

E-CD++: AN ENGINE FOR EXECUTING DEVS MODELS
IN EMBEDDED ENVIRONMENTS

By

Yinfeng Henry Yu

A thesis submitted to

The Faculty of Graduate Studies and Research

In partial fulfilment for the degree of

Master of Applied Science in Systems and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

Canada

© Copyright 2007, Yinfeng Henry Yu

i

ACKNOWLEGEMENTS

I would like to thank the invaluable supervision and support from Dr. Gabriel Wainer

during the development of this work. Working with him has been a challenging and yet

rewarding experience.

I would also like to thank Carleton University, especially the department of Systems and

Computer Engineering, for providing the excellent research opportunities and facilities.

This thesis is dedicated to my wife, Rui. Without her enduring support and prayers, this

work may not be able to complete.

ii

Abstract

The DEVS (Discrete Event System Specification) formalism defines a formal Modelling

and Simulation (M&S) framework for Discrete Event Dynamic Systems (DEDS). The

RT-DEVS formalism is a real-time extension to DEVS. RT-DEVS is adequate to model

Real-time Embedded Systems (RTES). This work introduces the Embedded CD++ (E-

CD++) toolkit. It provides an execution engine that can run DEVS models in embedded

environments. E-CD++ supports the RT-DEVS formalism, and can be used as a

development tool for RTES. The target system can be first studied and modelled entirely

in DEVS. The DEVS models are then executed by E-CD++ on embedded platforms

where they can interact with the real-world events in real time. In E-CD++ execution

environment, the DEVS models can also interact with real hardware surrogates. When a

DEVS component is fully tested in the embedded environment, it can be replaced by its

physical counterpart, and this step can be repeated until all the components are replaced

by their target counterparts. This development approach enables instantaneous transition

from modelling to implementation. We also made more efforts than just implementing

RT-DEVS in order to make E-CD++ an adequate real-time execution engine. We

improved E-CD++ performance by deploying the Flattened Coordinator Technique. We

also implemented the GGAD Graphical Modelling tool, so that the modeller can define

DEVS models using graphical notations. Lastly, to illustrate with real applications, we

used E-CD++ to built an Automated Manufacturing System (AMS), which is a real-time

application consisting of microprocessors and mechanical devices.

iii

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 CONTRIBUTIONS ... 6
1.2 THESIS ORGANIZATION .. 7

CHAPTER 2 M&S FOR EMBEDDED SYSTEMS DESIGN ... 9

2.1 M&S METHODOLOGIES ... 9
2.2 THE ORIGINAL DEVS FORMALISM ..14
2.3 PARALLEL DEVS FORMALISM ..18
2.4 REAL-TIME DEVS (RT-DEVS) FORMALISM ..21
2.5 APPLYING DEVS TO EMBEDDED SYSTEMS DESIGN ..22
2.6 DEVS-BASED SIMULATION TOOLKITS ...23
2.7 M&S METHODS FOR RTES DESIGN ..25

CHAPTER 3 EMBEDDED CD++ (E-CD++) ..27

3.1 CD++ ..27
3.2 E-CD++ ..28
3.3 GGAD GRAPHICAL NOTATION ...29
3.4 P-DEVS SIMULATION ALGORITHMS ...33
3.5 FLATTENED COORDINATOR TECHNIQUE ...42
3.6 TIME INTERVAL FUNCTION ...45

CHAPTER 4 E-CD++ SOFTWARE ARCHITECTURE ...50

4.1 E-CD++ SOFTWARE ARCHITECTURE OVERVIEW ...50
4.2 MAIN SIMULATOR ...54
4.3 MODELLING SUBSYSTEM ..57
4.4 GGAD MODEL LOADER ...61

4.4.1 GGAD Parser ..63
4.4.2 GGAD Symbol Table ...65
4.4.3 GGAD Syntax Tree ..68
4.4.4 GGAD Transitions Execution Engine ..74
4.4.5 GGAD Atomic Model Adaptor ...77

4.5 SIMULATION SUBSYSTEM ..79
4.6 MESSAGING SUBSYSTEM ...82

CHAPTER 5 CASE STUDY ...86

5.1 MODELLING THE AMS ..86
5.1.1 Hybrid System Modelling ..90
5.1.2 GGAD Graphical Modelling ...94

5.2 MODEL EXECUTION USING E-CD++ ...97
5.2.1 Executions of Simulated Components ..99
5.2.2 Measurements on Flattened Coordinator’s Performance ...102
5.2.3 Execution of Confluent Functions..106

CHAPTER 6 CONCLUSIONS ...109

6.1 FUTURE WORK ..110

CHAPTER 7 REFERENCES ..111

APPENDIX A E-CD++ SYSTEM ARCHITECTURE ...114

iv

A.1. THE CLIENT-SERVER SYSTEM ARCHITECTURE ...114
A.2. THE SBC BOOTING SEQUENCE ...115

APPENDIX B GRAMMAR FOR GGAD MODELS ...118

B.1. CONTEXT-FREE GRAMMAR FOR GGAD MODELS ..118
B.2. TOKENS: ..119
B.3. GGAD BUILT -IN FUNCTIONS ..120

v

List of Figures

Figure 1 The basic entities and their relationships [Zei00] ..10

Figure 2 DEVS Semantics [Gli04] ..16

Figure 3 CD++ (a) Model hierarchy, (b) Processor hierarchy ...28

Figure 4 Graphical definition of an atomic model: Coin Displayer ..30

Figure 5 GGAD textual definition of the coin model ..31

Figure 6 Simulator Receiving Collect Message ...36

Figure 7 Simulator Receiving External Message ..36

Figure 8 Simulator Receiving Internal Message ...37

Figure 9 Coordinator Receiving Collect Message ...38

Figure 10 Coordinator Receiving Output Message ..39

Figure 11 Coordinator Receiving External Message ...39

Figure 12 Coordinator Receiving Internal Message ..40

Figure 13 Root Coordinator Behaviours...41

Figure 14 CD++ (a) Model hierarchy, (b) Processor hierarchy [Gli04] ...42

Figure 15 Flattened Coordinator Technique (a) Example of a model hierarchy, (b) Associated
processor hierarchy ...43

Figure 16 Port Link Rewiring Technique ...44

Figure 17 State machine implementation on wall-clock time ..47

Figure 18 Format of the event file in the real time extension ..48

Figure 19 Deadline checking algorithm ..49

Figure 20 E-CD++ software architecture..51

Figure 21 Main Simulator Class Diagram ..54

Figure 22 Port Link Rewiring by Flattened Coordinator Technique ..57

Figure 23 DEVS Modelling Subsystem Class Diagram ...58

Figure 24 GGAD Model Loader Architectural Overview ...62

Figure 25 GGAD Parser Class Diagram ...64

Figure 26 GGAD Symbol Table Class Diagram ...66

Figure 27 GGAD Syntax Tree Class Diagram ...70

Figure 28 Context grammar of GGAD internal and external transition functions72

Figure 29 GGAD Transitions Execution Engine Class Diagram ..75

Figure 30 GGAD Atomic Model Adaptor Class Diagram ...78

Figure 31 Simulation Subsystem Class Diagram ...80

Figure 32 Messaging Subsystem Class Diagram ..83

vi

Figure 33 Layout of the AMS ..87

Figure 34 Scheme of the AMS ..88

Figure 35 Diagram of the Controller Unit ..89

Figure 36 Hybrid AMS Scheme (scheduler, display and bells in hardware)91

Figure 37 Definition of the AMS system in E-CD++ ..93

Figure 38 Modelling Scheme of the Simulated Part of AMS ..94

Figure 39 GGAD Graphical Notation of the Sensor Controller ...95

Figure 40 GGAD Model File of the Sensor Controller ..95

Figure 41 The Sensor Class ..97

Figure 42 An experimental event file generated by the scheduler ..97

Figure 43 Simulation results displayed by the Display Controller ...98

Figure 44 External Transition Function of the Engine Model ..99

Figure 45 Internal Transition Function of the Engine Model ...100

Figure 46 Output Function of the Engine Model ...101

Figure 47 Sample Message Log Trace ...102

Figure 48 Message Log Generated During the AMS Simulation ...104

Figure 49 Original AMS Model Hierarchy Vs. Flattened Hierarchy ...105

Figure 50 Confluent Function of the Controller Unit ..107

Figure 51 A schedule events file that can cause conflicts ...107

Figure 52 Output results generated by non-parallel CD++...107

Figure 53 Output results generated by parallel CD++ ..108

Figure 54 E-CD++ Software Architecture ..114

vii

List of Tables

Table 1 GGAD Keywords ..64

Table 2 GGAD Built-in Functions (note: parameters a, b, c, d and e have double data type;
my_var and my_port are strings) ...67

Table 3 Behaviours of the evaluate() method in GGAD syntax node classes73

Table 4 Implementations of the Ggad class methods ..78

Table 5 Various Types of Messages Supported by the Messaging Subsystem84

Table 6 The Hybrid AMS Model ..90

Table 7 Theoretical Vs. Experimental Performance Improvement Ratio of Flattened Coordinator
Technique ...105

viii

List of Acronyms

ASIC Application Specific Integrated Circuits

AM Atomic Model

AMS Automated Manufacturing System

API Application Programming Interface

CM Coupled Model

CVDS Continuous Variable Dynamic Systems

DEDS Discrete Event Dynamic Systems

DEVS Discrete Event System Specification

E-CD++ Embedded CD++

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GGAD Generic Graphical Advanced environment for DEVS

GUI Graphical User Interface

M&S Modelling and Simulation

MSDE Modelling and Simulation-Driven Engineering

P-DEVS Parallel DEVS

RT-DEVS Real-time DEVS

RTES Real-time Embedded System

RTS Real-time System

SBC Single Board Computer

UML Universal Modelling Language

UML-RT UML for Real-Time

1

Chapter 1 Introduction

Real-time systems (RTS) can be characterized as those whose correctness of operation

depends not only upon the logical correctness but also upon the time at which it is

performed. Current state-of-the-art RTS are typically embedded systems, which are

advanced computer applications consisting of hardware, software, and various

mechanical and electrical devices. Examples are like nuclear power stations, Automated

Manufacturing Systems and car airbags. These Real-Time Embedded Systems (RTES)

typically deliver data from/to devices interacting with the surrounding environment

within deadlines ranging at millisecond scales.

Due to unique characteristics of RTES, the RTES design needs to face several special

challenges that need not to be dealt with by that of other systems:

• The design needs to meet the timeliness requirements. RTES must provide correct

outputs to external events or inputs within a time limit. A RTES can be

categorized as either a soft or a hard real-time system, depending on the strictness

of its timeliness requirements. For hard real-time, the design must meet the

timeliness requirements with zero tolerance on delay, while, for soft real-time,

limited tolerance can be allowed for very small delays.

• The design needs to meet the constraints on resources requirements (e.g., limited

memory and processing power). Many RTES may also have constraints on power

consumption, because they are deployed in environments where grid-electricity is

not commonly available (e.g., inside mobile phones or remote devices).

• The design needs to deal with the hardware/software partition problem. The

embedded system design space is formed by combinations of hardware and

software components, which is also referred to as hardware/software codesign.

The design decision on dividing the target system into hardware and software

2

components is referred to as hardware/software partitioning. The

hardware/software partition problem is NP-complete [KS03], which is why an

optimal design for a RTES can be very hard to achieve.

• The design needs to cope with the target systems’ increasing scalability

requirements. With the advance of the manufacturing technologies, more and

more hardware components (e.g., ASICs and FPGAs) are integrated to form a

single RTES. Furthermore, RTES are making use of networking technologies to

exchange information or inter-work among each other. Networking makes it

possible for hundreds of devices working together to complete larger tasks.

Consequently, scalability becomes an important design issue.

• The design needs to cope with the target systems’ increasing complexity. With the

rapid deployment of cheaper and more power microprocessors, RTES are capable

of supporting more and more complex applications.

We find that, due to the challenges listed above, no adequate and robust design

framework exists today that is capable of carrying out optimal design solutions to RTES.

Our study show that the deficiencies of the existing development methods of RTES

mainly come from two weak areas: the development lifecycle and the system verification.

The deficiencies in the development cycle could be attributed to the fact that no unified

methodology or design framework exists today that can be adequately applied throughout

the entire design cycle. Some tools/methods are better in one development stage, while

others are better in other stages. Consequently, different tools and methods are used in

different development stages, resulting in inconsistencies among analysis, design, test,

and implementation. Consequently, when the development tasks switch towards the

target environment, the early models are often abandoned [WG02]. For example, in the

analysis stage, MATLAB may be used to build mathematical models to analyze data and

algorithms. However, these mathematical models are rarely used at the design stage,

where UML (Unified Modelling Language) is a more commonly used tool. However, for

the implementation phase, UML models are inadequate comparing with programming

3

languages, such as C, because UML models cannot be directly executed on the target

systems with real-time performance.

Another area of deficiencies is system verification. Since the current state-of-the-art

RTES are complex systems that consist of a mix of software embedded in and interacting

with hardware components and that also need to respond to real-world events in real

time, correctness of RTES design is very difficult to achieve. Although formal methods

for RTES design are promising, they have difficulties in scaling up when the complexity

of the system increases. Modelling and Simulation (M&S) techniques, instead, are

adequate for testing particular conditions, regardless of the application’s size. However,

no M&S technique exists today that can provide the same degree of adequacy to study

RTES as that provided by mathematical methods to study continuous variable systems.

The lack of adequate formal modelling methods makes RTES development become an

ad-hoc process that is expensive, time consuming and error prone. For example, current

methods for software construction for RTES require a difficult and expensive testing

effort with no guarantee for a bug-free product. [LG05] listed three current approaches to

RTES testing, with none of them being adequate:

• Formal specifications. When applying formal specifications, the requirements of

the System of Interest are formally defined, and formal methods are subsequently

applied to prove correctness. These techniques have had some success, but they

are difficult to apply when the complexity of the system scales up.

• M&S techniques. M&S techniques and tools are proved to be to be helpful in

designing complex systems. Nevertheless, no practical or automatable approach

exists to perform the transition that exists between the modelling and the

development phases, and this often results in model artefacts being abandoned,

resulting in increased initial costs. Consequently, even though they provide

improved products, M&S studies are not carried out, or they are used for

analyzing individual subsystems, later discarding the developed software.

4

Simultaneously, M&S frameworks are not as robust as their formal counterparts

are.

• A third kind of technique widely used to ensure that a RTS conforms to a

specification is Software Testing, i.e., the execution of the software system with

actual values. Although this method cannot guarantee the correctness of the

application, it provides a practical solution that tries covering the largest possible

number of system use scenarios.

To overcome these problems, the solution is to develop a formal methodology that is

adequate to be applied to every design stage throughout the entire development lifecycle.

Modelling and Simulation-based Development of RTES relies on simulation based

modelling for developments of RTES. We propose a novel Simulation-based

Development framework for RTES, based on a formal method called DEVS (Discrete

Event Systems specification) [Zei76, Zei00]. To be used as the final target architecture

for products, DEVS provides a formal foundation to M&S that has been proven to be

successful in different complex systems. We choose DEVS to model RTES because of

the following reasons:

• The DEVS formalism is a formal method based on mathematical theories. So, the

correctness of DEVS models can be formally validated.

• DEVS has well-defined concepts for coupling of components and hierarchical,

modular model composition, which makes it adequate to model RTES.

• DEVS not only proposes a framework for model construction, but also defines an

abstract simulation mechanism that is independent of the model itself. This

mechanism provides a high level description of how the simulation of DEVS

models should be executed. Based on this mechanism, it is possible to develop a

real-time embedded execution environment in which DEVS models are run and

5

interact with the real hardware surrogates, so that the target system can be

developed in hardware-in-the-loop.

Our methodology is based on successive prototyping and refinement, which combines the

advantages of a simulation-based approach with the rigor of a formal methodology,

which is well suited for RTES development. It consists of the following steps: Modelling

phase, model verification phase, and Incremental Model replacement phase.

1. Modelling phase: The modeler defines the DEVS model for the target system.

The modeler may have a choice to define the DEVS models using a high-level

graphical notation, which makes it easier to understand system structure and

behaviors.

2. Model Verification phase: This phase is concerned with the transformation of the

model specification into an executable model. The models obtained from the

previous phase are used to automatically derive simulation, and experimentation

is done in a virtual environment. The simulation runs on high processing power

workstations.

3. Incremental Model Replacement phase: Once the models are verified in a virtual

environment, they are then executed in a real-time environment. The tested

components are incrementally replaced by their target counterparts interacting

with the actual setting.

4. This cycle is incrementally repeated up to the moment where the system is fully

developed and tested.

This new methodology defines a unified design process for RTES. By simulating the

models, RTES designers will be able to used formal methods analyze every detail of

system status and requirements. Furthermore, tested models will be directly replaced by

their real counterparts, so that instantaneous transition from modelling to development

can take place.

6

The proposed simulation-based development framework overcomes the design

deficiencies that we found in other design methods. Our methodology covers every

aspect of the RTES design and provides a consistent design framework throughout the

entire development lifecycle. Early design models will no longer be abandoned at the

development phase. Rather, they are directly applied to the implementation, as our

approach creates a seamless transition from modelling to development. Furthermore, the

automation of the transition from model definition to real-time execution eliminates

source level coding and ad-hoc program tailoring, and thus reduces the design efforts.

The proposed methodology also provides a sound mechanism for system verification.

Since the DEVS formalism is derived from formal mathematical methods, the DEVS-

based system design can be formally validated against the target system’s specification.

In addition, since the DEVS models are modular, subcomponents of larger models can be

validated individually. Moreover, when the validated models are translated to RT

executives running in the real world, their behaviours can also be easily verified by

comparing the execution results with that obtained in the simulated world. If the two

results fail to agree, the simulated solution can be revised in the simulated world for

retest. If, on the other hand, a subcomponent is verified in the real world, it can be

replaced by real hardware. This technique enables incremental transition from the

simulated models to the actual hardware counterparts. As a result, all the subcomponents

of the system-under-develop are formally verified when the development is finally

finished.

1.1 Contributions

The DEVS real-time execution engine plays an important role in the proposed

methodology. The design starts entirely in the simulated world. However, with the help

of the execution engine, the simulated models can be executed in the real world

environment. This is one of the major differences between our method and the traditional

M&S methodology. This work focused on developing the DEVS real-time execution

engine.

7

• We developed an embedded toolkit called Embedded CD++ (E-CD++). E-CD++

integrates the execution of DEVS models with hardware surrogates and allows the

simulated models to interact with other real components in a real-time embedded

environment.

• The model execution by E-CD++ complies with the RT-DEVS (Real-Time

DEVS) specification. RT-DEVS is a real-time extension of the DEVS formalism.

It provides a sound theoretical foundation for modelling RT systems.

Furthermore, it provides a framework for the construction of hierarchical models

in a modular manner, allowing for model reuse and reducing development time

and testing. It also allows hierarchical decomposition of the model by defining a

way to couple existing DEVS models.

• Performance is an important factor for the success of E-CD++, because it must

execute the DEVS models in real-time. We devoted lots of efforts to improve the

performance of E-CD++. We implemented a technique that simplifies the model

hierarchy while preserving the original model relations. By simplifying the model

hierarchy, E-CD++ reduces the runtime overhead incurred by the traversal of the

hierarchy. We also did the mathematical analysis on performance improvements

of this technique.

• Since E-CD++ runs in the real world, we implemented wall-clock time in E-

CD++. So, the activities run by E-CD++ are measured against the physical time.

This is another difference between E-CD++ and other DEVS simulation toolkits,

which use virtual time for simulation.

• E-CD++ also supports DEVS graphical notations; so, DEVS models generated by

the graphical modelling tool can be directly executed in E-CD++.

1.2 Thesis Organization

The rest of this work is organized as follows:

8

Chapter 2 reviews the state-of-the-art in the M&S field. The chapter surveys the existing

M&S technologies used in RTES field. It then describes the specifications of DEVS, P-

DEVS, and RT-DEVS. It also provides a brief survey on the DEVS-based toolkits

existing today. We conclude, based on the review of the state-of-the-art, that no M&S

methodologies or toolkits exists today that is adequate to develop RTES formally. We,

therefore, develops E-CD++ which servers as the DEVS RT executive in our new

methodology.

Chapter 3 discusses the functionalities of E-CD++. The discussion covers four major

functionalities: GGAD graphical notation, P-DEVS realization, Flattened Coordinator

technique, and finally the realization of Time Interval Function.

Chapter 4 reveals the design and implementation details of E-CD++. It provides a

software architecture overview, followed by the detailed descriptions of four major

software modules: the Main Simulator, modelling subsystem, simulation subsystem, and

messaging subsystem.

Chapter 5 is a case study in which we put all the pieces together to show how E-CD++ is

used in the new methodology to develop a real application. The development of an AMS

is demonstrated in detail. The case study illustrates step-by-step how the AMS is

designed using hardware-in-the-loop. In addition, the experimental results are used to test

the E-CD++ functionalities including GGAG graphical modelling, performance

improvements by Flattened Coordinator, and P-DEVS’ confluent functions.

Finally Chapter 6 states the conclusions of this work and outlines the possible future

work.

9

Chapter 2 M&S for Embedded Systems Design

This chapter explores the state-of-the-art in the use of M&S for embedded systems

design. Many different M&S methodologies exist for embedded systems. We will survey

on these methodologies and compare their strengths and limitations. From there, we will

aim to find the best methodology for the RTES development. We will first provide an

exposure to DEVS (Discrete EVent Systems Specification), an M&S formalism that

supports hierarchical and modular modelling. We will show both the strengths and the

limitations of DEVS. Then we will introduce Parallel DEVS, which is an extension to

DEVS, and how it can overcome those DEVS limitations. Thirdly, we will introduce

another DEVS extension called Real-time DEVS. It provides a formal modelling

framework for real-time systems, making it an ideal choice for RTES development. We

will also show how Real-time DEVS can be realized based on Parallel DEVS. Finally, to

make use of DEVS models in embedded systems design, DEVS simulators must be

developed. At the end of this chapter, therefore, a brief survey on the existing DEVS-

based simulation toolkit will be given.

2.1 M&S Methodologies

As the results of the increasing embedded systems design complexity and the shortening

of the time-to-market design window, two revolutionary changes have emerged in this

field [Ern98]. First, the concurrent design of hardware and software has displaced the

traditional sequential design. Further, hardware and software design begins before the

system architecture, or even the specification, is finalized. As a result of these changes,

M&S have become a very important step in embedded systems design [CEP99].

This section provides a survey on various existing M&S methodologies for modelling

embedded systems. The M&S process, in general, begins with defining the constraints

imposed on the system under design, for example constraints on cost, performance, and

physically dimensions. An experimental frame captures these constraints. Within the

constraints, the M&S process captures the features of the system under design and

10

describes its functionality. In this step, entities are identified, and an abstract

representation, a model, is constructed. Once the model is constructed, it needs to be

executed. This is done by a simulator, which consists of a computer system that executes

the model’s instructions to generate its behaviour. To complete the cycle, the results

obtained are compared to those of the real system for model validation.

Figure 1 The basic entities and their relationships [Zei00]

The basic entities are linked by two relations [Zei00] (Figure 1):

� modelling relation. Links the real system and model, defining how well the model

represents the system or entity being modeled. In general terms a model can be

considered valid if the data generated by the model agrees with the data produced by the

real system in an experimental frame of interest.

� simulation relation. Links the model and simulator. It represents how faithfully the

simulator is able to carry out the instructions of the model.

Several M&S methodologies have been used for creating embedded systems. A brief

description of a non-comprehensive list is given below.

11

• Unified Modelling Language (UML) . UML is a standardized specification

language for object modelling. UML is a widely adopted general-purpose

modelling language that includes a graphical notation used to create an abstract

model of a system, referred to as a UML model . UML provides a suite of

methods that are well suited for generic software construction. However, while

UML is a widely adopted methodology to model software architecture, it is

neither adequate nor intended to be used to design hardware components.

Therefore, UML may not be suitable for software-hardware codesign [Mar02].

Another drawback of the UML model is the lack of formal proofs of its

correctness; so validation and verification efforts become non-trivial, especially

for complex UML models.

• UML for Real-Time (UML-RT). UML-RT is an extension of UML. It offers

additional modelling constructs based on Real-time Object-Oriented Modelling,

such as event, action, resource, and schedule. UML-RT is targeted for modelling

complex, event-driven, and distributed real-time systems [HS04]. However,

UML-RT does not fundamentally solve the limitations inherited from the original

UML. First, UML-RT supports concurrency to the same extent as defined by

UML. An important shortcoming of this is the inability to guarantee processing

of events using priority settings [HS04]. Secondly, UML-RT does not provide

formal simulation algorithms – it simply executes the models’ logical

specifications – which undermines having a well-defined relationship between

model specifications and model simulations. Moreover, UML-RT runs on top of

the target system’s real-time operation system (RTOS). Consequently, the

resolution of time and the multi-task schedule are dependent on the underlying

RTOS.

• Finite State Machines (FSM). FSM is well known for describing control

systems [CEP99]. This model consists of a set of states, a set of inputs, a set of

outputs, a function which defines the outputs in terms of inputs and states, and a

next-state function. FSM do not allow concurrency of states, nor does it support

12

hierarchical constructions. Another shortcoming is the exponential growth of the

number of states as the system complexity rises. Nevertheless, a number of

extensions and variations of FSM have been proposed attempting to overcome

the weakness of FSM. Statecharts, with its commercially available simulator

StateMate [Har96], is the most widely adopted FSM extension for modelling

embedded systems. Statecharts have the structure of finite-state automata

enhanced with three important features: hierarchy, concurrency, and broadcast

communication. One of the disadvantages of Statecharts, however, is the lack of

formal modelling capability [SER00]. Statecharts employs UML to specify

models, as opposed to using formal models. This may make the synthesis process

difficult, as synthesis can be applied only if the precise mathematical meaning of

a design description is applied [SLS00]. Also, Statecharts do not formally specify

explicit timing, which is an important aspect in embedded systems.

• Dataflow Graphs. A dataflow graph consists of a set of compute nodes and

directed links connecting them representing the flow of data [Alu03]. Dataflow

graphs are quite popular in modelling data-dominated systems, such as signal

processing [LDNA03]. While dataflow graphs are well capable of modelling

dataflow systems, their semantics, however, do not well support event-driven

reactive systems [Ern98].

• MATLAB . MATLAB is a simulation toolkit (http://www.mathworks.com),

which provides a technical computing and data analysis development platform

for system designers. It features integrated tools that provide user access to its

math, analysis, visualization, and programming capabilities. MATLAB was built

upon solid mathematical schematics. It is often used to solve differential

equations and/or provide Fourier transformations. Therefore, MATLAB is

suitable for modelling Continuous Variable Dynamic Systems (CVDS), whose

behaviours can be best described and studied by differential equations. For

instance, [RCL00] used MATLAB to model and simulate Neuro-Fuzzy systems,

in which differential equations and Fourier Transformation functions were used

13

for the modelling. MATLAB has its limitations as well. It cannot adequately

model discrete event systems, such as event-driven reactive systems and dataflow

systems, where differential equations are inadequate to serve as the modelling

schematics. Another limitation is that MATLAB is unable to adequately perform

when many objects existed in the model [JRH03], limiting its ability to model

large complex systems.

• Discrete Event Simulation. In contrast to CVDS, Discrete Event Dynamic

Systems (DEDS) are systems whose variables are discrete and whose time

advance is continuous. Simulation mechanisms for DEDS systems assume that

changes of state will take place at discrete points of time, upon the occurrence of

an event. An event is a change of state that occurs at a specific point of time ti ∈

R. The occurrences of events are asynchronous. In between event occurrences,

states of DEDS are unaffected.

Due to the nature of digital computing, most of the embedded systems are DEDS.

Therefore, DEDS simulation is well capable of describing embedded systems.

This is the primary reason why our research adopted discrete event simulation as

our M&S methodology.

Discrete event simulators are concurrent software that simulate DEDS.

Communication between processes in DE simulators is accomplished by message

passing. A message is an artificial event that occurs in some instance of physical

time. Thus, each message has an event’s value and is marked with a time stamp.

Each process in a DE simulator is executed when it receives a message (i.e., input

events) and produces output events (messages) with the same (zero delay) or a

larger time tag. The order of execution of multiple processes that have events at

the same time is unspecified. Different DE simulators resolve this problem in

different manner. Thus, [SLS00] states that the DE model is ambiguous, in case of

simultaneous events.

14

Although using M&S to design RTES has a promising potential [CEP99], this survey

shows that none of the surveyed methodologies is perfect for RTES development.

However, due to the DEDS nature of the RTES, Discrete Event Simulation seems to be

most suitable for RTES. Our focus, therefore, becomes to find the solution to resolve

Discrete Event Simulation’s limitation on ambiguity, to make it adequate for modelling

RTES. That is, we want to find a discrete event modelling formalism that gives the

modeller the full control of defining a deterministic behaviour of the model upon the

occurrence simultaneous events.

2.2 The Original DEVS formalism

DEVS (Discrete EVents Systems Specification) [Zei76, Zei00] is a Discrete Event

Simulation formalism for modelling and simulating DEDS systems. In DEVS, a model is

specified as a black box with a state and a duration for that state. When the duration time

for the state expires, an output event is sent, an internal transition takes place and the

model changes its current state. A change of state can also occur when an external event

is received. Then, a complete model is defined by describing the set of states a model

goes through, the internal and external transition functions, the output function, and the

state duration function. DEVS models can be put together by linking the outputs of a

model to inputs of other models to form coupled models. Models made out of only one

component are called atomic models.

DEVS not only proposes a framework for model construction, but also defines an

abstract simulation mechanism that is independent of the model itself. This mechanism

is high level description of how the simulation of DEVS models should be executed by a

simulator. Two kinds of simulators are defined, one for atomic and another one for

coupled models, this latter known as a coordinator. These simulators progress through

the simulation by exchanging messages as described by the abstract simulation

mechanism.

A real system modeled using DEVS can be described as a composition of atomic and

coupled components. An atomic model (M) is defined by:

15

M = < X, S, Y, δint, δext, λ, ta >

where

X is the set of external events;

Y is the set of internal events;

S is the set of sequential states;

δext: Q x X → S is the external state transition function;

 where Q = { (s,e) / s ∈ S, e ∈ [0, ta(s)] } and e is the

elapsed time since the last state transition.

δint: S → S is the internal state transition function;

λ: S → Y is the output function;

ta: S → R0
+ U ∞ is the time advance function;

A DEVS model is in a state s ∈ S at any given time. In the absence of external events, it

remains in that state for a lifetime defined by ta(s). A transition that occurs due to the

consumption of time indicated by ta(s) is called an internal transition . When ta(s) time

expires, the system outputs the value λ(s) and then changes to a new state given by δint(s).

On the other hand, an external transition occurs due to the reception of an external

event. In this case, the external transition function determines the new state, given by

δext(s, e, x) where s is the current state, e is the time elapsed since the last transition and x

∈ X is the external event that has been received.

The time advance function can take any real value between 0 and ∞. A state for which

ta(s) = 0 is called a transient state. In contrast, if the ta(s) = ∞ then s is said to be a

passive state, in which the system will remain perpetually unless an external event is

received.

The following figure in [Gli04] shows the description of states and variables in DEVS

models:

16

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 2 DEVS Semantics [Gli04]

A DEVS coupled model (CM) is composed of several atomic or coupled submodels. It

is formally defined by:

CM = <Xself, Yself, D, {Mi}, {I i}, {Zij},select >

where

D Is a set of components;

for each i in D,

Mi is a basic DEVS component (i.e. a coupled or atomic model);

for each i in D U { self },

I i is the set of influencees of i (i.e. models that can be influenced by

outputs of model i);

for each j in I i,

Zi, j is the i-to-j output-input translation function

Select is the tie-breaker function;

This structure is subject to the constraints that for each i in D,

M i = <Xi, Yi, Si, , δi int, δi ext, λi, tai > is a DEVS model

I i is a subset of D U { self }, i is not in I i.

17

Zself, j: Xself → X j

Zi,self: Yi → Yself

Zi,j: Yi → X j

select: subset of D → D

 such that for any non-empty subset E, select (E) ∈ E.

A coupled model groups several DEVS into a compound model that can be regarded, due

to the closure property, as a new DEVS model. This allows hierarchical model

construction.

In addition, each coupled model has its own input and output events, as defined by the

Xself and Yself sets. When external events are received, the coupled model has to redirect

the inputs to one or more components. Similarly, when a component produces an output,

it may have to map it as an input to another component, or as an output of the coupled

model itself. Mapping between ports is defined by the Z function.

Two types of ambiguities may rise in DEVS simulations. The ambiguity rises when

multiple components are scheduled for internal transitions at the same time in a coupled

model. The way the DEVS formalism solves this ambiguity is by the use of the select

function. The function defines an order over the components so that only one component

of the group of imminent models is allowed to have e = 0. The other imminent models are

divided in two groups: those that receive an external output from this model, and the rest.

The former will execute their external transition functions with e = ta(s), and the latter

will be imminent during the next simulation cycle which may require again the use of the

select function to decide which model will execute first. This tie-breaking approach,

however, is a potential source of errors since the serialization produce may not reflect the

correct system’s behaviour upon the occurrence of simultaneous events.

The second type of the ambiguities may rise in an atomic model when it receives an

external event at the exact time when an internal transition is scheduled. It is not clear

which transition this model should execute first, for the DEVS formalism does not

18

specify the order. So, two alternatives exist: to execute the external transition first with e

= ta(s) and then the internal transition, or else to execute the internal transition first

followed by the external transition with e = 0. It is up to the simulation software to decide

which alternative to choose. This serialization constraint, however, may again cause

errors.

2.3 Parallel DEVS Formalism

While the DEVS formalism suffers from its serialization constraints, the Parallel DEVS

(P-DEVS) formalism [Cho94a] was introduced to resolve this issue. A P-DEVS model is

described as a set of basic and coupled models. In addition, the model’s interface was

also revised. A model will now have input and output ports through which all interaction

with the environment takes place. Events determine values appearing on such ports. A

model receives outside events through its input ports. Upon reception of such events, the

model description must determine how it responds to them. In addition, internal events

arising within the model change its state, and manifest themselves as events on the output

ports to be transmitted to other model components.

Atomic models are still the most basic constructions, which can be combined with other

models into coupled models. A Parallel-DEVS coupled model satisfies the closure

property [Cho94b], so it can be seen as another basic model. Therefore, Parallel-DEVS

preserves the hierarchical properties of the original DEVS formalism.

The P-DEVS atomic model has the following structure:

M = < X M , Y M , S, δ ext , δ int, δ con, λ, ta >

where

X M = {(p,v)| p ∈ IPorts, v ∈ X p } is the set of input ports and values;

Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output ports and values;

S is the set of sequential states;

δ ext: Q x XM
b

 → S is the external state transition function;

19

δ int: S → S is the internal state transition function;

δ con: Q x XM
b

 → S is the confluent transition function;

λ : S → YM
b is the output function;

ta : S → R0
+ ∪ ∞ is the time advance function;

 with Q := { (s, e) | s ∈ S , 0 ≤ e ≤ ta(s) } the set of total states.

The semantics of the P-DEVS definition are as follows. At any given time, a basic model

is in a state s. And in the absence of external events, it will remain in that state for a

period of time as defined by ta(s). When an internal transition takes place, the system

outputs the value λ(s), and changes to state δint(s). If one or more external events E = { x1

.. xn / x ∈ XM } occurs before ta(s) expires, i.e., when the system is in the state (s, e) with e

≤ ta(s), the new state will be given by δext(s, e, E). Suppose that an external and an

internal transition collide, i.e., an external event E arrives when e = ta(s), the new

system’s state could either be given by δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler

can define the most appropriate behavior with the δconf function. As a result, the new

system’s state will be the one defined by δconf(s, E).

A P-DEVS coupled model (CM) is defined by:

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC>

where

 X = {(p,v)| p ∈ IPorts, v ∈ X p } is the set of input ports and values;

 Y = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output ports and values;

 M d is a set of atomic models, and D is a set of the atomic models’ names, where

 for each d ∈ D

 M d = (X d , Y d , S, δ ext , δ int, δ con, λ, ta) is a DEVS basic structure

 with X d = {(p,v)| p ∈ IPorts, v ∈ X p } ;

 Y d = {(p,v)| p ∈ OPorts, v ∈ Y p } ;

The couplings are subject to the following conditions:

20

• external input couplings (EIC) connect external inputs to component inputs:

EIC ⊆ {((N, ip N), (d, ip d)) | ip N ∈ IPorts, d ∈ D, ip d ∈ IPorts d }

• external output couplings (EOC) connect component outputs to external outputs:

EOC ⊆ {((d, op d), (N, op N)) | op N ∈ OPorts, d ∈ D, op d ∈ OPorts d }

• internal couplings (IC) connect component outputs to component inputs:

IC ⊆ {((a, op a), (b, ip b)) | a, b ∈ D, op a ∈ OPorts a , ip b ∈ IPorts b }

No direct feedback loops are allowed, i.e., no output port of a component may be

connected to an input port of the same component i.e.,

((d, opd), (e, ipd)) ∈ IC implies d ≠ e.

• Range inclusion constraints: the values sent from a source port must be within the

range of accepted values of a destination port, i.e.,

∀((N, ip N), (d, ip d)) ∈ EIC : X ipN ⊆ X ipd

∀ ((a, op a), (N, op N)) ∈ EOC : Y opa ⊆ Y opN

∀ ((a, op a), (b, ip b)) ∈ IC : Y opa ⊆ X ipb.

Comparing with DEVS, P-DEVS has the following 2 capabilities that DEVS lacks of:

• Be able to give the modeller a complete control over the collision behaviour when

a component receives events at the time of its internal transition via the use

confluent function δcon. This function will define a new model’s state when there

is a collision between internal and external transitions. Basically, this function

will allow the modeller to specify how the model should behave in the presence of

collisions.

• Be able to eliminate the necessity for tie-breaking simultaneously scheduled

events, which is done by the SELECT functions in DEVS. In P-DEVS, the

external and output functions no longer handle one event at a time. Instead, bags

of events are now being handled, allowing then for simultaneous processing of

multiple events. In other words, P-DEVS provides parallel activation of all

imminent children of a coupled model.

21

2.4 Real-time DEVS (RT-DEVS) Formalism

The RT-DEVS [HSKP97] is a formalism for real-time discrete event systems modelling.

It is an extension of the DEVS formalism that provides a seamless framework for the

development of real-time control software that includes modelling, design, analysis,

simulation, and implementation. The RT-DEVS has additional specifications that are not

in the original DEVS formalism: the time interval function and the weak synchronization

communication mechanism [SK05]. Since in real-time systems, an event occurrence time

may not be an exact value but an interval, the time advance in RT-DEVS is given by a

time interval. An atomic model in RT-DEVS formalism, RTAM, is given by the

following seven-tuple [SK05]:

RTAM = < X M , Y M , S, δ ext , δ int, δ con, λ, ti >

ti : S → R0
+ x R0

+ where ti(s)|min ≤ ta(s) ≤ ti(s)|max, s ∈ S

Note that RTAM is the same as the original DEVS atomic model, expect that the time

advance function is replaced by the time interval function ti.

The definition of coupled models defined by RT-DEVS is the same as that defined by P-

DEVS.

The DEVS formalism does not explicitly define a communication mechanism between

components coupled together. The RT-DEVS, by contrast, explicitly defines the

communication mechanism, called weak synchronization. It has two characteristics:

• Concurrency on simultaneously scheduled events. For example, suppose there are

two real-time atomic models A and B, and A’s output port is connected to B’s

input port. As a result, A’s output function generates an external event to B. In

RT-DEVS, A’s internal transition and B’s external transition takes place

concurrently.

• Synchronization loss: A real-time component that is trying to make an internal

transition should not block other components that are not ready for

synchronization. For example, suppose that atomic models A and B have no

22

connections via any ports. Then A’s internal transition changes its state alone.

That is, B’s state remains unchanged, causing synchronization loss.

In practice, the implementation of P-DEVS provides weak synchronization, because it

provides concurrent activation of all imminent children of a coupled model, and also

because it also guarantees synchronization loss [Cho94a]. Therefore, the RT-DEVS

formalism can be constructed by implementing both the time interval function and P-

DEVS.

2.5 Applying DEVS to Embedded Systems Design

DEVS technology has been usually applied to large-scale dynamic systems, with

implementations running on workstations and servers. As these systems focus on the high

level modelling and simulation, another branch of DEVS application is on real-time

event-based control [HZC01]. These low level applications exist largely on embedded

systems, which are usually characterized as “intelligent devices” consisting of computer

hardware and real-time software. This work mainly studies how to use DEVS technology

to design real-time embedded systems.

Comparing with serial DEVS, P-DEVS is a major advance in modelling real-time

systems, because it provides an appropriate basis to develop simulation models exhibiting

concurrent behaviour. However, while P-DEVS provides sound modelling principles to

characterize structural and behaviour aspects of real-time systems, recent research

suggests that transforming (or mapping) DEVS models to actual designs of real-time

embedded systems is non-trivial [HS04].

Recent research, therefore, has been focusing on developing schemes to support the

transformation from simulation modelling to designs of real systems. One attempt was

the DEVS-on-a-chip approach, which implements DEVS on a microprocessor that has

limited memory and processing ability [HZC01]. It creates a just-as-needed real time

environment. This effort, however, did not implement a full scale of RT-DEVS

23

specifications on the chip. As a result, it only demonstrates the capability of creating real-

time embedded systems that have relatively simple compositions.

Another research effort in this area focused on how to use RT-DEVS as a framework to

develop hardware-in-the-loop applications [LPW03]. These applications are complex as a

result of the high degree of interaction between software and hardware components.

Therefore, the development of these applications is a challenging process in which M&S

can become essential. The technique of applying RT-DEVS to develop hardware-in-the-

loop applications seamlessly integrates simulation models with hardware components and

also enables incremental transition from the simulated models to the actual hardware

counterparts.

2.6 DEVS-based simulation toolkits

Prior to this work, many DEVS-based toolkits have already been developed by different

research groups. A brief survey on these tools has been given by [Gli04] as follows:

• ADEVS [Nut06] supports the construction of discrete event models based on a

variant of the P-DEVS formalism. It includes support for dynamic structure

models based on the Dynamic DEVS formalism [Uhr01a].

• DEVS-C++ [Zei06] is a high performance simulation environment that allows

portability of models across platforms at a high level of abstraction. It uses a set

of C++ classes, called containers, to implement serial and parallel simulation.

• DEVS-Scheme [Zei93] is a knowledge-based environment implemented in

Scheme for discrete-event model construction and simulation. It allows

combining symbolic and hierarchical, modular discrete-event modelling

approaches.

• DEVS/HLA [Zei99b] is an HLA-compliant M&S environment implemented in

C++ that supports high level model construction. It greatly simplifies the

underlying programming details required to establish and participate in an HLA

federation.

24

• DEVS/Grid [Seo04] is an M&S framework implemented using Java and Globus

toolkit for Grid computing infrastructure.

• DEVSCluster [Kim04] is a CORBA-based, multi-threaded distributed simulator

implemented in Visual C++. It transforms a hierarchical DEVS model into a non-

hierarchical one to ease the synchronization of the distributed simulation.

• DEVSJAVA [Sar98] is a DEVS-based Simulator that supports high-level

modelling.

• GALATEA [Dav00] is offered as a family of languages to model multi-agent

systems to be simulated in a DEVS multi-agent platform.

• JDEVS [Fil02] is an M&S environment that enables discrete-event, general

purpose, object-oriented, component-based, GIS, (Geographic Information

System) connected, collaborative, visual simulation model development and

execution.

• JAMES [Uhr01b] is a Java-based simulation environment that allows the modeler

to describe agents and their environment as situated automata.

• PyDEVS is a simulator developed in ATOM3 [Del02], a tool for multi-paradigm

modelling. DEVS models are constructed using the ATOM3-DEVS tool, which

generates Python code to be executed with the PyDEVS simulator.

• PowerDEVS [Kof03] is an M&S toolkit developed in C++ for hybrid systems.

Atomic DEVS models can be graphically coupled in hierarchical block diagrams

to create complex systems.

• SimBeans [Pra99] is a discrete-event simulation framework based on DEVS and

the JavaBean component model.

• CD++ [Rod99, Wai02a] is an M&S toolkit developed in C++ that implements the

original DEVS formalism.

None of the toolkits listed above, however, is capable of applying RT-DEVS to real-time

embedded systems design using hardware-in-the-loop. The aim of this work is to create

such a toolkit. To do so, our strategy is to reuse some of the existing CD++ software

components and build new functionalities as necessary. The resultant toolkit is the

25

Embedded CD++ (E-CD++). In general, CD++ and E-CD++ have the following major

differences:

• CD++ implements DEVS, whereas E-CD++ implements RT-DEVS (i.e., P-DEVS

combined with the Time Interval Function).

• CD++ runs on workstations, whereas E-CD++ runs on a single board computer

(SBC).

• CD++ uses logical time, whereas E-CD++ supports both logical and physical

clock.

• E-CD++ has better simulation performance than CD++, since E-CD++

implemented a Flattened Coordinator technique to improve the performance.

• CD++ does not interact with real-world events, whereas E-CD++ does. It uses the

input ports on the SBC to receive events from real input devices, such as sensors

and timers. As well, the outputs can be sent through output ports connected to

devices, such as motors and gears.

• CD++ can only simulate homogenous DEVS models, where as E-CD++ can

seamlessly integrate DEVS components with hardware components.

• E-CD++ supports graphical modelling, which is a new functionality that CD++

does not have.

2.7 M&S Methods for RTES Design

In the past, M&S have been used to model and simulate the system under study, so that

the system behaviour can be analysed and examined. M&S was used only to study the

target system in a simulated environment. This work, however, attempts to apply the

M&S methodology directly to the design of the target system.

Using M&S to design real-time embedded systems has a promising potential. [Ern98]

stated the importance of Modelling in modern embedded system design, and [SLS00]

further claimed that formal models are essential to embedded system design. However,

defining a formal modelling methodology that is adequate in modelling all kinds of

embedded systems is a challenge. We found that some models, such as FSM, support

26

event-driven reactive systems, while others target dataflow systems. A combination using

both domains (e.g., telecom devices) implies simulation overhead. As well, some

simulators, such as MATLAB, are adequate in modelling CVDS, but not suitable for

DEDS. Due to their digital nature, embedded systems can be categorized as DEDS.

Consequently, we found that RT-DEVS is an adequate state-of-the-art modelling

methodology for embedded systems. Furthermore, recent advancement of the DEVS

research has extended DEVS to a new embedded system design paradigm in which RT-

DEVS is used as a framework that seamlessly integrates simulation models with

hardware components and that also enables incremental transition from the simulated

models to the actual hardware counterparts.

However, although RT-DEVS is adequate in modelling embedded systems, no simulation

toolkit available can apply RT-DEVS directly to the implementation of the target system.

Modelling and implementation differ in the way that, in modelling, all models (including

hardware models) are simulated software components, while implementation must

integrate hardware and software components. In other words, implementation must face

the hardware/software partition problem, implying that no instantaneous transition exists

from the modelling phase to the implementation phase.

The aim of E-CD++ is to address this issue. Since the hardware/software partition

problem is NP-complete, no formal methodology can be found to solve this problem.

Therefore, imperial approach has to be used instead. The E-CD++ toolkit merges the RT-

DEVS formalism with hardware-in-the-loop design methodology. That is, E-CD++

creates an real-time execution environment which integrates RT-DEVS models with real

hardware components. In this way, RT-DEVS is directly applied to the implementation of

the system under design.

27

Chapter 3 Embedded CD++ (E-CD++)

In this chapter, we introduce the Embedded CD++ (E-CD++) toolkit. We first give a brief

introduction to CD++ and E-CD++. We then extend our discussion to exploring four

major functionalities of E-CD++: a GGAD (Generic Graphic Advanced environment for

DEVS modelling and simulation) interpreter, P-DEVS simulation, the Flattened

Coordinator technique, and the Time Interval Function. With the realization both P-

DEVS and the Time Interval Function, E-CD++ carries out RT-DEVS simulation.

Finally, performance is a critical attribute for an embedded simulator that performs real-

time simulations. E-CD++ adopts the Flattened Coordinator technique to improve its

performance. We provide a theoretical discussion on E-CD++ performance when

exploring the Flattened Coordinator technique.

3.1 CD++

Not only does DEVS propose a framework for model construction, it also defines an

abstract simulation mechanism that is independent of the model itself. This mechanism

provides a high level design on DEVS framework, and it can be feasibly implemented by

computer software. CD++ [Wai02] is a simulation software which implements the DEVS

simulation formalism. In CD++, two kinds of simulators are implemented, one for

atomic and the other for coupled models. The latter is known as a coordinator. These

simulators progress through the simulation by exchanging messages as described by the

abstract simulation mechanism.

CD++ is written in C++. Two basic abstract classes exist: Model and Processor . The

former is used to represent the behaviour of the atomic and coupled models, while the

latter implements the simulation mechanisms. Figure 3 shows the CD++ class hierarchy.

28

Processor

Simulator Coordinator Root
Coordinator

Model

Atomic Coupled

(a)
(b)

Figure 3 CD++ (a) Model hierarchy, (b) Processor hierarchy

The user-defined DEVS models are subclasses derived from the Model class, which

defines the model states and the internal and external state transition functions. CD++

also allows the user to create a model file which defines the model hierarchy and linkage

between ports.

Message passing are among Processor objects, which upon receiving certain

messages, trigger the appropriate state transition functions.

3.2 E-CD++

CD++ was developed to run in a simulated environment carrying out only simulated

results. E-CD++, by contrast, is developed to apply the RT-DEVS formalism to

embedded systems design which requires real-time expansion and interact on the

surrounding environment. The inputs of E-CD++ can be received by ports connected to

real input devices such as sensors, timers, thermometers, or data collected from human

interaction. The outputs can be sent through output ports connected to devices such as

motors, transducers, gears, valves, or any other component.

E-CD++ runs on a Single Board Computer (SBC). It supports hardware-in-the-loop

simulations by developing hybrid hardware/software systems -- integrations of simulated

software models and real hardware components [LPW03].

29

The DEVS model is then loaded onto the SBC running E-CD++ for validation. E-CD++

supports RT-DEVS in which time advancement is driven by the wall-clock. Furthermore,

the inputs and outputs ports on the SBC are real hardware that is used by the E-CD++ to

let the DEVS model interact with the environment. E-CD++ can also integrate simulation

models with hardware components, which enables incremental transition from the

simulated models to the actual hardware counterparts.

The testing results obtained on the SBC can be compared with the simulation results

obtained on the host workstation. If the two results do not agree, then the DEVS model or

the event file developed on the workstation can be easily modified or adjusted to obtain

more accurate results.

E-CD++ inherits all the functionalities of the original CD++, while adding the following

new functionalities:

• Supports the GGAD graphical modeller;

• Implements RT-DEVS by implementing the P-DEVS formalism and the time

interval function;

• Implements the Flattened Coordinator technique;

• Is able to simulate DEVS models in an embedded computing environment with

limited resources;

• Is able to let DEVS models respond to real world events via input and output

ports of the embedded system.

3.3 GGAD Graphical Notation

E-CD++ provides a graphical user interface (GUI) for modellers to specify atomic

models graphically, enabling non-expert users to define atomic models in a easier and

more intuitive way. The tool generates textual specifications of the models represented

graphically in the GUI.

The GUI is based on a DEVS-graph notation presented in [HSKP97], which allows

defining atomic models using a graphical modelling tool. An atomic model is placed

30

inside a box (Figure 4). An external state transition is represented by a dotted line in

which the input event is represented by “?”. Similarly, an internal state transition is

represented by a solid line in which the output event is represented by “!”. For example,

an input event in?m means that a message m arrives at the input port in, and an output

event out!m means that a message m is run through port out. The input and output ports

are denoted by the black triangles. The atomic states are marked by circles in which the

state names and the time advance functions are defined.

Figure 4 Graphical definition of an atomic model: Coin Displayer

Figure 4 is a graphical representation of an atomic model called coin. This model

simulates the behaviour of the coins displayer in a vending machine. It has one input port,

namely coin_in, representing the input coins slot and one output port called coin_out

which represents the display of the inserted coins’ amount, and the port values of both

ports have integer data type. When coins are inserted into the coins slot, it takes one

second for the coins displayer to display the coins’ amount.

The two circles in the diagram represent the model’s two internal states whose names and

time intervals are defined inside the circles. The “Idle” state is the initial state of which

the time interval is set to infinity, which implies that the model may remain idle if no

external events (e.g., inserting coins) arrives. In contrast, the “Prepare” state has only one

Coin_in:integer
Coin_out:integer

Idle
TL=infinity

Prepare
TL=1

coin Coin_in?coin_amount

Coin_out!coin_amount

External transition

Internal transition

31

second time interval, meaning that it takes one second for the “Prepare” state to change to

another one. That is, when coins are inserted into the coins slot, it takes one second for

the coins displayer to display the coins’ amount.

The external transition function of the coins displayer is defined by the dotted arrow line

in Figure 4. When a coin is inserted via the input port, the external transition function

changes the model’s state from “Idle” to “Prepare” and stores the input value to the local

variable “coin_amount”. After one second time interval elapses, the output function,

defined right below the solid arrow line, outputs the “coin_amount” value to the output

port, and the internal state transition, defined by the solid line, changes model state back

to “Idle”.

The textual specifications are defined by a modelling language called GGAD. A GGAD

file is a text file that contains an atomic model written in GGAD. As an example, Figure

5 provides the textual definition of the atomic model represented in Figure 4.

Figure 5 GGAD textual definition of the coin model

This first line in the GGAD file is always the name of the atomic model encoded by the

square brackets. The rest of the file content defines the model’s ports, states, state

transition functions, local variables used in transition functions, and time advance

functions. The order of these definitions is arbitrary, and tokens in GGAD are separated

by white spaces.

• The input ports (line 2) are defined by the keyword “in” followed by a colon and a

list of port names separated by white spaces.

[coin]
in: coin_in
out: coin_out
var : coin_amount
state: idle prepare
initial: idle
int: prepare idle coin_out!coin_amount
ext: idle prepare any(coin_in)?1 {coin_amount = coi n_in;}
idle: infinite
prepare: 0:0:1:0
coin_amount: 0

32

• Similarly, the output ports (line 3) are defined by the keyword “out” followed by

a colon and a list of output port names.

• The local variable list (line 4) and the state list (line 5) are both followed the same

syntax rule, except their responding keywords are “var” and “state” respectively.

• The keyword “initial” is used to define the initial state. For example, the initial

state of the coin model (line 6) is “idle”.

• The time advance function is defined by a state name followed by a colon and a

GGAD time. The GGAD time has the format “HH:MM:SS:MS” For example, the

elapse time of the prepare state is 1 section (line 10). In addition, the keyword

“infinite” defines the passive state. In our example, the “idle” state is a passive

state (line 9).

• The internal transition function is defined as follows. It starts with the keyword

“int” followed by a colon. The next two tokens are the start state and the

destination state. Then remainder part of the function defines the output function.

The keyword “!” is the output mark. The left hand side of “!” is the output port

name, and the right hand side is the output value. For example, the internal

transition of coin (line 7) starts at state “prepare” and ends at state “idle”. The

output function outputs the value of local variable “coin_amount” to port

“coin_out”.

• The keyword “ext” denotes the start of an external transition function (line 8). The

external transition function also has a start state and a destination state, which are

defined in the same syntax as that defined in internal transition functions. The

keyword “?” is the so-called input mark. The left hand side of “?” is a GGAD

expression, while right hand side is an integer constant. Once an external event

takes place, the GGAD modeller evaluates the expression and compares the result

with the integer constant. If the two values agree, the GGAD modeller will

execute this external transition function. Otherwise, the function will not be

executed. GGAD uses this approach to select the correct external transition

function to execute upon a particular external event. In our coin example, the

expression “any(coin_in)” returns 1 if a new value arrives at input port “coin_in”

and returns 0 otherwise. So, the external transition defined is line 8 will be

33

executed upon the event where new coins are inserted into “coin_in”. Detailed

exploration on GGAD expressions will be covered in the next chapter.

The last part of the external transition function is a list of GGAD actions,

enclosed by curry brackets. They form the body of the external transition

function. GGAD actions are C++ assignment like statements and are separated by

semicolons. In the coin model example, the GGAD action “coin_amount =

coin_in;” assigns the input value arrived at input port “coin_in” to the local

variable “coin_amount”. GGAD actions will be discussed in the next chapter in

detail.

The complete definition to GGAD grammar can be found in Appendix B: Grammar for

GGAD Models.

3.4 P-DEVS Simulation Algorithms

The formal definition and semantics of P-DEVS is given in Chapter 2. This section

discusses the definition of P-DEVS simulation algorithms used in E-CD++. That is, we

focus on how to transform the specifications of P-DEVS (written in mathematical terms)

into algorithms that can be implemented by computer programs.

The P-DEVS formalism allows the modeller to specify the state transition behaviours of

atomic and coupled models, as well as the port connections among models. These

connections constitute the model hierarchy. The distinctiveness of P-DEVS is that it

supports parallel executions on simultaneous state transitions of atomic models and

concurrent handling of simultaneously scheduled external events. Moreover, handling

external events from the environment, executing transition functions, and exchanging

messages among models through their input and output ports that trigger more state

transitions to happen constitute all the activities of P-DEVS simulations. More

specifically, the following three functionalities are needed:

34

1. Parallel executions on simultaneous state transitions. This functionality may be

achieved by periodically determining the imminent atomic models at each

simulation cycle with time advancement and synchronizing their state transition

activities. In E-CD++, each model has internal variables to keep the time of the

simulation, as listed below.

tL Time of last transition

tN Time of next transition

An imminent atomic model’s simulator has the smallest value of tN. among its

siblings. In other words, it is a model that holds an imminent state transition that

will occur in the next simulation cycle in which time will advance to the model’s

tN. A simulation cycle advances time from tL to tN, where tL is the end time of the

previous simulation cycle and tN is the finish time of the current cycle. Within this

time period, there may be multiple imminent atomic models. With P-DEVS

implementation, E-CD++ is capable of executing these state transitions

simultaneously. This capability differentiates E-CD++ from the original CD++

simulator, where the SELECT functions are used to serialize the executions of

these simultaneous state transitions.

To achieve parallelism on state transitions, synchronization of models’ activities

is necessary. The synchronization of atomic models’ state transitions can be

achieved by inter-component messaging. E-CD++ implements a new inter-

component messaging architecture that is very different from the original CD++

design, so that it can offer this functionality. Two main categories of messages

exist: synchronization and content messages. Each of these categories consists

of several types of messages.

Synchronization messages:

@ Collect message

* Internal message

done Done message

35

Content messages:

Q External message

Y Output message

The Content Messages are used to exchange data among components via their

input and output port connections. The concept of Synchronization Messages is

newly introduced by E-CD++. Each coupled model in E-CD++ maintains an

important data structure called Synchronization Set, which is a subset of its

children that are scheduled to have state transitions in the next simulation cycle.

That is, they are imminent components. Synchronization Messages are exchanged

among components in order to periodically create, update and clear

synchronization sets in each simulation cycle.

2. Handling simultaneous external events in parallel. In the original DEVS

formalism, the atomic model can handle only one external event at a time. E-

CD++ overcomes this limitation by redesigning the external transition function.

Rather than invoking δext immediately upon an arrival of an external event, E-

CD++ stores the external message in the receiving model’s Message Bag, which

is a set of external messages and then adds this model to the Synchronization Set.

The model’s external transition function, once invoked, processes all messages in

the Message Bag altogether, as opposed to one single external message at a time.

In this design, simultaneous external events that take place within a simulation

cycle, i.e., between tL to tN, are handled by δext in parallel.

3. Ability to resolve conflicts caused by simultaneously scheduled internal and

external state transition within one atomic model. This functionality is achieved

by implementing the confluent function δcon, which is a new device introduced by

P-DEVS.

In E-CD++ implementation, the Simulator is responsible of invoking the atomic model’s

λ(s), δext, δint, δcon functions, while the Coordinator is responsible for the simulation of

36

coupled models. Both simulators and coordinators are capable of sending and receiving

messages. Their implementations are described below. The algorithms that follow are

based on that in [Cho94b], with minor modifications.

According to Cho’s algorithm, when a simulator receives a (@, t) message (Figure 6), it

executes the atomic model’s output function λ (line 3) and sends the output to the parent

coordinator (line 4). Note that the simulator executes λ at exactly tN time (line 2),

ensuring the correctness of the simulation. Finally, it sends out the Done message to its

parent, indicating the completion of the execution (line 5).

SIMULATOR
1. when a (@ , t) message is received
2. if t = tN then
3. y := λ(s)
4. send (y , t) to the parent coordinator
5. send (done, t) to the parent coordinator
6. end if
7. else raise error
8. end when

Figure 6 Simulator Receiving Collect Message

When a simulator receives an External Message (Figure 7), it simply adds it to the

Message Bag (line 3) and does so atomically (line 2 and 4) to avoid race conditions in the

concurrent computing environment.

SIMULATOR
1. when a (q , t) message is received
2. lock the bag
3. Add event q to the bag
4. unlock the bag
5. end when

Figure 7 Simulator Receiving External Message

However, there is a minor difference between Cho’s algorithm and ours in handling the

External Message. Cho’s algorithm also sends a (done, t) message to the simulator’s

37

parent coordinator after the event is added. We found that generating the done message is

not necessary, provided that the message handlers for the synchronization messages

(namely @ and *) send done messages. That is, there is no need for content message

handlers to send done messages. We have proved this point by statement.

Figure 8 outlines Cho’s algorithm of the Simulator’s Internal Message handler. The

arrival of the (*, t) message indicates that an atomic model’s transition function must be

executed. The transition function to be executed will depend on the current time, t, and

the content’s of the Message Bag. If t < tN , then it is not the time for an internal

transition, and it must be the case that the Message Bag is not empty, and δext is executed,

consuming all the external messages in the Message Bag at once.

SIMULATOR
1. when a (* , t) message is received
2. case tL ≤ t < tN
3. e := t - tL
4. s := δext(s, e, bag)
5. empty bag
6. end case
7. case t = tN and bag is empty
8. s := δint(s)
9. end case
10. case t = tN and bag not is empty
11. s := δcon(s, bag)
12. empty bag
13. end case
14. case t > tN or t < tL
15. raise error
16. end case
17. tL := t
18. tN := ta (s)
19. send (done, tN) to parent coordinator
20. end when

Figure 8 Simulator Receiving Internal Message

If t = tN,, it is the time for an internal transition. If no external messages has been

received, then δint, is executed, but if there are external messages in the Message Bag,

then δcon is called instead. All other cases are considered as errors.

38

Once the appropriate transition function is executed, the simulator update its tL to current

time t, and tN to ta(s).

We now describe the behaviour of Coordinator. A coordinator is responsible for the

simulation of a coupled model. It executes the translation function that translates output

events to input events, maintains the Synchronization Set which stores the imminent

children, and synchronize its children’s state transition by sending out Synchronization

Messages.

Figure 9 illustrate how a Coordinator handles the Collect Message. (This is also Cho’s

algorithm) Fist of all, it checks if the Collect Message is received exactly at time tN (line

2). If not, it raises an error (line 11). It then updates its tL to t (line 3) and sends (@, t) to

all of its imminent children (line 5). The imminent children can now be stored in the

Synchronization Set (line 6), which implies that their state transitions are scheduled to

take place in the next simulation cycle when time advances to tN. After it receive the

Done Message from all it imminent children (line 8), the Coordinator sends a Done

Message to its parents indicating the completion of the task (line 9).

COORDINATOR
1. when a (@ , t) message is received from parent coordinator
2. if t = tN then
3. tL := t
4. for all imminent child processors i with minimum tN
5. send (@, t) to child i
6. cache i in the synchronize set
7. end for
8. wait until (done, t)’s have been received from all imminent processors
9. send (done, t) to parent coordinator
10. end if
11. else raise error
12. end when

Figure 9 Coordinator Receiving Collect Message

When a Coordinator receives an Output Message (Figure 10), the message must be sent

from one of its children, because in E-CD++ implementation, Output Messages are only

sent upwards in the models hierarchy from children to their parents.

39

COORDINATOR
1. when a (y , t) message is received from child i
2. for all influencees, j of child i
3. q := zi,j (y)
4. send (q, t) to child j
5. cache j in the synchronize set
6. end for
7. if self ∈ Ii (y is to be transmitted upward) then
8. y := zi, self (y)
9. send (y, t) to parent coordinator
10. end if
11. end when

Figure 10 Coordinator Receiving Output Message

The first action that a coordinator performs upon the arrival of an Output Message is to

invoke the translation function to translate the Output Message into the External Message

and send it to all of its receiving models (line 2 – 4). Then the Coordinator caches the

receiving models into the Synchronization Set (line 5), implying that their external state

transitions are scheduled to occur in the next simulation cycle.

If, however, the coordinator itself is also one of the receiving models (line 7), it means

that the Output Message needs to be forwarded upward to its parent. In this case, the

coordinator generates another Output Message and sends it to its parent coordinator (line

8 & 9).

The coordinator handles External Messages in the same way as a simulator does. That is,

it atomically adds the incoming message to its Message Bag (Figure 11).

COORDINATOR
1. when a (q , t) message is received from parent coordinator
2. lock the bag
3. Add event q to the bag
4. unlock the bag
5. end when

Figure 11 Coordinator Receiving External Message

40

The behaviour of a coordinator receiving an Internal Message is illustrated in Figure 12.

When a coordinator receives an Internal Message, it first checks whether the current time,

t, is somewhere in between the last transition time and the next scheduled transition (line

2). If not, it returns an error (line 20). If the time is right, it processes all the External

Messages stored in the Message Bag by translating them into new External Messages

(line 5) and sending them to the receiving components (line 6). These receiving

components are cached into the Synchronization Set, for they need to process the

External Messages that have just been sent to them in the next simulation cycle. Having

processed all the External Messages, the coordinator empties the Message Bag (line 10).

Next, the coordinator sends out an Internal Message to every component saved in the

Synchronization Set (line 11 – 13), to trigger the state transitions of these imminent

children. Then, the coordinator is blocked waiting for the Done Messages from all the

imminent children which have just received the Internal Messages (line 14).

COORDINATOR
1. when a (* , t) message is received from parent coordinator
2. if tL ≤ t ≤ tN
3. for all q ∈ bag
4. for all receivers of q, j ∈ Iself
5. q := zself, j (q)
6. send (q, t) to j
7. cache j in the synchronize set
8. end for
9. end for
10. empty bag
11. for all i in the synchronize set
12. send (*, t) to i
13. end for
14. wait until all (done, tN)’s are received
15. tL := t
16. tN := minimum of components’ tN’s
17. clear the synchronize set
18. send (done, tN) to parent coordinator
19. end if
20. else raise an error
21. end when

Figure 12 Coordinator Receiving Internal Message

41

When all the Done Messages are arrived, the coordinator unblocks itself and updates its tL

and tN, and clears its Synchronization Set (line 15 – 17). And finally, it sends the Done

Message to its parent (line 18).

The last piece of work needs to be explained in P-DEVS is the Root Coordinator. It is a

special processor that is above the topmost coordinator. It is responsible for driving the

simulation and advancing the virtual simulation time. Figure 13 represents the algorithm

of the Root Coordinator. First, it advances the simulation time to tN of the topmost

coordinator (line 1). This implies that the state transition of the topmost coordinator may

occur right away. Then, the Root Coordinator keeps sending the Collect Message and the

Internal Message to the topmost coordinator (line 3 – 6) as well as updating the

simulation time (line 7).

ROOT COORDINATOR
1. t := tN of the topmost coordinator
2. while t ≠ ∞ or more external events to come
3. send (@ , t) to the topmost coordinator
4. wait until (done , t) message is received from it
5. send (* , t) to the topmost coordinator
6. wait until (done, tN) message is received from it
7. t := tN of topmost coordinator
8. if external event arrives
9. send (q, t) to the topmost coordinator
10. end if
11. end while
12. raise simulation completed

Figure 13 Root Coordinator Behaviours

The Root Coordinator can also handle external events. These events may be stored in an

events file which contains a sorted queue of events. When an external event occurs, the

Root Coordinator sends an External Message to the topmost coordinator (line 8).

The simulation completes when t becomes infinity and there are no more external events

left.

42

3.5 Flattened Coordinator Technique

Real-time applications require the simulation software be able to carry out results within

specified time constraints. Therefore, performance is essential to the success of a real-

time simulation software. The Flattened Coordinator technique [Kim00] is introduced to

improve the performance of E-CD++. The original CD++ needs to build a DEVS model

hierarchy. As shown in Figure 14, CD++ builds a same hierarchy for coordinators and

simulators as that for DEVS models. When a DEVS model executes, one simulator object

is created for each atomic component, and one coordinator object for each coupled

component in the hierarchy.

Root

CoordinatorModel

(a) (b)

Coupled Atomic

AtomicAtomic

Coordinator Simulator

SimulatorSimulator

Figure 14 CD++ (a) Model hierarchy, (b) Processor hierarchy [Gli04]

The problem with the hierarchical approach is that performance is not scalable. As the

size and complexity of DEVS models grow, so is the processor hierarchy, resulting in the

reduction of the simulation performance. The simulation algorithms explained in Section

3.4 revealed how messages are generated and exchanged among coordinators and

simulators. Those algorithms showed that the number of messages exchanging among

processors is proportional to the complexity of the processor hierarchy, which is

measured by the number of processors on the hierarchy. In other words, as the hierarchy

grows, so is the performance overhead incurred by messaging. In order to optimize the

performance, therefore, the simulator needs to reduce the complexity of the processor

hierarchy, i.e., the number of processors.

43

This is the main concept behind the Flattened Coordinator technique. Flattened

Coordinator, therefore, simplifies the simulation hierarchy by eliminating the

coordinators in the hierarchy and by making direct messaging communications between

the Flattened Coordinator and the simulators. Both the model and the simulation

hierarchies for this case are shown in Figure 15. A similar development for other DEVS

simulators can be found in [Gli02] and in [Kim00].

Figure 15 Flattened Coordinator Technique

(a) Example of a model hierarchy, (b) Associated processor hierarchy

The Flattened Coordinator transforms the hierarchical structure of the model to a

flattened structure by eliminating coordinators. The transformation, however, must

preserve the original port linkage relationship among atomic models, so that the

correctness of the simulation does not suffer. In order to achieve this, the Flattened

Coordinator technique needs to rewire the model port links to bypass the coordinator

ports. Consider, for example the model hierarchy shown in Figure 15 (a). Suppose

Atomic Model #1 needs to send a message to Atomic Model #4. The message will first

be sent to Coupled Model #2, which will then forward the message to Atomic Model #4,

as shown in Figure 16 (a). When Coupled Model #2 is eliminated, however, the Flattened

Coordinator must rewire the port links of Atomic Model #1 and Atomic Model #2, so that

messages can still be exchanged between them (Figure 16 (b)).

Simulator #1

Flat Coordinator

Root Coordinator

Atomic Model #3

(a)

(b)

Atomic Model #2 Atomic Model #1 Coupled Model #2

Atomic Model #5 Atomic Model #4

Coupled Model #1

Simulator #2 Simulator #3 Simulator #4 Simulator #5

44

Figure 16 Port Link Rewiring Technique

Furthermore, as a result of the elimination of coordinators, the Flattened Coordinator

must receive and send messages directly from and to the Root Coordinator in order to

carry out the simulation process.

Since the performance of E-CD++ is directly related to the efficiency of its messaging,

the performance can be quantitatively rated by the number of messages generated during

the simulation cycle, which is proportional to the number of Processors. Therefore, the

performance gain of the Flattened Coordinator technique can be measured by the

reduction rate of the Processors. That is, the performance improvement ratio of the

Flattened Coordinator technique (R), is one minus the number of processors on the

flattened structure (Pf) divided by that on the original non-flattened hierarchy (Po).

R = 1 – 








o

f

P
P

This formula is also verified by real simulation experiments in Chapter 5.

Coupled_2

Port_B

Atomic_4

Port_C

Atomic_1

Port_A

(a) Port Links of the original DEVS model

Atomic_1

Port_A

Atomic_4

Port_D

(b) Flattened DEVS model after port link rewiring

45

To illustrate this calculation numerically, we consider that a non-flattened processor

hierarchy is organized as an n-ary tree with h levels. Then, the total number of Processors

on this tree (P) is given by the following formula:

P = ∑
=

h

i

i

n
0

=
1

1
1

−
−+

n
n

h

The number of processors on the flattened hierarchy, in contrast, is equal to the number

of leaves (i.e., simulators) plus the Flattened Coordinator, which is nh + 1. Therefore, the

performance improvement ratio (R’) of flattening a processor hierarchy that is a full n-ary

tree with h levels is:

R’ = 1 -
1

)1)(1(
1 −

−+
+

n
n

h

h
n

For instance, performance after flattening a full ternary tree (an n-ary tree with n = 3)

with 2 levels is improved by 1 - 10 / 13 = 23%.

3.6 Time Interval Function

One major difference between evaluating the correctness of solutions developed in the

simulation world and that in the real world is that the former are evaluated in the virtual

time, whereas the latter often bind to real-time constraints. A real-time system is defined

as a one whose correctness depends not only on the computational results, but also on the

time at which the results are produced [Sta88, Sta96]. If a system delivers the correct

answer after a certain deadline, it could be regarded as an unsuccessful response.

Consequently, a real-time simulator must offer the functionality of the Time Interval

Function where time constraints can be stated and validated. E-CD++ offers this

functionality by implementing the wall-clock time advancement and the event deadline

checking.

In order to run real-time simulations, advance of the simulation-clock is tied to the wall-

clock (i.e. physical time). The Root Coordinator object provides this functionality. The

46

Root Coordinator manages the time advancement along the execution of a simulation. It

is also responsible for starting very new simulation cycle. When the virtual time approach

is used, after a simulation cycle finishes, the logical clock time is incremented to the next

scheduled event by the Root Coordinator without any physical delay. That is, the

Initialization Messages are immediately generated and sent by the Root Coordinator to

start a new simulation cycle. For the real-time simulation, however, the Root Coordinator

must wait until the physical time reaches the next event time to initiate the new cycle.

This implies that the periods of inactivity must not be skipped. The simulation process

remains quiescent while these periods are being experienced. Instead of logically

advancing the virtual time up to the next scheduled event (as what’s done by the virtual

time approach), the Root Coordinator expects the scheduled wall-clock time to be

reached and only then starts the new simulation cycle. In other words, a new simulation

cycle can be started either due to the reception of an external event, or due to the

consumption of the time indicated by ta(s) of the Root Coordinator. Hence, messages

interchanged between processors are sent at their actual scheduled wall-clock time.

E-CD++ creates a state machine to implement wall-clock time. The implementation uses

standard UNIX timer facilities provided by the <linux/time.h> library. Figure 17

illustrates a state machine for this timing behaviour.

• The state machine’s starting state is the “Inactive state”, in which E-CD++ is

passive. When E-CD++ reads in the external events file or when new events

arrive (E1), the Root Coordinator calls add_timer() to create timers with the

associated expiry timestamps for all the external events (A1a), and then it calls

interruptible_sleep_on() (A1b) to transfer the state to the “Timer

Counting-down state”, in which E-CD++ remains passive until timer expiry.

47

Figure 17 State machine implementation on wall-clock time

• As the wall-clock time advances, those timers will expire at the moments when

the external events arrive (E2), which will invoke their timeout functions. The

timeout functions will call wake_up_interruptible() to wake up E-

CD++ (A2a) to transfer to the “Simulation state”, and will also call

del_timer_sync() to delete the timer associated with the arrived external

event.

• In the Simulation state, a new simulation cycle is started, and a new ta(s) is

calculated. If the new ta(s) is set to infinity, and if there are no more timers left,

the Root Coordinator will call interruptible_sleep_on() to go back to

the “Inactive state” (A3) (i.e., deactivating E-CD++). E-CD++ will be waken up

upon the arrival of the next external event.

Inactive
state

Timer
counting
down state

Simulation
state

(E1) Processing event file
/ (A1a) adds events
timers; (A1b)
interruptible_sleep_on()

(E2) Timer expires /
(A2a) waken up E-
CD++; (A2b) delete
timer

(E5) ta(s) not equal to
infinity / (A5) add timer
with expiry time set to ta(s)

(A3) Simulation cycle ends with ta(s) being
infinity and no more timers left

(E4) ta(s) equals to
infinity but there are still
active timers

48

• If ta(s) is infinite, but there are still active timers (E4) (e.g., there are still some

scheduled external events), then Root Coordinator will move the state from

“Simulation” to “Timer Counting-down”.

• If, however, the new ta(s) calculated in the Simulation state does not equal

infinity (E5), then the Root Coordinator will create a new timer with the expiry

timestamp set to ta(s), and will move the state to “Timer Counting-down state”

(A5), so that E-CD++ will be waken up again after ta(s) time.

Timeliness along a simulation is a substantial property in the real time approach. In a

typical real-time situation, the model has to react to an external event and generate the

output within a given time in order to solve a given problem. When a model is executed

in real-time simulation, it is important to check different time constraints along the

simulation. Particularly, the time at which an event has been completely processed is a

meaningful measure of success.

During the simulation cycle, E-CD++ validates the time constraints which are stated by

the Time Interval Function. The Time Interval Function specifies the deadline before

which a simulation cycle must complete (e.g., An output must be arrived at a certain

output port.). E-CD++ allows the modeller to indicate the deadlines for external events.

E-CD++ checks the wall-clock time at which the simulation of the external event is

finished against the specified deadline. If the completion time is later than the deadline, it

indicates the failure.

E-CD++ creates a new format of the event file in which the deadlines are specified. The

new extended format of the event file is illustrated in Figure 18.

Event time Associated
deadline

input port associated
output port

value

hh:mm:ss:mseg hh:mm:ss:mseg port name port name num eric value

Figure 18 Format of the event file in the real time extension

49

Figure 18 shows that not only an associated deadline but also an output port must be

indicated in the new event file format. As a result, the simulator can check whether the

physical time meets the associated deadline when sending an output through the

associated port. Once the execution has finished, both successful and unsuccessful

deadlines are stored for further study of the simulation process.

When loading the event file, the E-CD++ simulator stores deadlines and their associated

output ports into a list of <deadline, port> pairs, named deadlineList. When the Root

Coordinator receives an Output Message, it searches through the deadlineList to fetch out

the <deadline, port> pair of which the port number matches that in the Output Message. It

then compares the wall-clock time with the deadline. Figure 19 provides the pseudo code

of this algorithm.

ROOT COORDINATOR

parse the event file and create Deadlines List (list of <deadline, port> pairs)
when a (y , t) message is received from TOP coordinator

for each <deadline, port> in Deadline List
if port == outport in y then

if deadline >= wall-clock-time then
output value to port and mark simulation as successful

else
output value to port and mark simulation as unsuccessful

end if-else
delete <deadline, port> from Deadline List
quit loop

end if
end for loop

end when
Figure 19 Deadline checking algorithm

50

Chapter 4 E-CD++ Software Architecture

In the previous chapter, we explained what E-CD++ could do. In this chapter, we will

discuss how these functionalities are designed and implemented. First of all, the Main

Simulator manages the general aspects of the simulation. The Modelling subsystem

constructs the DEVS model hierarchy. An important component of the Modelling

subsystem is the GGAD Model Loader that supports the graph-based notation, introduced

in section 3.3. The Simulation subsystem implements Cho’s algorithms [Cho94b] for

simulators and coordinators, which were outlined in the previous chapter. The subsystem

also includes special coordinators including the Flattened Coordinator and the Root

Coordinator. Furthermore, The Modelling subsystem and the Simulation subsystem are

the major components that carry out the P-DEVS implementation. The last subsystem we

will discuss is the Messaging Subsystem, which is responsible for delivering various

types of messages.

4.1 E-CD++ software architecture overview

The E-CD++ software architecture is object oriented. The software is modularized as a

group of components that have well-defined behaviours and have relatively independent

functionalities. E-CD++ software consists of the following major components:

• Main Simulator

• DEVS Modelling Subsystem

• Simulation Subsystem

• Messaging Subsystem

Figure 20 illustrates the interactions among these software components.

51

Figure 20 E-CD++ software architecture

The high-level design walk-through is summarized in the rest of this section. This walk-

through provides an overview of the simulation event sequence and also explains the

interactions among the subsystems. The detailed design of each subsystem is discussed in

the following sections.

1. The Main Simulator (MS) is the very first object created when E-CD++ starts.

The constructor of the MS, being called when the MS object is instantiated,

performs the Atomic Models Registration, which adds function pointers that point

Messaging Subsystem

Adds processors

Models hierarchy

Mapping relation

Top

Message Queue

Exter-
nal

events
table

Reads

Sends /
receives
messages

Manages
Models
(e.g.,
adds
Atomic
&
Coupled
objects)

Creates

Root
Coordinator Loads

Events

Model Loading process

Atomic
Model
Objects
database

Processors /
coordinators hierarchy

Models
Manager

Messages Manager

Main
Simulator

Processors
IDs

Lookup
(hashing)

Table

Manages
processors
(e.g., add,
find)

Processors
Manager

Sends /
receives
messages

Simulation Subsystem

Modeling Subsystem

52

to the constructors of all the user-defined atomic models’ classes into a Models

Manager’s table (a hashing table that serves as the Atomic Models Objects

Database). These atomic models will be instantiated during the Models Loading

process, which is the next step performed by the MS.

2. After the Atomic Models Registration is performed, the MS constructs the DEVS

models hierarchy. The MS parses the user-defined DEVS models file in which the

DEVS components and their inter-relations are defined (e.g., atomic and coupled

models, ports, links, states, etc.).

3. While the MS parses the models file, it calls the Models Manager and the

Processors Manager to construct two tree-like data structures in parallel. The first

is the Models Hierarchy Tree, and the second is the Simulators/Coordinators

Hierarchy Tree.

The nodes of the Models Hierarchy Tree belong to the Model class, which has

two subclasses: Atomic and Coupled , representing atomic and coupled models

respectively. Every node on the Models Hierarchy Tree is instantiated either as an

Atomic object or as a Coupled object. The non-leafs nodes of the Models

Hierarchy Tree represent Coupled models, while the leaf nodes are Atomic

models, which are subclasses derived from the Atomic class and whose

behaviours are defined by the user-defined classes. The Coupled model object

contains a data member called “children” which is a list of its children’s models

IDs. As well, each Coupled or Atomic object contains a list Ports objects which

specify the input and output relationships among the models. The top node of the

Models Hierarchy Tree is a special Coupled node called “Top”. After all the

nodes are loaded, the resulting Models Hierarchy Tree represents the model

hierarchy defined by the input model file.

If the Flattened Coordinator technique is enabled, two extra actions are taken

during the Models Hierarchy Tree construction: (1) all the Coupled model objects

53

are eliminated from the tree, and (2) all the Atomic model objects’ port links are

rewired to bypass Coupled models.

The Models Hierarchy Tree and the Simulators/Coordinators Hierarchy Tree are

constructed in parallel. That is, when the Models Manager adds a Coupled or an

Atomic node to the Models Hierarchy Tree, the Processors Manager adds a

Coordinator or a Simulator to the Simulators/Coordinators, correspondingly. The

nodes on the two trees, therefore, have one-to-one mapping relationship. Note that

if the Flattened Coordinator technique is used, no Coordinator objects (except the

Top Coordinator) is created, since all the Coupled models are eliminated from the

Models Hierarchy Tree.

4. After the Models Hierarchy Tree and the Simulators/Coordinators Hierarchy Tree

are constructed, the MS loads the External Events File, if there is one, and creates

the Root Coordinator and calls its simulate() function. The Root Coordinator

manages the global aspects of the simulation. It receives the external events either

from the pre-defined External Events File or from the real world via the physical

input ports on the embedded computer. It also manages the time advancement for

the simulation cycle. If a stop time is defined, the Root Coordinator terminates the

simulation cycle when the time is reached.

5. The Root Coordinator also generates the very first message in the simulation,

which triggers other processors and coordinators to receive and send messages.

The Message Manager is responsible for messages delivery throughout the

simulation cycle. It manages a Message Queue, where messages are received and

sent in a FIFO (First-In-First-Out) order.

6. The simulation cycle continues by simulators and coordinators keeping sending

and receiving messages among each other, and atomic models’ transition

functions are executed accordingly. The Root Coordinator advances the

simulation time. The simulation cycle stops when all models become passive, and

54

there is no external events left to process, or when the user-specified end

simulation time arrives.

The following sections elaborate on the details about each subsystem.

4.2 Main Simulator

The Main Simulator manages the overall aspects of the simulation. It is the first object

being created when the simulation starts. The class diagram of the Main Simulator is

shown in the following figure.

Figure 21 Main Simulator Class Diagram

The simulation cycle starts with the execution of the Main Simulator object’s run()

method. This method performs the following 4 tasks in sequence:

• Atomic Models Registration. The registerNewAtomics() method is used to

store the pointers to the atomic model objects, which are C++ objects derived

from the Atomic class, to Atomic Models Objects Database.

MainSimulator

run()

registerNewAtomics()

isFlatDEVS()

loadModels()

loadExternalEvents()

loadPorts()

loadLinks()

loadFlattenLinks()

updateOutLinks()

updateAtomicOutLinks()

addFlattenedLinksToFlatTop()

55

• External Events Table Construction. The loadExternalEvents() method is

invoked to parse the External Events file and creates the External Events Table

which is a sorted list sorted by time.

• Models Hierarchy Tree Construction. The methods loadModels() ,

loadPorts() , and loadLinks() are called to read in the model file and to

build the Models Hierarchy Tree. If the Flattened Coordinator technique is

enabled, then loadFlattenLinks() , updateOutLinks() ,

updateAtomicOutLinks() , and addFlattenedLinksToFlatTop()

are called to construct the flattened processor hierarchy.

• Root Coordinator Creation. Finally, the run() method instantiates the Root

Coordinator object and calls its simulate() method which sends the very first

initialization message in the simulation cycle to the top component, as we will see

in section 4.5.

The major portion of the Flattened Coordinator technique is implemented in the Main

Simulator subsystem. The Flattened Coordinator could be either enable or disabled, and

this is done by the Main Simulator’s isFlatDEVS() method which returns a Boolean

value True if the flattened coordinator is enabled, False otherwise.

As discussed in section 3.5, the Flattened Coordinator flattens the simulation hierarchy by

rewiring the port links and removing the coupled components from the hierarchy. Due the

absence of coordinators, however, any port links that link to coordinators’ ports are re-

wired to reach the far-end atomic ports. Then, the component links are handled directly

by the Flattened Coordinator, which forwards the messages to simulators as needed.

The port links rewiring is implemented by the Main Simulator. As described in section

4.2, the Main Simulator calls its methods loadModels() , loadPorts() , and

loadLinks() to construct the Models Hierarchy Tree. The method

loadLinks(Model& myModel) builds the links defined in myModel , which may be

either Atomic or Coupled. A link between two ports is a directed connection from the

source port to the destination port. During the simulation, messages are sent through the

56

links. Usually, the destination port resides on a different component other than

myModel . It follows, therefore, that the components in the Models Hierarchy Tree are

connected by the links.

The loadLinks() method constructs the port links based on the DEVS specification

defined by the modeller. This implies that the number of the port links and thus the

volume of message passing are proportional to the level of the models hierarchy. For

instance, the DEVS model structure shown in Figure 22 is a three-level hierarchy, with

the atomic model Atomic_A and the coupled model Coupled_A being the first level,

the coupled model Coupled_B being the second, and the atomic model Atomic_B

being the third. Suppose that an external event arrives at Atomic_A . It will send an

external message from its output port Port_A to the Coupled_A’s input port

Port_B . When the Coupled_A receives this message, it then sends an external

message to from its input port Port_B to the Coupled_B’s input port Port_C .

Finally, Coupled_B sends an external message from Port_C to Atomic_B’s

Port_D , which invokes Atomic_B’s external state transition function. In this

illustration, three messages need to be generated before Atomic_B’s external state

transition is started.

By contrast, with the Flattened Coordinator, instead of calling the loadLinks()

method, the Main Simulator calls loadFlattenLinks() and updateOutLinks()

when building the Models Hierarchy Tree. The loadFlattenLinks() method

rewires any port link that link to a coupled model directly to the far-end atomic model.

For example, suppose port A links to port B, and port B links to port C, where A and C

are atomic models’ ports, while C is a coupled model’s port. Then the

loadFlattenLinks() method links port A directly to port C.

57

Figure 22 Port Link Rewiring by Flattened Coordinator Technique

Part B of Figure 22 shows the rewired DEVS model. Note that Atomic_A’s input port

Port_A is directly linked to Atomic_B’s input port Port_B , and also note that the

two coupled models, Coupled_A and Coupled_B , are eliminated from the hierarchy.

Similarly, the updateOutLinks() method also rewires any atomic model’s output

port that originally links to a coupled model directly to the far-end atomic model using

the same algorithm used for input ports.

4.3 Modelling Subsystem

• The DEVS Modelling Subsystem provides a logical representation of the DEVS

models defined by the modeller. The subsystem is composed by the Models

Manager and the DEVS Models Hierarchy Tree.

Atomic_A

Coupled_A

Coupled_B

Port_A Port_B Port_C

Atomic_B

Port_D

(a) Port Links of the original DEVS model

Atomic_A

Port_A

Atomic_B

Port_D

(b) Flattened DEVS model after port link rewiring

58

Figure 23 DEVS Modelling Subsystem Class Diagram

The Models Manager manages the models hierarchy. More precisely, it takes care of the

following 3 tasks:

• When the Main Simulator registers the Atomic model objects, the Models

Manager creates and manages the Atomic Models Objects Database (Refer to the

class diagram in Figure 23), which is a dictionary data structure that stores the

*

1

Model

modelId: Integer

parentModelId:
Integer

modelName: String

inputPorts: List of
Port*

outputPorts: List of
Port*

addInputPort()

addOutputPort()

nextChange()

lastChange()

sendOutput()

Atomic

operator = ()

operator == ()

initFunction()

externalFunction()

internalFunction()

outputFunction()

confluentFunction ()

holdIn()

passivate()

state()

Coupled

children: List of
Model Ids

addModel()

children()

addInfluence()

Port

influenceList: List of Port*

portId: Integer

portName: String

parentModelId: Integer

influences()

model()

addInfluence()

delInfluence()

findInfluence()

ProcessorAdmin

ModelAdmin

operator ==()

registerAtomic()

newAtomic()

newCoupled()

AtomicModelsDataBa
se: dictionary of
<modelName,
Atomic*> pair

59

Atomic model’s string name (pointer to the “model name ↔Atomic object”

pairs).

• It is employed by the Main Simulator to create the Atomic and Coupled objects

in the Models Hierarchy Tree.

It employs the Processor Manager to create Processor class objects when the Main

Simulator loads atomic models.

The Models Manager is implemented by the ModelAdmin class, while the

implementations for the atomic and coupled models are encapsulated by the Atomic and

Coupled class respectively. The ModelAdmin object is instantiated by the Root

Coordinator. Its registerAtomic() method is used by the Main Simulator object’s

registerNewAtomics() method during Atomic Models Registration, and its

newAtomic() and newCoupled() method are used by the Main Simulator to

construct the Models Hierarchy Tree. Figure 23 represents the class diagram for the

DEVS Modelling Subsystem.

Moreover, the ModelAdmin object contains the Atomic Models Objects Database that

stores (modeller-defined) Atomic objects. The parent class of Atomic is the Model class,

which is the data abstraction of the DEVS model. It also provides the data abstraction that

is common to both atomic and coupled models. A Model class object has a unique

model ID . It also contains its parent’s model ID , so that the Models Manager

can traverse the Models Hierarchy Tree upwards when necessary.

The Model also contains a list of input ports and a list of output ports . They

are linked lists of pointers to Port objects. The Main Simulator’s loadModels()

method uses the addInputPort() and addOutputPort() method to construct the

lists when constructing the Models Hierarchy Tree.

In addition, the Model class provides the following methods that are inherited by Atomic

and Coupled class:

60

• lastChange() . Records the time of the last state transition.

• nextChange() . Sets the time for the next scheduled state transition.

• sendOutput (time, port, value) . Sends an output message through

the given port.

An atomic model can be created by the modeller by including a new class derived from

the Atomic class shown in Figure 23. In doing so, the following methods may be

overloaded:

• initFuntion() . This method is invoked when the simulation starts. It allows

one to define initial values and to execute setup functions for the model.

• externalFunction() . This method is invoked when an external event

arrives from an input port.

• internalFunction() . This method is started when an internal event occurs

(that is, the value of the Time Advance Function is zero).

• outputFunction() . This method executes before the internal function in

order to generate outputs for the model.

• confluentFunction() . This method is invoked when an external event

and an internal event takes place simultaneously. This function is an important

feature offered by the P-DEVS formalism. The function enables the modeller to

control the collision behaviour.

These functions are equivalent to those defined in the formal specifications for atomic

models. In addition the following primitives can be used when defining an atomic model.

• holdIn (state, time) . A model executing this method remains in state

during time (ta(s) == time). When the time is consumed (i.e., ta(s) == 0), the

model executes the internal transitions. This method was included to make the

definition of the duration function easy.

• passivate() . The model enters in passive mode (i.e., phase == passive; ta(s)

== infinite) and it is only reactivated by an external event.

• state() . Returns the present model phase.

61

Figure 23 also shows that the Coupled class object contains a list of its

children’s model IDs . The list is constructed by the addModel() method. It

defines the containment relation between the coupled component and its children. The

port connections that link these children are created by the addInfluence() method,

which is employed the by Main Simulator’s loadLinks() method during the Models

Hierarchy Tree construction.

As mentioned earlier, a Model may contain zero or more input ports and output ports.

The Port objects are created by the Main Simulator’s loadPorts() method during the

models hierarchy construction time. A Port object contains a numerical ID and a name. It

also stores its parent model’s ID, which can be retrieved by its model() method. This

implies that the port’s parent component must be created prior to the creation of the port,

and this order is enforced by the Main Simulator’s models hierarchy construction

algorithm.

Once a Port is created, the Main Simulator starts to build the Port’s influence list ,

which is a list of pointers to a set of Port objects representing the port’s destination end.

The Port’s parent coupled component’s addInfluence() method calls the Port’s

addInfluence() method to build the list.

4.4 GGAD Model Loader

E-CD++ incorporates a GGAD model loader that parses GGAD files and builds

equivalent atomic models. The GGAD model loader is part of the Modelling subsystem.

It consists of the following software modules:

• GGAD Parser

• Symbol Table

• Syntax Tree

• GGAD Transitions Execution Engine

• Atomic Model Adapter

62

The GGAD Model Loader’s design follows the classic compiler design pattern that

groups these modules into a front-end and a back-end. The front-end contains the parser,

symbol table and syntax tree. The GGAD parser is written in lex and yacc. It parses the

input GGAD files and builds the syntax tree and the symbol table in a similar way as

what a typical compiler’s front-end would do.

The back-end consists of the GGAD Transitions Execution Engine and the Atomic Model

Adapter. The former interacts with the syntax tree and the symbol table to carry out the

state transitions, while the latter makes GGAD models behave exactly the same as if they

were derived Atomic classes written in C++. This is done by the Atomic Model Adaptor

providing the same API as that provided by the Atomic class. Providing a consistent API

makes the integration of the GGAD model loader with the rest of the E-CD++ code

become easy.

Figure 24 GGAD Model Loader Architectural Overview

The interactions and relations among these modules are illustrated in Figure 24, and the

design walk-through of the GGAD parsing process is explained as follows:

Atomic Model Adaptor

GGAD
Parser

GGAD
Model
File

Syntax Tree

Transactions
Execution

Engine

(3)
Transactions

(4b) Transactions

(2)
Interfaces

(1b)
Constructs

(1a) Reads in

Models Manager and
Processors Manager

Front End Back End

Symbol
Table (4a) Transactions

63

1. Before the simulation cycle begins, the GGAD parser reads in the GGAD model

file (1a) and constructs the symbol table and the syntax tree (1b).

2. When the simulation cycle begins, the Models Manager and the Processors

Manager execute atomic models’ state transition functions at the scheduled time.

The Models Manager calls the transition function APIs provided by GGAD’s

Atomic Model Adaptor. These APIs are consistent with that defined in the

Model class, so that it does not require any special handling for GGAD models.

3. The Atomic Model Adaptor calls the proper GGAD Transitions Execution Engine

APIs in order to fulfil the state transition requests obtained from the simulation

subsystem.

4. The Transitions Execution Engine starts to execute. It interacts with the symbol

table (4a) and the syntax tree (4b) and carries out the state transitions. (The

Transitions Execution Engine is quite complex. Its design is explained in section

4.4.4.)

4.4.1 GGAD Parser

The GGAD Parser is written in Lex and Yacc, which are the tools used to define the

context-free grammar of GGAD model files. The GGAD Parser parses the GGAD model

file and builds the syntax tree and the symbol table. The implementation of the GGAD

Parser is encapsulated in the GgadParser class. The class diagram is shown in Figure

25.

The GgadParser object contains the symbol table (ggadSymTbl) and the Transitions

Execution Engine (ggadTransEngine). Its parse() method serves as the main

body of the parser, which performs two tasks in sequence: it first calls the

initSymbolTable() method to initialize the symbol table and then adds to it the

GGAD keywords, which are summarized in Table 1 below.

64

Figure 25 GGAD Parser Class Diagram

Keyword Description Example

in input port list in: in_port1 in_port2 …

out output port list out: out_port1 out_port2 …

state atomic model state list state: state1 state2 …

initial initial state initial : state1

int Internal transition function int : state1 state2 out_port ! output_value {
ggad_transition_statements … }

ext External transition function ext: state1 state2 in_port ? input_value {
ggad_transition_statements … }

infinite infinite elapse time some_idle_state: infinite

var local variables list var: variable1 variable2 …

pi Constant Pi my_variable = pi;

Table 1 GGAD Keywords

Since these keywords have special meanings in GGAD, they cannot be used for any other

purposes. That’s why they are saved in the symbol table before the input file is parsed, so

GgadParser

ggadTransEngine: GgadImpl
ggadSymTbl: GgadSymbolTable

initSymbolTable()
addFunction()

parse()

GgadImpl GgadSymbolTable

See Figure 29 See Figure 26

65

that when the parser encounters variable names, port names or state names during

parsing, it checks them against the keywords in the symbol table. If any of the keywords

are used as these names, the parser will raise an error. Furthermore, as part of the Symbol

Table initialization, the registerFunctions() method is called by the constructor

of the ggadSymTbl class to add GGAD built-in functions into the symbol table.

The second task that the parse() method performs is to call the GGADparse()

routine to start parsing process. GGADparse() is generated by the lex and yacc based

on the GGAD grammar, which is defined in Appendix B. It parses the GGAD model file

and creates the syntax tree. It also adds more symbols to the symbol table.

4.4.2 GGAD Symbol Table

The GGAD Symbol Table stores input and output port names, state names, variable

names, keywords, and built-in functions. It is implemented by the GgadSymbolTable

class. The class has two data members given below:

• ggadSymbols is a dictionary of symbols, such as port names, state names,

variable names, and keywords listed in Table 1. The symbols in the dictionary are

represented by the GgadSymbol class and can be searched by their symbol

names. The symbols can be added to the dictionary by the addSymbol() and

setSymbolType() methods, and can be searched and retrieved by the

getSymbolType() method.

• The second data member, namely ggadFunctionTable , is a built-in function

table. It is a dictionary data structure of <function_name, function pointer> pairs.

That is, it a list of pointers to GgadFunc objects that are indexed by function

names. The built-in functions can be searched and retrieved by

getFunctionByName() method.

66

Figure 26 is the class diagram for GgadSymbolTable , GgadSymbol , and

GgadFunc .

Figure 26 GGAD Symbol Table Class Diagram

The GgadSymbol class is a simple class that contains the symbol name and its

associated symbol type . The symbol type determines if the symbol is a port, state,

variable, or a keyword. The class constructor takes in the symbol name as its input

parameter, so that the symbol name is stored when the GgadSymbol object is

GgadSymbolTable

ggadSymbols: map of
<String, GgadSymbol>
ggadFunctionTable: map
of <String, GgadFunc*>

addSymbol()
isSymbol()

getSymbolType()
setSymbolType()

registerFunctions()
initFunctionTable()

getFunctionByName()

GgadSymbol

name: String

type: Integer

getName()

getType()
setType()

GgadFuncGreaterEqual

GgadFuncDivide

GgadFuncCompare

GgadFuncBetween GgadFuncAdd

GgadFuncAnd

GgadFuncAny

GgadFuncEqual GgadFuncGreater

GgadFuncLess GgadFuncMinus GgadFuncMultiply

GgadFuncNotEqual

GgadFuncOr

GgadFuncPi

GgadFuncPow GgadFuncRand

GgadFuncValue

GgadFunc

numOfParameters: Integer

parameters: List of GgadValue

addParameter()

execute()

GgadFuncNot

67

instantiated. Its symbol type, however, is set via the setType() method. The symbol

name and symbol type can be retrieved by the getName() and getType() method.

Function Class Name Parameter
s

Description of execute()
method

value GgadFuncValue my_var Returns the value of variable
my_var

add GgadFuncAdd a, b Returns a + b

minus GgadFuncMinus a, b Returns a – b

multiply GgadFuncMultiply a, b Returns a * b

divide GgadFuncDivide a, b Returns a / b

pow GgadFuncPow a, b Returns a to the power b

between GgadFuncBetween a, b, c Returns 1 if a <= b <= c, 0 if not

compare GgadFuncCompare a, b, c, d, e If a < b, return c; If a == b, return
d; else return e

equal GgadFuncEqual a, b Returns 1 if a == b 0 if not

notequal GgadFuncNotEqual a, b Returns 1 if a != b, 0 if not

less GgadFuncLess a, b Returns 1 if a < b, 0 if not

greater GgadFuncGreater a, b Returns 1 if a > b, 0 if not

greaterequal GgadFuncGreaterEqual a, b Returns 1 if a >= b, 0 if not

and GgadFuncAnd a, b Returns (a && b)

or GgadFuncOr a, b Returns (a || b)

not GgadFuncNot a Returns !a

any GgadFuncAny my_port Returns 1 if the input port
my_port receives any input
values, 0 if not

rand GgadFuncRand a, b Returns a random number in
range [a, b]

pi GgadFuncPi N/A Returns 3.14159

Table 2 GGAD Built-in Functions (note: parameters a, b, c, d and e have
double data type; my_var and my_port are strings)

The first column in Table 2 are the function names. The 2nd and 3rd column are the

associated class name and the parameter list respectively, while the last column describes

the implementation of the execute() method.

68

The GGAD language specification defines 19 built-in functions. GGAD users can use

these functions to implement their state transition functions. The symbol table’s function

table (ggadFunctionTable) contains the behavioural specifications of these

functions. And the function table entries are created by the method

GgadSymbolTable::registerFunctions() , which is invoked by the class

constructor. Therefore, these built-in functions are all available for execution once the

symbol table is constructed. This approach simplifies the GGAD parser’s design, which

would otherwise have to dynamically load the needed built-in functions.

Every built-in function table entry contains a pointer to a GgadFunc object. The

GgadFunc class provides a data abstraction of a GGAD function. It contains two data

members: the list of function parameters and the total number of the parameters. The

functions parameters are added by the addParameter() method. The execute()

method is a pure virtual function that is overloaded by its subclasses.

The GgadFunc class has 19 subclasses, each of which specifies one particular built-in

function’s behaviour. These subclasses do not introduce any new data members or

methods. Their behaviours are differentiated by their implementations of the

execute() method. This method operates on the function parameters and returns the

function’s result. Different functions have different implementations. Table 2 illustrates

the various implementations of the execute() method.

4.4.3 GGAD Syntax Tree

The Syntax Tree is used by the GGAD Transitions Execution Engine to carry out the

model simulation. It is a tree structure of GgadSyntaxNode class objects. The

GgadSyntaxNode class has 6 subclasses (refer to Figure 27 for the class diagram):

• GgadFunctionNode

• GgadConstantNode

• GgadInputNode

• GgadPortInNode

69

• GgadVariableNode

• GgadActionNode

In addition, the GgadActionNode class has 3 subclasses:

• GgadActionListNode

• GgadSetVariableNode

• GgadNullActionNode

These classes, among with those representing the symbol table, form a run-time

presentation of the GGAD language schematics. In other words, the symbol table and the

syntax tree provide the behaviours of an atomic model in terms of C++ objects that can

be executed during run time. As explained in the previous section, the symbol table is

mainly used to store the input and output port names, state names, local variable names,

keywords, and built-in functions. The syntax tree, on the other hand, mainly represents

the internal and external transition functions, whose context-free grammar is defined in

Figure 28.

When parsing the input GGAD model file, the GGAD Parser translates the elements of

the atomic model, such as input and output ports, states, variables, and state transition

functions, into symbol table entries and GGAD syntax node objects. Details of this

translation process are given below:

• When parsing the internal and external transition functions from the GGAD

model file, the parser applies the grammar rules in a recursively descendent order.

That is, it starts with applying rule 1 or rule 2, depending on the transition type,

and recursively break the non-terminals into other rules. The non-terminal

“Actions” in rule 1 and 2 can be broken down into either a list of “Actions”

separated by semicolons (rule 9 & 12) including a null action (rule 10). For the

null action case, the parser simply creates a GgadNullActionNode object,

which has no data members or methods. In any other cases, the “ActionList” may

contain one or more “Actions” (rule 11 and 12); so, the parser creates a

70

GgadActionListNode object, which contains a data member, “actions ”,

and a method, addAction() . The “actions ” is a list of pointers to

GgadSyntaxNode , and the parser calls addAction() to insert action objects

to the list.

Figure 27 GGAD Syntax Tree Class Diagram

GgadSyntaxNode

name()
evaluate()

GgadFunctionNode

name: String
parameters: List of
GgadSyntaxNode*

addPrameter()

GgadConstantNode

ggadVariableValue:
double

GgadInputNode

ggadFunctionPointer:
GgadSyntaxNode*
ggadInputValue:
GgadConstantNode*

GgadPortInNode

portName: String

GgadVariableNode

ggadVariableName:
String

GgadActionNode

GgadNullActionNode GgadActionListNode

actions: List of
GgadSyntaxNode*

addAction()

GgadSetVariableNode

ggadVariableName:
String
ggadExpressionPointer:
GgadSyntaxNode*

71

• The non-terminal “Action” (rule 13) defines the syntax of local variables’

assignments. The parser creates a GgadSetVariableNode object when

applying this rule. The GgadSetVariableNode object contains two data

members: ggadVariableName and ggadExpressionPointer . The

former is a string representing the local variable name, while the latter is a pointer

to GgadSyntaxNode representing the variable value, which is an “Expression”.

• An “Expression” can be break down into a GGAD built-in function call (rule 5), a

port name (rule 6), a variable name (rule 7) or a numerical constant (rule 8). For a

function call (rule5), the parser creates a GgadFunctionNode object. This

object contains the function_name and a list of function parameters as

its data members. Rule 17 –19 define the syntax of function parameters. When

applying one of these rules, the parser calls GgadFunctionNode ’s

addParameter() method to add the parameter to the object’s parameter list.

• If the “Expression” is a port name (rule 6), the parser creates a

GgadPortInNode object, which has a string type data member port_name .

Similarly, the parser creates a GgadVariableNode or a

GgadConstantNode object if the “Expression” is a variable name (rule 7) or a

constant (rule 8).

• The last type of syntax node we need to introduce is GgadInputNode . This

syntax node is created when the parser reads in the input value from an input port

defined in an external transition (rule 2). The GgadInputNode has two data

members: The ggadFuntionPointer data member is a pointer to

GgadSyntaxNode , which represents the “Expression” in rule 2. This

“Expression” is applied upon the input port with the condition that triggers the

external transition to occur. For example, the expression: “any (myPort)” means

that if the input port “myPort” has any incoming data arrived, start the external

72

transition. The other data member, ggadInputValue , is a pointer to

GgadConstantNode . It represents the incoming value at the port.

1) IntDef -> ‘ int’ ‘ :’ STATE STATE PortValueOutList Actions

2) ExtDef -> ‘ ext’ ‘ :’ STATE STATE Expression ‘ ?’ CONSTANT Actions

3) PortValueOutList -> PORT ‘ !’ Expression PortValueOutList

4) PortValueOutList -> /* empty */

5) Expression -> FunctionCall

6) Expression -> PORT

7) Expression -> VARIABLE_NAME

8) Expression -> CONSTANT

9) Actions -> ‘ {‘ ActionList ‘ }’

10) Actions -> /* empty */

11) ActionList -> Action ‘ ;’

12) ActionList -> ActionList Action ‘ ;’

13) Action -> VARIABLE_NAME ‘ =’ Expression

14) FunctionCall -> FUNCTION_NAME ‘ (‘ ParameterList ‘)’

15) ParameterList -> Parameter

16) ParameterList -> Parameter ‘ ,’ ParameterList

17) Parameter -> CONSTANT

18) Parameter -> VARIABLE_NAME

19) Parameter -> PORT

Figure 28 Context grammar of GGAD internal and external transition functions

Figure 27 shows that GgadSyntaxNode class has two virtual methods, name() and

evaluate(), that can be overloaded by its subclasses. The name() method simply returns

the class name as a literal string (mainly for debugging purposes). The evaluate() method,

however, carries out syntax nodes activities. The different types of the syntax nodes,

introduced in Figure 27, have different implementations (which are described in Table 3).

Note that it is our design intention to make GgadSyntaxNode::evaluate() a pure

virtual function, so that its implementation in the subclasses can vary. This design has

two advantages:

• It makes the Syntax Tree is scalable and easy to expand. So, the GGAD language

evolution becomes relatively easy. Suppose, for example, in the future we want to

add confluent functions to GGAD. We only need to add a new subclass to

73

GgadSyntaxNode class and implement the behaviour of confluent functions in

its evaluate() method. The rest of the backend code need not to be changed.

• It makes the interface between the Transitions Execution Engine and the Syntax

Tree very simple. This design takes the advantage of polymorphism, so that the

Transitions Execution Engine only need to call the abstraction method

GgadSyntaxNode::evaluate() to execute various transition actions, as

opposed to finding different syntax node types and calling different APIs.

Class Description of the evaluate() method

GgadFunctionNode 1. Calls the mothod GgadSymbolTable::getFunctionByName()
to retrieve the GGAD function (GgadFunc object) from the
symbol table.

2. Uses GgadFunc’s addParameter() method to add parameters
to the function object

3. Calls function object’s execute() method (see Table 2) to
execute the function and return the result

GgadConstantNode Returns the data member ggadVariableValue, which stores the
constant value

GgadInputNode 1. Calls ggadFunctionPointer->evaluate().

2. Calls ggadInputVaue->evaluate()

3. Returns 1 if return values from step 1 & 2 are the same; 0
otherwise

GgadPortInNode Returns the data member portName, which is an input port name

GgadVariableNode Returns the value of the variable whose name is saved in the
data member ggadVariableName

GgadActionNode Nil operation

GgadActionListNode Calls the evaluate() method of every syntax node in the
data member actions

GgadSetVariableNode Calls the evaluate() method of the syntax node pointed by
ggadExpressionPointer. Then it assigns the value to the variable
with the name saved in ggadVariableName

GgadNullActionNode Nil operation

Table 3 Behaviours of the evaluate() method in GGAD syntax node classes

More details on the Transitions Execution Engine follow in the following section.

74

4.4.4 GGAD Transitions Execution Engine

The GGAD Transitions Execution Engine is the main body of the GGAD Model Loader.

It is responsible for the executions of external, internal, output, and initialization

transition functions of the GGAD models. It interacts with the symbol table and with the

GGAD syntax nodes objects to carry out the GGAD simulation activities. The

implementation of the execution engine is encapsulated in the GgadImpl class, of which

the class diagram is shown in Figure 29.

Figure 29 shows that the GgadImpl class contains a collection of data members that

form a data portfolio for the GGAD model:

• First of all, the data member symTable is a pointer to the symbol table, so that

the execution engine has direct access to it (via its setSymbolTable() and

getSymbolTable() methods).

• The GgadImpl class contains a list of GGAD states (ggadStates), which is

constructed by the parser. When parsing a state from the GGAD file, the parser

calls the methods GgadImpl::addState() and

GgadImpl::setTimeAdvance() to add the state and set its duration.

The GGAD state is represented by the GgadState class, which contains the

name of the state and its duration as the data members. The state information can

be retrieved by the method GgadImpl::getState() .

• GgadImpl also has a list of variables (ggadVariables) as the data member.

This list is also built by the parser calling the addVariable() method during

parsing time. The variables in the list can be retrieved by the method

getVariable() .

75

Figure 29 GGAD Transitions Execution Engine Class Diagram

GgadImpl

symTable:
GgadSymbolTable*
ggadStates: List of
GgadState
ggadVariables: List of
GgadValue
ggadInputPorts: Hash
Table of GgadPort
ggadOutputPorts:
Hash Table of
GgadPort
ggadExternalTrans:
GgadTransStore
ggadInternalTrans:
List of GgadTransInt

addInPort()
getInPort()
addOutPort()
getOutPort()
addState()
getState()
setTimeAdvance()
addTransExt()
getTransExt()
addTransIntOutput()
getTransInt()
getStateOutput()
setSymbolTable()
getSymbolTable()
addVariable()
getVariables()

GgadSymbolTable

GgadState

stateName: String
timeAdvance: Time

getName()
getTimeAdvance()
getTimeAdvance()

GgadSymbol

GgadPort

portName: String

getName()

GgadTrans

sourceState: String
destinationState: String
action: GgadSyntaxNode*

operator=()
getSource()
getDestination()
actionOnSyntaxNode()

GadFunc

GgadTransInt

outputsAtPorts: List
of
GgadSyntaxNode*

getOutputs()

GgadTransExt

actionExpression:
GgadSyntaxNode*

getExpression()

GgadTransStore

TransitionsList: List
of GgadTransExt

addTransition()
findTransition()

GgadSyntaxNode

See Figure 26

See Figure 27

76

• The GGAD model’s input ports and output ports are represented by

GgadImpl::ggadInputPorts and GgadImpl::ggadOutputPorts ,

respectively. Both of the data members are hashing tables of GgadPort objects.

The GgadPort class contains the port name as its data member. Both lists are

built by the parser, which calls addInPort() and addOutPort() to add

input and output ports when parsing the GGAD file. The elements in the two lists

can be retrieved by the methods GgadImpl::getInPort() and

GgadImpl::getOutPort() .

• Finally, the data members ggadInternalTrans and ggadExternalTrans

represent internal and external state transitions, respectively. A state transition

can be specified by three attributes: source state, destination state, and state

transition function. These attributes are represented in the GgadTrans class as

its data members. The method GgadTrans::actionOnSyntaxNode()

carries out the state transition by updating the model’s state from the source state

to destination state and also by executing the state transition function. The

transition function is represented by the data member action , which is a pointer

to the Syntax Tree. The actionOnSyntaxNode() method calls the

evaluate() method (see Table 3) in the Syntax Tree which executes the state

transition actions defined in the GGAD file.

The data member ggadInternalTrans is a list of GgadTransInt , which

represents the internal state transition and the output function. It is a list because

GGAD allows multiple definitions of internal state transitions, and the list is

constructed by GgadImp l::addTransIntOutput() , which is called by the

parser to add the internal transition function and the output function.

GgadTransInt is a subclass of GgadTrans . Its method

actionOnSyntaxNode() executes the internal transition function, while its

getOutPuts() method runs the output function.

77

Similarly, the data member ggadExternalTrans is a list of

GgadTransExt , which represents the external state transition. This list is also

created by the parser calling GgadImpl::addTransExt() to add each

individual external transition. The GgadTransExt class is a subclass of

GgadTrans . Its actionOnSyntaxNode() method executes the external

transition function. It also contains a data member called actionExpression ,

which is a pointer to the Syntax Tree. This data member represents the

“Expression” in rule 2 of the GGAD grammar in Figure 28, and the

getExpression() method executes the expression by calling

actionExpression ’s evaluate() method.

The Transition Execution Engine is used by the Atomic Model Adaptor. The Adaptor

calls the member methods in the GgadImpl class to carry out state transitions. Details

about the adaptor are discussed in the following section.

4.4.5 GGAD Atomic Model Adaptor

The Ggad class serves as the Atomic Model Adaptor -- a software adaptation layer that

encapsulates the GGAD Transitions Execution Engine, as described in Figure 30.

The Ggad class is a subclass of the Atomic class. Thus, it can provide the same public

methods as that provided by Atomic :

• Model& Ggad::initFunction ()

• Model& Ggad::externalFunction (const ExternalMessage &)

• Model& Ggad::internalFunction (const InternalMessage &)

• Model& Ggad::outputFunction (const InternalMessage &)

It is our design intention to make the Models Manager and the Processor Manager from

the Modelling Subsystem only interface with these APIs provided by the Ggad class, so

that the detailed implementation of GGAD is hidden away from other subsystems. This

78

decoupling makes implementation changes to GGAD easy, since they will not impact

other subsystems.

Figure 30 GGAD Atomic Model Adaptor Class Diagram

On the implementation side, the Ggad class needs to map its public methods to the

methods in the Transitions Execution Engine. It contains a pointer to the Transitions

Execution Engine as its data member, namely myTransEngine , so that it executes the

public methods by invoking the appropriate Execution Engine methods through

myTransEngine . Table 4 summarizes how the Ggad methods employ the methods in

the GgadImpl class. Those GgadImpl methods are explained in the previous section.

Ggad method name Implementation of the Ggad method

Ggad::initFunction() Calls myTransEngine->getState() to find the initial
state and sets modelState to initial state

Ggad::externalFunction() Calls myTransEngine->getTransExt() to execute
the external state transition function

Ggad::internalFunction() Calls myTransEngine->getTransInt() to execute
the internal state transition function

Ggad::outputFunction() Calls myTransEngine->getStateOutput() to
execute the output function

Table 4 Implementations of the Ggad class methods

With the design of this adaptation layer, therefore, the entire GGAD subsystem can be

seamlessly integrated into E-CD++.

Ggad

myTransEngine: GgadImpl*
modelState: AtomicState

initFunction()
externalFunction()
internalFunction()
outputFunction()
getActualState()

GgadImpl
Atomic

Model

79

4.5 Simulation Subsystem

The Simulation Subsystem consists of Simulators, Coordinators, and the Processors

Manager. Figure 31 shows the Simulation subsystem.

The Processor class is the parent class for Simulator and Coordinator. So, it abstracts the

commonality between them. This class contains the following data members:

• Each Processor has a unique Processor_ID , which is an integer. This ID is

used by the Processor Manager (i.e., ProcessorAdmin class) to keep track of

each Simulator and Coordinator.

• The Processor class uses two data members to keep the time of the simulation:

tL Absolute time of last transition
tN Time of next transition relative to tL

The lastChange() and nextChange() method returns tL and tN,

respectively. The absoluteNext() method returns the absolute time of the next

transition, which is the sum of tL and tN.

• The Processor class also contains a data member called externalMsgs ,

which serves as the message bag of external messages. The message bag is a

device introduced by the P-DEVS formalism to achieve parallel simulation. Its

functionality is implemented by the MessageBag class, which contains a list of

pointers to the Message objects. (The Message class will be explained in the

next section.) In addition, its addExternalMessage() and eraseAll()

method are used by Processors to insert individual external messages to the bag

and empty the entire bag, respectively.

• The last data member need to mention is model , which is an instance of the

Model class. Each Processor object contains one Model object, which

reflects the one-to-one mapping relation between processors hierarchy and models

hierarchy. Furthermore, the Processor’s message handlers can access the model’s

transition functions and port links through this data member.

80

Figure 31 Simulation Subsystem Class Diagram

Furthermore, the Processor class defines the prototypes of handlers that respond to

various DEVS messages, including initialization, internal and external state transition,

output, collect and done messages. These methods in the Process class, however, are

pure virtual functions which will be overloaded by the Simulator and Coordinator

class.

The Processor class has four derived classes: Simulator , Coordinator ,

FlatDEVSCoordinator , and Root .

Processor

model: Model
externalMsgs: MessageBag
next: Time
last: Time
processorId: Integer

operator==()
operator=()
receiveInitMessage ()
receiveInternalMessage ()
receiveOutputMessage ()
receiveExternalMessage ()
receiveDoneMessage ()
receiveCollectMessage ()
nextChange()
lastChange()
absoluteNext()

Simulator

Root

initialize()
simulate()
stop()
addExternalEvent()
stopTime()
addDeadline()

Coordinator

syncSet: Set of
ModelIds

imminentChildren()

FlatDEVSCoordinator

syncSet: Set of ModelIds

imminentChildren()
nextChange()
lastChange()
absoluteNext()

MessageBag

msgs: List of Message*
msgCout: Integer
msgTime: Time

addExternalMessage()
eraseAll()

ProcessorAdmin

processorsDatabase: List
of Processor*

generateRoot()
generateProcessor()
add2DB()

Model

81

• The Simulator class implements the P-DEVS Atomic models, and, more

precisely, it is responsible for invoking the atomic model’s λ(s), δext, δint, δcon

functions. The message handler functions defined in the Processor class are

virtual functions that are overloaded by the Simulator class. The algorithms of

these message handlers have been described in section 3.4. Other than inheriting

the data members and the methods from the Processor class, the Simulator

class does not introduce any new ones.

• Similarly, the Coordinator class implements the P-DEVS Coupled models.

Coordinator objects are responsible to carry out the simulation of the coupled

models. The Coordinator class also overloads the message handlers defined in

the Processor class. (The algorithms of these message handlers have been

described in section 3.4.) Other than inheriting the data members and the methods

from the Processor class, the Coordinator class also adds a new data

member called syncSet , which serves as the synchronization set in P-DEVS. In

addition, the new method imminentChildren() calculates the coupled

models imminent children and updates the synchronization set.

• The Flattened Coordinator is implemented by the FlatDEVSCoordinator

class. Its implementation is mainly the same as that of the Coordinator class,

except that it overloads the lastChange() , nextChange() and

absoluteNext() methods. Also, the Flattened Coordinator receives and sends

messages directly from and to the Root Coordinator.

• The last subclass derived from Processor is Root . It represents the Root

Coordinator. Its simulate() method starts the simulation by sending the very

first initialization message to the Top Coordinator, and this method is invoked by

the Main Simulator. Similarly, the stop() method is also used by the Main

Simulator to stop or abort the entire simulation. The Root Coordinator is also

responsible for interacting with the environment. Its addExternalEvent()

method receives the incoming external events, either by reading from the External

Events Table or by receiving it directly from the real world via real hardware

ports in real-time mode. It then sends the corresponding External Messages to the

82

Top Coordinator. In addition, Root also advances the Global Simulation Time

during every simulation cycle. In real-time simulation, it binds the simulation time

with wall-clock time. In addition, its addDealine() method associates

deadlines to external events, so that deadline validation can be performed for real-

time DEVS.

The Processors Manager, which is implemented by the ProcessorAdmin class,

manages the Processor class objects. Every Processor object is identified by its

Processor ID data member. The ProcessorAdmin object is created by the Root

Coordinator. It maintains the Processors Database , which is a hashing table of

pointers to Simulator and Coupled class objects, so that actions, such as searching, can be

performed upon those objects. The method generateRoot() is called in Root class

constructor to create the Root Simulator. And the method

generateProcessor(Atomic or Coupled) is called by the Models Manager

during the Models Hierarchy Tree construction time to create Simulators and

Coordinators, and it then calls the add2DB() method to add simulators and coordinators

to the Processors Database.

4.6 Messaging Subsystem

The Messaging Subsystem is responsible for message delivery. Messages are used by

simulators and coordinators to exchange data and synchronize activities. The nature and

usage of messages are explained in section 3.4 where P-DEVS is discussed in detail.

The Messaging Subsystem consists of the Message Manager and various types of

Message objects. Figure 32 shows the class diagram of the subsystem. Simulators and

coordinators send messages via the Messages Manager, which is implemented by the

MessageAdmin class. The MessageAdmin object is responsible for delivering

messages among components (including both atomic and coupled). It is created by the

Root Coordinator when it sends the very first initialization message to the Top

83

component. During its operation, it first buffers the incoming messages to its

Unprocessed Message Queue , which is a queue of pointers to Message objects.

Figure 32 Messaging Subsystem Class Diagram

These messages are then processed by the Messages Manager in the FIFO (first-in-first-

out) order. The MessageAdmin class provides the following public methods.

*

1

MessageAdmin

unprocessedQueue:
Queue of Message*

operator ==()
operator =()
run()
stop()
send()

Message

time: Time
destinationProcossorId: Integer

sendTo()
time()
procId()
operator==()
operator=()
clone()
type()

OutputMessage

ExternalMessage

DoneMessage

InternalMessage

CollectMessage InitMessage

port: Port*
value: double

port: Port*
value: double

port()
value()

port()
value()

84

• Send (message, modelID). This method is used by the simulators and

coordinators to send a message to the component specified by the modelID. The

method simply adds the message to the FIFO Message Queue.

• Run(). This method is called by the Root Coordinator’s simulate() method

at the beginning of the simulation cycle. It loops through the Unprocessed

Message Queue and sends out the messages by calling their sendTo()

method defined in the Message class. The Run() method continuously checks

the message queue, and it stops only when the Stop() method is called.

• Stop(). This method is used by the Main Simulator to stop the Message Manager

when the simulation stops.

Messages are represented by the Message class. Its data member time records the

creation time of the message, and it can be retrieved by the time() method. It also

contains message receiver’s ID (data member destinationProcessorId), which

is used by its sendTo() method to deliver the message to the destination. This is

achieved by invoking the receiving processor’s message handler. A time-stamp (data

member time) for the message and an associated value are also included in the

Message object. The Message class has seven subclasses, each of which represents a

particular message type. Table 5 lists these message types and their corresponding class

names.

Message Type Message Symbol Corresponding Class Name

Initialization message I InitMessage

Collect message @ CollectMessage

Internal message * InernalMessage

Done message D DoneMessage

External message q ExternalMessage

Output message y OutputMessage

Table 5 Various Types of Messages Supported by the Messaging Subsystem

The type() method in the Message class is a virtual function which is implemented by

each of the subclasses to return the correct message type. While all other message types

85

contain only the time-stamp, message type, and destination ID, the output and external

message also need to specify the message port and message value. Accordingly, the

OutputMessage and ExternalMessage class contain two new data members:

port and value . The receiving components of these two types of messages can

retrieve the ports and message values by calling the port() and value() method

respectively.

86

Chapter 5 Case Study

We have used E-CD++ to build a number of examples. In this chapter, we use one of

them as a case study to demonstrate how to use E-CD++ to develop a complete

embedded application. The example shows the creation of an Automated Manufacturing

System (AMS), which evolves from a fully simulated version to a model with hardware-

in-the-loop, and to a complete embedded application. To illustrate how E-CD++ is used

to develop the AMS, we focus on the discussion of one particular development phase

where the AMS is a hybrid system in which the simulated components are mixed and

interact with hardware surrogates. We will demonstrate how the AMS is modelled as a

hybrid system and how GGAD notation is used for the modelling. We will then show

how the model is executed by E-CD++ in an embedded environment. We will examine

deadline checking, flattened coordinator performance, and confluent function execution.

5.1 Modelling the AMS

Figure 33 shows the physical layout of the AMS, which consists of four workstations and

two conveyor belts to transport the products (A and B). Each of the four workstations

performs a specific task on a given product. The product is partially built when it goes

through each of the workstations. The AMS also uses two conveyor belts moving in

opposite directions carrying the products to the scheduled workstation. The production

cycle is organized by a scheduler, which depends on the type of piece being assembled.

The scheduler determines which station should receive and work on the product. The

AMS has real-time constraints (i.e., the product must be delivered to and departure from

the predetermined workstations at the exact scheduled time).

The AMS in this case study consists of two conveyors (each conveyor has an engine and

a sensor controller), one controller unit, one scheduler, one display controller, and two

notification bells, as shown in Figure 34.

87

Figure 33 Layout of the AMS

The behaviour of each AMS component is described as follows:

• The Scheduler contains the working schedule as for which stations have to work

on a specific product. It sends the schedule to the Control Unit.

• The Control Unit (CU) is the most complex part in AMS. It receives the schedule

from the Scheduler and controls the two conveyors. Figure 35 represents a block

diagram of the CU.

• The Scheduler sends schedules (external events) to ports station_ij, indicating that

the product in conveyor belt j has to be sent to station i. Events received via

sensor_ij indicate that the product in conveyor j has reached station i.

Consequently, the CU activates or deactivates the engine of the corresponding

Station 1

Station 2

Station 4

Station 3

A B

Conveyor A Conveyor B

88

conveyor (via direction_j and activate_j). It can also signal the Display Controller

when the conveyor belt starts moving or a product reaches a new station (via

direction_display_j and station_display_j).

Figure 34 Scheme of the AMS

• The Conveyor contains a Sensor Controller and an Engine. The Engine drives the

conveyor belt. It can move in both directions, and its movements are controlled by

CU. The Sensor Controller receives the working piece’s displacement location

from the engine, and forwards this information to CU, which then determines the

next action for the engine (e.g., deactivation if the piece has reached the

destination station, or activation if otherwise).

Scheduler

Controller Unit

Conveyor_B

Engine

Sensor Controller

Conveyor_A

Engine

Sensor Controller

Display
Controller

Bell A Bell B

89

Figure 35 Diagram of the Controller Unit

• The Display Controller handles the digital display (showing the location of the

piece in each conveyor belt), based on the signals from the Controller Unit. It

displays the moving directions of the 2 conveyers and the position statuses of the

moving products. The moving directions are displayed as the output value 0, 1, or

2 indicating stopping, moving forward, or moving backward, respectively. The

position status of a moving piece is also shown as value ij , indicating that the

product in conveyor j has reached station i. The Display Controller also has four

LEDs output ports, namely Led1, Led2, Led3, and Led4. These LEDs are

destination indicators, and each LED port is associated with one station. If, for

instance, Led3 is on (with value being 1), that means a product needs to be

direction_B

activation_A

Controller Unit station_1A

station_2A

station_3A

station_4A

sensor_1A

sensor_3A

sensor_2A

sensor_4A

station_1B

station_2B

station_3B

station_4B

sensor_1B

sensor_2B

sensor_3B

sensor_4B

station_display_A

station_display_B

direction_display_A

direction_display_B

direction_A

activation_B

bell_A

bell_B

90

transported to station 3. And the LED will be turned off (with value being 0)

when the product reaches its destination.

• There are two Notification Bells, one for each conveyor. Once the conveyor

finishes transporting the product to the destination station, the bell associated with

that conveyor will ring indicating the completion. (The actual completion time

will then be checked against the specified deadline defined by the Scheduler.)

5.1.1 Hybrid System Modelling

After defining a fully simulated version of the model, we developed the AMS using

hardware-in-the-loop. To best demonstrate the involvement of E-CD++ in this

development, this case study chooses to study an intermediate development phase where

the AMS is a hybrid system in which the simulated components are mixed and interact

with the real hardware parts. In that development phase, the real hardware parts are: the

Scheduler, the Display Controller, and the 2 Notification Bells. And the rest of the AMS

components are still in simulation mode. Table 6 summarizes the model composition of

the hybrid system. (Note that we model the Sensor Controller using graphical notations.

We will explain how this is done in the next section.)

Component Name Component
Type

DEVS Model
Name

Graphical
Notation

Used

Component
Quantity

Scheduler Real hardware N/A N/A 1

Display Controller Real hardware N/A N/A 1

Notification Bell Real hardware N/A N/A 1

Controller Unit Atomic model CU No 1

Conveyor Coupled model ConveyorA,
ConveyorB

No 2

Engine Atomic model EngA, EngB No 2

Sensor Controller Atomic model ScA, ScB Yes 2

Table 6 The Hybrid AMS Model

The resulting hardware-in-the-loop configuration of the hybrid system is shown in Figure

36. The Scheduler, Display Controller and Notification Bells interact with the simulated

91

Controller Unit through the real I/O ports on the development board (i.e., SBC). The

Controller Unit interacts with the four hardware components the same way as if they

were simulated atomic components.

Figure 36 Hybrid AMS Scheme (scheduler, display and bells in hardware)

In order to model this hybrid system, we need to define the DEVS model for the

simulated portion of AMS and identify the model’s I/O ports that interface with real

hardware. We first need to define the component hierarchy and the port linkage among

the components. This is defined in the DEVS model file, shown in Figure 37. The DEVS

model file defines CU as an atomic model (line 57 - 58) and Conveyor as a coupled

model (line 35 – 56), which consists of two atomic models: Engine (line 59 - 62) and

Sensor (line 63 - 66). Note that the two Sensor Controllers are defined in GGAD

graphical notation, which are stored in sensorA.cdd (line 64) and sensorB.cdd (line 66)

Scheduler

Microcontroller

E-CD++ running on SBC

Controller Unit

Display controller Bell A

Conveyor_A

Engine

Sensor Controller

Bell B

Conveyor_B

Engine

Sensor Controller

92

file. (We will use the GGAD model to examine E-CD++ graphical modelling capability.

More details will follow in the next section.)

1. [top]
2. components : conveyorA conveyorB cu@ECU
3. in : btn1A btn2A btn3A btn4A btn1B btn2B btn3B btn4 B
4. out : led1 led2 led3 led4 stn_disp_A stn_disp_B dir n_disp_A dirn_disp_B

bellA bellB

5. Link : btn1A b1A@cu
6. Link : btn2A b2A@cu
7. Link : btn3A b3A@cu
8. Link : btn4A b4A@cu
9. Link : btn1B b1B@cu
10. Link : btn2B b2B@cu
11. Link : btn3B b3B@cu
12. Link : btn4B b4B@cu

13. Link : activate_A@cu activate_A@conveyorA
14. Link : direction_eng_A@cu direction_eng_A@conveyorA
15. Link : activate_B@cu activate_B@conveyorB
16. Link : direction_eng_B@cu direction_eng_B@conveyorB

17. Link : s1A@conveyorA s1A@cu
18. Link : s2A@conveyorA s2A@cu
19. Link : s3A@conveyorA s3A@cu
20. Link : s4A@conveyorA s4A@cu
21. Link : s1B@conveyorB s1B@cu
22. Link : s2B@conveyorB s2B@cu
23. Link : s3B@conveyorB s3B@cu
24. Link : s4B@conveyorB s4B@cu

25. Link : l1@cu led1
26. Link : l2@cu led2
27. Link : l3@cu led3
28. Link : l4@cu led4
29. Link : ringBellA@cu bellA
30. Link : ringBellB@cu bellB

31. Link : station_display_A@cu stn_disp_A
32. Link : station_display_B@cu stn_disp_B
33. Link : direction_display_A@cu dirn_disp_A
34. Link : direction_display_B@cu dirn_disp_B

35. [conveyorA]
36. components : engA@engine scA@sensorboxA
37. in : activate_A direction_eng_A
38. out : s1A s2A s3A s4A
39. Link : activate_A startstop@engA
40. Link : direction_eng_A engdirection@engA
41. Link : sen1A@scA s1A
42. Link : sen2A@scA s2A
43. Link : sen3A@scA s3A
44. Link : sen4A@scA s4A
45. Link : floor@engA s1A_eng@scA

46. [conveyorB]
47. components : engB@engine scB@sensorboxB
48. in : activate_B direction_eng_B
49. out : s1B s2B s3B s4B
50. Link : activate_B startstop@engB

93

51. Link : direction_eng_B engdirection@engB
52. Link : sen1B@scB s1B
53. Link : sen2B@scB s2B
54. Link : sen3B@scB s3B
55. Link : sen4B@scB s4B
56. Link : floor@engB s1B_eng@scB

57. [cu]
58. preparation : 00:00:00:200

59. [engA]
60. preparation : 00:00:01:000

61. [engB]
62. preparation : 00:00:01:000

63. [scA]
64. source : sensorA.cdd

65. [scB]
66. source : sensorB.cdd

Figure 37 Definition of the AMS system in E-CD++

The DEVS model file in Figure 37 also defines the input ports (line 3) that connect to the

Scheduler and the output ports (line 4) that connect to the Display Controller and the

Notification Bells. Through these I/O ports, the simulated models interact directly with

the hardware components.

Figure 38 is the graphical presentation of the AMS model file, which shows the port

linkage more intuitively. From Figure 38, we see that the Scheduler hardware sends the

command to CU by writing to one of its 8 input ports, indicating the destination station.

The CU then forwards the command to one of the Conveyors via the “activate” and

“direction” port links shown in the figure. The Conveyor then forwards the command to

the Engine through the ports connecting these two components. While executing the

command, the Engine outputs its operation status to the Sensor via its output port. The

Sensor then forwards the Engine status to the Conveyor, which once again forwards the

message to the CU, which then sends the transportation status to the Display Controller

through its output ports. If the working piece has reached its destination, the CU will also

notify the Notification Bells. All these information exchanges are done via the port links

shown in Figure 38.

94

Figure 38 Modelling Scheme of the Simulated Part of AMS

5.1.2 GGAD Graphical Modelling

In this experiment, we define the Sensor Controller in GGAD graphical notations. To

illustrate, Figure 39 shows the graphical notation of Sensor Controller A, or scA . scA

has one input port (s1A) and four output ports (sen1A, sen2A, sen3A and sen4A). The

input port connects to the conveyor’s engine. When the conveyor delivers the working

product to a particular workstation, the engine will send the workstation number to scA

through its input port s1A. The 4 output ports of scA correspond to the 4 workstations

respectively. After receiving the input from the engine, scA will toggle the output port

which corresponds to the input workstation number.

Controller Unit Conveyor_A

Engine A

startStop

direction

floor

Sensor A

s1A_eng

sen1A

sen4A

sen3A

sen2A

activate_A

direction_eng_A

s1A

s2A

s3A

s4A

activate_B

direction_eng_A

direction_eng_B

activate_A

s4A

s3A

s2A

s1A

8
8 input
buttons

4

4 LEDs

Station display A & B

2

Direction display A & B

2

Bell A & B

2

Conveyor_B

Engine B

startStop

direction

floor

Sensor B

s1B_eng

sen1B

sen4B

sen3B

sen2B

activate_B

direction_eng_B

s1B

s2B

s3B

s4B s4B

s3B

s2B

s1B

95

Figure 39 GGAD Graphical Notation of the Sensor Controller

The graphical notation will be automatically converted to the GGAD model file. Figure

40 shows the generated GGAD model file of Sensor Controller A.

Figure 40 GGAD Model File of the Sensor Controller

Sensor Controller A has connections to Engine A and CU, as shown in Figure 38. We can

see, in Figure 38, that scA has one input port (s1A_eng) and 4 output ports (sen1A ,

sen1A : 1

Idle
TL=infinity

Position1
TL=0

scA
s1A_eng ? 1

External transition

Internal transition

sen1A ! 1

Position1
TL=0

Position1
TL=0

Position1
TL=0

s1A_eng ? 2

s1A_eng ? 3

s1A_eng ? 4

sen2A ! 1

sen3A ! 1

sen4A ! 1

sen2A : 1

sen3A : 1

sen4A : 1

s1A : integer

1. [scA]
2. in: s1A_eng
3. out: sen1A sen2A sen3A sen4A
4. var : cur_value last_value
5. state: idle position1 position2 position3 position4
6. initial: idle
7. ext: idle position1 equal(s1A_eng, 1)?1 {cur_value = s1A_eng;}
8. ext: idle position2 equal(s1A_eng, 2)?1 {cur_value = s1A_eng;}
9. ext: idle position3 equal(s1A_eng, 3)?1 {cur_value = s1A_eng;}
10. ext: idle position4 equal(s1A_eng, 4)?1 {cur_value = s1A_eng;}
11. int: position1 idle sen1A!1 {last_value = cur_value ;}
12. int: position2 idle sen2A!1 {last_value = cur_value ;}
13. int: position3 idle sen3A!1 {last_value = cur_value ;}
14. int: position4 idle sen4A!1 {last_value = cur_value ;}
15. idle: infinite
16. position1: 0:0:0:0
17. position2: 0:0:0:0
18. position3: 0:0:0:0
19. position4: 0:0:0:0
20. cur_value: 1
21. last_value: 1

96

sen2A , sen3A , and sen4A). These ports are also defined in the GGAD model file (line

2–3). The scA’s external transition function is defined in line 7 – 10 of Figure 40. When

an external message arrives at the input port s1A_eng , the input value N is an integer in

range [1, 4], denoting the station where the product currently arrives. The external

transition function checks this message value, using GGAD built-in function equal

(s1A_eng, N)?1 , and moves the model state from idle to position{N}.

Since the elapsed time of the position{N} state is zero (line 16–19), the internal transition

function (line 11 – 14) is triggered immediately after the external transition. It sends the

output value of 1 to output port sen{N}A, where N is the same as that in position{N},

and moves the model state back to idle, which is the passive state (as defined in line 15).

E-CD++ is able to load the Sensor Controller GGAD model file and simulate the model

behaviour described above. This graphical modelling capability reduces our modelling

efforts. Without this technique, the modeller has to write a C++ class for the Sensor

Controller. For comparison, a C++ implementation is shown in Figure 41.

SensorBoxA::SensorBoxA(const std::string &name) : Atomic(name),
s1A_eng(addInputPort("s1A_eng")), sen1A(addOutp utPort("sen1A")),
sen2A(addOutputPort("sen2A")), sen3A(addOutputP ort("sen3A")),
sen4A(addOutputPort("sen4A")), preparationTime(0 ,0,0,0) {
 if(time != "") preparationTime = time ;
}

Model &SensorBoxA::initFunction() {
 cur_value = last_value = 1;
 return *this ;
}

Model &SensorBoxA::externalFunction(const External Message &msg) {
 // New value arrived on the input port
 if(msg.port() == s1A_eng) {
 cur_value = msg.value();
 holdIn(Atomic::active, preparationTime);
 }
 return *this;
}

Model &SensorBoxA::internalFunction(const Internal Message &) {
 passivate();
 return *this ;
}

97

Model &SensorBoxA::outputFunction(const InternalMe ssage &msg) {
 if (last_value != cur_value) {
 if (cur_value == 1){ sendOutput(msg.time(), sen1A , 1); }
 else if (cur_value == 2){ sendOutput(msg.tim e(), sen2A , 1); }
 else if (cur_value == 3){ sendOutput(msg.tim e(), sen3A , 1); }
 else if (cur_value == 4){ sendOutput(msg.tim e(), sen4A , 1); }
 else last_value = cur_value;
 }
 else
 return *this ;
}

Figure 41 The Sensor Class

We can see that the GGAD notation is also simpler than the C++ code. Furthermore, the

GGAD model file can be formally validated, whereas the C++ code cannot.

5.2 Model Execution using E-CD++

This section defines an experimental frame for the AMS simulation. We use it to test the

hybrid AMS. As explained in the previous section, the hybrid AMS has four hardware

components – the Scheduler, the Display Controller and the two notification bells, and

the rest of the components are in simulation. Our experiment runs tests on every

component.

The experiment starts with creating the work item schedule. The schedule is generated by

the Scheduler. It defines which stations have to work on a specific product at what time.

The Controller Unit (CU) controls the movement of the Conveyors according to the

schedule. So, the schedule serves the same role as an external event file sent to the CU.

Figure 42 is the schedule we use for this experiment.

Start time Associated
deadline

input port associated
output port

value

00:00:02:100 00:00:05:300 Btn3A bellA 1

00:00:06:130 00:00:10:300 Btn4B bellB 1

Figure 42 An experimental event file generated by the scheduler

The initial conditions of the experiment are: (1) the product is always placed on the first

workstation of each conveyor belt, and (2) the experiment starts at time 00:00:00:000

98

(The time format is hh:mm:ss:msec). The values in the schedule are relative to the initial

conditions. In Figure 42, there are two scheduled tasks:

• The first task is scheduled to start at time 00:00:02:100. It requires Conveyor A to

move the product from workstation 1A to workstation 3A before the deadline

00:00:05:300. This is done by the Scheduler sending a signal to the CU’s input

port btn3A (which corresponds to the workstation 3A) at time 00:00:02:100. The

CU’s output port bellA is used for deadline checking. When the task competes,

the CU rings Bell A (by writing value 1 to its output port bellA). E-CD++

compares this completion time against the specified deadline.

• Similarly, the second task is scheduled to start at time 00:00:06:130. It requires

conveyor B to move its product from workstation 1B to workstation 4B before the

deadline 00:00:10:300.

The CU component running on the SBC interacts with the Scheduler chip via I/O ports

and sends the simulation results to the Display Controller. Figure 43 shows the

experiment results displayed by the Display Controller.

actual output time
(physical time)

Associated
deadline

result output port value

00:00:02:300 No deadline Led3 1
00:00:02:300 No deadline dirn_disp_a 1
00:00:03:350 No deadline stn_disp_a 21
00:00:04:350 No deadline stn_disp_a 31
00:00:04:350 No deadline dirn_disp_a 0
00:00:04:350 No deadline Led3 0
00:00:04:360 00:00:05:300 Succeeded Bell_A 1
00:00:06:330 No deadline Led4 1
00:00:06:330 No deadline dirn_disp_b 1
00:00:07:380 No deadline stn_disp_b 22
00:00:08:380 No deadline stn_disp_b 32
00:00:09:380 No deadline Stn_disp_b 42
00:00:09:380 No deadline dirn_disp_b 0
00:00:09:380 No deadline Led4 0
00:00:09:380 00:00:100:300 Succeeded Bell_B 1

Figure 43 Simulation results displayed by the Display Controller

The result in the first column of Figure 43 shows the actual time at which the output has

been sent, which is the wall-clock value at that time (the time elapsed since the beginning

of the simulation execution). The second column shows the associated deadline time for

99

the given event. The third column indicates whether the deadline has been met (i.e. the

actual output time ≤ the associated deadline). Finally, the output ports and their output

values are shown in the remaining two columns, respectively.

5.2.1 Executions of Simulated Components

As mentioned earlier, the hybrid system has three atomic models running in simulation

mode: Engine , Sensor , and Controller_Unit . E-CD++ provides a runtime

environment for these 3 models to interact each other. The Engine and Sensor model

work together to constitute the behaviour of the coupled model Conveyor . The

Engine model is written in C++. Its inputs ports are connected to the Controller

Unit . When an external message is sent from the CU, the Engine’s external transition

function (Figure 44) will be executed. The external transition function mainly sets the

Engine model to new states based on the input values.

Model &Engine::externalFunction(const ExternalMess age &msg) {
 if (msg.port() == startstop) {
 if ((msg.value() == 1) && (!working)) {
 if (cur_direction == 1) {
 ready2Up = true;
 holdIn(Atomic::active, preparationTime2 Start);
 }
 else if (cur_direction == 2) {
 ready2Down = true;
 holdIn(Atomic::active, preparationTime2 Start);
 }
 }
 else if ((msg.value() == 0) && (working)) {
 ready2Stop = true;
 holdIn(Atomic::active, preparationTime2Stop);
 }
 }
 // Second, is it a direction request?
 else if (msg.port() == engdirection) {
 if (!working) {
 cur_direction = msg.value();
 }
 }
 return *this;
} // End of dExt

Figure 44 External Transition Function of the Engine Model

After the external transition is finished, E-CD++ will execute the Engine’s Internal

Transition Function (Figure 45), which will set the new ta(s).

100

Model &Engine::internalFunction(const InternalMess age &) {
 // Was it ready to stop? -> STOP
 if (ready2Stop) {
 working = 0;
 cur_direction = 0;
 ready2Stop = false;
 }
 // Was it ready to go forward? -> GO FORWARD
 else if (ready2Up) {
 working = 1;
 cur_direction = 1;
 ready2Up = false;
 next_floor = cur_floor + 1;
 holdIn(Atomic::active, floorTime);
 }
 // Was it ready to back? -> GO BACKWARD
 else if (ready2Down) {
 working = 1;
 cur_direction = 2;
 ready2Down = false;
 next_floor = cur_floor - 1;
 holdIn(Atomic::active, floorTime);
 }
 // This is a new station now! Going forward?
 else if (working && (cur_direction==1)) {
 cur_floor = next_floor;
 next_floor = cur_floor + 1;
 holdIn(Atomic::active, floorTime);
 }
 // Going backwards?
 else if (working && (cur_direction==2)) {
 cur_floor = next_floor;
 next_floor = cur_floor - 1;
 // Next transition depends on time that takes to go back 1 station,
 // unless external event received
 holdIn(Atomic::active, floorTime);
 }
 else
 passivate();
 return *this ;
} // End of dInt

Figure 45 Internal Transition Function of the Engine Model

When ta(s) is elapsed, E-CD++ will execute Engine’s Output Function (Figure 46),

which sends an external message to the Sensor model (which is built in GGAD). Note

that, via this external message, the Engine model’s activities are synchronized with the

Sensor model. This is how these two models work together.

Model &Engine::outputFunction(const InternalMessag e &msg) {
 // If this is not happening while ready to stop,
 // it is a station forward or backward, then issu e the value

101

 if (!ready2Stop) {
 // Working and going forward, inform new stati on
 if (working && (cur_direction==1)) {
 // Send the next station, that will be set
 // as current station in dInt, immediately
 sendOutput(msg.time(), floor, next_floor) ;
 }
 // Working and going backwards, inform new sta tion
 else if (working && (cur_direction==2)) {
 // Send the next station, that will be set a s
 // current station in dInt, immediately
 sendOutput(msg.time(), floor, next_floor) ;
 }
 }

return *this;
}

Figure 46 Output Function of the Engine Model

When conducting this experiment, we recorded the messages generated during E-CD++

runtime. The message log is an important device to trace and examine the internal

activities of the simulated models, as well as their interactions. It serves as a supplement

to the output file (shown in Figure 43) for verification purposes. To illustrate how the

message log can be used for verification, consider the sample portion of the message log

shown in Figure 47.

• Line 1 shows that the simulation started at time 00:00:00:000, which is what we

expected. (Time is wall-clock time.)

• Line 3 shows that an external event arrived to port btn3a at time 00:00:02:100.

This was the first scheduled event by generated the Scheduler.

• Line 5 shows that the Controller_Unit ’s external transition function is

executed at the same time to handle this external event.

• Line 13 and 14 are where the Engine’s external transition function is called.

• Line 33 is where the Engine’s output function sends an external message to the

Sensor .

102

Figure 47 Sample Message Log Trace

By examining the messages, we can verify if the activities are done at the right time with

the right values.

5.2.2 Measurements on Flattened Coordinator’s Performance

We want to use this experiment to measure the performance improvements gained from

the flatten coordinator technique. To do that, we first compare the flattened model

1. MSG: I / 00:00:00:000 / Root(00) TO flattop(01)
2. MSG: D / 00:00:00:000 / flattop(01) / ... TO Root(0 0)
3. MSG: X / 00:00:02:100 / Root(00) / btn3a / 1.00000 TO flattop(01)
4. MSG: * / 00:00:02:100 / Root(00) TO flattop(01)
5. MSG: X / 00:00:02:100 / flattop(01) / b3a / 1.00000 TO cu(08)
6. MSG: * / 00:00:02:100 / flattop(01) TO cu(08)
7. MSG: D / 00:00:02:100 / cu(08) / 00:00:00:200 TO fl attop(01)
8. MSG: D / 00:00:02:100 / flattop(01) / 00:00:00:200 TO Root(00)
9. MSG: @ / 00:00:02:300 / Root(00) TO flattop(01)
10. MSG: @ / 00:00:02:300 / flattop(01) TO cu(08)
11. MSG: Y / 00:00:02:300 / flattop(01) / led3 / 1 .00000 TO Root(00)
12. MSG: Y / 00:00:02:300 / flattop(01) / dirn_disp_a / 1.00000 TO Root(00)
13. MSG: X / 00:00:02:300 / flattop(01) / engdirection/1.00000 TO enga(03)
14. MSG: X / 00:00:02:300 / flattop(01) / startstop / 1.00000 TO enga(03)
15. MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)
16. MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:000 TO Root(00)
17. MSG: * / 00:00:02:300 / Root(00) TO flattop(01)
18. MSG: * / 00:00:02:300 / flattop(01) TO enga(03)
19. MSG: * / 00:00:02:300 / flattop(01) TO cu(08)
20. MSG: D / 00:00:02:300 / enga(03) / 00:00:00:050 TO flattop(01)
21. MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)
22. MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:050 TO Root(00)
23. MSG: @ / 00:00:02:350 / Root(00) TO flattop(01)
24. MSG: @ / 00:00:02:350 / flattop(01) TO enga(03)
25. MSG: D / 00:00:02:350 / enga(03) / ... TO flattop(0 1)
26. MSG: D / 00:00:02:350 / flattop(01) / 00:00:00:000 TO Root(00)
27. MSG: * / 00:00:02:350 / Root(00) TO flattop(01)
28. MSG: * / 00:00:02:350 / flattop(01) TO enga(03)
29. MSG: D / 00:00:02:350 / enga(03) / 00:00:01:000 TO flattop(01)
30. MSG: D / 00:00:02:350 / flattop(01) / 00:00:01:000 TO Root(00)
31. MSG: @ / 00:00:03:350 / Root(00) TO flattop(01)
32. MSG: @ / 00:00:03:350 / flattop(01) TO enga(03)
33. MSG: X / 00:00:03:350 / flattop(01) / s1a_eng / 2.00000 TO sca(04)
34. MSG: D / 00:00:03:350 / enga(03) / ... TO flattop(0 1)
35. MSG: D / 00:00:03:350 / flattop(01) / 00:00:00:000 TO Root(00)
36. MSG: * / 00:00:03:350 / Root(00) TO flattop(01)
37. MSG: * / 00:00:03:350 / flattop(01) TO enga(03)
38. MSG: * / 00:00:03:350 / flattop(01) TO sca(04)
39. MSG: D / 00:00:03:350 / enga(03) / 00:00:01:000 TO flattop(01)
40. MSG: D / 00:00:03:350 / sca(04) / 00:00:00:000 TO f lattop(01)
41. MSG: D / 00:00:03:350 / flattop(01) / 00:00:00:000 TO Root(00)
42. ……

103

hierarchy with the original model hierarchy. The original AMS model, shown in Figure

38, is a two-level hierarchy. The Controller and the two Conveyors are at the upper level,

and the Engines and Sensors are at the bottom level. Without Flattened Coordinator

technique, messaging needs to go through this two-level model hierarchy. For instance,

suppose that a user presses a button (an input port on the Controller Unit) that triggers the

activation of Engine A. To simulate this event, the Controller Unit simulator sends an

external message from its output port activate_A to the Conveyor_A models input

port activate_A . When the coordinator conveyor_A receives this message, it then

sends an external message from its input port activate_A to the Engine_A model’s

input port startStop , which triggers Engine_A to start. In this simulation example,

two messages need to be generated before Engine A can be activated. We can see, from

this example, that in order to complete the simulation, messages must be generated at

every level of the model hierarchy. Therefore, the performance will be improved if we

can eliminate middle levels in the hierarchy.

In comparison, the Flattened Coordinator technique flattens the AMS model hierarchy by

eliminating the coordinators and hence reducing the number port links. The technique

rewires any port link that link to a coupled model directly to the far-end atomic model..

For example, after the rewiring, the Controller Unit’s port activate_A is directly

linked to the Engine A’s startStop port. Also, the two coupled models, conveyor A

and B, are eliminated. Moreover, the technique also rewires any atomic model’s output

port that originally links to a coupled model directly to the far-end atomic model. The

two Sensors output ports, for example, are directly linked to the Controller Unit,

eliminating the intermediate links to the Conveyors’ ports. From the comparison, we

observe that the flattened model has less port links than the original model, which implies

that the simulation will also generate less number of messages if we use the flattened

model.

The simulator's performance is measured by the number of messages it generates during

the simulation. The fewer the messages, the better the performance of the simulator.

104

Figure 48 shows a portion of the message log collected during the AMS simulation using

the flattened coordinator technique.

Figure 48 Message Log Generated During the AMS Simulation

To measure the performance improvements made by the Flattened Coordinator

technique, we used the AMS event file in Figure 42 in our experiment. We compared the

number of messages generated during the simulation using the Flattened Coordinator

technique with that generated by not using the technique. There are 257 messaged

generated when the technique is used, compared with 385 messages generated when

otherwise. So, the performance improvement ratio is 33%.

We now compare the performance improvement ratio obtained from the experimental

results with the theoretical value. The original AMS component hierarchy contains 7

nodes, and this number is reduced to 5 by the Flattened Coordinator technique (Figure

49).

MSG: I / 00:00:00:000 / Root(00) TO flattop(01)
MSG: D / 00:00:00:000 / flattop(01) / ... TO Root(0 0)
MSG: X / 00:00:02:100 / Root(00) / btn3a / 1.0 0000 TO flattop(01)
MSG: * / 00:00:02:100 / Root(00) TO flattop(01)
MSG: X / 00:00:02:100 / flattop(01) / b3a / 1. 00000 TO cu(08)
MSG: * / 00:00:02:100 / flattop(01) TO cu(08)
MSG: D / 00:00:02:100 / cu(08) / 00:00:00:200 TO fl attop(01)
MSG: D / 00:00:02:100 / flattop(01) / 00:00:00:200 TO Root(00)
MSG: @ / 00:00:02:300 / Root(00) TO flattop(01)
MSG: @ / 00:00:02:300 / flattop(01) TO cu(08)
MSG: Y / 00:00:02:300 / flattop(01) / led3 / 1 .00000 TO Root(00)
MSG: Y / 00:00:02:300 / flattop(01) / dirn_disp_a / 1.00000 TO Root(00)
MSG: X / 00:00:02:300 / flattop(01) / engdirection / 1.00000 TO enga(03)
MSG: X / 00:00:02:300 / flattop(01) / startstop / 1.00000 TO enga(03)
MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)
MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:000 TO Root(00)
MSG: * / 00:00:02:300 / Root(00) TO flattop(01)
MSG: * / 00:00:02:300 / flattop(01) TO enga(03)
MSG: * / 00:00:02:300 / flattop(01) TO cu(08)
MSG: D / 00:00:02:300 / enga(03) / 00:00:00:050 TO flattop(01)
MSG: D / 00:00:02:300 / cu(08) / ... TO flattop(01)
MSG: D / 00:00:02:300 / flattop(01) / 00:00:00:050 TO Root(00)
MSG: @ / 00:00:02:350 / Root(00) TO flattop(01)
MSG: @ / 00:00:02:350 / flattop(01) TO enga(03)
……

105

Figure 49 Original AMS Model Hierarchy Vs. Flattened Hierarchy

Based on the theory we developed in section 3.5, the theoretical improvement ratio is

29%, comparing to the experimental result of 33% (Table 7 shows the calculations).

Theoretical Result Experimental Result

R = 1 – (Pf / Po) = 1 – 5 / 7 = 29% (385 – 257) / 385 = 33%

Table 7 Theoretical Vs. Experimental Performance Improvement Ratio of
Flattened Coordinator Technique

There is a 12% difference between the two results. This disagreement is resulted from the

bias of the data sample collected by the experiment. This experiment only ran a small

simulation of processing two external events. When larger simulations were run, the

experimental results tended to agree more with that of the theoretical.

Root

CU Conveyor A

Engine A

Flattened Coordinator

Sensor A

CU

Conveyor B

Engine B

Engine B Engine A

Sensor B

Sensor A Sensor B

Root

(a) Original Hierarchy

(b) Flattened Hierarchy

106

5.2.3 Execution of Confluent Functions

Confluent functions are introduced by the P-DEVS formalism to resolve the conflict

when, in an atomic model, the internal transition and the external transition happen at the

same time. The confluent function is called to break the tie. The confluent functions

feature is a major difference between the parallel CD++ and the non-parallel version. In

the non-parallel CD++, the internal transition is always executed first to break the tie.

The confluent function, however, gives the modeller the control to define the conflict

resolution.

As an experiment, a confluent function is defined in the Controller Unit (CU). The

external transition function in the CU, as shown in Figure 50, handles the incoming

events from the scheduler and the signals from the sensor controllers in the conveyors.

The internal transition function sets the CU model’s internal state variable. The variable

is called “button_enabled ”, which has impact on the logic of the external transition

function. If the CU detects that conveyers are still transporting the products, its

button_enabled variable is set to false. As a result, the CU’s external transition

function ignores any external events coming through the buttons input port. The

button_enabled variable is set to true by the internal transition function when the

conveyor delivers the product to its destination station. By then, the CU can start to

handle the events coming through the buttons input port again.

When the product reaches a station, the sensor controller of the conveyor sends a signal

to the CU indicating the current product position. The CU’s external transition function

handles this external event, and based on the product position information, the CU make

decisions to control the conveyor’s engine (e.g., continue moving or stopping). When this

external transition time is elapsed, the internal transition function will be invoked to set

the button_enabled value. If the product has reached the destination,

button_enabled will be set to true. Otherwise, it will remain false.

107

Model &ECU::confluentFunction(const InternalMessag e &msg, const
MessageBag &msgbag){
 internalFunction(msg);

 MessageBag::iterator cursor = msgbag.begin();
 for(; cursor != msgbag.end(); cursor++) {
 if (((*cursor)->port() == b2A) && (cur_station _A == 21)) {
 led2 = true;
 req_station_A = 21;
 direction_A = 0; //stop engine!!!
 holdIn(Atomic::active, Time::Zero);
 }else{
 externalFunction(*((ExternalMessage*)(*cu rsor)));
 }//if-else
 }//for

 return *this;
}//ECU::confluentFunction

Figure 50 Confluent Function of the Controller Unit

Conflicts may rise when a button is pressed at the same time when the internal transition

function should also be invoked (i.e., t_n = 0). Figure 51 is an example of this situation.

Event time Associated
deadline

input port associated
output port

Value

00:00:02:100 00:00:05:300 Btn3A bellA 1

00:00:03:550 00:00:05:300 Btn2A bellA 1

Figure 51 A schedule events file that can cause conflicts

In the initial state, the product is placed at station 1. At the time 00:00:02:100, the button

3A is pressed indicating that the product needs to be transported to station 3. At the time

00:00:03:550, the button 2A is pressed. Figure 52 is the non-parallel CD++ simulation

output of these 2 events.

actual output time
(physical or wall-clock
time)

Associated
deadline

Result output port value

00:00:02:300 No deadline Led3 1
00:00:02:300 No deadline dirn_disp_a 1
00:00:03:550 No deadline stn_disp_a 21
00:00:04:550 No deadline stn_disp_a 31
00:00:04:550 No deadline dirn_disp_a 0
00:00:04:550 No deadline Led3 0
00:00:04:550 00:00:05:300 Succeeded Bell_A 1

Figure 52 Output results generated by non-parallel CD++

Figure 52 implies that, the time 00:00:03:550, the CU’s output function was called to

make the display controller display the product position via the output port stn_disp_a.

108

Since the output function is always called right before the internal transition function is

invoked, and also since that the hold in time of the display controllers’ external transition

function is zero, it follows that the CU’s internal transition function was scheduled to be

invoked at 00:00:03:550, which is the same time of the 2nd external event in the event

file. This leads to a conflict. The non-parallel CD++ conflict resolution is to let the

internal transition function be invoked first. As a result, the 2nd external event, i.e., the

press of button 2A, is ignored because the button_enabled variable was set to false.

The modeller wants to change this conflict resolution behaviour, he or she must use

parallel CD++ simulator and define a confluent function. Figure 53 captures the

simulation results generated by the parallel CD++ simulator.

actual output time
(physical or wall-clock
time)

Associated
deadline

result output port value

00:00:02:300 No deadline Led3 1
00:00:02:300 No deadline dirn_disp_a 1
00:00:03:550 No deadline stn_disp_a 21
00:00:03:550 No deadline Led2 1
00:00:03:550 No deadline dirn_disp_a 0
00:00:03:550 No deadline Led2 0
00:00:03:550 No deadline Led3 0
00:00:03:550 00:00:05:300 Succeeded Bell_A 1

Figure 53 Output results generated by parallel CD++

Figure 53 shows that the product on conveyor A stops at station 2 at the time

00:00:03:550. This is a result of the execution of the confluent function. That is, the CU’s

confluent function decides to stop the engine when the product reaching station 2 and the

press of button 2A happens at the same time.

109

Chapter 6 Conclusions

This dissertation proposes a novel Modelling and Simulation-based development

methodology for Real-time Embedded Systems. The motivation behind proposing this

new framework is that the current state-of-the-art design methods for RTES are

inadequate for providing a consistent and unified design framework throughout the entire

development lifecycle, as well as failing to provide a formal product verification strategy.

The proposed framework addresses these issues. The proposed methodology consists of

modelling, model verification, and incremental model replacement phase. This new

development cycle provides a consistent toolkits and terminology among analysis,

design, implementation, and test. For instance, early DEVS models created in the

modelling phase will not be abandoned but directly reused in the model verification and

model replacement phase.

The creation of E-CD++ is a necessary and important step towards the realization of the

proposed methodology. E-CD++ supports the RT-DEVS formalism by implementing P-

DEVS and the Time Interval Function. We showed that the RT-DEVS formalism is

adequate to model RTES. Consequently, DEVS model configurations can be formally

verified against the target system’s specifications. Meanwhile, E-CD++ also implemented

a graphical model loader to support the GGAD graphical notation. The AMS experiment,

shows that defining a DEVS model using GGAD takes much less effort than that doing

so in C++. The work also draws another conclusion that the Flattened Coordinator

Technique improves E-CD++ performance. The AMS experiment shows that the

technique improves the E-CD++ performance by 33%.

Finally, with the help of E-CD++, DEVS models can be executed directly in an

embedded environment and can also interact directly with hardware surrogates and real-

world events, which supports the seamless transition from the modelling phase to

implementation phase. We illustrated this transition by showing how E-CD++ was used

to design and develop the AMS.

110

6.1 Future work

E-CD++ is a newly created software. There are still a lot of areas where E-CD++ can be

improved or extended. We list two topics of interest that we think worthwhile to study.

The first topic would be the Parallel Execution of Multiple Flattened Coordinators. In

theory, the Flattened Coordinator Technique can improve the performance of any DEVS

model hierarchy. In implementation, however, there is a scalability issue, because time

delay exists in accessing and retrieving Atomic model objects from the Atomic Model

Database. As the size of the model hierarchy grows, so is the database. Currently this

database is implemented as an ordered list on ta(s). When the database size grows too

large (e.g., containing thousands of Atomic models), the time delay incurred in accessing

the database will eventually outnumber the performance improvements gained from the

technique itself. One solution to solve this problem is to partition the Atomic models into

multiple smaller databases and create multiple Flattened Coordinators. And ideally, these

Flattened Coordinators can run in their own task spaces, so that they can run in parallel

and, therefore, maximize the performance.

We may also be interested in Adding Confluent Function Support in the GGAD

Language. The current GGAD language does not support confluent functions. To add

confluent functions, we first need to make GGAD front-end changes to add confluent

function’s grammar definition to the GGAD Parser. We also need to make back-end

changes. We need to create a new subclass, say GgadConfluentFunction , under

the GgadSyntaxNode class to represent the confluent function in the Syntax Tree.

Then we capture the behaviour of confluent functions in the method

GgadConfluentFunction::evaluate() . The major back-end work is the

implementation of this function.

111

Chapter 7 References

[Alu03] Alur, R.; Thao Dang; Esposito, J.; Yerang Hur; Ivancic, F.; Kumar, V.; Mishra,
P. “Hierarchical modelling and analysis of embedded systems”. Proceedings of the IEEE.
Volume 91, Issue 1, Jan. 2003 Page: 11 – 28.

[CEP99] Cortes, L. A.; Eles, P.; Peng, Z. “A Survey on Hardware/Software Codesign
Representation Models”. SAVE Project Report, Linkoping University. Sweden. June
1999.

[Cho94a] Chow, A; Zeigler, B. “Parallel DEVS: A parallel, hierarchical, modular
modelling formalism”. Proceedings of the 26th conference on Winter simulation,
Orlando, Florida, USA. 1994, Page(s): 716-722.

[Cho94b] Chow, A.; Kim D.; Zeigler, B. “Abstract Simulator for the parallel DEVS
formalism”. Proceedings of the 5th annual conference on AI, Simulation, and Planning in
High Autonomy Systems, Gainesville, Florida, USA. December 1994, Page(s): 157:163.

[CK01] Cho, S. M.; Kim, T. G. “Real time simulation framework for RT-DEVS models”.
Transactions of the Society for Computer Simulation International archive. Volume 18,
Issue 4, December 2001, Page(s): 203 – 215.

[Ern98] Ernst, R. “Codesign of embedded systems: status and trends”. IEEE Design &
Test of Computers. Apr-Jun 1998. Volume: 15, Issue: 2, Page(s): 45-54.

[Gli04] Glinsky, E. “New Techniques for Parallel Simulation of DEVS and Cell-DEVS
Models in CD++”. M. A. Sc. Dissertation, Carleton University, Canada. 2004.

[Gup02] Gupta, P. “Hardware-software codesign”. Potentials, IEEE. Volume 20, Issue 5,
Dec 2001-Jan 2002, Page(s):31 – 32.

[Har96] Harel, D.; Naamad, A. “The StateMate Secmantics of StateCharts”. ACM
Transactions on Software Engineering Methodology. October 1996, Page(s): 293-333.

[HS04] Huang, D., H.S. Sarjoughian. "Software and Simulation Modelling for Real-time
Software-intensive System". The 8th IEEE International Symposium on Distributed
Simulation and Real Time Applications, Budapest, Hungary. October 2004, Page(s): 196-
203.

[HSKP97] Hong, J. S.; Song, H. S.; Kim, T. G.; Park, K. H. “A real-time Discrete Event
System Specification formalism for seamless real-time software development”. Discrete
Event Dynamic Systems. Volume 7, Issue 4, 1997, Page(s):355-375.

[HZC01] Hu, X.; Zeigler, B.P.; Couretas, J. “DEVS-on-a-Chip: Implementing DEVS in
Real-time Java on a Tiny Internet Interface for Scalable Factory Automation”.
Proceedings of the 2001 IEEE International conference on Systems, Man, and
Cybernetics Conference, Tucson, AZ, USA. Volume 5, 2001, Page(s): 3051-3056.

[JRH03] Jones, E. D.; Roberts, R. S.; Hsia, T. C. S.; “STOMP: A Software Architecture
for the Design and Simulation of UAV-based Sensor Networks”. Proceedings of the 2003

112

IEEE International Conference on Robotics & Automation. Taipei, Taiwan. September
14-19, 2003.

[Kim00] Kim, K.; Kang W.; Sagong, B.; Seo, H. “Efficient Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-Hierarchical
One”. Proceedings of the 33rd Annual Simulation Symposium, Washington DC, USA.
2000.

[LDNA03] Ledeczi, A.; Davis, J.; Neema, S.; Agrawal, A. “Modelling methodology for
integrated simulation of embedded systems”. ACM Transactions on Modelling and
Computer Simulation (TOMACS), Volume 13 Issue 1, January 2003.

[LG05] Yvan Labiche; G. Wainer. "Towards the Verification and Validation of DEVS
Models". Proceedings of the 1st Open International Conference on Modelling &
Simulation, Clermont-Ferrand, France. 2005.

[LPW03] Li, L.; Pearce, T.; Wainer, G. “Interfacing Real-time DEVS models with a DSP
platform”. Proceedings of the Industrial Simulation Symposium, Valencia, Spain. 2003.

[RCL00] Reyneri, LM; Chiaberge, M; Lavagno, L.; “Simulink-based HW/SW codesign
of embedded neuro-fuzzy systems”. International Journal of Neural Systems. Volume 10,
Issue 3, June 2000, Page(s): 211-226.

[SER00] Schulz, S.; Ewing, T.C.; Rozenblit, J.W. “Discrete event system specification
(DEVS) and StateMate StateCharts equivalence for embedded systems modelling”.
Proceedings of the Seventh IEEE International Conference and Workshop. Volume 3,
Issue7, April 2000, Page(s):308 – 316.

[SK05] Song, H. S.; Kim, T. G. “Application of Real-Time DEVS to Analysis of Safety-
Critical Embedded Control Systems: Railroad Crossing Control Example”. Simulations.
Volume 81, Number 2 2005.

[SLS00] Sgroi, M.; Lavagno, L.; Sangiovanni-Vincentelli, A. “Formal models for
embedded system design”. Design & Test of Computers, IEEE. Volume 17, Issue 2,
April-June 2000 Page(s):14 – 27.

[Sta88] Stankovic, J. “Misconceptions about real time computing: A serious problem for
next generation systems”. IEEE Computer. Volume 21, Issue 10, October 1988, Page(s):
10-19.

[Sta96] Stankovic, J. “Strategic Directions in Real-Time and Embedded Systems”. ACM
Computing Surveys. 50th Anniversary Issue, Volume 28, Issue 4, December 1996,
Page(s): 751-763.

[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS models”. Software – practice
and Experience. Volume 32, 2002, Page(s): 1261 – 1306.

[Wai98] "Application of the Cell-DEVS paradigm for cell spaces modeling and
simulation". G. Wainer, N. Giambiasi. Simulation, Vol. 71, No. 1. January 2001.

[Zei76] Zeigler, B. Theory of Modelling and Simulation. Wiley. 1976.

113

[ZKP00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modelling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. 2nd Edition.
Academic Press. 2000.

114

Appendix A E-CD++ System Architecture

A.1. The Client-Server System Architecture

The Ampro LB700TM board is chosen as the SBC for E-CD++, although nothing prevents

the E-CD++ from running on other hardware platforms. The LB700 board has a 700MHz

Intel x86 CPU, 256 megabytes of RAM and 2 Ethernet ports. It has no hard disk. All the

software images running on the board is loaded in the memory during run time.

A customized Linux 2.4 kernel is used as the operating system (OS) for E-CD++. The OS

supports NFS over Ethernet and ramdisk, yet the memory swapping is disabled (due to

the lack of the hard disk on the SBC).

Figure 54 illustrates the system architecture of the E-CD++ toolkit. The E-CD++ system

architecture adopts the client-server computing model. The SBC interacting with the real

world is the client, and the host simulation workstation is the server. The client and the

server are connected via Ethernet ports. The Bootrom firmware image on the SBC is

configured to be able to transfer the Linux kernel image from the server over the Ethernet

and load it into the SBC’s memory, when the SBC is boot up.

Figure 54 E-CD++ Software Architecture

E-CD++ run in user space (Loaded from server via NFS)

.ma, .ev files (load from server via NFS)

Linux Kernel (Boot from server via
etherboot)

Device Drivers run in
kernel space

SBC Hardware (Ethernet port connected to server)

115

A.2. The SBC Booting Sequence

The following is the SBC’s booting sequence:

1. The Bootrom firmware on the SBC is Etherboot – a less than 16K bootable image

stored in the Ethernet socket on the SBC. The Etherboot image is configured to load

the customized Linux kernel that is stored on the server into the SBC’s memory via

the dhcp and the tftp protocol.

2. Once the kernel has been loaded into memory, it will begin executing.

3. The kernel will initialize the entire system and all of the peripherals on the SBC.

4. During the kernel loading process, a ramdisk image will also be loaded into memory.

A kernel command line argument of root=/dev/ram0 tells the kernel to mount the

image as the root directory.

5. When the kernel is finished booting, it is instructed to launch the /linuxrc script. This

is achieved passing init=/linuxrc on the kernel command line.

6. The /linuxrc script begins by loading the correct Ethernet driver module into the

kernel space.

7. A small DHCP client called dhclient will then be run, to make another query from

the DHCP server. This separate user-space query is necessary, because we need more

information than the Etherboot retrieved with the first dhcp query.

8. When dhclient gets a reply from the server, it will run the /etc/dhclient-script file,

which will take the information retrieved, and configure the eth0 interface.

9. Upto this point, the root filesystem has been a ram disk. Now, the /linuxrc script will

mount a new root filesystem via NFS. The directory that is exported from the server

116

is /tftpboot/henryRoot. It can't just mount the new filesystem as /. It must first

mount it as /mnt. Then, it will do a pivot_root. pivot_root will swap the current root

filesystem for a new filesystem. When it completes, the NFS filesystem will be

mounted on /, and the old root filesystem will be mounted on /oldroot.

10. Once the mounting and pivoting of the new root filesystem is complete, we are done

with the /linuxrc shell script and we need to invoke the real /sbin/init program.

11. Init will read the file and begin setting up the workstation environment.

12. One of the first items in the inittab file is the rc.sysinit command that will be run

while the workstation is in the 'sysinit' state.

13. The rc.sysinit script will create a 1mb ramdisk to contain all of the things that need

to be written to or modified in any way.

14. The ramdisk will be mounted as the directory. Any files that need to be written will

actually exist in the directory, and there are symbolic links pointing to these files.

15. The filesystem is mounted.

16. Memory swapping is disabled by rc.sysinit.

17. The loopback network interface is configured. This is the networking interface that

has 127.0.0.1 as its IP address.

18. Local applications are enabled, for E-CD++ runs in user space. The /usr/local/bin

directory is mounted. That is location where E-CD++ is installed.

19. Several directories are created in the file system for holding some of the transient

files that are needed while the system is running. Directories such as:

117

• /tmp/compiled

• /tmp/var

• /tmp/var/run

• /tmp/var/log

• /tmp/var/lock

• /tmp/var/lock/subsys

will all be created.

20. Once the rc.sysinit script is finished, control returns back to the /sbin/init program,

which will change the runlevel from sysinit to 5. This will cause any of the entries

in the file to be executed.

118

Appendix B Grammar for GGAD Models

B.1. Context-free Grammar for GGAD models
rule 1 Ggad -> ModelName GGADT_EOL GgadRules
rule 2 ModelName -> GGADT_LBRACKET GGADT_ID
GGADT_RBRACKET
rule 3 GgadRules -> GgadRule GGADT_EOL GgadRules
rule 4 GgadRules -> GgadRule GGADT_EOL
rule 5 GgadRules -> GgadRule
rule 6 GgadRule -> InDecl
rule 7 GgadRule -> OutDecl
rule 8 GgadRule -> StateDecl
rule 9 GgadRule -> VarDecl
rule 10 GgadRule -> StateDef
rule 11 GgadRule -> InitialState
rule 12 GgadRule -> IntDef
rule 13 GgadRule -> ExtDef
rule 14 GgadRule -> VarDef
rule 15 InDecl -> GGADT_IN GGADT_COLON PortInIdLi st
rule 16 OutDecl -> GGADT_OUT GGADT_COLON PortOutI dList
rule 17 VarDecl -> GGADT_VAR GGADT_COLON VarIdLis t
rule 18 VarDef -> GGADT_VARIABLEID GGADT_COLON
GGADT_CONSTANT
rule 19 StateDecl -> GGADT_STATE GGADT_COLON Stat eIdList
rule 20 StateDef -> GGADT_STATEID GGADT_COLON
GGADT_TIME_CONSTANT
rule 21 StateDef -> GGADT_STATEID GGADT_COLON
GGADT_INFINITE
rule 22 InitialState -> GGADT_INITIAL GGADT_COLON
GGADT_STATEID
rule 23 IntDef -> GGADT_INT GGADT_COLON GGADT_STA TEID
GGADT_STATEID PortValueOutList Actions
rule 24 PortValueOutList -> GGADT_PORTID GGADT_OU TPUT
Expression PortValueOutList
rule 25 PortValueOutList -> /* empty */
rule 26 ExtDef -> GGADT_EXT GGADT_COLON GGADT_STA TEID
GGADT_STATEID Expresion GGADT_INPUT GGADT_CONSTANT Actions
rule 27 Expresion -> FunctionCall
rule 28 Expresion -> GGADT_PORTID
rule 29 Expresion -> GGADT_VARIABLEID
rule 30 Expresion -> GGADT_CONSTANT
rule 31 FunctionCall -> GGADT_FUNCTIONID GGADT_LP AR
ActualParamList GGADT_RPAR

119

rule 32 ActualParamList -> ActualParameter
rule 33 ActualParamList -> ActualParameter GGADT_ COMMA
ActualParamList
rule 34 ActualParameter -> GGADT_CONSTANT
rule 35 ActualParameter -> GGADT_VARIABLEID
rule 36 ActualParameter -> GGADT_PORTID
rule 37 StateIdList -> StateIdList GGADT_ID
rule 38 StateIdList -> GGADT_ID
rule 39 PortInIdList -> PortInIdList GGADT_ID
rule 40 PortInIdList -> GGADT_ID
rule 41 PortOutIdList -> PortOutIdList GGADT_ID
rule 42 PortOutIdList -> GGADT_ID
rule 43 VarIdList -> VarIdList GGADT_ID
rule 44 VarIdList -> GGADT_ID
rule 45 Actions -> GGADT_BEGIN ActionList GGADT_E ND
rule 46 Actions -> /* empty */
rule 47 ActionList -> Action GGADT_SEMICOLON
rule 48 ActionList -> ActionList Action GGADT_SEM ICOLON
rule 49 Action -> GGADT_VARIABLEID GGADT_ASSIGNME NT
Expresion

B.2. Tokens:
GGADT_CONSTANT
GGADT_IN reserved word "in"
GGADT_OUT reserved word "out"
GGADT_STATE reserved word "state"
GGADT_INITIAL reserved word "initial"
GGADT_ID an identifier
GGADT_STATEID a state identifier
GGADT_PORTID a port identifier
GGADT_FUNCTIONID a function identifier
GGADT_VARIABLEID a variable identifier
GGADT_INT reserved word "int"
GGADT_EXT reserved word "ext"
GGADT_VAR reserved word "var"
GGADT_CONSTANT integer o real constant
GGADT_TIME_CONSTANT time constant in cd++ forma t hh:mm:ss:nn
GGADT_INFINITE reserved word "infinite"
GGADT_COLON ":"
GGADT_EOL end of line character
GGADT_OUTPUT output operator "!"
GGADT_INPUT input operator "?"
GGADT_LPAR "("
GGADT_RPAR ")"
GGADT_LBRACKET "["
GGADT_RBRACKET "]"
GGADT_COMMA ","
GGADT_BEGIN "{"
GGADT_END "}"
GGADT_SEMICOLON ";"
GGADT_ASSIGNMENT "="

120

B.3. GGAD Built-in Functions
addFunction("value", new GgadFuncValue());
addFunction("add", new GgadFuncAdd());
addFunction("minus", new GgadFuncMinus());
addFunction("multiply", new GgadFuncMultiply());
addFunction("divide", new GgadFuncDivide());
addFunction("pow", new GgadFuncPow());
addFunction("between", new GgadFuncBetween());
addFunction("compare", new GgadFuncCompare());
addFunction("any", new GgadFuncAny());
addFunction("pi", new GgadFuncPi());
addFunction("equal", new GgadFuncEqual());
addFunction("notequal", new GgadFuncNotEqual());
addFunction("and", new GgadFuncAnd());
addFunction("or", new GgadFuncOr());
addFunction("not", new GgadFuncNot());
addFunction("rand", new GgadFuncRand());
addFunction("less", new GgadFuncLess());
addFunction("greater", new GgadFuncGreater());
addFunction("greaterequal", new GgadFuncGreaterEqu al());

