically, this function 

will allow the modeller to specify how the model should behave in the presence of 

collisions. 

• Be able to eliminate the necessity for tie-breaking simultaneously scheduled 

events, which is done by the SELECT functions in DEVS. In P-DEVS, the 

external and output functions no longer handle one event at a time. Instead, bags 

of events are now being handled, allowing then for simultaneous processing of 

multiple events. In other words, P-DEVS provides parallel activation of all 

imminent children of a coupled model. 
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2.4 Real-time DEVS (RT-DEVS) Formalism 

The RT-DEVS [HSKP97] is a formalism for real-time discrete event systems modelling. 

It is an extension of the DEVS formalism that provides a seamless framework for the 

development of real-time control software that includes modelling, design, analysis, 

simulation, and implementation. The RT-DEVS has additional specifications that are not 

in the original DEVS formalism: the time interval function and the weak synchronization 

communication mechanism [SK05]. Since in real-time systems, an event occurrence time 

may not be an exact value but an interval, the time advance in RT-DEVS is given by a 

time interval. An atomic model in RT-DEVS formalism, RTAM, is given by the 

following seven-tuple [SK05]: 

RTAM = < X M , Y M , S, δ ext , δ int, δ con, λ, ti > 

ti : S → R0 
+ x R0 

+ where ti(s)|min ≤ ta(s) ≤ ti(s)|max, s ∈ S 

Note that RTAM is the same as the original DEVS atomic model, expect that the time 

advance function is replaced by the time interval function ti. 

The definition of coupled models defined by RT-DEVS is the same as that defined by P-

DEVS. 

The DEVS formalism does not explicitly define a communication mechanism between 

components coupled together. The RT-DEVS, by contrast, explicitly defines the 

communication mechanism, called weak synchronization. It has two characteristics: 

• Concurrency on simultaneously scheduled events. For example, suppose there are 

two real-time atomic models A and B, and A’s output port is connected to B’s 

input port. As a result, A’s output function generates an external event to B. In 

RT-DEVS, A’s internal transition and B’s external transition takes place 

concurrently. 

• Synchronization loss: A real-time component that is trying to make an internal 

transition should not block other components that are not ready for 

synchronization. For example, suppose that atomic models A and B have no 
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connections via any ports. Then A’s internal transition changes its state alone. 

That is, B’s state remains unchanged, causing synchronization loss. 

In practice, the implementation of P-DEVS provides weak synchronization, because it 

provides concurrent activation of all imminent children of a coupled model, and also 

because it also guarantees synchronization loss [Cho94a]. Therefore, the RT-DEVS 

formalism can be constructed by implementing both the time interval function and P-

DEVS. 

2.5 Applying DEVS to Embedded Systems Design 

DEVS technology has been usually applied to large-scale dynamic systems, with 

implementations running on workstations and servers. As these systems focus on the high 

level modelling and simulation, another branch of DEVS application is on real-time 

event-based control [HZC01]. These low level applications exist largely on embedded 

systems, which are usually characterized as “intelligent devices” consisting of computer 

hardware and real-time software. This work mainly studies how to use DEVS technology 

to design real-time embedded systems.  

Comparing with serial DEVS, P-DEVS is a major advance in modelling real-time 

systems, because it provides an appropriate basis to develop simulation models exhibiting 

concurrent behaviour. However, while P-DEVS provides sound modelling principles to 

characterize structural and behaviour aspects of real-time systems, recent research 

suggests that transforming (or mapping) DEVS models to actual designs of real-time 

embedded systems is non-trivial [HS04].  

Recent research, therefore, has been focusing on developing schemes to support the 

transformation from simulation modelling to designs of real systems. One attempt was 

the DEVS-on-a-chip approach, which implements DEVS on a microprocessor that has 

limited memory and processing ability [HZC01]. It creates a just-as-needed real time 

environment. This effort, however, did not implement a full scale of RT-DEVS 
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specifications on the chip. As a result, it only demonstrates the capability of creating real-

time embedded systems that have relatively simple compositions. 

Another research effort in this area focused on how to use RT-DEVS as a framework to 

develop hardware-in-the-loop applications [LPW03]. These applications are complex as a 

result of the high degree of interaction between software and hardware components. 

Therefore, the development of these applications is a challenging process in which M&S 

can become essential. The technique of applying RT-DEVS to develop hardware-in-the-

loop applications seamlessly integrates simulation models with hardware components and 

also enables incremental transition from the simulated models to the actual hardware 

counterparts. 

2.6 DEVS-based simulation toolkits 

Prior to this work, many DEVS-based toolkits have already been developed by different 

research groups. A brief survey on these tools has been given by [Gli04] as follows: 

• ADEVS [Nut06] supports the construction of discrete event models based on a 

variant of the P-DEVS formalism. It includes support for dynamic structure 

models based on the Dynamic DEVS formalism [Uhr01a]. 

• DEVS-C++ [Zei06] is a high performance simulation environment that allows 

portability of models across platforms at a high level of abstraction. It uses a set 

of C++ classes, called containers, to implement serial and parallel simulation. 

• DEVS-Scheme [Zei93] is a knowledge-based environment implemented in 

Scheme for discrete-event model construction and simulation. It allows 

combining symbolic and hierarchical, modular discrete-event modelling 

approaches. 

• DEVS/HLA [Zei99b] is an HLA-compliant M&S environment implemented in 

C++ that supports high level model construction. It greatly simplifies the 

underlying programming details required to establish and participate in an HLA 

federation. 
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• DEVS/Grid [Seo04] is an M&S framework implemented using Java and Globus 

toolkit for Grid computing infrastructure. 

• DEVSCluster [Kim04] is a CORBA-based, multi-threaded distributed simulator 

implemented in Visual C++. It transforms a hierarchical DEVS model into a non-

hierarchical one to ease the synchronization of the distributed simulation. 

• DEVSJAVA [Sar98] is a DEVS-based Simulator that supports high-level 

modelling. 

• GALATEA [Dav00] is offered as a family of languages to model multi-agent 

systems to be simulated in a DEVS multi-agent platform. 

• JDEVS [Fil02] is an M&S environment that enables discrete-event, general 

purpose, object-oriented, component-based, GIS, (Geographic Information 

System) connected, collaborative, visual simulation model development and 

execution. 

• JAMES [Uhr01b] is a Java-based simulation environment that allows the modeler 

to describe agents and their environment as situated automata. 

• PyDEVS is a simulator developed in ATOM3 [Del02], a tool for multi-paradigm 

modelling. DEVS models are constructed using the ATOM3-DEVS tool, which 

generates Python code to be executed with the PyDEVS simulator. 

• PowerDEVS [Kof03] is an M&S toolkit developed in C++ for hybrid systems. 

Atomic DEVS models can be graphically coupled in hierarchical block diagrams 

to create complex systems. 

• SimBeans [Pra99] is a discrete-event simulation framework based on DEVS and 

the JavaBean component model. 

• CD++ [Rod99, Wai02a] is an M&S toolkit developed in C++ that implements the 

original DEVS formalism. 

None of the toolkits listed above, however, is capable of applying RT-DEVS to real-time 

embedded systems design using hardware-in-the-loop. The aim of this work is to create 

such a toolkit. To do so, our strategy is to reuse some of the existing CD++ software 

components and build new functionalities as necessary. The resultant toolkit is the 
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Embedded CD++ (E-CD++). In general, CD++ and E-CD++ have the following major 

differences: 

• CD++ implements DEVS, whereas E-CD++ implements RT-DEVS (i.e., P-DEVS 

combined with the Time Interval Function). 

• CD++ runs on workstations, whereas E-CD++ runs on a single board computer 

(SBC). 

• CD++ uses logical time, whereas E-CD++ supports both logical and physical 

clock. 

• E-CD++ has better simulation performance than CD++, since E-CD++ 

implemented a Flattened Coordinator technique to improve the performance. 

• CD++ does not interact with real-world events, whereas E-CD++ does. It uses the 

input ports on the SBC to receive events from real input devices, such as sensors 

and timers. As well, the outputs can be sent through output ports connected to 

devices, such as motors and gears. 

• CD++ can only simulate homogenous DEVS models, where as E-CD++ can 

seamlessly integrate DEVS components with hardware components. 

• E-CD++ supports graphical modelling, which is a new functionality that CD++ 

does not have. 

2.7 M&S Methods for RTES Design 

In the past, M&S have been used to model and simulate the system under study, so that 

the system behaviour can be analysed and examined. M&S was used only to study the 

target system in a simulated environment. This work, however, attempts to apply the 

M&S methodology directly to the design of the target system. 

Using M&S to design real-time embedded systems has a promising potential. [Ern98] 

stated the importance of Modelling in modern embedded system design, and [SLS00] 

further claimed that formal models are essential to embedded system design. However, 

defining a formal modelling methodology that is adequate in modelling all kinds of 

embedded systems is a challenge. We found that some models, such as FSM, support 
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event-driven reactive systems, while others target dataflow systems. A combination using 

both domains (e.g., telecom devices) implies simulation overhead. As well, some 

simulators, such as MATLAB, are adequate in modelling CVDS, but not suitable for 

DEDS. Due to their digital nature, embedded systems can be categorized as DEDS. 

Consequently, we found that RT-DEVS is an adequate state-of-the-art modelling 

methodology for embedded systems. Furthermore, recent advancement of the DEVS 

research has extended DEVS to a new embedded system design paradigm in which RT-

DEVS is used as a framework that seamlessly integrates simulation models with 

hardware components and that also enables incremental transition from the simulated 

models to the actual hardware counterparts. 

However, although RT-DEVS is adequate in modelling embedded systems, no simulation 

toolkit available can apply RT-DEVS directly to the implementation of the target system. 

Modelling and implementation differ in the way that, in modelling, all models (including 

hardware models) are simulated software components, while implementation must 

integrate hardware and software components. In other words, implementation must face 

the hardware/software partition problem, implying that no instantaneous transition exists 

from the modelling phase to the implementation phase. 

The aim of E-CD++ is to address this issue. Since the hardware/software partition 

problem is NP-complete, no formal methodology can be found to solve this problem. 

Therefore, imperial approach has to be used instead. The E-CD++ toolkit merges the RT-

DEVS formalism with hardware-in-the-loop design methodology. That is, E-CD++ 

creates an real-time execution environment which integrates RT-DEVS models with real 

hardware components. In this way, RT-DEVS is directly applied to the implementation of 

the system under design. 
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Chapter 3 Embedded CD++ (E-CD++) 

In this chapter, we introduce the Embedded CD++ (E-CD++) toolkit. We first give a brief 

introduction to CD++ and E-CD++. We then extend our discussion to exploring four 

major functionalities of E-CD++: a GGAD (Generic Graphic Advanced environment for 

DEVS modelling and simulation) interpreter, P-DEVS simulation, the Flattened 

Coordinator technique, and the Time Interval Function. With the realization both P-

DEVS and the Time Interval Function, E-CD++ carries out RT-DEVS simulation. 

Finally, performance is a critical attribute for an embedded simulator that performs real-

time simulations. E-CD++ adopts the Flattened Coordinator technique to improve its 

performance. We provide a theoretical discussion on E-CD++ performance when 

exploring the Flattened Coordinator technique. 

3.1 CD++ 

Not only does DEVS propose a framework for model construction, it also defines an 

abstract simulation mechanism that is independent of the model itself. This mechanism 

provides a high level design on DEVS framework, and it can be feasibly implemented by 

computer software. CD++ [Wai02] is a simulation software which implements the DEVS 

simulation formalism. In CD++, two kinds of simulators are implemented, one for 

atomic and the other for coupled models. The latter is known as a coordinator. These 

simulators progress through the simulation by exchanging messages as described by the 

abstract simulation mechanism. 

CD++ is written in C++. Two basic abstract classes exist: Model  and Processor . The 

former is used to represent the behaviour of the atomic and coupled models, while the 

latter implements the simulation mechanisms. Figure 3 shows the CD++ class hierarchy.  
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Figure 3 CD++ (a) Model hierarchy, (b) Processor hierarchy 

The user-defined DEVS models are subclasses derived from the Model  class, which 

defines the model states and the internal and external state transition functions. CD++ 

also allows the user to create a model file which defines the model hierarchy and linkage 

between ports.  

Message passing are among Processor  objects, which upon receiving certain 

messages, trigger the appropriate state transition functions.  

3.2 E-CD++ 

CD++ was developed to run in a simulated environment carrying out only simulated 

results. E-CD++, by contrast, is developed to apply the RT-DEVS formalism to 

embedded systems design which requires real-time expansion and interact on the 

surrounding environment. The inputs of E-CD++ can be received by ports connected to 

real input devices such as sensors, timers, thermometers, or data collected from human 

interaction. The outputs can be sent through output ports connected to devices such as 

motors, transducers, gears, valves, or any other component. 

E-CD++ runs on a Single Board Computer (SBC). It supports hardware-in-the-loop 

simulations by developing hybrid hardware/software systems -- integrations of simulated 

software models and real hardware components [LPW03].  
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The DEVS model is then loaded onto the SBC running E-CD++ for validation. E-CD++ 

supports RT-DEVS in which time advancement is driven by the wall-clock. Furthermore, 

the inputs and outputs ports on the SBC are real hardware that is used by the E-CD++ to 

let the DEVS model interact with the environment. E-CD++ can also integrate simulation 

models with hardware components, which enables incremental transition from the 

simulated models to the actual hardware counterparts. 

The testing results obtained on the SBC can be compared with the simulation results 

obtained on the host workstation. If the two results do not agree, then the DEVS model or 

the event file developed on the workstation can be easily modified or adjusted to obtain 

more accurate results. 

E-CD++ inherits all the functionalities of the original CD++, while adding the following 

new functionalities: 

• Supports the GGAD graphical modeller; 

• Implements RT-DEVS by implementing the P-DEVS formalism and the time 

interval function; 

• Implements the Flattened Coordinator technique; 

• Is able to simulate DEVS models in an embedded computing environment with 

limited resources; 

• Is able to let DEVS models respond to real world events via input and output 

ports of the embedded system. 

3.3 GGAD Graphical Notation 

E-CD++ provides a graphical user interface (GUI) for modellers to specify atomic 

models graphically, enabling non-expert users to define atomic models in a easier and 

more intuitive way. The tool generates textual specifications of the models represented 

graphically in the GUI.  

The GUI is based on a DEVS-graph notation presented in [HSKP97], which allows 

defining atomic models using a graphical modelling tool. An atomic model is placed 
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inside a box (Figure 4). An external state transition is represented by a dotted line in 

which the input event is represented by “?”. Similarly, an internal state transition is 

represented by a solid line in which the output event is represented by “!”. For example, 

an input event in?m means that a message m arrives at the input port in, and an output 

event out!m means that a message m is run through port out. The input and output ports 

are denoted by the black triangles. The atomic states are marked by circles in which the 

state names and the time advance functions are defined. 

 
Figure 4 Graphical definition of an atomic model: Coin Displayer 

Figure 4 is a graphical representation of an atomic model called coin. This model 

simulates the behaviour of the coins displayer in a vending machine. It has one input port, 

namely coin_in, representing the input coins slot and one output port called coin_out 

which represents the display of the inserted coins’ amount, and the port values of both 

ports have integer data type. When coins are inserted into the coins slot, it takes one 

second for the coins displayer to display the coins’ amount. 

The two circles in the diagram represent the model’s two internal states whose names and 

time intervals are defined inside the circles. The “Idle” state is the initial state of which 

the time interval is set to infinity, which implies that the model may remain idle if no 

external events (e.g., inserting coins) arrives. In contrast, the “Prepare” state has only one 

Coin_in:integer 
Coin_out:integer 

Idle 
TL=infinity 

Prepare 
TL=1 

coin Coin_in?coin_amount 

Coin_out!coin_amount 

External transition 

Internal transition 
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second time interval, meaning that it takes one second for the “Prepare” state to change to 

another one. That is, when coins are inserted into the coins slot, it takes one second for 

the coins displayer to display the coins’ amount. 

The external transition function of the coins displayer is defined by the dotted arrow line 

in Figure 4. When a coin is inserted via the input port, the external transition function 

changes the model’s state from “Idle” to “Prepare” and stores the input value to the local 

variable “coin_amount”. After one second time interval elapses, the output function, 

defined right below the solid arrow line, outputs the “coin_amount” value to the output 

port, and the internal state transition, defined by the solid line, changes model state back 

to “Idle”. 

The textual specifications are defined by a modelling language called GGAD. A GGAD 

file is a text file that contains an atomic model written in GGAD. As an example, Figure 

5 provides the textual definition of the atomic model represented in Figure 4.  

 
Figure 5 GGAD textual definition of the coin model 

This first line in the GGAD file is always the name of the atomic model encoded by the 

square brackets. The rest of the file content defines the model’s ports, states, state 

transition functions, local variables used in transition functions, and time advance 

functions. The order of these definitions is arbitrary, and tokens in GGAD are separated 

by white spaces.  

• The input ports (line 2) are defined by the keyword “in” followed by a colon and a 

list of port names separated by white spaces.  

[coin] 
in: coin_in 
out: coin_out 
var : coin_amount 
state: idle prepare 
initial: idle 
int: prepare idle coin_out!coin_amount 
ext: idle prepare any(coin_in)?1 {coin_amount = coi n_in;} 
idle: infinite 
prepare: 0:0:1:0 
coin_amount: 0 
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• Similarly, the output ports (line 3) are defined by the keyword “out” followed by 

a colon and a list of output port names.  

• The local variable list (line 4) and the state list (line 5) are both followed the same 

syntax rule, except their responding keywords are “var” and “state” respectively.  

• The keyword “initial” is used to define the initial state. For example, the initial 

state of the coin model (line 6) is “idle”.  

• The time advance function is defined by a state name followed by a colon and a 

GGAD time. The GGAD time has the format “HH:MM:SS:MS” For example, the 

elapse time of the prepare state is 1 section (line 10). In addition, the keyword 

“infinite” defines the passive state. In our example, the “idle” state is a passive 

state (line 9). 

• The internal transition function is defined as follows. It starts with the keyword 

“int” followed by a colon. The next two tokens are the start state and the 

destination state. Then remainder part of the function defines the output function. 

The keyword “!” is the output mark. The left hand side of “!” is the output port 

name, and the right hand side is the output value. For example, the internal 

transition of coin (line 7) starts at state “prepare” and ends at state “idle”. The 

output function outputs the value of local variable “coin_amount” to port 

“coin_out”. 

• The keyword “ext” denotes the start of an external transition function (line 8). The 

external transition function also has a start state and a destination state, which are 

defined in the same syntax as that defined in internal transition functions. The 

keyword “?” is the so-called input mark. The left hand side of “?” is a GGAD 

expression, while right hand side is an integer constant. Once an external event 

takes place, the GGAD modeller evaluates the expression and compares the result 

with the integer constant. If the two values agree, the GGAD modeller will 

execute this external transition function. Otherwise, the function will not be 

executed. GGAD uses this approach to select the correct external transition 

function to execute upon a particular external event. In our coin example, the 

expression “any(coin_in)” returns 1 if a new value arrives at input port “coin_in” 

and returns 0 otherwise. So, the external transition defined is line 8 will be 
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executed upon the event where new coins are inserted into “coin_in”. Detailed 

exploration on GGAD expressions will be covered in the next chapter. 

 

The last part of the external transition function is a list of GGAD actions, 

enclosed by curry brackets. They form the body of the external transition 

function. GGAD actions are C++ assignment like statements and are separated by 

semicolons. In the coin model example, the GGAD action “coin_amount = 

coin_in;” assigns the input value arrived at input port “coin_in” to the local 

variable “coin_amount”. GGAD actions will be discussed in the next chapter in 

detail. 

The complete definition to GGAD grammar can be found in Appendix B: Grammar for 

GGAD Models. 

3.4 P-DEVS Simulation Algorithms 

The formal definition and semantics of P-DEVS is given in Chapter 2. This section 

discusses the definition of P-DEVS simulation algorithms used in E-CD++. That is, we 

focus on how to transform the specifications of P-DEVS (written in mathematical terms) 

into algorithms that can be implemented by computer programs. 

The P-DEVS formalism allows the modeller to specify the state transition behaviours of 

atomic and coupled models, as well as the port connections among models. These 

connections constitute the model hierarchy. The distinctiveness of P-DEVS is that it 

supports parallel executions on simultaneous state transitions of atomic models and 

concurrent handling of simultaneously scheduled external events. Moreover, handling 

external events from the environment, executing transition functions, and exchanging 

messages among models through their input and output ports that trigger more state 

transitions to happen constitute all the activities of P-DEVS simulations. More 

specifically, the following three functionalities are needed:  
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1. Parallel executions on simultaneous state transitions. This functionality may be 

achieved by periodically determining the imminent atomic models at each 

simulation cycle with time advancement and synchronizing their state transition 

activities. In E-CD++, each model has internal variables to keep the time of the 

simulation, as listed below. 

tL Time of last transition 

tN Time of next transition 

An imminent atomic model’s simulator has the smallest value of tN. among its 

siblings. In other words, it is a model that holds an imminent state transition that 

will occur in the next simulation cycle in which time will advance to the model’s 

tN. A simulation cycle advances time from tL to tN, where tL is the end time of the 

previous simulation cycle and tN is the finish time of the current cycle. Within this 

time period, there may be multiple imminent atomic models. With P-DEVS 

implementation, E-CD++ is capable of executing these state transitions 

simultaneously. This capability differentiates E-CD++ from the original CD++ 

simulator, where the SELECT functions are used to serialize the executions of 

these simultaneous state transitions.  

To achieve parallelism on state transitions, synchronization of models’ activities 

is necessary. The synchronization of atomic models’ state transitions can be 

achieved by inter-component messaging. E-CD++ implements a new inter-

component messaging architecture that is very different from the original CD++ 

design, so that it can offer this functionality. Two main categories of messages 

exist: synchronization and content messages. Each of these categories consists 

of several types of messages. 

Synchronization messages: 

@ Collect message 

* Internal message 

done Done message 
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Content messages: 

Q External message 

Y Output message 

The Content Messages are used to exchange data among components via their 

input and output port connections. The concept of Synchronization Messages is 

newly introduced by E-CD++. Each coupled model in E-CD++ maintains an 

important data structure called Synchronization Set, which is a subset of its 

children that are scheduled to have state transitions in the next simulation cycle. 

That is, they are imminent components. Synchronization Messages are exchanged 

among components in order to periodically create, update and clear 

synchronization sets in each simulation cycle. 

2. Handling simultaneous external events in parallel. In the original DEVS 

formalism, the atomic model can handle only one external event at a time. E-

CD++ overcomes this limitation by redesigning the external transition function. 

Rather than invoking δext immediately upon an arrival of an external event, E-

CD++ stores the external message in the receiving model’s Message Bag, which 

is a set of external messages and then adds this model to the Synchronization Set. 

The model’s external transition function, once invoked, processes all messages in 

the Message Bag altogether, as opposed to one single external message at a time. 

In this design, simultaneous external events that take place within a simulation 

cycle, i.e., between tL to tN, are handled by δext in parallel. 

3. Ability to resolve conflicts caused by simultaneously scheduled internal and 

external state transition within one atomic model. This functionality is achieved 

by implementing the confluent function δcon, which is a new device introduced by 

P-DEVS. 

 

In E-CD++ implementation, the Simulator is responsible of invoking the atomic model’s 

λ(s), δext, δint, δcon functions, while the Coordinator  is responsible for the simulation of 
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coupled models. Both simulators and coordinators are capable of sending and receiving 

messages. Their implementations are described below. The algorithms that follow are 

based on that in [Cho94b], with minor modifications. 

 

According to Cho’s algorithm, when a simulator receives a (@, t) message (Figure 6), it 

executes the atomic model’s output function λ (line 3) and sends the output to the parent 

coordinator (line 4). Note that the simulator executes λ at exactly tN time (line 2), 

ensuring the correctness of the simulation. Finally, it sends out the Done message to its 

parent, indicating the completion of the execution (line 5).  

 

SIMULATOR 
1. when a ( @ , t ) message is received 
2. if  t = tN then 
3. y := λ(s) 
4. send ( y , t ) to the parent coordinator 
5. send ( done, t ) to the parent coordinator 
6. end if 
7. else raise error 
8. end when 

Figure 6 Simulator Receiving Collect Message 

 

When a simulator receives an External Message (Figure 7), it simply adds it to the 

Message Bag (line 3) and does so atomically (line 2 and 4) to avoid race conditions in the 

concurrent computing environment.  

 

SIMULATOR 
1. when a ( q , t ) message is received 
2. lock the bag 
3. Add event q to the bag 
4. unlock the bag 
5. end when 

Figure 7 Simulator Receiving External Message 

 

However, there is a minor difference between Cho’s algorithm and ours in handling the 

External Message. Cho’s algorithm also sends a (done, t) message to the simulator’s 
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parent coordinator after the event is added. We found that generating the done message is 

not necessary, provided that the message handlers for the synchronization messages 

(namely @ and *) send done messages. That is, there is no need for content message 

handlers to send done messages. We have proved this point by statement. 

 

Figure 8 outlines Cho’s algorithm of the Simulator’s Internal Message handler. The 

arrival of the (*, t) message indicates that an atomic model’s transition function must be 

executed. The transition function to be executed will depend on the current time, t, and 

the content’s of the Message Bag. If t < tN , then it is not the time for an internal 

transition, and it must be the case that the Message Bag is not empty, and δext is executed, 

consuming all the external messages in the Message Bag at once.  

 

SIMULATOR  
1. when a ( *  , t ) message is received 
2. case tL ≤ t < tN 
3. e := t - tL 
4. s := δext( s, e, bag ) 
5. empty bag 
6. end case 
7. case t = tN  and bag is empty 
8. s := δint( s )  
9. end case 
10. case t = tN  and bag not is empty 
11. s := δcon( s, bag )  
12. empty bag 
13. end case 
14. case t > tN or t < tL 
15. raise error 
16. end case 
17. tL := t 
18. tN := ta (s) 
19. send ( done, tN) to parent coordinator 
20. end when 

Figure 8 Simulator Receiving Internal Message 

If t = tN,, it is the time for an internal transition. If no external messages has been 

received, then δint, is executed, but if there are external messages in the Message Bag, 

then δcon is called instead. All other cases are considered as errors.  
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Once the appropriate transition function is executed, the simulator update its tL to current 

time t, and tN  to ta(s). 

 

We now describe the behaviour of Coordinator. A coordinator is responsible for the 

simulation of a coupled model. It executes the translation function that translates output 

events to input events, maintains the Synchronization Set which stores the imminent 

children, and synchronize its children’s state transition by sending out Synchronization 

Messages. 

 

Figure 9 illustrate how a Coordinator handles the Collect Message. (This is also Cho’s 

algorithm) Fist of all, it checks if the Collect Message is received exactly at time tN (line 

2). If not, it raises an error (line 11). It then updates its tL to t (line 3) and sends (@, t) to 

all of its imminent children (line 5). The imminent children can now be stored in the 

Synchronization Set (line 6), which implies that their state transitions are scheduled to 

take place in the next simulation cycle when time advances to tN. After it receive the 

Done Message from all it imminent children (line 8), the Coordinator sends a Done 

Message to its parents indicating the completion of the task (line 9). 

 

COORDINATOR 
1. when a ( @ , t ) message is received from parent coordinator 
2. if  t = tN then 
3. tL := t 
4. for  all imminent child processors i with minimum tN 
5. send ( @, t ) to child i 
6. cache i in the synchronize set 
7. end for 
8. wait until ( done, t )’s have been received from all imminent processors 
9. send ( done, t ) to parent coordinator 
10. end if 
11. else raise error 
12. end when 

Figure 9 Coordinator Receiving Collect Message 

When a Coordinator receives an Output Message (Figure 10), the message must be sent 

from one of its children, because in E-CD++ implementation, Output Messages are only 

sent upwards in the models hierarchy from children to their parents.  
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COORDINATOR 
1. when a ( y , t ) message is received from child i  
2. for  all influencees, j of child i 
3. q := zi,j ( y ) 
4. send ( q, t ) to child j 
5. cache j in the synchronize set 
6. end for 
7. if  self ∈ Ii ( y is to be transmitted upward) then  
8. y := zi, self  ( y ) 
9. send ( y, t ) to parent coordinator 
10. end if 
11. end when 

Figure 10 Coordinator Receiving Output Message 

 

The first action that a coordinator performs upon the arrival of an Output Message is to 

invoke the translation function to translate the Output Message into the External Message 

and send it to all of its receiving models (line 2 – 4). Then the Coordinator caches the 

receiving models into the Synchronization Set (line 5), implying that their external state 

transitions are scheduled to occur in the next simulation cycle. 

 

If, however, the coordinator itself is also one of the receiving models (line 7), it means 

that the Output Message needs to be forwarded upward to its parent. In this case, the 

coordinator generates another Output Message and sends it to its parent coordinator (line 

8 & 9). 

 

The coordinator handles External Messages in the same way as a simulator does. That is, 

it atomically adds the incoming message to its Message Bag (Figure 11). 

 

COORDINATOR 
1. when a ( q , t ) message is received from parent coordinator 
2. lock the bag 
3. Add event q to the bag 
4. unlock the bag 
5. end when 

Figure 11 Coordinator Receiving External Message 
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The behaviour of a coordinator receiving an Internal Message is illustrated in Figure 12. 

When a coordinator receives an Internal Message, it first checks whether the current time, 

t, is somewhere in between the last transition time and the next scheduled transition (line 

2). If not, it returns an error (line 20). If the time is right, it processes all the External 

Messages stored in the Message Bag by translating them into new External Messages 

(line 5) and sending them to the receiving components (line 6). These receiving 

components are cached into the Synchronization Set, for they need to process the 

External Messages that have just been sent to them in the next simulation cycle. Having 

processed all the External Messages, the coordinator empties the Message Bag (line 10). 

Next, the coordinator sends out an Internal Message to every component saved in the 

Synchronization Set (line 11 – 13), to trigger the state transitions of these imminent 

children. Then, the coordinator is blocked waiting for the Done Messages from all the 

imminent children which have just received the Internal Messages (line 14). 

 

COORDINATOR 
1. when a ( *  , t ) message is received from parent coordinator 
2. if  tL ≤ t ≤ tN 
3. for  all q ∈ bag 
4. for  all receivers of q,  j ∈ Iself 
5. q := zself, j (q) 
6. send ( q, t ) to j 
7. cache j in the synchronize set 
8. end for 
9. end for 
10. empty bag 
11. for  all i in the synchronize set 
12. send ( *, t ) to i 
13. end for 
14. wait until all ( done, tN)’s are received 
15. tL :=  t 
16. tN := minimum of components’ tN’s  
17. clear the synchronize set  
18. send ( done, tN ) to parent coordinator 
19. end if 
20. else raise an error 
21. end when 

Figure 12 Coordinator Receiving Internal Message 
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When all the Done Messages are arrived, the coordinator unblocks itself and updates its tL 

and tN, and clears its Synchronization Set (line 15 – 17). And finally, it sends the Done 

Message to its parent (line 18). 

 

The last piece of work needs to be explained in P-DEVS is the Root Coordinator. It is a 

special processor that is above the topmost coordinator. It is responsible for driving the 

simulation and advancing the virtual simulation time. Figure 13 represents the algorithm 

of the Root Coordinator. First, it advances the simulation time to tN of the topmost 

coordinator (line 1). This implies that the state transition of the topmost coordinator may 

occur right away. Then, the Root Coordinator keeps sending the Collect Message and the 

Internal Message to the topmost coordinator (line 3 – 6) as well as updating the 

simulation time (line 7). 

 

ROOT COORDINATOR 
1. t := tN of the topmost coordinator 
2. while t ≠ ∞ or more external events to come 
3. send ( @ , t ) to the topmost coordinator  
4. wait until ( done , t ) message is received from it 
5. send ( * , t ) to the topmost coordinator 
6. wait until ( done, tN ) message is received from it 
7. t := tN  of topmost coordinator 
8. if  external event arrives 
9. send ( q, t ) to the topmost coordinator 
10. end if  
11. end while 
12. raise simulation completed 

Figure 13 Root Coordinator Behaviours 

The Root Coordinator can also handle external events. These events may be stored in an 

events file which contains a sorted queue of events. When an external event occurs, the 

Root Coordinator sends an External Message to the topmost coordinator (line 8). 

The simulation completes when t becomes infinity and there are no more external events 

left. 
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3.5 Flattened Coordinator Technique 

Real-time applications require the simulation software be able to carry out results within 

specified time constraints. Therefore, performance is essential to the success of a real-

time simulation software. The Flattened Coordinator technique [Kim00] is introduced to 

improve the performance of E-CD++. The original CD++ needs to build a DEVS model 

hierarchy. As shown in Figure 14, CD++ builds a same hierarchy for coordinators and 

simulators as that for DEVS models. When a DEVS model executes, one simulator object 

is created for each atomic component, and one coordinator object for each coupled 

component in the hierarchy. 

  
Root 

CoordinatorModel 

  

(a) (b) 

Coupled Atomic

AtomicAtomic

Coordinator Simulator 

SimulatorSimulator

 
Figure 14 CD++ (a) Model hierarchy, (b) Processor hierarchy [Gli04] 

The problem with the hierarchical approach is that performance is not scalable. As the 

size and complexity of DEVS models grow, so is the processor hierarchy, resulting in the 

reduction of the simulation performance. The simulation algorithms explained in Section 

3.4 revealed how messages are generated and exchanged among coordinators and 

simulators. Those algorithms showed that the number of messages exchanging among 

processors is proportional to the complexity of the processor hierarchy, which is 

measured by the number of processors on the hierarchy. In other words, as the hierarchy 

grows, so is the performance overhead incurred by messaging. In order to optimize the 

performance, therefore, the simulator needs to reduce the complexity of the processor 

hierarchy, i.e., the number of processors. 
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This is the main concept behind the Flattened Coordinator technique. Flattened 

Coordinator, therefore, simplifies the simulation hierarchy by eliminating the 

coordinators in the hierarchy and by making direct messaging communications between 

the Flattened Coordinator and the simulators. Both the model and the simulation 

hierarchies for this case are shown in Figure 15. A similar development for other DEVS 

simulators can be found in [Gli02] and in [Kim00].  

 
Figure 15 Flattened Coordinator Technique 

(a) Example of a model hierarchy, (b) Associated processor hierarchy  

The Flattened Coordinator transforms the hierarchical structure of the model to a 

flattened structure by eliminating coordinators. The transformation, however, must 

preserve the original port linkage relationship among atomic models, so that the 

correctness of the simulation does not suffer. In order to achieve this, the Flattened 

Coordinator technique needs to rewire the model port links to bypass the coordinator 

ports. Consider, for example the model hierarchy shown in Figure 15 (a). Suppose 

Atomic Model #1 needs to send a message to Atomic Model #4. The message will first 

be sent to Coupled Model #2, which will then forward the message to Atomic Model #4, 

as shown in Figure 16 (a). When Coupled Model #2 is eliminated, however, the Flattened 

Coordinator must rewire the port links of Atomic Model #1 and Atomic Model #2, so that 

messages can still be exchanged between them (Figure 16 (b)). 

Simulator #1 

Flat Coordinator 

Root Coordinator 

Atomic Model #3 

(a) 

(b) 

Atomic Model #2 Atomic Model #1 Coupled Model #2 

Atomic Model #5 Atomic Model #4 

Coupled Model #1 

Simulator #2 Simulator #3 Simulator #4 Simulator #5 
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Figure 16 Port Link Rewiring Technique 

Furthermore, as a result of the elimination of coordinators, the Flattened Coordinator 

must receive and send messages directly from and to the Root Coordinator in order to 

carry out the simulation process. 

Since the performance of E-CD++ is directly related to the efficiency of its messaging, 

the performance can be quantitatively rated by the number of messages generated during 

the simulation cycle, which is proportional to the number of Processors. Therefore, the 

performance gain of the Flattened Coordinator technique can be measured by the 

reduction rate of the Processors. That is, the performance improvement ratio of the 

Flattened Coordinator technique (R), is one minus the number of processors on the 

flattened structure (Pf) divided by that on the original non-flattened hierarchy (Po). 

R = 1 – 
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This formula is also verified by real simulation experiments in Chapter 5. 
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(a) Port Links of the original DEVS model 
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(b) Flattened DEVS model after port link rewiring 
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To illustrate this calculation numerically, we consider that a non-flattened processor 

hierarchy is organized as an n-ary tree with h levels. Then, the total number of Processors 

on this tree (P) is given by the following formula: 
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The number of processors on the flattened hierarchy, in contrast, is equal to the number 

of leaves (i.e., simulators) plus the Flattened Coordinator, which is nh + 1. Therefore, the 

performance improvement ratio (R’) of flattening a processor hierarchy that is a full n-ary 

tree with h levels is: 

R’ = 1 - 
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For instance, performance after flattening a full ternary tree (an n-ary tree with n = 3) 

with 2 levels is improved by 1 - 10 / 13 = 23%. 

3.6 Time Interval Function 

One major difference between evaluating the correctness of solutions developed in the 

simulation world and that in the real world is that the former are evaluated in the virtual 

time, whereas the latter often bind to real-time constraints. A real-time system is defined 

as a one whose correctness depends not only on the computational results, but also on the 

time at which the results are produced [Sta88, Sta96]. If a system delivers the correct 

answer after a certain deadline, it could be regarded as an unsuccessful response. 

Consequently, a real-time simulator must offer the functionality of the Time Interval 

Function where time constraints can be stated and validated. E-CD++ offers this 

functionality by implementing the wall-clock time advancement and the event deadline 

checking. 

In order to run real-time simulations, advance of the simulation-clock is tied to the wall-

clock (i.e. physical time). The Root Coordinator object provides this functionality. The 
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Root Coordinator manages the time advancement along the execution of a simulation. It 

is also responsible for starting very new simulation cycle. When the virtual time approach 

is used, after a simulation cycle finishes, the logical clock time is incremented to the next 

scheduled event by the Root Coordinator without any physical delay. That is, the 

Initialization Messages are immediately generated and sent by the Root Coordinator to 

start a new simulation cycle. For the real-time simulation, however, the Root Coordinator 

must wait until the physical time reaches the next event time to initiate the new cycle. 

This implies that the periods of inactivity must not be skipped. The simulation process 

remains quiescent while these periods are being experienced. Instead of logically 

advancing the virtual time up to the next scheduled event (as what’s done by the virtual 

time approach), the Root Coordinator expects the scheduled wall-clock time to be 

reached and only then starts the new simulation cycle. In other words, a new simulation 

cycle can be started either due to the reception of an external event, or due to the 

consumption of the time indicated by ta(s) of the Root Coordinator. Hence, messages 

interchanged between processors are sent at their actual scheduled wall-clock time.  

E-CD++ creates a state machine to implement wall-clock time. The implementation uses 

standard UNIX timer facilities provided by the <linux/time.h>  library. Figure 17 

illustrates a state machine for this timing behaviour. 

• The state machine’s starting state is the “Inactive state”, in which E-CD++ is 

passive. When E-CD++ reads in the external events file or when new events 

arrive (E1), the Root Coordinator calls add_timer() to create timers with the 

associated expiry timestamps for all the external events (A1a), and then it calls 

interruptible_sleep_on()  (A1b) to transfer the state to the “Timer 

Counting-down state”, in which E-CD++ remains passive until timer expiry.  
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Figure 17 State machine implementation on wall-clock time 

• As the wall-clock time advances, those timers will expire at the moments when 

the external events arrive (E2), which will invoke their timeout functions. The 

timeout functions will call wake_up_interruptible() to wake up E-

CD++ (A2a) to transfer to the “Simulation state”, and will also call 

del_timer_sync()  to delete the timer associated with the arrived external 

event.  

• In the Simulation state, a new simulation cycle is started, and a new ta(s) is 

calculated. If the new ta(s) is set to infinity, and if there are no more timers left, 

the Root Coordinator will call interruptible_sleep_on()  to go back to 

the “Inactive state” (A3) (i.e., deactivating E-CD++). E-CD++ will be waken up 

upon the arrival of the next external event. 
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• If ta(s) is infinite, but there are still active timers (E4) (e.g., there are still some 

scheduled external events), then Root Coordinator will move the state from 

“Simulation” to “Timer Counting-down”. 

• If, however, the new ta(s) calculated in the Simulation state does not equal 

infinity (E5), then the Root Coordinator will create a new timer with the expiry 

timestamp set to ta(s), and will move the state to “Timer Counting-down state” 

(A5), so that E-CD++ will be waken up again after ta(s) time. 

Timeliness along a simulation is a substantial property in the real time approach. In a 

typical real-time situation, the model has to react to an external event and generate the 

output within a given time in order to solve a given problem. When a model is executed 

in real-time simulation, it is important to check different time constraints along the 

simulation. Particularly, the time at which an event has been completely processed is a 

meaningful measure of success.  

During the simulation cycle, E-CD++ validates the time constraints which are stated by 

the Time Interval Function. The Time Interval Function specifies the deadline before 

which a simulation cycle must complete (e.g., An output must be arrived at a certain 

output port.). E-CD++ allows the modeller to indicate the deadlines for external events. 

E-CD++ checks the wall-clock time at which the simulation of the external event is 

finished against the specified deadline. If the completion time is later than the deadline, it 

indicates the failure. 

E-CD++ creates a new format of the event file in which the deadlines are specified. The 

new extended format of the event file is illustrated in Figure 18. 

Event time Associated 
deadline 

input port associated 
output port 

value 

hh:mm:ss:mseg hh:mm:ss:mseg port name port name num eric value 

Figure 18 Format of the event file in the real time extension 
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Figure 18 shows that not only an associated deadline but also an output port must be 

indicated in the new event file format. As a result, the simulator can check whether the 

physical time meets the associated deadline when sending an output through the 

associated port. Once the execution has finished, both successful and unsuccessful 

deadlines are stored for further study of the simulation process. 

When loading the event file, the E-CD++ simulator stores deadlines and their associated 

output ports into a list of <deadline, port> pairs, named deadlineList. When the Root 

Coordinator receives an Output Message, it searches through the deadlineList to fetch out 

the <deadline, port> pair of which the port number matches that in the Output Message. It 

then compares the wall-clock time with the deadline. Figure 19 provides the pseudo code 

of this algorithm. 

ROOT COORDINATOR 

parse the event file and create Deadlines List (list of <deadline, port> pairs) 
when a ( y , t ) message is received from TOP coordinator 

for each <deadline, port> in Deadline List 
if   port == outport in y then   

if  deadline >= wall-clock-time then 
output value to port and mark simulation as successful 

else 
output value to port and mark simulation as unsuccessful 

end if-else 
delete <deadline, port> from Deadline List 
quit loop 

end if 
end for loop 

end when 
Figure 19 Deadline checking algorithm 
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Chapter 4 E-CD++ Software Architecture 

In the previous chapter, we explained what E-CD++ could do. In this chapter, we will 

discuss how these functionalities are designed and implemented. First of all, the Main 

Simulator manages the general aspects of the simulation. The Modelling subsystem 

constructs the DEVS model hierarchy. An important component of the Modelling 

subsystem is the GGAD Model Loader that supports the graph-based notation, introduced 

in section 3.3. The Simulation subsystem implements Cho’s algorithms [Cho94b] for 

simulators and coordinators, which were outlined in the previous chapter. The subsystem 

also includes special coordinators including the Flattened Coordinator and the Root 

Coordinator. Furthermore, The Modelling subsystem and the Simulation subsystem are 

the major components that carry out the P-DEVS implementation. The last subsystem we 

will discuss is the Messaging Subsystem, which is responsible for delivering various 

types of messages. 

4.1 E-CD++ software architecture overview 

The E-CD++ software architecture is object oriented. The software is modularized as a 

group of components that have well-defined behaviours and have relatively independent 

functionalities. E-CD++ software consists of the following major components: 

• Main Simulator 

• DEVS Modelling Subsystem 

• Simulation Subsystem 

• Messaging Subsystem 

Figure 20 illustrates the interactions among these software components. 
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Figure 20 E-CD++ software architecture 

The high-level design walk-through is summarized in the rest of this section. This walk-

through provides an overview of the simulation event sequence and also explains the 

interactions among the subsystems. The detailed design of each subsystem is discussed in 

the following sections. 

1. The Main Simulator (MS) is the very first object created when E-CD++ starts. 

The constructor of the MS, being called when the MS object is instantiated, 

performs the Atomic Models Registration, which adds function pointers that point 
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to the constructors of all the user-defined atomic models’ classes into a Models 

Manager’s table (a hashing table that serves as the Atomic Models Objects 

Database). These atomic models will be instantiated during the Models Loading 

process, which is the next step performed by the MS. 

2. After the Atomic Models Registration is performed, the MS constructs the DEVS 

models hierarchy. The MS parses the user-defined DEVS models file in which the 

DEVS components and their inter-relations are defined (e.g., atomic and coupled 

models, ports, links, states, etc.).  

3. While the MS parses the models file, it calls the Models Manager and the 

Processors Manager to construct two tree-like data structures in parallel. The first 

is the Models Hierarchy Tree, and the second is the Simulators/Coordinators 

Hierarchy Tree.  

The nodes of the Models Hierarchy Tree belong to the Model class, which has 

two subclasses: Atomic  and Coupled , representing atomic and coupled models 

respectively. Every node on the Models Hierarchy Tree is instantiated either as an 

Atomic object or as a Coupled  object. The non-leafs nodes of the Models 

Hierarchy Tree represent Coupled models, while the leaf nodes are Atomic 

models, which are subclasses derived from the Atomic class and whose 

behaviours are defined by the user-defined classes. The Coupled model object 

contains a data member called “children” which is a list of its children’s models 

IDs. As well, each Coupled or Atomic object contains a list Ports objects which 

specify the input and output relationships among the models. The top node of the 

Models Hierarchy Tree is a special Coupled node called “Top”. After all the 

nodes are loaded, the resulting Models Hierarchy Tree represents the model 

hierarchy defined by the input model file. 

If the Flattened Coordinator technique is enabled, two extra actions are taken 

during the Models Hierarchy Tree construction: (1) all the Coupled model objects 
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are eliminated from the tree, and (2) all the Atomic model objects’ port links are 

rewired to bypass Coupled models. 

The Models Hierarchy Tree and the Simulators/Coordinators Hierarchy Tree are 

constructed in parallel. That is, when the Models Manager adds a Coupled or an 

Atomic node to the Models Hierarchy Tree, the Processors Manager adds a 

Coordinator or a Simulator to the Simulators/Coordinators, correspondingly. The 

nodes on the two trees, therefore, have one-to-one mapping relationship. Note that 

if the Flattened Coordinator technique is used, no Coordinator objects (except the 

Top Coordinator) is created, since all the Coupled models are eliminated from the 

Models Hierarchy Tree. 

4. After the Models Hierarchy Tree and the Simulators/Coordinators Hierarchy Tree 

are constructed, the MS loads the External Events File, if there is one, and creates 

the Root Coordinator and calls its simulate() function. The Root Coordinator 

manages the global aspects of the simulation. It receives the external events either 

from the pre-defined External Events File or from the real world via the physical 

input ports on the embedded computer. It also manages the time advancement for 

the simulation cycle. If a stop time is defined, the Root Coordinator terminates the 

simulation cycle when the time is reached.  

5. The Root Coordinator also generates the very first message in the simulation, 

which triggers other processors and coordinators to receive and send messages. 

The Message Manager is responsible for messages delivery throughout the 

simulation cycle. It manages a Message Queue, where messages are received and 

sent in a FIFO (First-In-First-Out) order.  

6. The simulation cycle continues by simulators and coordinators keeping sending 

and receiving messages among each other, and atomic models’ transition 

functions are executed accordingly. The Root Coordinator advances the 

simulation time. The simulation cycle stops when all models become passive, and 
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there is no external events left to process, or when the user-specified end 

simulation time arrives. 

The following sections elaborate on the details about each subsystem. 

4.2 Main Simulator 

The Main Simulator manages the overall aspects of the simulation. It is the first object 

being created when the simulation starts. The class diagram of the Main Simulator is 

shown in the following figure. 

 
Figure 21 Main Simulator Class Diagram 

The simulation cycle starts with the execution of the Main Simulator object’s run()  

method. This method performs the following 4 tasks in sequence: 

• Atomic Models Registration. The registerNewAtomics()  method is used to 

store the pointers to the atomic model objects, which are C++ objects derived 

from the Atomic class, to Atomic Models Objects Database.  

MainSimulator 

run() 

registerNewAtomics() 

isFlatDEVS() 

loadModels() 

loadExternalEvents() 

loadPorts() 

loadLinks() 

loadFlattenLinks() 

updateOutLinks() 

updateAtomicOutLinks() 

addFlattenedLinksToFlatTop() 
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• External Events Table Construction. The loadExternalEvents()  method is 

invoked to parse the External Events file and creates the External Events Table 

which is a sorted list sorted by time. 

• Models Hierarchy Tree Construction. The methods loadModels() , 

loadPorts() , and loadLinks()  are called to read in the model file and to 

build the Models Hierarchy Tree. If the Flattened Coordinator technique is 

enabled, then loadFlattenLinks() , updateOutLinks() , 

updateAtomicOutLinks() , and addFlattenedLinksToFlatTop()  

are called to construct the flattened processor hierarchy.  

• Root Coordinator Creation. Finally, the run()  method instantiates the Root 

Coordinator object and calls its simulate()  method which sends the very first 

initialization message in the simulation cycle to the top component, as we will see 

in section 4.5.  

The major portion of the Flattened Coordinator technique is implemented in the Main 

Simulator subsystem. The Flattened Coordinator could be either enable or disabled, and 

this is done by the Main Simulator’s isFlatDEVS()  method which returns a Boolean 

value True if the flattened coordinator is enabled, False otherwise. 

As discussed in section 3.5, the Flattened Coordinator flattens the simulation hierarchy by 

rewiring the port links and removing the coupled components from the hierarchy. Due the 

absence of coordinators, however, any port links that link to coordinators’ ports are re-

wired to reach the far-end atomic ports. Then, the component links are handled directly 

by the Flattened Coordinator, which forwards the messages to simulators as needed. 

The port links rewiring is implemented by the Main Simulator. As described in section 

4.2, the Main Simulator calls its methods loadModels() , loadPorts() , and 

loadLinks()  to construct the Models Hierarchy Tree. The method 

loadLinks(Model& myModel)  builds the links defined in myModel , which may be 

either Atomic or Coupled. A link between two ports is a directed connection from the 

source port to the destination port. During the simulation, messages are sent through the 
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links. Usually, the destination port resides on a different component other than 

myModel . It follows, therefore, that the components in the Models Hierarchy Tree are 

connected by the links.  

The loadLinks()  method constructs the port links based on the DEVS specification 

defined by the modeller. This implies that the number of the port links and thus the 

volume of message passing are proportional to the level of the models hierarchy. For 

instance, the DEVS model structure shown in Figure 22 is a three-level hierarchy, with 

the atomic model Atomic_A  and the coupled model Coupled_A  being the first level, 

the coupled model Coupled_B  being the second, and the atomic model Atomic_B  

being the third. Suppose that an external event arrives at Atomic_A . It will send an 

external message from its output port Port_A  to the Coupled_A’s  input port 

Port_B . When the Coupled_A  receives this message, it then sends an external 

message to from its input port Port_B  to the Coupled_B’s  input port Port_C . 

Finally, Coupled_B  sends an external message from Port_C  to Atomic_B’s 

Port_D , which invokes Atomic_B’s  external state transition function. In this 

illustration, three messages need to be generated before Atomic_B’s  external state 

transition is started. 

By contrast, with the Flattened Coordinator, instead of calling the loadLinks()  

method, the Main Simulator calls loadFlattenLinks()  and updateOutLinks()  

when building the Models Hierarchy Tree. The loadFlattenLinks()  method 

rewires any port link that link to a coupled model directly to the far-end atomic model. 

For example, suppose port A links to port B, and port B links to port C, where A and C 

are atomic models’ ports, while C is a coupled model’s port. Then the 

loadFlattenLinks()  method links port A directly to port C. 
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Figure 22 Port Link Rewiring by Flattened Coordinator Technique 

Part B of Figure 22 shows the rewired DEVS model. Note that Atomic_A’s  input port 

Port_A  is directly linked to Atomic_B’s  input port Port_B , and also note that the 

two coupled models, Coupled_A  and Coupled_B , are eliminated from the hierarchy.  

Similarly, the updateOutLinks()  method also rewires any atomic model’s output 

port that originally links to a coupled model directly to the far-end atomic model using 

the same algorithm used for input ports. 

4.3 Modelling Subsystem 

• The DEVS Modelling Subsystem provides a logical representation of the DEVS 

models defined by the modeller. The subsystem is composed by the Models 

Manager and the DEVS Models Hierarchy Tree.  
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Figure 23 DEVS Modelling Subsystem Class Diagram 

The Models Manager manages the models hierarchy. More precisely, it takes care of the 

following 3 tasks: 

• When the Main Simulator registers the Atomic model objects, the Models 

Manager creates and manages the Atomic Models Objects Database (Refer to the 

class diagram in Figure 23), which is a dictionary data structure that stores the 
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Atomic model’s string name (pointer to the “model name ↔Atomic object” 

pairs).  

• It is employed by the Main Simulator to create the Atomic and Coupled objects 

in the Models Hierarchy Tree. 

It employs the Processor Manager to create Processor class objects when the Main 

Simulator loads atomic models. 

The Models Manager is implemented by the ModelAdmin class, while the 

implementations for the atomic and coupled models are encapsulated by the Atomic and 

Coupled class respectively. The ModelAdmin object is instantiated by the Root 

Coordinator. Its registerAtomic()  method is used by the Main Simulator object’s 

registerNewAtomics()  method during Atomic Models Registration, and its 

newAtomic()  and newCoupled()  method are used by the Main Simulator to 

construct the Models Hierarchy Tree. Figure 23 represents the class diagram for the 

DEVS Modelling Subsystem. 

Moreover, the ModelAdmin object contains the Atomic Models Objects Database that 

stores (modeller-defined) Atomic objects. The parent class of Atomic is the Model class, 

which is the data abstraction of the DEVS model. It also provides the data abstraction that 

is common to both atomic and coupled models. A Model class object has a unique 

model ID . It also contains its parent’s model ID , so that the Models Manager 

can traverse the Models Hierarchy Tree upwards when necessary.  

The Model also contains a list of input ports  and a list of output ports . They 

are linked lists of pointers to Port objects. The Main Simulator’s loadModels()  

method uses the addInputPort()  and addOutputPort()  method to construct the 

lists when constructing the Models Hierarchy Tree. 

In addition, the Model class provides the following methods that are inherited by Atomic 

and Coupled class: 
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• lastChange() . Records the time of the last state transition. 

• nextChange() . Sets the time for the next scheduled state transition. 

• sendOutput (time, port, value) . Sends an output message through 

the given port. 

An atomic model can be created by the modeller by including a new class derived from 

the Atomic class shown in Figure 23. In doing so, the following methods may be 

overloaded: 

• initFuntion() . This method is invoked when the simulation starts. It allows 

one to define initial values and to execute setup functions for the model. 

• externalFunction() . This method is invoked when an external event 

arrives from an input port. 

• internalFunction() . This method is started when an internal event occurs 

(that is, the value of the Time Advance Function is zero). 

• outputFunction() . This method executes before the internal function in 

order to generate outputs for the model. 

• confluentFunction() . This method is invoked when an external event 

and an internal event takes place simultaneously. This function is an important 

feature offered by the P-DEVS formalism. The function enables the modeller to 

control the collision behaviour. 

These functions are equivalent to those defined in the formal specifications for atomic 

models. In addition the following primitives can be used when defining an atomic model. 

• holdIn (state, time) . A model executing this method remains in state 

during time (ta(s) == time). When the time is consumed (i.e., ta(s) == 0), the 

model executes the internal transitions. This method was included to make the 

definition of the duration function easy. 

• passivate() . The model enters in passive mode (i.e., phase == passive; ta(s) 

== infinite) and it is only reactivated by an external event. 

• state() . Returns the present model phase. 
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Figure 23 also shows that the Coupled class object contains a list of its 

children’s model IDs . The list is constructed by the addModel()  method. It 

defines the containment relation between the coupled component and its children. The 

port connections that link these children are created by the addInfluence()  method, 

which is employed the by Main Simulator’s loadLinks()  method during the Models 

Hierarchy Tree construction.  

As mentioned earlier, a Model may contain zero or more input ports and output ports. 

The Port objects are created by the Main Simulator’s loadPorts()  method during the 

models hierarchy construction time. A Port object contains a numerical ID and a name. It 

also stores its parent model’s ID, which can be retrieved by its model()  method. This 

implies that the port’s parent component must be created prior to the creation of the port, 

and this order is enforced by the Main Simulator’s models hierarchy construction 

algorithm. 

Once a Port is created, the Main Simulator starts to build the Port’s influence list , 

which is a list of pointers to a set of Port objects representing the port’s destination end. 

The Port’s parent coupled component’s addInfluence()  method calls the Port’s 

addInfluence()  method to build the list. 

4.4 GGAD Model Loader  

E-CD++ incorporates a GGAD model loader that parses GGAD files and builds 

equivalent atomic models. The GGAD model loader is part of the Modelling subsystem. 

It consists of the following software modules: 

• GGAD Parser 

• Symbol Table 

• Syntax Tree 

• GGAD Transitions Execution Engine 

• Atomic Model Adapter 
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The GGAD Model Loader’s design follows the classic compiler design pattern that 

groups these modules into a front-end and a back-end. The front-end contains the parser, 

symbol table and syntax tree. The GGAD parser is written in lex and yacc. It parses the 

input GGAD files and builds the syntax tree and the symbol table in a similar way as 

what a typical compiler’s front-end would do. 

The back-end consists of the GGAD Transitions Execution Engine and the Atomic Model 

Adapter. The former interacts with the syntax tree and the symbol table to carry out the 

state transitions, while the latter makes GGAD models behave exactly the same as if they 

were derived Atomic classes written in C++. This is done by the Atomic Model Adaptor 

providing the same API as that provided by the Atomic class. Providing a consistent API 

makes the integration of the GGAD model loader with the rest of the E-CD++ code 

become easy. 

 
Figure 24 GGAD Model Loader Architectural Overview  

The interactions and relations among these modules are illustrated in Figure 24, and the 

design walk-through of the GGAD parsing process is explained as follows: 
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1. Before the simulation cycle begins, the GGAD parser reads in the GGAD model 

file (1a) and constructs the symbol table and the syntax tree (1b). 

2. When the simulation cycle begins, the Models Manager and the Processors 

Manager execute atomic models’ state transition functions at the scheduled time. 

The Models Manager calls the transition function APIs provided by GGAD’s 

Atomic Model Adaptor. These APIs are consistent with that defined in the 

Model  class, so that it does not require any special handling for GGAD models. 

3. The Atomic Model Adaptor calls the proper GGAD Transitions Execution Engine 

APIs in order to fulfil the state transition requests obtained from the simulation 

subsystem. 

4. The Transitions Execution Engine starts to execute. It interacts with the symbol 

table (4a) and the syntax tree (4b) and carries out the state transitions. (The 

Transitions Execution Engine is quite complex. Its design is explained in section 

4.4.4.) 

4.4.1 GGAD Parser 

The GGAD Parser is written in Lex and Yacc, which are the tools used to define the 

context-free grammar of GGAD model files. The GGAD Parser parses the GGAD model 

file and builds the syntax tree and the symbol table. The implementation of the GGAD 

Parser is encapsulated in the GgadParser  class. The class diagram is shown in Figure 

25. 

The GgadParser object contains the symbol table (ggadSymTbl ) and the Transitions 

Execution Engine (ggadTransEngine ). Its parse()  method serves as the main 

body of the parser, which performs two tasks in sequence: it first calls the 

initSymbolTable()  method to initialize the symbol table and then adds to it the 

GGAD keywords, which are summarized in Table 1 below. 
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Figure 25 GGAD Parser Class Diagram 

Keyword Description Example 

in input port list in: in_port1 in_port2 … 

out output port list out: out_port1 out_port2 … 

state atomic model state list state: state1 state2 … 

initial initial state initial : state1 

int Internal transition function int : state1 state2 out_port ! output_value { 
ggad_transition_statements … } 

ext External transition function ext: state1 state2 in_port ? input_value { 
ggad_transition_statements … } 

infinite infinite elapse time some_idle_state: infinite  

var local variables list var: variable1 variable2 … 

pi Constant Pi my_variable = pi; 

Table 1 GGAD Keywords 

Since these keywords have special meanings in GGAD, they cannot be used for any other 

purposes. That’s why they are saved in the symbol table before the input file is parsed, so 

GgadParser 

ggadTransEngine: GgadImpl 
ggadSymTbl: GgadSymbolTable 

initSymbolTable() 
addFunction() 

parse() 

GgadImpl GgadSymbolTable 

See Figure 29 See Figure 26 
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that when the parser encounters variable names, port names or state names during 

parsing, it checks them against the keywords in the symbol table. If any of the keywords 

are used as these names, the parser will raise an error. Furthermore, as part of the Symbol 

Table initialization, the registerFunctions()  method is called by the constructor 

of the ggadSymTbl  class to add GGAD built-in functions into the symbol table. 

The second task that the parse()  method performs is to call the GGADparse()  

routine to start parsing process. GGADparse()  is generated by the lex and yacc based 

on the GGAD grammar, which is defined in Appendix B. It parses the GGAD model file 

and creates the syntax tree. It also adds more symbols to the symbol table. 

4.4.2 GGAD Symbol Table 

The GGAD Symbol Table stores input and output port names, state names, variable 

names, keywords, and built-in functions. It is implemented by the GgadSymbolTable  

class. The class has two data members given below: 

• ggadSymbols  is a dictionary of symbols, such as port names, state names, 

variable names, and keywords listed in Table 1. The symbols in the dictionary are 

represented by the GgadSymbol  class and can be searched by their symbol 

names. The symbols can be added to the dictionary by the addSymbol()  and 

setSymbolType()  methods, and can be searched and retrieved by the 

getSymbolType() method. 

• The second data member, namely ggadFunctionTable , is a built-in function 

table. It is a dictionary data structure of <function_name, function pointer> pairs. 

That is, it a list of pointers to GgadFunc  objects that are indexed by function 

names. The built-in functions can be searched and retrieved by 

getFunctionByName()  method.  
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Figure 26 is the class diagram for GgadSymbolTable , GgadSymbol , and 

GgadFunc . 

 
Figure 26 GGAD Symbol Table Class Diagram 

The GgadSymbol  class is a simple class that contains the symbol name  and its 

associated symbol type . The symbol type determines if the symbol is a port, state, 
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initFunctionTable() 

getFunctionByName() 

GgadSymbol 

name: String 

type: Integer 

getName() 

getType() 
setType() 

GgadFuncGreaterEqual 

GgadFuncDivide 

GgadFuncCompare 

GgadFuncBetween GgadFuncAdd 

GgadFuncAnd 

GgadFuncAny 

GgadFuncEqual GgadFuncGreater 

GgadFuncLess GgadFuncMinus GgadFuncMultiply 

GgadFuncNotEqual 

GgadFuncOr 

GgadFuncPi 

GgadFuncPow GgadFuncRand 

GgadFuncValue 

GgadFunc 

numOfParameters: Integer 

parameters: List of GgadValue 

addParameter() 

execute() 

GgadFuncNot 
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instantiated. Its symbol type, however, is set via the setType()  method. The symbol 

name and symbol type can be retrieved by the getName()  and getType()  method. 

Function Class Name Parameter
s 

Description of execute() 
method 

value GgadFuncValue my_var Returns the value of variable 
my_var 

add GgadFuncAdd a, b Returns a + b 

minus GgadFuncMinus a, b Returns a – b 

multiply GgadFuncMultiply a, b Returns a * b 

divide GgadFuncDivide a, b Returns a / b 

pow GgadFuncPow a, b Returns a to the power b 

between GgadFuncBetween a, b, c Returns 1 if a <= b <= c, 0 if not 

compare GgadFuncCompare a, b, c, d, e If a < b, return c; If a == b, return 
d; else return e 

equal GgadFuncEqual a, b Returns 1 if a == b 0 if not 

notequal GgadFuncNotEqual a, b Returns 1 if a != b, 0 if not 

less GgadFuncLess a, b Returns 1 if a < b, 0 if not 

greater GgadFuncGreater a, b Returns 1 if a > b, 0 if not 

greaterequal GgadFuncGreaterEqual a, b Returns 1 if a >= b, 0 if not 

and GgadFuncAnd a, b Returns ( a && b ) 

or GgadFuncOr a, b Returns ( a || b ) 

not GgadFuncNot a Returns !a 

any GgadFuncAny my_port Returns 1 if the input port 
my_port receives any input 
values, 0 if not 

rand GgadFuncRand a, b Returns a random number in 
range [a, b] 

pi GgadFuncPi N/A Returns 3.14159 

Table 2 GGAD Built-in Functions (note: parameters a, b, c, d and e have 
double data type; my_var and my_port are strings) 

The first column in Table 2 are the function names. The 2nd and 3rd column are the 

associated class name and the parameter list respectively, while the last column describes 

the implementation of the execute()  method. 
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The GGAD language specification defines 19 built-in functions. GGAD users can use 

these functions to implement their state transition functions. The symbol table’s function 

table (ggadFunctionTable ) contains the behavioural specifications of these 

functions. And the function table entries are created by the method 

GgadSymbolTable::registerFunctions() , which is invoked by the class 

constructor. Therefore, these built-in functions are all available for execution once the 

symbol table is constructed. This approach simplifies the GGAD parser’s design, which 

would otherwise have to dynamically load the needed built-in functions. 

Every built-in function table entry contains a pointer to a GgadFunc  object. The 

GgadFunc  class provides a data abstraction of a GGAD function. It contains two data 

members: the list of function parameters and the total number of the parameters. The 

functions parameters are added by the addParameter()  method. The execute()  

method is a pure virtual function that is overloaded by its subclasses. 

The GgadFunc  class has 19 subclasses, each of which specifies one particular built-in 

function’s behaviour. These subclasses do not introduce any new data members or 

methods. Their behaviours are differentiated by their implementations of the 

execute()  method. This method operates on the function parameters and returns the 

function’s result. Different functions have different implementations. Table 2 illustrates 

the various implementations of the execute()  method.  

4.4.3 GGAD Syntax Tree 

The Syntax Tree is used by the GGAD Transitions Execution Engine to carry out the 

model simulation. It is a tree structure of GgadSyntaxNode class objects. The 

GgadSyntaxNode class has 6 subclasses (refer to Figure 27 for the class diagram): 

• GgadFunctionNode 

• GgadConstantNode 

• GgadInputNode 

• GgadPortInNode 
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• GgadVariableNode 

• GgadActionNode 

In addition, the GgadActionNode  class has 3 subclasses: 

• GgadActionListNode 

• GgadSetVariableNode 

• GgadNullActionNode 

These classes, among with those representing the symbol table, form a run-time 

presentation of the GGAD language schematics. In other words, the symbol table and the 

syntax tree provide the behaviours of an atomic model in terms of C++ objects that can 

be executed during run time. As explained in the previous section, the symbol table is 

mainly used to store the input and output port names, state names, local variable names, 

keywords, and built-in functions. The syntax tree, on the other hand, mainly represents 

the internal and external transition functions, whose context-free grammar is defined in 

Figure 28. 

When parsing the input GGAD model file, the GGAD Parser translates the elements of 

the atomic model, such as input and output ports, states, variables, and state transition 

functions, into symbol table entries and GGAD syntax node objects. Details of this 

translation process are given below: 

• When parsing the internal and external transition functions from the GGAD 

model file, the parser applies the grammar rules in a recursively descendent order. 

That is, it starts with applying rule 1 or rule 2, depending on the transition type, 

and recursively break the non-terminals into other rules. The non-terminal 

“Actions” in rule 1 and 2 can be broken down into either a list of “Actions” 

separated by semicolons (rule 9 & 12) including a null action (rule 10). For the 

null action case, the parser simply creates a GgadNullActionNode  object, 

which has no data members or methods. In any other cases, the “ActionList” may 

contain one or more “Actions” (rule 11 and 12); so, the parser creates a 
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GgadActionListNode  object, which contains a data member, “actions ”, 

and a method, addAction() . The “actions ” is a list of pointers to 

GgadSyntaxNode , and the parser calls addAction()  to insert action objects 

to the list.  

 
Figure 27 GGAD Syntax Tree Class Diagram 
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• The non-terminal “Action” (rule 13) defines the syntax of local variables’ 

assignments. The parser creates a GgadSetVariableNode  object when 

applying this rule. The GgadSetVariableNode  object contains two data 

members: ggadVariableName  and ggadExpressionPointer . The 

former is a string representing the local variable name, while the latter is a pointer 

to GgadSyntaxNode  representing the variable value, which is an “Expression”. 

• An “Expression” can be break down into a GGAD built-in function call (rule 5), a 

port name (rule 6), a variable name (rule 7) or a numerical constant (rule 8). For a 

function call (rule5), the parser creates a GgadFunctionNode  object. This 

object contains the function_name  and a list of function  parameters  as 

its data members. Rule 17 –19 define the syntax of function parameters. When 

applying one of these rules, the parser calls GgadFunctionNode ’s 

addParameter()  method to add the parameter to the object’s parameter list.  

• If the “Expression” is a port name (rule 6), the parser creates a 

GgadPortInNode  object, which has a string type data member port_name . 

Similarly, the parser creates a GgadVariableNode  or a 

GgadConstantNode  object if the “Expression” is a variable name (rule 7) or a 

constant (rule 8).  

• The last type of syntax node we need to introduce is GgadInputNode . This 

syntax node is created when the parser reads in the input value from an input port 

defined in an external transition (rule 2). The GgadInputNode  has two data 

members: The ggadFuntionPointer  data member is a pointer to 

GgadSyntaxNode , which represents the “Expression” in rule 2. This 

“Expression” is applied upon the input port with the condition that triggers the 

external transition to occur. For example, the expression: “any ( myPort )” means 

that if the input port “myPort” has any incoming data arrived, start the external 
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transition. The other data member, ggadInputValue , is a pointer to 

GgadConstantNode . It represents the incoming value at the port. 

 
1)  IntDef -> ‘ int’ ‘ :’ STATE STATE PortValueOutList Actions 

2)  ExtDef -> ‘ ext’ ‘ :’ STATE STATE Expression ‘ ?’ CONSTANT Actions 

3)  PortValueOutList -> PORT ‘ !’ Expression PortValueOutList 

4)  PortValueOutList -> /* empty */ 

5)  Expression -> FunctionCall 

6)  Expression -> PORT 

7)  Expression -> VARIABLE_NAME 

8)  Expression -> CONSTANT 

9)  Actions -> ‘ {‘ ActionList ‘ }’ 

10)  Actions -> /* empty */ 

11)  ActionList -> Action ‘ ;’ 

12)  ActionList -> ActionList Action ‘ ;’ 

13)  Action -> VARIABLE_NAME ‘ =’ Expression 

14)  FunctionCall -> FUNCTION_NAME ‘ (‘ ParameterList ‘ )’ 

15)  ParameterList -> Parameter 

16)  ParameterList -> Parameter ‘ ,’ ParameterList 

17)  Parameter -> CONSTANT 

18)  Parameter -> VARIABLE_NAME 

19)  Parameter -> PORT 

Figure 28 Context grammar of GGAD internal and external transition functions  

Figure 27 shows that GgadSyntaxNode class has two virtual methods, name() and 

evaluate(), that can be overloaded by its subclasses. The name() method simply returns 

the class name as a literal string (mainly for debugging purposes). The evaluate() method, 

however, carries out syntax nodes activities. The different types of the syntax nodes, 

introduced in Figure 27, have different implementations (which are described in Table 3). 

Note that it is our design intention to make GgadSyntaxNode::evaluate() a pure 

virtual function, so that its implementation in the subclasses can vary. This design has 

two advantages: 

• It makes the Syntax Tree is scalable and easy to expand. So, the GGAD language 

evolution becomes relatively easy. Suppose, for example, in the future we want to 

add confluent functions to GGAD. We only need to add a new subclass to 
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GgadSyntaxNode  class and implement the behaviour of confluent functions in 

its evaluate()  method. The rest of the backend code need not to be changed. 

• It makes the interface between the Transitions Execution Engine and the Syntax 

Tree very simple. This design takes the advantage of polymorphism, so that the 

Transitions Execution Engine only need to call the abstraction method 

GgadSyntaxNode::evaluate()  to execute various transition actions, as 

opposed to finding different syntax node types and calling different APIs. 

Class Description of the evaluate() method 

GgadFunctionNode 1. Calls the mothod GgadSymbolTable::getFunctionByName() 
to retrieve the GGAD function (GgadFunc object) from the 
symbol table. 

2. Uses GgadFunc’s addParameter() method to add parameters 
to the function object 

3. Calls function object’s execute() method (see Table 2) to 
execute the function and return the result  

GgadConstantNode Returns the data member ggadVariableValue, which stores the 
constant value 

GgadInputNode 1. Calls ggadFunctionPointer->evaluate().  

2. Calls ggadInputVaue->evaluate() 

3. Returns 1 if return values from step 1 & 2 are the same; 0 
otherwise 

GgadPortInNode Returns the data member portName, which is an input port name 

GgadVariableNode Returns the value of the variable whose name is saved in the 
data member ggadVariableName 

GgadActionNode Nil operation 

GgadActionListNode Calls the evaluate()  method of every syntax node in the 
data member actions  

GgadSetVariableNode Calls the evaluate() method of the syntax node pointed by 
ggadExpressionPointer. Then it assigns the value to the variable 
with the name saved in ggadVariableName 

GgadNullActionNode Nil operation 

Table 3 Behaviours of the evaluate() method in GGAD syntax node classes 

More details on the Transitions Execution Engine follow in the following section. 
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4.4.4 GGAD Transitions Execution Engine 

The GGAD Transitions Execution Engine is the main body of the GGAD Model Loader. 

It is responsible for the executions of external, internal, output, and initialization 

transition functions of the GGAD models. It interacts with the symbol table and with the 

GGAD syntax nodes objects to carry out the GGAD simulation activities. The 

implementation of the execution engine is encapsulated in the GgadImpl  class, of which 

the class diagram is shown in Figure 29. 

Figure 29 shows that the GgadImpl  class contains a collection of data members that 

form a data portfolio for the GGAD model: 

• First of all, the data member symTable  is a pointer to the symbol table, so that 

the execution engine has direct access to it (via its setSymbolTable()  and 

getSymbolTable()  methods).  

• The GgadImpl  class contains a list of GGAD states (ggadStates ), which is 

constructed by the parser. When parsing a state from the GGAD file, the parser 

calls the methods GgadImpl::addState()  and 

GgadImpl::setTimeAdvance()  to add the state and set its duration.  

The GGAD state is represented by the GgadState  class, which contains the 

name of the state and its duration as the data members. The state information can 

be retrieved by the method GgadImpl::getState() . 

• GgadImpl  also has a list of variables (ggadVariables ) as the data member. 

This list is also built by the parser calling the addVariable()  method during 

parsing time. The variables in the list can be retrieved by the method 

getVariable() . 

 



 

 

 

 

75

 
Figure 29 GGAD Transitions Execution Engine Class Diagram 
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• The GGAD model’s input ports and output ports are represented by 

GgadImpl::ggadInputPorts  and GgadImpl::ggadOutputPorts , 

respectively. Both of the data members are hashing tables of GgadPort  objects. 

The GgadPort  class contains the port name as its data member. Both lists are 

built by the parser, which calls addInPort()  and addOutPort()  to add 

input and output ports when parsing the GGAD file. The elements in the two lists 

can be retrieved by the methods GgadImpl::getInPort()  and 

GgadImpl::getOutPort() . 

• Finally, the data members ggadInternalTrans  and ggadExternalTrans  

represent internal and external state transitions, respectively. A state transition 

can be specified by three attributes: source state, destination state, and state 

transition function. These attributes are represented in the GgadTrans  class as 

its data members. The method GgadTrans::actionOnSyntaxNode()  

carries out the state transition by updating the model’s state from the source state 

to destination state and also by executing the state transition function. The 

transition function is represented by the data member action , which is a pointer 

to the Syntax Tree. The actionOnSyntaxNode()  method calls the 

evaluate()  method (see Table 3) in the Syntax Tree which executes the state 

transition actions defined in the GGAD file. 

The data member ggadInternalTrans  is a list of GgadTransInt , which 

represents the internal state transition and the output function. It is a list because 

GGAD allows multiple definitions of internal state transitions, and the list is 

constructed by GgadImp l::addTransIntOutput() , which is called by the 

parser to add the internal transition function and the output function. 

GgadTransInt  is a subclass of GgadTrans . Its method 

actionOnSyntaxNode()  executes the internal transition function, while its 

getOutPuts()  method runs the output function. 
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Similarly, the data member ggadExternalTrans  is a list of 

GgadTransExt , which represents the external state transition. This list is also 

created by the parser calling GgadImpl::addTransExt() to add each 

individual external transition. The GgadTransExt  class is a subclass of 

GgadTrans . Its actionOnSyntaxNode()  method executes the external 

transition function. It also contains a data member called actionExpression , 

which is a pointer to the Syntax Tree. This data member represents the 

“Expression” in rule 2 of the GGAD grammar in Figure 28, and the 

getExpression()  method executes the expression by calling 

actionExpression ’s evaluate()  method.  

The Transition Execution Engine is used by the Atomic Model Adaptor. The Adaptor 

calls the member methods in the GgadImpl  class to carry out state transitions. Details 

about the adaptor are discussed in the following section. 

4.4.5 GGAD Atomic Model Adaptor 

The Ggad class serves as the Atomic Model Adaptor -- a software adaptation layer that 

encapsulates the GGAD Transitions Execution Engine, as described in Figure 30. 

The Ggad class is a subclass of the Atomic  class. Thus, it can provide the same public 

methods as that provided by Atomic : 

• Model& Ggad::initFunction () 

• Model& Ggad::externalFunction ( const ExternalMessage & ) 

• Model& Ggad::internalFunction ( const InternalMessage & ) 

• Model& Ggad::outputFunction ( const InternalMessage & ) 

It is our design intention to make the Models Manager and the Processor Manager from 

the Modelling Subsystem only interface with these APIs provided by the Ggad class, so 

that the detailed implementation of GGAD is hidden away from other subsystems. This 
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decoupling makes implementation changes to GGAD easy, since they will not impact 

other subsystems. 

 
Figure 30 GGAD Atomic Model Adaptor Class Diagram 

On the implementation side, the Ggad class needs to map its public methods to the 

methods in the Transitions Execution Engine. It contains a pointer to the Transitions 

Execution Engine as its data member, namely myTransEngine , so that it executes the 

public methods by invoking the appropriate Execution Engine methods through 

myTransEngine . Table 4 summarizes how the Ggad methods employ the methods in 

the GgadImpl  class. Those GgadImpl  methods are explained in the previous section. 

Ggad method name Implementation of the Ggad method 

Ggad::initFunction() Calls myTransEngine->getState()  to find the initial 
state and sets modelState  to initial state 

Ggad::externalFunction() Calls myTransEngine->getTransExt()  to execute 
the external state transition function 

Ggad::internalFunction() Calls myTransEngine->getTransInt()  to execute 
the internal state transition function 

Ggad::outputFunction() Calls myTransEngine->getStateOutput()  to 
execute the output function 

Table 4 Implementations of the Ggad class methods 

With the design of this adaptation layer, therefore, the entire GGAD subsystem can be 

seamlessly integrated into E-CD++. 

Ggad 

myTransEngine: GgadImpl* 
modelState: AtomicState 

initFunction() 
externalFunction() 
internalFunction() 
outputFunction() 
getActualState() 

GgadImpl 
Atomic 

Model 
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4.5 Simulation Subsystem 

The Simulation Subsystem consists of Simulators, Coordinators, and the Processors 

Manager. Figure 31 shows the Simulation subsystem.  

The Processor class is the parent class for Simulator and Coordinator. So, it abstracts the 

commonality between them. This class contains the following data members: 

• Each Processor  has a unique Processor_ID , which is an integer. This ID is 

used by the Processor Manager (i.e., ProcessorAdmin  class) to keep track of 

each Simulator and Coordinator. 

• The Processor  class uses two data members to keep the time of the simulation: 

tL Absolute time of last transition 
tN Time of next transition relative to tL 

The lastChange()  and nextChange()  method returns tL and tN, 

respectively. The absoluteNext() method returns the absolute time of the next 

transition, which is the sum of tL and tN.  

• The Processor  class also contains a data member called externalMsgs , 

which serves as the message bag of external messages. The message bag is a 

device introduced by the P-DEVS formalism to achieve parallel simulation. Its 

functionality is implemented by the MessageBag class, which contains a list of 

pointers to the Message  objects. (The Message class will be explained in the 

next section.) In addition, its addExternalMessage()  and eraseAll()  

method are used by Processors to insert individual external messages to the bag 

and empty the entire bag, respectively. 

 
• The last data member need to mention is model , which is an instance of the 

Model  class. Each Processor  object contains one Model  object, which 

reflects the one-to-one mapping relation between processors hierarchy and models 

hierarchy. Furthermore, the Processor’s message handlers can access the model’s 

transition functions and port links through this data member. 
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Figure 31 Simulation Subsystem Class Diagram 

Furthermore, the Processor class defines the prototypes of handlers that respond to 

various DEVS messages, including initialization, internal and external state transition, 

output, collect and done messages. These methods in the Process  class, however, are 

pure virtual functions which will be overloaded by the Simulator  and Coordinator  

class. 

The Processor  class has four derived classes: Simulator , Coordinator , 

FlatDEVSCoordinator , and Root .  
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Root 
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addExternalEvent() 
stopTime() 
addDeadline() 
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FlatDEVSCoordinator 
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• The Simulator  class implements the P-DEVS Atomic models, and, more 

precisely, it is responsible for invoking the atomic model’s λ(s), δext, δint, δcon 

functions. The message handler functions defined in the Processor  class are 

virtual functions that are overloaded by the Simulator  class. The algorithms of 

these message handlers have been described in section 3.4. Other than inheriting 

the data members and the methods from the Processor class, the Simulator 

class does not introduce any new ones.  

• Similarly, the Coordinator  class implements the P-DEVS Coupled models. 

Coordinator  objects are responsible to carry out the simulation of the coupled 

models. The Coordinator  class also overloads the message handlers defined in 

the Processor  class. (The algorithms of these message handlers have been 

described in section 3.4.) Other than inheriting the data members and the methods 

from the Processor  class, the Coordinator  class also adds a new data 

member called syncSet , which serves as the synchronization set in P-DEVS. In 

addition, the new method imminentChildren()  calculates the coupled 

models imminent children and updates the synchronization set. 

• The Flattened Coordinator is implemented by the FlatDEVSCoordinator  

class. Its implementation is mainly the same as that of the Coordinator  class, 

except that it overloads the lastChange() , nextChange()  and 

absoluteNext()  methods. Also, the Flattened Coordinator receives and sends 

messages directly from and to the Root Coordinator. 

• The last subclass derived from Processor  is Root . It represents the Root 

Coordinator. Its simulate()  method starts the simulation by sending the very 

first initialization message to the Top Coordinator, and this method is invoked by 

the Main Simulator. Similarly, the stop()  method is also used by the Main 

Simulator to stop or abort the entire simulation. The Root Coordinator is also 

responsible for interacting with the environment. Its addExternalEvent()  

method receives the incoming external events, either by reading from the External 

Events Table or by receiving it directly from the real world via real hardware 

ports in real-time mode. It then sends the corresponding External Messages to the 
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Top Coordinator. In addition, Root also advances the Global Simulation Time 

during every simulation cycle. In real-time simulation, it binds the simulation time 

with wall-clock time. In addition, its addDealine()  method associates 

deadlines to external events, so that deadline validation can be performed for real-

time DEVS. 

The Processors Manager, which is implemented by the ProcessorAdmin  class, 

manages the Processor class objects. Every Processor object is identified by its 

Processor ID  data member. The ProcessorAdmin object is created by the Root 

Coordinator. It maintains the Processors Database , which is a hashing table of 

pointers to Simulator and Coupled class objects, so that actions, such as searching, can be 

performed upon those objects. The method generateRoot()  is called in Root class 

constructor to create the Root Simulator. And the method 

generateProcessor(Atomic or Coupled) is called by the Models Manager 

during the Models Hierarchy Tree construction time to create Simulators and 

Coordinators, and it then calls the add2DB() method to add simulators and coordinators 

to the Processors Database. 

4.6 Messaging Subsystem 

The Messaging Subsystem is responsible for message delivery. Messages are used by 

simulators and coordinators to exchange data and synchronize activities. The nature and 

usage of messages are explained in section 3.4 where P-DEVS is discussed in detail.  

The Messaging Subsystem consists of the Message Manager and various types of 

Message objects. Figure 32 shows the class diagram of the subsystem. Simulators and 

coordinators send messages via the Messages Manager, which is implemented by the 

MessageAdmin  class. The MessageAdmin  object is responsible for delivering 

messages among components (including both atomic and coupled). It is created by the 

Root Coordinator when it sends the very first initialization message to the Top 
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component. During its operation, it first buffers the incoming messages to its 

Unprocessed Message Queue , which is a queue of pointers to Message objects.  

 
Figure 32 Messaging Subsystem Class Diagram 

These messages are then processed by the Messages Manager in the FIFO (first-in-first-

out) order. The MessageAdmin  class provides the following public methods. 
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• Send (message, modelID). This method is used by the simulators and 

coordinators to send a message to the component specified by the modelID. The 

method simply adds the message to the FIFO Message Queue. 

• Run(). This method is called by the Root Coordinator’s simulate()  method 

at the beginning of the simulation cycle. It loops through the Unprocessed 

Message Queue  and sends out the messages by calling their sendTo()  

method defined in the Message class. The Run()  method continuously checks 

the message queue, and it stops only when the Stop()  method is called.  

• Stop(). This method is used by the Main Simulator to stop the Message Manager 

when the simulation stops. 

Messages are represented by the Message  class. Its data member time  records the 

creation time of the message, and it can be retrieved by the time()  method. It also 

contains message receiver’s ID (data member destinationProcessorId ), which 

is used by its sendTo()  method to deliver the message to the destination. This is 

achieved by invoking the receiving processor’s message handler. A time-stamp (data 

member time ) for the message and an associated value are also included in the 

Message  object. The Message class has seven subclasses, each of which represents a 

particular message type. Table 5 lists these message types and their corresponding class 

names. 

Message Type Message Symbol Corresponding Class Name 

Initialization message I InitMessage 

Collect message @ CollectMessage 

Internal message * InernalMessage 

Done message D DoneMessage 

External message q ExternalMessage 

Output message y OutputMessage 

Table 5 Various Types of Messages Supported by the Messaging Subsystem 

The type()  method in the Message class is a virtual function which is implemented by 

each of the subclasses to return the correct message type. While all other message types 
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contain only the time-stamp, message type, and destination ID, the output and external 

message also need to specify the message port and message value. Accordingly, the 

OutputMessage  and ExternalMessage  class contain two new data members: 

port  and value . The receiving components of these two types of messages can 

retrieve the ports and message values by calling the port() and value() method 

respectively. 
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Chapter 5 Case Study 

We have used E-CD++ to build a number of examples. In this chapter, we use one of 

them as a case study to demonstrate how to use E-CD++ to develop a complete 

embedded application. The example shows the creation of an Automated Manufacturing 

System (AMS), which evolves from a fully simulated version to a model with hardware-

in-the-loop, and to a complete embedded application. To illustrate how E-CD++ is used 

to develop the AMS, we focus on the discussion of one particular development phase 

where the AMS is a hybrid system in which the simulated components are mixed and 

interact with hardware surrogates. We will demonstrate how the AMS is modelled as a 

hybrid system and how GGAD notation is used for the modelling. We will then show 

how the model is executed by E-CD++ in an embedded environment. We will examine 

deadline checking, flattened coordinator performance, and confluent function execution. 

5.1 Modelling the AMS 

Figure 33 shows the physical layout of the AMS, which consists of four workstations and 

two conveyor belts to transport the products (A and B). Each of the four workstations 

performs a specific task on a given product. The product is partially built when it goes 

through each of the workstations. The AMS also uses two conveyor belts moving in 

opposite directions carrying the products to the scheduled workstation. The production 

cycle is organized by a scheduler, which depends on the type of piece being assembled. 

The scheduler determines which station should receive and work on the product. The 

AMS has real-time constraints (i.e., the product must be delivered to and departure from 

the predetermined workstations at the exact scheduled time).  

The AMS in this case study consists of two conveyors (each conveyor has an engine and 

a sensor controller), one controller unit, one scheduler, one display controller, and two 

notification bells, as shown in Figure 34. 
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Figure 33 Layout of the AMS 

The behaviour of each AMS component is described as follows: 

• The Scheduler contains the working schedule as for which stations have to work 

on a specific product. It sends the schedule to the Control Unit. 

• The Control Unit (CU) is the most complex part in AMS. It receives the schedule 

from the Scheduler and controls the two conveyors. Figure 35 represents a block 

diagram of the CU. 

• The Scheduler sends schedules (external events) to ports station_ij, indicating that 

the product in conveyor belt j has to be sent to station i. Events received via 

sensor_ij indicate that the product in conveyor j has reached station i. 

Consequently, the CU activates or deactivates the engine of the corresponding 
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conveyor (via direction_j and activate_j). It can also signal the Display Controller 

when the conveyor belt starts moving or a product reaches a new station (via 

direction_display_j and station_display_j). 

 

 
Figure 34 Scheme of the AMS 

• The Conveyor contains a Sensor Controller and an Engine. The Engine drives the 

conveyor belt. It can move in both directions, and its movements are controlled by 

CU. The Sensor Controller receives the working piece’s displacement location 

from the engine, and forwards this information to CU, which then determines the 

next action for the engine (e.g., deactivation if the piece has reached the 

destination station, or activation if otherwise). 

Scheduler 

Controller Unit 

Conveyor_B 

Engine 

Sensor Controller 

Conveyor_A 

Engine 

Sensor Controller 

Display 
Controller 

Bell A Bell B 



 

 

 

 

89

 
Figure 35 Diagram of the Controller Unit 

• The Display Controller handles the digital display (showing the location of the 

piece in each conveyor belt), based on the signals from the Controller Unit. It 

displays the moving directions of the 2 conveyers and the position statuses of the 

moving products. The moving directions are displayed as the output value 0, 1, or 

2 indicating stopping, moving forward, or moving backward, respectively. The 

position status of a moving piece is also shown as value ij , indicating that the 

product in conveyor j has reached station i. The Display Controller also has four 

LEDs output ports, namely Led1, Led2, Led3, and Led4. These LEDs are 

destination indicators, and each LED port is associated with one station. If, for 

instance, Led3 is on (with value being 1), that means a product needs to be 
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transported to station 3. And the LED will be turned off (with value being 0) 

when the product reaches its destination. 

• There are two Notification Bells, one for each conveyor. Once the conveyor 

finishes transporting the product to the destination station, the bell associated with 

that conveyor will ring indicating the completion. (The actual completion time 

will then be checked against the specified deadline defined by the Scheduler.) 

5.1.1 Hybrid System Modelling 

After defining a fully simulated version of the model, we developed the AMS using 

hardware-in-the-loop. To best demonstrate the involvement of E-CD++ in this 

development, this case study chooses to study an intermediate development phase where 

the AMS is a hybrid system in which the simulated components are mixed and interact 

with the real hardware parts. In that development phase, the real hardware parts are: the 

Scheduler, the Display Controller, and the 2 Notification Bells. And the rest of the AMS 

components are still in simulation mode. Table 6 summarizes the model composition of 

the hybrid system. (Note that we model the Sensor Controller using graphical notations. 

We will explain how this is done in the next section.) 

Component Name Component 
Type 

DEVS Model 
Name 

Graphical 
Notation 

Used 

Component 
Quantity 

Scheduler Real hardware N/A N/A 1 

Display Controller Real hardware N/A N/A 1 

Notification Bell Real hardware N/A N/A 1 

Controller Unit Atomic model CU No 1 

Conveyor Coupled model ConveyorA, 
ConveyorB 

No 2 

Engine Atomic model EngA, EngB No 2 

Sensor Controller Atomic model ScA, ScB Yes 2 

Table 6 The Hybrid AMS Model 

The resulting hardware-in-the-loop configuration of the hybrid system is shown in Figure 

36. The Scheduler, Display Controller and Notification Bells interact with the simulated 
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Controller Unit through the real I/O ports on the development board (i.e., SBC). The 

Controller Unit interacts with the four hardware components the same way as if they 

were simulated atomic components.  

 
Figure 36 Hybrid AMS Scheme (scheduler, display and bells in hardware) 

In order to model this hybrid system, we need to define the DEVS model for the 

simulated portion of AMS and identify the model’s I/O ports that interface with real 

hardware. We first need to define the component hierarchy and the port linkage among 

the components. This is defined in the DEVS model file, shown in Figure 37. The DEVS 

model file defines CU as an atomic model (line 57 - 58) and Conveyor as a coupled 

model (line 35 – 56), which consists of two atomic models: Engine (line 59 - 62) and 

Sensor (line 63 - 66). Note that the two Sensor Controllers are defined in GGAD 

graphical notation, which are stored in sensorA.cdd (line 64) and sensorB.cdd (line 66) 
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file. (We will use the GGAD model to examine E-CD++ graphical modelling capability. 

More details will follow in the next section.) 

1.   [top] 
2.  components : conveyorA conveyorB cu@ECU 
3.  in : btn1A btn2A btn3A btn4A btn1B btn2B btn3B btn4 B 
4.  out : led1 led2 led3 led4 stn_disp_A stn_disp_B dir n_disp_A dirn_disp_B 

bellA bellB 
 

5.  Link : btn1A b1A@cu 
6.  Link : btn2A b2A@cu 
7.  Link : btn3A b3A@cu 
8.  Link : btn4A b4A@cu 
9.  Link : btn1B b1B@cu 
10.  Link : btn2B b2B@cu 
11.  Link : btn3B b3B@cu 
12.  Link : btn4B b4B@cu 

 
13.  Link : activate_A@cu  activate_A@conveyorA 
14.  Link : direction_eng_A@cu direction_eng_A@conveyorA  
15.  Link : activate_B@cu  activate_B@conveyorB 
16.  Link : direction_eng_B@cu direction_eng_B@conveyorB  

 
17.  Link : s1A@conveyorA s1A@cu 
18.  Link : s2A@conveyorA s2A@cu 
19.  Link : s3A@conveyorA s3A@cu 
20.  Link : s4A@conveyorA s4A@cu 
21.  Link : s1B@conveyorB s1B@cu 
22.  Link : s2B@conveyorB s2B@cu 
23.  Link : s3B@conveyorB s3B@cu 
24.  Link : s4B@conveyorB s4B@cu 

 
25.  Link : l1@cu led1 
26.  Link : l2@cu led2 
27.  Link : l3@cu led3 
28.  Link : l4@cu led4 
29.  Link : ringBellA@cu bellA 
30.  Link : ringBellB@cu bellB 

 
31.  Link : station_display_A@cu stn_disp_A 
32.  Link : station_display_B@cu stn_disp_B 
33.  Link : direction_display_A@cu dirn_disp_A 
34.  Link : direction_display_B@cu dirn_disp_B 

 
35.  [conveyorA] 
36.  components : engA@engine scA@sensorboxA 
37.  in : activate_A direction_eng_A 
38.  out : s1A s2A s3A s4A 
39.  Link : activate_A startstop@engA 
40.  Link : direction_eng_A engdirection@engA 
41.  Link : sen1A@scA s1A 
42.  Link : sen2A@scA s2A 
43.  Link : sen3A@scA s3A 
44.  Link : sen4A@scA s4A 
45.  Link : floor@engA s1A_eng@scA 

 
46.  [conveyorB] 
47.  components : engB@engine scB@sensorboxB 
48.  in : activate_B direction_eng_B 
49.  out : s1B s2B s3B s4B 
50.  Link : activate_B startstop@engB 
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51.  Link : direction_eng_B engdirection@engB 
52.  Link : sen1B@scB s1B 
53.  Link : sen2B@scB s2B 
54.  Link : sen3B@scB s3B 
55.  Link : sen4B@scB s4B 
56.  Link : floor@engB s1B_eng@scB 

 
57.  [cu] 
58.  preparation : 00:00:00:200 

 
59.  [engA] 
60.  preparation : 00:00:01:000 

 
61.  [engB] 
62.  preparation : 00:00:01:000 

 
63.  [scA] 
64.  source : sensorA.cdd 

 
65.  [scB] 
66.  source : sensorB.cdd 

 

Figure 37 Definition of the AMS system in E-CD++ 

The DEVS model file in Figure 37 also defines the input ports (line 3) that connect to the 

Scheduler and the output ports (line 4) that connect to the Display Controller and the 

Notification Bells. Through these I/O ports, the simulated models interact directly with 

the hardware components.  

Figure 38 is the graphical presentation of the AMS model file, which shows the port 

linkage more intuitively. From Figure 38, we see that the Scheduler hardware sends the 

command to CU by writing to one of its 8 input ports, indicating the destination station. 

The CU then forwards the command to one of the Conveyors via the “activate” and 

“direction” port links shown in the figure. The Conveyor then forwards the command to 

the Engine through the ports connecting these two components. While executing the 

command, the Engine outputs its operation status to the Sensor via its output port. The 

Sensor then forwards the Engine status to the Conveyor, which once again forwards the 

message to the CU, which then sends the transportation status to the Display Controller 

through its output ports. If the working piece has reached its destination, the CU will also 

notify the Notification Bells. All these information exchanges are done via the port links 

shown in Figure 38.  
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Figure 38 Modelling Scheme of the Simulated Part of AMS 

5.1.2 GGAD Graphical Modelling 

In this experiment, we define the Sensor Controller in GGAD graphical notations. To 

illustrate, Figure 39 shows the graphical notation of Sensor Controller A, or scA . scA  

has one input port (s1A) and four output ports (sen1A, sen2A, sen3A and sen4A). The 

input port connects to the conveyor’s engine. When the conveyor delivers the working 

product to a particular workstation, the engine will send the workstation number to scA  

through its input port s1A. The 4 output ports of scA correspond to the 4 workstations 

respectively. After receiving the input from the engine, scA  will toggle the output port 

which corresponds to the input workstation number. 
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Figure 39 GGAD Graphical Notation of the Sensor Controller  

The graphical notation will be automatically converted to the GGAD model file. Figure 

40 shows the generated GGAD model file of Sensor Controller A.  

 
Figure 40 GGAD Model File of the Sensor Controller 

Sensor Controller A has connections to Engine A and CU, as shown in Figure 38. We can 

see, in Figure 38, that scA  has one input port (s1A_eng ) and 4 output ports (sen1A , 

sen1A : 1 

Idle 
TL=infinity 

Position1 
TL=0 

scA 
s1A_eng ? 1 

External transition 

Internal transition 

sen1A ! 1 

Position1 
TL=0 

Position1 
TL=0 

Position1 
TL=0 

s1A_eng ? 2 

s1A_eng ? 3 

s1A_eng ? 4 

sen2A ! 1 

sen3A ! 1 

sen4A ! 1 

sen2A : 1 

sen3A : 1 

sen4A : 1 

s1A : integer 

1.  [scA] 
2.  in: s1A_eng 
3.  out: sen1A sen2A sen3A sen4A 
4.  var : cur_value last_value 
5.  state: idle position1 position2 position3 position4  
6.  initial: idle 
7.  ext: idle position1 equal(s1A_eng, 1)?1 {cur_value = s1A_eng;} 
8.  ext: idle position2 equal(s1A_eng, 2)?1 {cur_value = s1A_eng;} 
9.  ext: idle position3 equal(s1A_eng, 3)?1 {cur_value = s1A_eng;} 
10.  ext: idle position4 equal(s1A_eng, 4)?1 {cur_value = s1A_eng;} 
11.  int: position1 idle sen1A!1 {last_value = cur_value ;} 
12.  int: position2 idle sen2A!1 {last_value = cur_value ;} 
13.  int: position3 idle sen3A!1 {last_value = cur_value ;} 
14.  int: position4 idle sen4A!1 {last_value = cur_value ;} 
15.  idle: infinite 
16.  position1: 0:0:0:0 
17.  position2: 0:0:0:0 
18.  position3: 0:0:0:0 
19.  position4: 0:0:0:0 
20.  cur_value: 1 
21.  last_value: 1 
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sen2A , sen3A , and sen4A ). These ports are also defined in the GGAD model file (line 

2–3). The scA’s  external transition function is defined in line 7 – 10 of Figure 40. When 

an external message arrives at the input port s1A_eng , the input value N is an integer in 

range [1, 4], denoting the station where the product currently arrives. The external 

transition function checks this message value, using GGAD built-in function equal 

(s1A_eng, N)?1 , and moves the model state from idle to position{N}. 

Since the elapsed time of the position{N} state is zero (line 16–19), the internal transition 

function (line 11 – 14) is triggered immediately after the external transition. It sends the 

output value of 1 to output port sen{N}A, where N is the same as that in position{N}, 

and moves the model state back to idle, which is the passive state (as defined in line 15). 

E-CD++ is able to load the Sensor Controller GGAD model file and simulate the model 

behaviour described above. This graphical modelling capability reduces our modelling 

efforts. Without this technique, the modeller has to write a C++ class for the Sensor 

Controller. For comparison, a C++ implementation is shown in Figure 41. 

 
SensorBoxA::SensorBoxA( const std::string &name ) :  Atomic( name ),  
s1A_eng( addInputPort( "s1A_eng" )), sen1A( addOutp utPort( "sen1A" ) ), 
sen2A( addOutputPort( "sen2A" )), sen3A( addOutputP ort( "sen3A" )), 
sen4A( addOutputPort( "sen4A")), preparationTime( 0 ,0,0,0 ) { 
  if( time != "" )    preparationTime = time ; 
} 
 
Model &SensorBoxA::initFunction() { 
        cur_value = last_value = 1; 
        return *this ; 
} 
 
Model &SensorBoxA::externalFunction( const External Message &msg ) { 
    // New value arrived on the input port 
    if( msg.port() == s1A_eng )     { 
        cur_value = msg.value(); 
        holdIn( Atomic::active, preparationTime ); 
    } 
        return *this; 
} 
 
Model &SensorBoxA::internalFunction( const Internal Message & ) { 
    passivate(); 
    return *this ; 
} 
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Model &SensorBoxA::outputFunction( const InternalMe ssage &msg ) { 
  if (last_value != cur_value)   { 
     if (cur_value == 1){  sendOutput( msg.time(), sen1A , 1 ); } 
     else if (cur_value == 2){  sendOutput( msg.tim e(), sen2A , 1 ); } 
     else if (cur_value == 3){  sendOutput( msg.tim e(), sen3A , 1 ); } 
     else if (cur_value == 4){  sendOutput( msg.tim e(), sen4A , 1 ); } 
     else last_value = cur_value; 
  } 
  else 
    return *this ; 
} 

Figure 41 The Sensor Class 

We can see that the GGAD notation is also simpler than the C++ code. Furthermore, the 

GGAD model file can be formally validated, whereas the C++ code cannot. 

5.2 Model Execution using E-CD++ 

This section defines an experimental frame for the AMS simulation. We use it to test the 

hybrid AMS. As explained in the previous section, the hybrid AMS has four hardware 

components – the Scheduler, the Display Controller and the two notification bells, and 

the rest of the components are in simulation. Our experiment runs tests on every 

component. 

The experiment starts with creating the work item schedule. The schedule is generated by 

the Scheduler. It defines which stations have to work on a specific product at what time. 

The Controller Unit (CU) controls the movement of the Conveyors according to the 

schedule. So, the schedule serves the same role as an external event file sent to the CU. 

Figure 42 is the schedule we use for this experiment.  

Start time Associated 
deadline 

input port associated 
output port 

value 

00:00:02:100 00:00:05:300 Btn3A bellA 1 

00:00:06:130 00:00:10:300 Btn4B bellB 1 

Figure 42 An experimental event file generated by the scheduler 

The initial conditions of the experiment are: (1) the product is always placed on the first 

workstation of each conveyor belt, and (2) the experiment starts at time 00:00:00:000 
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(The time format is hh:mm:ss:msec). The values in the schedule are relative to the initial 

conditions. In Figure 42, there are two scheduled tasks: 

• The first task is scheduled to start at time 00:00:02:100. It requires Conveyor A to 

move the product from workstation 1A to workstation 3A before the deadline 

00:00:05:300. This is done by the Scheduler sending a signal to the CU’s input 

port btn3A  (which corresponds to the workstation 3A) at time 00:00:02:100. The 

CU’s output port bellA  is used for deadline checking. When the task competes, 

the CU rings Bell A (by writing value 1 to its output port bellA ). E-CD++ 

compares this completion time against the specified deadline. 

• Similarly, the second task is scheduled to start at time 00:00:06:130. It requires 

conveyor B to move its product from workstation 1B to workstation 4B before the 

deadline 00:00:10:300.  

The CU component running on the SBC interacts with the Scheduler chip via I/O ports 

and sends the simulation results to the Display Controller. Figure 43 shows the 

experiment results displayed by the Display Controller. 

actual output time 
(physical time) 

Associated 
deadline 

result output port value 

00:00:02:300  No deadline Led3 1 
00:00:02:300  No deadline dirn_disp_a  1 
00:00:03:350  No deadline stn_disp_a 21 
00:00:04:350  No deadline stn_disp_a 31 
00:00:04:350  No deadline dirn_disp_a  0 
00:00:04:350  No deadline Led3 0 
00:00:04:360 00:00:05:300 Succeeded Bell_A 1 
00:00:06:330  No deadline Led4 1 
00:00:06:330  No deadline dirn_disp_b  1 
00:00:07:380  No deadline stn_disp_b 22 
00:00:08:380  No deadline stn_disp_b 32 
00:00:09:380  No deadline Stn_disp_b 42 
00:00:09:380  No deadline dirn_disp_b  0 
00:00:09:380  No deadline Led4 0 
00:00:09:380 00:00:100:300  Succeeded Bell_B 1 

Figure 43 Simulation results displayed by the Display Controller 

The result in the first column of Figure 43 shows the actual time at which the output has 

been sent, which is the wall-clock value at that time (the time elapsed since the beginning 

of the simulation execution). The second column shows the associated deadline time for 
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the given event. The third column indicates whether the deadline has been met (i.e. the 

actual output time ≤ the associated deadline). Finally, the output ports and their output 

values are shown in the remaining two columns, respectively. 

5.2.1 Executions of Simulated Components 

As mentioned earlier, the hybrid system has three atomic models running in simulation 

mode: Engine , Sensor , and Controller_Unit . E-CD++ provides a runtime 

environment for these 3 models to interact each other. The Engine  and Sensor  model 

work together to constitute the behaviour of the coupled model Conveyor . The 

Engine  model is written in C++. Its inputs ports are connected to the Controller 

Unit . When an external message is sent from the CU, the Engine’s external transition 

function (Figure 44) will be executed. The external transition function mainly sets the 

Engine  model to new states based on the input values.  

Model &Engine::externalFunction( const ExternalMess age &msg ) { 
   if ( msg.port() == startstop )   { 
      if ( (msg.value() == 1) && ( !working ) )  { 
       if (cur_direction == 1)       { 
           ready2Up = true; 
           holdIn( Atomic::active, preparationTime2 Start ); 
       } 
       else if (cur_direction == 2)  { 
           ready2Down = true; 
           holdIn( Atomic::active, preparationTime2 Start ); 
       } 
     } 
     else if ( (msg.value() == 0) && ( working ) ) { 
       ready2Stop = true; 
       holdIn( Atomic::active, preparationTime2Stop  ); 
     } 
  } 
  // Second, is it a direction request? 
  else if (msg.port() == engdirection) { 
    if (!working)           { 
       cur_direction = msg.value(); 
     } 
   } 
   return *this; 
} // End of dExt 

Figure 44 External Transition Function of the Engine Model 

After the external transition is finished, E-CD++ will execute the Engine’s  Internal 

Transition Function (Figure 45), which will set the new ta(s).  
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Model &Engine::internalFunction( const InternalMess age & ) { 
  // Was it ready to stop? -> STOP 
  if ( ready2Stop )   { 
     working = 0; 
     cur_direction = 0; 
     ready2Stop = false; 
  } 
  // Was it ready to go forward? -> GO FORWARD 
  else if ( ready2Up )   { 
     working = 1; 
     cur_direction = 1; 
     ready2Up = false; 
     next_floor = cur_floor + 1; 
     holdIn( Atomic::active, floorTime ); 
  } 
  // Was it ready to back? -> GO BACKWARD 
  else if ( ready2Down )   { 
     working = 1; 
     cur_direction = 2; 
     ready2Down = false; 
     next_floor = cur_floor - 1; 
     holdIn( Atomic::active, floorTime ); 
  } 
  // This is a new station now!   Going forward? 
  else if (working && (cur_direction==1))   { 
     cur_floor = next_floor; 
     next_floor = cur_floor + 1; 
     holdIn( Atomic::active, floorTime ); 
  } 
  // Going backwards? 
  else if (working && (cur_direction==2)) { 
      cur_floor = next_floor; 
      next_floor = cur_floor - 1; 
     // Next transition depends on time that takes to go back 1 station,  
     // unless external event received 
      holdIn( Atomic::active, floorTime ); 
  } 
  else 
      passivate(); 
   return *this ; 
} // End of dInt 

Figure 45 Internal Transition Function of the Engine Model 

When ta(s) is elapsed, E-CD++ will execute Engine’s Output Function (Figure 46), 

which sends an external message to the Sensor  model (which is built in GGAD). Note 

that, via this external message, the Engine  model’s activities are synchronized with the 

Sensor  model. This is how these two models work together. 

 
Model &Engine::outputFunction( const InternalMessag e &msg ) { 
  // If this is not happening while ready to stop,  
  // it is a station forward or backward, then issu e the value 
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  if (!ready2Stop)   { 
     // Working and going forward, inform new stati on 
     if ( working && (cur_direction==1) )      { 
       // Send the next station, that will be set  
      // as current station in dInt, immediately 
       sendOutput( msg.time(), floor, next_floor ) ; 
     } 
     // Working and going backwards, inform new sta tion 
     else if ( working && (cur_direction==2) )      { 
       // Send the next station, that will be set a s  
      // current station in dInt, immediately 
       sendOutput( msg.time(), floor, next_floor ) ; 
     } 
  } 

return *this; 
}  

Figure 46 Output Function of the Engine Model 

When conducting this experiment, we recorded the messages generated during E-CD++ 

runtime. The message log is an important device to trace and examine the internal 

activities of the simulated models, as well as their interactions. It serves as a supplement 

to the output file (shown in Figure 43) for verification purposes. To illustrate how the 

message log can be used for verification, consider the sample portion of the message log 

shown in Figure 47.  

• Line 1 shows that the simulation started at time 00:00:00:000, which is what we 

expected. (Time is wall-clock time.) 

• Line 3 shows that an external event arrived to port btn3a  at time 00:00:02:100. 

This was the first scheduled event by generated the Scheduler. 

• Line 5 shows that the Controller_Unit ’s external transition function is 

executed at the same time to handle this external event. 

• Line 13 and 14 are where the Engine’s  external transition function is called. 

• Line 33 is where the Engine’s  output function sends an external message to the 

Sensor . 
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Figure 47 Sample Message Log Trace 

By examining the messages, we can verify if the activities are done at the right time with 

the right values. 

5.2.2 Measurements on Flattened Coordinator’s Performance 

We want to use this experiment to measure the performance improvements gained from 

the flatten coordinator technique. To do that, we first compare the flattened model 

1. MSG: I / 00:00:00:000 / Root(00) TO flattop(01) 
2.  MSG: D / 00:00:00:000 / flattop(01) / ... TO Root(0 0) 
3. MSG: X / 00:00:02:100 / Root(00) / btn3a /      1.00000 TO flattop(01) 
4.  MSG: * / 00:00:02:100 / Root(00) TO flattop(01) 
5. MSG: X / 00:00:02:100 / flattop(01) / b3a /      1.00000 TO cu(08) 
6.  MSG: * / 00:00:02:100 / flattop(01) TO cu(08) 
7.  MSG: D / 00:00:02:100 / cu(08) / 00:00:00:200 TO fl attop(01) 
8.  MSG: D / 00:00:02:100 / flattop(01) / 00:00:00:200 TO Root(00) 
9.  MSG: @ / 00:00:02:300 / Root(00) TO flattop(01) 
10.  MSG: @ / 00:00:02:300 / flattop(01) TO cu(08) 
11.  MSG: Y / 00:00:02:300 / flattop(01) / led3 /      1 .00000 TO Root(00) 
12.  MSG: Y / 00:00:02:300 / flattop(01) / dirn_disp_a /  1.00000 TO Root(00) 
13. MSG: X / 00:00:02:300 / flattop(01) / engdirection/1.00000 TO enga(03) 
14. MSG: X / 00:00:02:300 / flattop(01) / startstop / 1.00000 TO enga(03) 
15.  MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)  
16.  MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:000 TO Root(00) 
17.  MSG: * / 00:00:02:300 / Root(00) TO flattop(01) 
18.  MSG: * / 00:00:02:300 / flattop(01) TO enga(03) 
19.  MSG: * / 00:00:02:300 / flattop(01) TO cu(08) 
20.  MSG: D / 00:00:02:300 / enga(03) / 00:00:00:050 TO flattop(01) 
21.  MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)  
22.  MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:050 TO Root(00) 
23.  MSG: @ / 00:00:02:350 / Root(00) TO flattop(01) 
24.  MSG: @ / 00:00:02:350 / flattop(01) TO enga(03) 
25.  MSG: D / 00:00:02:350 / enga(03) / ... TO flattop(0 1) 
26.  MSG: D / 00:00:02:350 / flattop(01) / 00:00:00:000 TO Root(00) 
27.  MSG: * / 00:00:02:350 / Root(00) TO flattop(01) 
28.  MSG: * / 00:00:02:350 / flattop(01) TO enga(03) 
29.  MSG: D / 00:00:02:350 / enga(03) / 00:00:01:000 TO flattop(01) 
30.  MSG: D / 00:00:02:350 / flattop(01) / 00:00:01:000 TO Root(00) 
31.  MSG: @ / 00:00:03:350 / Root(00) TO flattop(01) 
32.  MSG: @ / 00:00:03:350 / flattop(01) TO enga(03) 
33. MSG: X / 00:00:03:350 / flattop(01) / s1a_eng /      2.00000 TO sca(04) 
34.  MSG: D / 00:00:03:350 / enga(03) / ... TO flattop(0 1) 
35.  MSG: D / 00:00:03:350 / flattop(01) / 00:00:00:000 TO Root(00) 
36.  MSG: * / 00:00:03:350 / Root(00) TO flattop(01) 
37.  MSG: * / 00:00:03:350 / flattop(01) TO enga(03) 
38.  MSG: * / 00:00:03:350 / flattop(01) TO sca(04) 
39.  MSG: D / 00:00:03:350 / enga(03) / 00:00:01:000 TO flattop(01) 
40.  MSG: D / 00:00:03:350 / sca(04) / 00:00:00:000 TO f lattop(01) 
41.  MSG: D / 00:00:03:350 / flattop(01) / 00:00:00:000 TO Root(00) 
42.  …… 
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hierarchy with the original model hierarchy. The original AMS model, shown in Figure 

38, is a two-level hierarchy. The Controller and the two Conveyors are at the upper level, 

and the Engines and Sensors are at the bottom level. Without Flattened Coordinator 

technique, messaging needs to go through this two-level model hierarchy. For instance, 

suppose that a user presses a button (an input port on the Controller Unit) that triggers the 

activation of Engine A. To simulate this event, the Controller Unit simulator sends an 

external message from its output port activate_A  to the Conveyor_A models input 

port activate_A . When the coordinator conveyor_A receives this message, it then 

sends an external message from its input port activate_A  to the Engine_A model’s 

input port startStop , which triggers Engine_A to start. In this simulation example, 

two messages need to be generated before Engine A can be activated. We can see, from 

this example, that in order to complete the simulation, messages must be generated at 

every level of the model hierarchy. Therefore, the performance will be improved if we 

can eliminate middle levels in the hierarchy. 

In comparison, the Flattened Coordinator technique flattens the AMS model hierarchy by 

eliminating the coordinators and hence reducing the number port links. The technique 

rewires any port link that link to a coupled model directly to the far-end atomic model.. 

For example, after the rewiring, the Controller Unit’s port activate_A  is directly 

linked to the Engine A’s startStop  port. Also, the two coupled models, conveyor A 

and B, are eliminated. Moreover, the technique also rewires any atomic model’s output 

port that originally links to a coupled model directly to the far-end atomic model. The 

two Sensors output ports, for example, are directly linked to the Controller Unit, 

eliminating the intermediate links to the Conveyors’ ports. From the comparison, we 

observe that the flattened model has less port links than the original model, which implies 

that the simulation will also generate less number of messages if we use the flattened 

model. 

The simulator's performance is measured by the number of messages it generates during 

the simulation. The fewer the messages, the better the performance of the simulator. 
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Figure 48 shows a portion of the message log collected during the AMS simulation using 

the flattened coordinator technique. 

 
Figure 48 Message Log Generated During the AMS Simulation 

To measure the performance improvements made by the Flattened Coordinator 

technique, we used the AMS event file in Figure 42 in our experiment. We compared the 

number of messages generated during the simulation using the Flattened Coordinator 

technique with that generated by not using the technique. There are 257 messaged 

generated when the technique is used, compared with 385 messages generated when 

otherwise. So, the performance improvement ratio is 33%. 

We now compare the performance improvement ratio obtained from the experimental 

results with the theoretical value. The original AMS component hierarchy contains 7 

nodes, and this number is reduced to 5 by the Flattened Coordinator technique (Figure 

49).  

 

MSG: I / 00:00:00:000 / Root(00) TO flattop(01) 
MSG: D / 00:00:00:000 / flattop(01) / ... TO Root(0 0) 
MSG: X / 00:00:02:100 / Root(00) / btn3a /      1.0 0000 TO flattop(01) 
MSG: * / 00:00:02:100 / Root(00) TO flattop(01) 
MSG: X / 00:00:02:100 / flattop(01) / b3a /      1. 00000 TO cu(08) 
MSG: * / 00:00:02:100 / flattop(01) TO cu(08) 
MSG: D / 00:00:02:100 / cu(08) / 00:00:00:200 TO fl attop(01) 
MSG: D / 00:00:02:100 / flattop(01) / 00:00:00:200 TO Root(00) 
MSG: @ / 00:00:02:300 / Root(00) TO flattop(01) 
MSG: @ / 00:00:02:300 / flattop(01) TO cu(08) 
MSG: Y / 00:00:02:300 / flattop(01) / led3 /      1 .00000 TO Root(00) 
MSG: Y / 00:00:02:300 / flattop(01) / dirn_disp_a /       1.00000 TO Root(00) 
MSG: X / 00:00:02:300 / flattop(01) / engdirection /      1.00000 TO enga(03) 
MSG: X / 00:00:02:300 / flattop(01) / startstop /      1.00000 TO enga(03) 
MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)  
MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:000 TO Root(00) 
MSG: * / 00:00:02:300 / Root(00) TO flattop(01) 
MSG: * / 00:00:02:300 / flattop(01) TO enga(03) 
MSG: * / 00:00:02:300 / flattop(01) TO cu(08) 
MSG: D / 00:00:02:300 / enga(03) / 00:00:00:050 TO flattop(01) 
MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)  
MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:050 TO Root(00) 
MSG: @ / 00:00:02:350 / Root(00) TO flattop(01) 
MSG: @ / 00:00:02:350 / flattop(01) TO enga(03) 
…… 
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Figure 49 Original AMS Model Hierarchy Vs. Flattened Hierarchy 

Based on the theory we developed in section 3.5, the theoretical improvement ratio is 

29%, comparing to the experimental result of 33% (Table 7 shows the calculations). 

Theoretical Result Experimental Result 

R = 1 – (Pf / Po) = 1 – 5 / 7 = 29% (385 – 257) / 385 = 33% 

Table 7 Theoretical Vs. Experimental Performance Improvement Ratio of 
Flattened Coordinator Technique 

There is a 12% difference between the two results. This disagreement is resulted from the 

bias of the data sample collected by the experiment. This experiment only ran a small 

simulation of processing two external events. When larger simulations were run, the 

experimental results tended to agree more with that of the theoretical.  

Root 

CU Conveyor A 

Engine A 

Flattened Coordinator 

Sensor A 

CU 

Conveyor B 

Engine B 

Engine B Engine A 

Sensor B 

Sensor A Sensor B 

Root 

(a) Original Hierarchy 

(b) Flattened Hierarchy 
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5.2.3 Execution of Confluent Functions 

Confluent functions are introduced by the P-DEVS formalism to resolve the conflict 

when, in an atomic model, the internal transition and the external transition happen at the 

same time. The confluent function is called to break the tie. The confluent functions 

feature is a major difference between the parallel CD++ and the non-parallel version. In 

the non-parallel CD++, the internal transition is always executed first to break the tie. 

The confluent function, however, gives the modeller the control to define the conflict 

resolution. 

As an experiment, a confluent function is defined in the Controller Unit (CU). The 

external transition function in the CU, as shown in Figure 50, handles the incoming 

events from the scheduler and the signals from the sensor controllers in the conveyors. 

The internal transition function sets the CU model’s internal state variable. The variable 

is called “button_enabled ”, which has impact on the logic of the external transition 

function. If the CU detects that conveyers are still transporting the products, its 

button_enabled  variable is set to false. As a result, the CU’s external transition 

function ignores any external events coming through the buttons input port. The 

button_enabled  variable is set to true by the internal transition function when the 

conveyor delivers the product to its destination station. By then, the CU can start to 

handle the events coming through the buttons input port again.  

When the product reaches a station, the sensor controller of the conveyor sends a signal 

to the CU indicating the current product position. The CU’s external transition function 

handles this external event, and based on the product position information, the CU make 

decisions to control the conveyor’s engine (e.g., continue moving or stopping). When this 

external transition time is elapsed, the internal transition function will be invoked to set 

the button_enabled  value. If the product has reached the destination, 

button_enabled  will be set to true. Otherwise, it will remain false. 
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Model &ECU::confluentFunction( const InternalMessag e &msg, const 
MessageBag &msgbag ){ 
  internalFunction( msg ); 
 
  MessageBag::iterator cursor = msgbag.begin(); 
  for( ; cursor != msgbag.end(); cursor++ )  { 
    if ( ((*cursor)->port() == b2A) && (cur_station _A == 21) )    { 
      led2 = true; 
      req_station_A = 21; 
      direction_A = 0;          //stop engine!!! 
      holdIn(Atomic::active, Time::Zero); 
    }else{ 
      externalFunction( *(( ExternalMessage* )( *cu rsor )) ); 
    }//if-else 
  }//for 
 
  return *this; 
}//ECU::confluentFunction  

Figure 50 Confluent Function of the Controller Unit 

Conflicts may rise when a button is pressed at the same time when the internal transition 

function should also be invoked (i.e., t_n = 0). Figure 51 is an example of this situation. 

Event time Associated 
deadline 

input port associated 
output port 

Value 

00:00:02:100 00:00:05:300 Btn3A bellA 1 

00:00:03:550 00:00:05:300 Btn2A bellA 1 

Figure 51 A schedule events file that can cause conflicts 

In the initial state, the product is placed at station 1. At the time 00:00:02:100, the button 

3A is pressed indicating that the product needs to be transported to station 3. At the time 

00:00:03:550, the button 2A is pressed. Figure 52 is the non-parallel CD++ simulation 

output of these 2 events.  

actual output time 
(physical or wall-clock 
time) 

Associated 
deadline 

Result output port value 

00:00:02:300  No deadline Led3 1 
00:00:02:300  No deadline dirn_disp_a  1 
00:00:03:550  No deadline stn_disp_a 21 
00:00:04:550  No deadline stn_disp_a 31 
00:00:04:550  No deadline dirn_disp_a  0 
00:00:04:550  No deadline Led3 0 
00:00:04:550 00:00:05:300 Succeeded Bell_A 1 

Figure 52 Output results generated by non-parallel CD++ 

Figure 52 implies that, the time 00:00:03:550, the CU’s output function was called to 

make the display controller display the product position via the output port stn_disp_a. 
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Since the output function is always called right before the internal transition function is 

invoked, and also since that the hold in time of the display controllers’ external transition 

function is zero, it follows that the CU’s internal transition function was scheduled to be 

invoked at 00:00:03:550, which is the same time of the 2nd external event in the event 

file. This leads to a conflict. The non-parallel CD++ conflict resolution is to let the 

internal transition function be invoked first. As a result, the 2nd external event, i.e., the 

press of button 2A, is ignored because the button_enabled  variable was set to false. 

The modeller wants to change this conflict resolution behaviour, he or she must use 

parallel CD++ simulator and define a confluent function. Figure 53 captures the 

simulation results generated by the parallel CD++ simulator. 

actual output time 
(physical or wall-clock 
time) 

Associated 
deadline 

result output port value 

00:00:02:300  No deadline Led3 1 
00:00:02:300  No deadline dirn_disp_a  1 
00:00:03:550  No deadline stn_disp_a 21 
00:00:03:550  No deadline Led2 1 
00:00:03:550  No deadline dirn_disp_a  0 
00:00:03:550  No deadline Led2 0 
00:00:03:550  No deadline Led3 0 
00:00:03:550 00:00:05:300 Succeeded Bell_A 1 

Figure 53 Output results generated by parallel CD++ 

Figure 53 shows that the product on conveyor A stops at station 2 at the time 

00:00:03:550. This is a result of the execution of the confluent function. That is, the CU’s 

confluent function decides to stop the engine when the product reaching station 2 and the 

press of button 2A happens at the same time. 
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Chapter 6 Conclusions 

This dissertation proposes a novel Modelling and Simulation-based development 

methodology for Real-time Embedded Systems. The motivation behind proposing this 

new framework is that the current state-of-the-art design methods for RTES are 

inadequate for providing a consistent and unified design framework throughout the entire 

development lifecycle, as well as failing to provide a formal product verification strategy. 

The proposed framework addresses these issues. The proposed methodology consists of 

modelling, model verification, and incremental model replacement phase. This new 

development cycle provides a consistent toolkits and terminology among analysis, 

design, implementation, and test. For instance, early DEVS models created in the 

modelling phase will not be abandoned but directly reused in the model verification and 

model replacement phase.  

The creation of E-CD++ is a necessary and important step towards the realization of the 

proposed methodology. E-CD++ supports the RT-DEVS formalism by implementing P-

DEVS and the Time Interval Function. We showed that the RT-DEVS formalism is 

adequate to model RTES. Consequently, DEVS model configurations can be formally 

verified against the target system’s specifications. Meanwhile, E-CD++ also implemented 

a graphical model loader to support the GGAD graphical notation. The AMS experiment, 

shows that defining a DEVS model using GGAD takes much less effort than that doing 

so in C++. The work also draws another conclusion that the Flattened Coordinator 

Technique improves E-CD++ performance. The AMS experiment shows that the 

technique improves the E-CD++ performance by 33%. 

Finally, with the help of E-CD++, DEVS models can be executed directly in an 

embedded environment and can also interact directly with hardware surrogates and real-

world events, which supports the seamless transition from the modelling phase to 

implementation phase. We illustrated this transition by showing how E-CD++ was used 

to design and develop the AMS. 
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6.1 Future work 

E-CD++ is a newly created software. There are still a lot of areas where E-CD++ can be 

improved or extended. We list two topics of interest that we think worthwhile to study. 

The first topic would be the Parallel Execution of Multiple Flattened Coordinators. In 

theory, the Flattened Coordinator Technique can improve the performance of any DEVS 

model hierarchy. In implementation, however, there is a scalability issue, because time 

delay exists in accessing and retrieving Atomic model objects from the Atomic Model 

Database. As the size of the model hierarchy grows, so is the database. Currently this 

database is implemented as an ordered list on ta(s). When the database size grows too 

large (e.g., containing thousands of Atomic models), the time delay incurred in accessing 

the database will eventually outnumber the performance improvements gained from the 

technique itself. One solution to solve this problem is to partition the Atomic models into 

multiple smaller databases and create multiple Flattened Coordinators. And ideally, these 

Flattened Coordinators can run in their own task spaces, so that they can run in parallel 

and, therefore, maximize the performance. 

We may also be interested in Adding Confluent Function Support in the GGAD 

Language. The current GGAD language does not support confluent functions. To add 

confluent functions, we first need to make GGAD front-end changes to add confluent 

function’s grammar definition to the GGAD Parser. We also need to make back-end 

changes. We need to create a new subclass, say GgadConfluentFunction , under 

the GgadSyntaxNode  class to represent the confluent function in the Syntax Tree. 

Then we capture the behaviour of confluent functions in the method 

GgadConfluentFunction::evaluate() . The major back-end work is the 

implementation of this function. 
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Appendix A E-CD++ System Architecture 

A.1. The Client-Server System Architecture 

The Ampro LB700TM board is chosen as the SBC for E-CD++, although nothing prevents 

the E-CD++ from running on other hardware platforms. The LB700 board has a 700MHz 

Intel x86 CPU, 256 megabytes of RAM and 2 Ethernet ports. It has no hard disk. All the 

software images running on the board is loaded in the memory during run time. 

A customized Linux 2.4 kernel is used as the operating system (OS) for E-CD++. The OS 

supports NFS over Ethernet and ramdisk, yet the memory swapping is disabled (due to 

the lack of the hard disk on the SBC). 

Figure 54 illustrates the system architecture of the E-CD++ toolkit. The E-CD++ system 

architecture adopts the client-server computing model. The SBC interacting with the real 

world is the client, and the host simulation workstation is the server. The client and the 

server are connected via Ethernet ports. The Bootrom firmware image on the SBC is 

configured to be able to transfer the Linux kernel image from the server over the Ethernet 

and load it into the SBC’s memory, when the SBC is boot up.  

 
Figure 54 E-CD++ Software Architecture 

 

E-CD++ run in user space (Loaded from server via NFS) 

.ma, .ev files (load from server via NFS) 

Linux Kernel (Boot from server via 
etherboot) 

Device Drivers run in 
kernel space 

SBC Hardware (Ethernet port connected to server) 
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A.2. The SBC Booting Sequence 

The following is the SBC’s booting sequence: 

1. The Bootrom firmware on the SBC is Etherboot – a less than 16K bootable image 

stored in the Ethernet socket on the SBC. The Etherboot image is configured to load 

the customized Linux kernel that is stored on the server into the SBC’s memory via 

the dhcp and the tftp protocol. 

2. Once the kernel has been loaded into memory, it will begin executing.  

3. The kernel will initialize the entire system and all of the peripherals on the SBC. 

4. During the kernel loading process, a ramdisk image will also be loaded into memory. 

A kernel command line argument of root=/dev/ram0 tells the kernel to mount the 

image as the root directory.  

5. When the kernel is finished booting, it is instructed to launch the /linuxrc  script. This 

is achieved passing init=/linuxrc  on the kernel command line.  

6. The /linuxrc  script begins by loading the correct Ethernet driver module into the 

kernel space. 

7. A small DHCP client called dhclient will then be run, to make another query from 

the DHCP server. This separate user-space query is necessary, because we need more 

information than the Etherboot retrieved with the first dhcp query. 

8. When dhclient gets a reply from the server, it will run the /etc/dhclient-script file, 

which will take the information retrieved, and configure the eth0 interface.  

9. Upto this point, the root filesystem has been a ram disk. Now, the /linuxrc script will 

mount a new root filesystem via NFS. The directory that is exported from the server 
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is /tftpboot/henryRoot. It can't just mount the new filesystem as /. It must first 

mount it as /mnt. Then, it will do a pivot_root. pivot_root will swap the current root 

filesystem for a new filesystem. When it completes, the NFS filesystem will be 

mounted on /, and the old root filesystem will be mounted on /oldroot.  

10. Once the mounting and pivoting of the new root filesystem is complete, we are done 

with the /linuxrc shell script and we need to invoke the real /sbin/init program.  

11. Init will read the file and begin setting up the workstation environment. 

12. One of the first items in the inittab file is the rc.sysinit command that will be run 

while the workstation is in the 'sysinit' state.  

13. The rc.sysinit script will create a 1mb ramdisk to contain all of the things that need 

to be written to or modified in any way.  

14. The ramdisk will be mounted as the  directory. Any files that need to be written will 

actually exist in the  directory, and there are symbolic links pointing to these files.  

15. The  filesystem is mounted.  

16. Memory swapping is disabled by rc.sysinit. 

17. The loopback network interface is configured. This is the networking interface that 

has 127.0.0.1 as its IP address.  

18. Local applications are enabled, for E-CD++ runs in user space. The /usr/local/bin 

directory is mounted. That is location where E-CD++ is installed. 

19. Several directories are created in the file system for holding some of the transient 

files that are needed while the system is running. Directories such as:  
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• /tmp/compiled  

• /tmp/var  

• /tmp/var/run  

• /tmp/var/log  

• /tmp/var/lock  

• /tmp/var/lock/subsys  

will all be created. 

20. Once the rc.sysinit script is finished, control returns back to the /sbin/init program, 

which will change the runlevel from sysinit to 5. This will cause any of the entries 

in the file to be executed. 
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Appendix B Grammar for GGAD Models 

B.1. Context-free Grammar for GGAD models 
rule 1    Ggad -> ModelName GGADT_EOL GgadRules 
rule 2    ModelName -> GGADT_LBRACKET GGADT_ID 
GGADT_RBRACKET 
rule 3    GgadRules -> GgadRule GGADT_EOL GgadRules  
rule 4    GgadRules -> GgadRule GGADT_EOL 
rule 5    GgadRules -> GgadRule 
rule 6    GgadRule -> InDecl 
rule 7    GgadRule -> OutDecl 
rule 8    GgadRule -> StateDecl 
rule 9    GgadRule -> VarDecl 
rule 10   GgadRule -> StateDef 
rule 11   GgadRule -> InitialState 
rule 12   GgadRule -> IntDef 
rule 13   GgadRule -> ExtDef 
rule 14   GgadRule -> VarDef 
rule 15   InDecl -> GGADT_IN GGADT_COLON PortInIdLi st 
rule 16   OutDecl -> GGADT_OUT GGADT_COLON PortOutI dList 
rule 17   VarDecl -> GGADT_VAR GGADT_COLON VarIdLis t 
rule 18   VarDef -> GGADT_VARIABLEID GGADT_COLON 
GGADT_CONSTANT 
rule 19   StateDecl -> GGADT_STATE GGADT_COLON Stat eIdList 
rule 20   StateDef -> GGADT_STATEID GGADT_COLON 
GGADT_TIME_CONSTANT 
rule 21   StateDef -> GGADT_STATEID GGADT_COLON 
GGADT_INFINITE 
rule 22   InitialState -> GGADT_INITIAL GGADT_COLON  
GGADT_STATEID 
rule 23   IntDef -> GGADT_INT GGADT_COLON GGADT_STA TEID 
GGADT_STATEID PortValueOutList Actions 
rule 24   PortValueOutList -> GGADT_PORTID GGADT_OU TPUT 
Expression PortValueOutList 
rule 25   PortValueOutList -> /* empty */ 
rule 26   ExtDef -> GGADT_EXT GGADT_COLON GGADT_STA TEID 
GGADT_STATEID Expresion GGADT_INPUT GGADT_CONSTANT Actions 
rule 27   Expresion -> FunctionCall 
rule 28   Expresion -> GGADT_PORTID 
rule 29   Expresion -> GGADT_VARIABLEID 
rule 30   Expresion -> GGADT_CONSTANT 
rule 31   FunctionCall -> GGADT_FUNCTIONID GGADT_LP AR 
ActualParamList GGADT_RPAR 
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rule 32   ActualParamList -> ActualParameter 
rule 33   ActualParamList -> ActualParameter GGADT_ COMMA 
ActualParamList 
rule 34   ActualParameter -> GGADT_CONSTANT 
rule 35   ActualParameter -> GGADT_VARIABLEID 
rule 36   ActualParameter -> GGADT_PORTID 
rule 37   StateIdList -> StateIdList GGADT_ID 
rule 38   StateIdList -> GGADT_ID 
rule 39   PortInIdList -> PortInIdList GGADT_ID 
rule 40   PortInIdList -> GGADT_ID 
rule 41   PortOutIdList -> PortOutIdList GGADT_ID 
rule 42   PortOutIdList -> GGADT_ID 
rule 43   VarIdList -> VarIdList GGADT_ID 
rule 44   VarIdList -> GGADT_ID 
rule 45   Actions -> GGADT_BEGIN ActionList GGADT_E ND 
rule 46   Actions ->  /* empty */ 
rule 47   ActionList -> Action GGADT_SEMICOLON 
rule 48   ActionList -> ActionList Action GGADT_SEM ICOLON 
rule 49   Action -> GGADT_VARIABLEID GGADT_ASSIGNME NT 
Expresion 

B.2. Tokens: 
GGADT_CONSTANT 
GGADT_IN                reserved word "in" 
GGADT_OUT               reserved word "out" 
GGADT_STATE             reserved word "state" 
GGADT_INITIAL           reserved word "initial" 
GGADT_ID                an identifier 
GGADT_STATEID           a state identifier 
GGADT_PORTID            a port identifier 
GGADT_FUNCTIONID        a function identifier 
GGADT_VARIABLEID        a variable identifier 
GGADT_INT               reserved word "int" 
GGADT_EXT               reserved word "ext" 
GGADT_VAR               reserved word "var" 
GGADT_CONSTANT          integer o real constant 
GGADT_TIME_CONSTANT     time constant in cd++ forma t hh:mm:ss:nn 
GGADT_INFINITE          reserved word "infinite" 
GGADT_COLON             ":" 
GGADT_EOL               end of line character 
GGADT_OUTPUT            output operator "!" 
GGADT_INPUT             input operator "?" 
GGADT_LPAR              "(" 
GGADT_RPAR              ")" 
GGADT_LBRACKET          "[" 
GGADT_RBRACKET          "]" 
GGADT_COMMA             "," 
GGADT_BEGIN             "{" 
GGADT_END               "}" 
GGADT_SEMICOLON         ";" 
GGADT_ASSIGNMENT        "=" 
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B.3. GGAD Built-in Functions 
addFunction( "value", new GgadFuncValue() ); 
addFunction( "add", new GgadFuncAdd() ); 
addFunction( "minus", new GgadFuncMinus() ); 
addFunction( "multiply", new GgadFuncMultiply() ); 
addFunction( "divide", new GgadFuncDivide() ); 
addFunction( "pow", new GgadFuncPow() ); 
addFunction( "between", new GgadFuncBetween() ); 
addFunction( "compare", new GgadFuncCompare() ); 
addFunction( "any", new GgadFuncAny() ); 
addFunction( "pi", new GgadFuncPi() ); 
addFunction( "equal", new GgadFuncEqual() ); 
addFunction( "notequal", new GgadFuncNotEqual() ); 
addFunction( "and", new GgadFuncAnd() ); 
addFunction( "or", new GgadFuncOr() ); 
addFunction( "not", new GgadFuncNot() ); 
addFunction( "rand", new GgadFuncRand() ); 
addFunction( "less", new GgadFuncLess() ); 
addFunction( "greater", new GgadFuncGreater() ); 
addFunction( "greaterequal", new GgadFuncGreaterEqu al() ); 


