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Abstract

The DEVS (Discrete Event System Specification) falism defines a formal Modelling
and Simulation (M&S) framework for Discrete Evenyriamic Systems (DEDS). The
RT-DEVS formalism is a real-time extension to DERS.-DEVS is adequate to model
Real-time Embedded Systems (RTES). This work intced the Embedded CD++ (E-
CD++) toolkit. It provides an execution engine tibah run DEVS models in embedded
environments. E-CD++ supports the RT-DEVS formalisamd can be used as a
development tool for RTES. The target system cafirbiestudied and modelled entirely
in DEVS. The DEVS models are then executed by E-€B#f embedded platforms
where they can interact with the real-world eventseal time. In E-CD++ execution
environment, the DEVS models can also interact watl hardware surrogates. When a
DEVS component is fully tested in the embedded renwnent, it can be replaced by its
physical counterpart, and this step can be repaatgball the components are replaced
by their target counterparts. This development @g@ghn enables instantaneous transition
from modelling to implementation. We also made mefferts than just implementing
RT-DEVS in order to make E-CD++ an adequate reaétiexecution engine. We
improved E-CD++ performance by deploying the Flat Coordinator Technique. We
also implemented the GGAD Graphical Modelling tem, that the modeller can define
DEVS models using graphical notations. Lastly, lkastrate with real applications, we
used E-CD++ to built an Automated Manufacturingt®&ys(AMS), which is a real-time

application consisting of microprocessors and meiclahdevices.
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Chapter 1  Introduction

Real-time systems (RTSkan be characterized as those whose correctnegsecdtion

depends not only upon the logical correctness g apon the time at which it is

performed. Current state-of-the-art RTS are typicaimbedded systemswhich are

advanced computer applications consisting of hardwasoftware, and various

mechanical and electrical devices. Examples aeerikclear power stations, Automated

Manufacturing Systems and car airbags. THesal-Time Embedded Systems (RTES)

typically deliver data from/to devices interactingth the surrounding environment

within deadlines ranging at millisecond scales.

Due to unique characteristics of RTES, the RTESgdeseeds to face several special

challenges that need not to be dealt with by thattter systems:

The design needs to meet the timeliness requiresnBMES must provide correct
outputs to external events or inputs within a titmait. A RTES can be
categorized as either a soft or a hard real-tins¢éesy, depending on the strictness
of its timeliness requirements. For hard real-titlee design must meet the
timeliness requirements with zero tolerance onydelhile, for soft real-time,

limited tolerance can be allowed for very smallagsl

The design needs to meet the constraints on resouequirements (e.g., limited
memory and processing power). Many RTES may alse hanstraints on power
consumption, because they are deployed in enviratsnwehere grid-electricity is

not commonly available (e.g., inside mobile phomeemote devices).

The design needs to deal with the hardware/softvamition problem. The
embedded system design space is formed by comimsatf hardware and
software components, which is also referred tdhaslware/software codesign

The design decision on dividing the target systato hardware and software



components is referred to adhardware/software partitioning The
hardware/software partition problem is NP-complg€&03], which is why an

optimal design for a RTES can be very hard to aghie

e The design needs to cope with the target systemsieasing scalability
requirements. With the advance of the manufactutechnologies, more and
more hardware components (e.g., ASICs and FPGAs)néegrated to form a
single RTES. Furthermore, RTES are making use tforking technologies to
exchange information or inter-work among each otidgtworking makes it
possible for hundreds of devices working togethercomplete larger tasks.

Consequently, scalability becomes an importantgheisisue.

* The design needs to cope with the target systerag2asing complexity. With the
rapid deployment of cheaper and more power micigssors, RTES are capable

of supporting more and more complex applications.

We find that, due to the challenges listed abowe, adlequate and robust design
framework exists today that is capable of carryngoptimal design solutions to RTES.
Our study show that the deficiencies of the exgstitevelopment methods of RTES
mainly come from two weak areas: the developméatycle and the system verification.
The deficiencies in the development cycle coulcattebuted to the fact that no unified
methodology or design framework exists today tlaat lse adequately applied throughout
the entire design cycle. Some tools/methods arerbet one development stage, while
others are better in other stages. Consequenfferetit tools and methods are used in
different development stages, resulting in incdesisies among analysis, design, test,
and implementation. Consequently, when the devedmpntasks switch towards the
target environment, the early models are often étwaed [WGO02]. For example, in the
analysis stage, MATLAB may be used to build mathisabmodels to analyze data and
algorithms. However, these mathematical modelsrarely used at the design stage,
where UML (Unified Modelling Language) is a morammomonly used tool. However, for

the implementation phase, UML models are inadequateparing with programming

2



languages, such as C, because UML models canndirdetly executed on the target

systems with real-time performance.

Another area of deficiencies is system verificati®ince the current state-of-the-art
RTES are complex systems that consist of a mioftivere embedded in and interacting
with hardware components and that also need tconespo real-world events in real
time, correctness of RTES design is very diffidoltachieve. Although formal methods
for RTES design are promising, they have diffi@dtin scaling up when the complexity
of the system increaseMlodelling and Simulation (M&S) techniques, instead, are
adequate for testing particular conditions, regassllof the application’s size. However,
no M&S technique exists today that can provide dhme degree of adequacy to study
RTES as that provided by mathematical methodsudystontinuous variable systems.
The lack of adequate formal modelling methods mdk€ES development become an
ad-hoc process that is expensive, time consumidgeaor prone. For example, current
methods for software construction for RTES requirélifficult and expensive testing
effort with no guarantee for a bug-free productG(l5] listed three current approaches to

RTES testing, with none of them being adequate:

* Formal specifications. When applying formal speaifions, the requirements of
the System of Interest are formally defined, anthéd methods are subsequently
applied to prove correctness. These techniques hasesome success, but they

are difficult to apply when the complexity of thgstem scales up.

* M&S techniques. M&S techniques and tools are proteede to be helpful in
designing complex systems. Nevertheless, no pedabic automatable approach
exists to perform the transition that exists betwdbe modelling and the
development phases, and this often results in madefacts being abandoned,
resulting in increased initial costs. Consequendlyen though they provide
improved products, M&S studies are not carried aut,they are used for

analyzing individual subsystems, later discardifge tdeveloped software.



Simultaneously, M&S frameworks are not as robusthag formal counterparts
are.

A third kind of technique widely used to ensurettBaRTS conforms to a
specification is Software Testing, i.e., the exepubf the software system with
actual values. Although this method cannot guararitee correctness of the
application, it provides a practical solution thrés covering the largest possible

number of system use scenarios.

To overcome these problems, the solution is to ldpva formal methodology that is

adequate to be applied to every design stage thoaghe entire development lifecycle.

Modelling and Simulation-based Development of RTEHSes on simulation based

modelling for developments of RTES. We propose aehoSimulation-based

Development framework for RTES, based on a formathod called DEVS (Discrete

Event Systems specification) [Zei76, Zei00]. Toused as the final target architecture

for products, DEVS provides a formal foundationM&S that has been proven to be

successful in different complex systems. We chdoB¥S to model RTES because of

the following reasons:

The DEVS formalism is a formal method based on erathtical theories. So, the

correctness of DEVS models can be formally validate

DEVS has well-defined concepts for coupling of comgnts and hierarchical,

modular model composition, which makes it adeqtmateodel RTES.

DEVS not only proposes a framework for model cargion, but also defines an
abstract simulation mechanism that is independénthe model itself. This
mechanism provides a high level description of hbe simulation of DEVS
models should be executed. Based on this mechaitigsmpossible to develop a

real-time embedded execution environment in whi&VB models are run and



interact with the real hardware surrogates, so thattarget system can be

developed in hardware-in-the-loop.

Our methodology is based on successive prototygmirefinement, which combines the
advantages of a simulation-based approach withritfe of a formal methodology,
which is well suited for RTES development. It catsiof the following steps: Modelling

phase, model verification phase, and IncrementaldVieeplacement phase.

1. Modelling phase The modeler defines the DEVS model for the tagettem.
The modeler may have a choice to define the DEV8atsousing a high-level
graphical notation, which makes it easier to undexs system structure and

behaviors.

2. Model Verification phaseThis phase is concerned with the transformatiothe
model specification into an executable model. Thedehs obtained from the
previous phase are used to automatically derivellaiion, and experimentation
is done in a virtual environment. The simulatiomswn high processing power

workstations.

3. Incremental Model Replacement pha@mce the models are verified in a virtual
environment, they are then executed in a real-tengironment. The tested
components are incrementally replaced by theiretaopunterparts interacting

with the actual setting.

4. This cycle is incrementally repeated up to the mmehere the system is fully

developed and tested.

This new methodology defines a unified design pec®r RTES. By simulating the
models, RTES designers will be able to used formathods analyze every detail of
system status and requirements. Furthermore, testels will be directly replaced by
their real counterparts, so that instantaneoussititan from modelling to development

can take place.



The proposed simulation-based development framewoviercomes the design
deficiencies that we found in other design methddsr methodology covers every
aspect of the RTES design and provides a consigesign framework throughout the
entire development lifecycle. Early design model8 mo longer be abandoned at the
development phase. Rather, they are directly appite the implementation, as our
approach creates a seamless transition from modet development. Furthermore, the
automation of the transition from model definitiom real-time execution eliminates

source level coding and ad-hoc program tailorimgl #aus reduces the design efforts.

The proposed methodology also provides a sound anésrn for system verification.
Since the DEVS formalism is derived from formal heahatical methods, the DEVS-
based system design can be formally validated ag#ie target system’s specification.
In addition, since the DEVS models are modularceuiponents of larger models can be
validated individually. Moreover, when the validhtenodels are translated to RT
executives running in the real world, their behavéocan also be easily verified by
comparing the execution results with that obtaimedhe simulated world. If the two
results fail to agree, the simulated solution cenrévised in the simulated world for
retest. If, on the other hand, a subcomponent igiae in the real world, it can be
replaced by real hardware. This technique enabtesernental transition from the
simulated models to the actual hardware countexpAd a result, all the subcomponents
of the system-under-develop are formally verifiethew the development is finally
finished.

1.1 Contributions

The DEVS real-time execution engine plays an ingurtrole in the proposed

methodology. The design starts entirely in the &tea world. However, with the help
of the execution engine, the simulated models canekecuted in the real world
environment. This is one of the major differencessMeen our method and the traditional
M&S methodology. This work focused on developing tDEVS real-time execution

engine.



* We developed an embedded toolkit calsdbedded CD++ (E-CD++) E-CD++
integrates the execution of DEVS models with hardvsarrogates and allows the
simulated models to interact with other real congmis in a real-time embedded

environment.

 The model execution by E-CD++ complies with tR&-DEVS (Real-Time
DEVS) specification. RT-DEVS is a real-time extensiortted DEVS formalism.
It provides a sound theoretical foundation for nilolg RT systems.
Furthermore, it provides a framework for the camdtion of hierarchical models
in a modular manner, allowing for model reuse asdlcing development time
and testing. It also allows hierarchical decompasitf the model by defining a

way to couple existing DEVS models.

* Performance is an important factor for the sucadds-CD++, because it must
execute the DEVS models in real-time. We devotésl @b efforts to improve the
performance of E-CD++. We implemented a technidna simplifies the model
hierarchy while preserving the original model riglas. By simplifying the model
hierarchy, E-CD++ reduces the runtime overheadrieduby the traversal of the
hierarchy. We also did the mathematical analysip@rfiormance improvements

of this technique.

* Since E-CD++ runs in the real world, we implementeall-clock time in E-
CD++. So, the activities run by E-CD++ are measwagdinst the physical time.
This is another difference between E-CD++ and oBEYS simulation toolkits,

which use virtual time for simulation.

» E-CD++ also supports DEVS graphical notations;B#6YS models generated by
the graphical modelling tool can be directly exedun E-CD++.

1.2 Thesis Organization

The rest of this work is organized as follows:
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Chapter 2 reviews the state-of-the-art in the M&®Hdf The chapter surveys the existing
M&S technologies used in RTES field. It then ddsesi the specifications of DEVS, P-
DEVS, and RT-DEVS. It also provides a brief survay the DEVS-based toolkits

existing today. We conclude, based on the reviewhefstate-of-the-art, that no M&S

methodologies or toolkits exists today that is adedg to develop RTES formally. We,
therefore, develops E-CD++ which servers as the ®HW¥T executive in our new

methodology.

Chapter 3 discusses the functionalities of E-CD¥he discussion covers four major
functionalities: GGAD graphical notation, P-DEVSalieation, Flattened Coordinator
technique, and finally the realization of Time v Function.

Chapter 4 reveals the design and implementationilsetf E-CD++. It provides a
software architecture overview, followed by the adet descriptions of four major
software modules: the Main Simulator, modelling stgbem, simulation subsystem, and
messaging subsystem.

Chapter 5 is a case study in which we put all leegs together to show how E-CD++ is
used in the new methodology to develop a real egipdin. The development of an AMS
is demonstrated in detail. The case study illustrastep-by-step how the AMS is
designed using hardware-in-the-loop. In addititwe, éxperimental results are used to test
the E-CD++ functionalities including GGAG graphicahodelling, performance
improvements by Flattened Coordinator, and P-DEdifluent functions.

Finally Chapter 6 states the conclusions of thiskwand outlines the possible future

work.



Chapter 2 M&S for Embedded Systems Design

This chapter explores the state-of-the-art in tee of M&S for embedded systems
design. Many different M&S methodologies exist émnbedded systems. We will survey
on these methodologies and compare their streragithdimitations. From there, we will
aim to find the best methodology for the RTES depaient. We will first provide an
exposure to DEVS (Discrete EVent Systems Spedificgt an M&S formalism that
supports hierarchical and modular modelling. Wd sliow both the strengths and the
limitations of DEVS. Then we will introduce PardllBEVS, which is an extension to
DEVS, and how it can overcome those DEVS limitatiomhirdly, we will introduce
another DEVS extension called Real-time DEVS. lovides a formal modelling
framework for real-time systems, making it an idelabice for RTES development. We
will also show how Real-time DEVS can be realizeddd on Parallel DEVS. Finally, to
make use of DEVS models in embedded systems deBBNS simulators must be
developed. At the end of this chapter, thereforbrief survey on the existing DEVS-

based simulation toolkit will be given.

2.1 M&S Methodologies

As the results of the increasing embedded systasigm complexity and the shortening
of the time-to-market design window, two revolutioym changes have emerged in this
field [Ern98]. First, the concurrent design of haeade and software has displaced the
traditional sequential design. Further, hardward software design begins before the
system architecture, or even the specificatiorfinelized. As a result of these changes,

M&S have become a very important step in embeddedmsgsiesign [CEP99].

This section provides a survey on various existh®S methodologies for modelling

embedded systems. The M&S process, in generalndegth defining the constraints

imposed on the system under design, for examplstints on cost, performance, and

physically dimensions. Aexperimental frame captures these constraints. Within the

constraints, the M&S process captures the featofethe system under design and
9



describes its functionality In this step, entities are identified, and an r&us$t
representation, anodel, is constructed. Once the model is constructededds to be
executed. This is done bysanulator, which consists of a computer system that executes
the model’s instructions to generate its behavidur.complete the cycle, the results

obtained are compared to those of the real systemmddel validation.

Experimental Frame

Source

System

behavior databpse

Simulation
Ralation

Modeling
Relation

Figurel The basic entities and their relationships [Zei00]

The basic entities are linked by two relations @@gi(Figure 1):

a modelling relation.Links the real system and model, defining how wied model
represents the system or entity being modeled. dne@l terms a model can be
considered valid if the data generated by the magetes with the data produced by the

real system in an experimental frame of interest.

a simulation relation.Links the model and simulator. It represents hoithfially the

simulator is able to carry out the instructionghef model.

Several M&S methodologies have been used for crgambedded systems. A brief

description of a non-comprehensive list is givelowe
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Unified Modelling Language (UML). UML is a standardized specification
language for object modelling. UML is a widely atkgh general-purpose
modelling language that includes a graphical notatised to create an abstract
model of a system, referred to asUdML model. UML provides a suite of
methods that are well suited for generic softwarestruction. However, while
UML is a widely adopted methodology to model softvarchitecture, it is
neither adequate nor intended to be used to dessgdware components.
Therefore, UML may not be suitable for softwareelvaare codesign [Mar02].
Another drawback of the UML model is the lack ofrrf@l proofs of its
correctness; so validation and verification effdsfecome non-trivial, especially

for complex UML models.

UML for Real-Time (UML-RT). UML-RT is an extension of UML. It offers
additional modelling constructs based on Real-tiigect-Oriented Modelling,
such as event, action, resource, and schedule. BMIs targeted for modelling
complex, event-driven, and distributed real-timestegns [HS04]. However,
UML-RT does not fundamentally solve the limitatiankerited from the original
UML. First, UML-RT supports concurrency to the saewent as defined by
UML. An important shortcoming of this is the inatjlto guarantee processing
of events using priority settings [HS04]. SecondWIL-RT does not provide
formal simulation algorithms — it simply executebet models’ logical
specifications — which undermines having a wellvted relationship between
model specifications and model simulations. MorepUML-RT runs on top of
the target system’s real-time operation system (8TIOConsequently, the
resolution of time and the multi-task schedule @ependent on the underlying
RTOS.

Finite State Machines (FSM) FSM is well known for describing control
systems [CEP99]. This model consists of a setaiest a set of inputs, a set of
outputs, a function which defines the outputs im&eof inputs and states, and a

next-state function. FSM do not allow concurrenégtates, nor does it support

11



hierarchical constructions. Another shortcominghis exponential growth of the
number of states as the system complexity riseseiftleeless, a number of
extensions and variations of FSM have been propatiethpting to overcome
the weakness of FSMstatecharts with its commercially available simulator
StateMate [Har96], is the most widely adopted FSM extension modelling
embedded systems. Statecharts have the structurBnitd-state automata
enhanced with three important features: hierarcoycurrency, and broadcast
communication. One of the disadvantages of States;Hzowever, is the lack of
formal modelling capability [SERO0O0]. Statecharts pboys UML to specify
models, as opposed to using formal models. This malke the synthesis process
difficult, as synthesis can be applied only if ffirecise mathematical meaning of
a design description is applied [SLS00]. Also, &tharts do not formally specify

explicit timing, which is an important aspect intedded systems.

Dataflow Graphs. A dataflow graph consists of a set of computeesodnd
directed links connecting them representing thev ftd data [Alu03]. Dataflow
graphs are quite popular in modelling data-domphagstems, such as signal
processing [LDNAO3]. While dataflow graphs are we#ipable of modelling
dataflow systems, their semantics, however, dowslt support event-driven

reactive systems [Ern98].

MATLAB . MATLAB is a simulation toolkit kttp://www.mathworks.con

which provides a technical computing and data amlgievelopment platform
for system designers. It features integrated ttwd$ provide user access to its
math, analysis, visualization, and programming bédpi@s. MATLAB was built
upon solid mathematical schematics. It is oftenduse solve differential
equations and/or provide Fourier transformationfer&fore, MATLAB is
suitable for modellingContinuous Variable Dynamic SystemgCVDS), whose
behaviours can be best described and studied bgrefitial equations. For
instance, [RCLOO] used MATLAB to model and simuléteuro-Fuzzy systems,

in which differential equations and Fourier Tramgfation functions were used
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for the modelling. MATLAB has its limitations as Welt cannot adequately
model discrete event systems, such as event-draaative systems and dataflow
systems, where differential equations are inadegtmtserve as the modelling
schematics. Another limitation is that MATLAB is alvle to adequately perform
when many objects existed in the model [JRHO3]jtimg its ability to model

large complex systems.

Discrete Event Simulation In contrast to CVDSDiscrete Event Dynamic
Systems (DEDS) are systems whose variables are discrete and ewhiose
advance is continuous. Simulation mechanisms foDBEystems assume that
changes of state will take place at discrete pahtsne, upon the occurrence of
an event. Areventis a change of state that occurs at a specifict pdinmet; 0
R. The occurrences of events are asynchronous.timeba event occurrences,

states of DEDS are unaffected.

Due to the nature of digital computing, most of émbedded systems are DEDS.
Therefore, DEDS simulation is well capable of désog embedded systems.
This is the primary reason why our research adogisctete event simulation as

our M&S methodology.

Discrete event simulators are concurrent software that simulate DEDS.
Communication between processes in DE simulataasagemplished bynessage
passing A message is an artificial event that occursome instance of physical
time. Thus, each message has an event’s valuesandrked with a time stamp.
Each process in a DE simulator is executed whescédives a message (i.e., input
events) and produces output events (messages)tivdtsame (zero delay) or a
larger time tag. The order of execution of multipl®cesses that have events at
the same time is unspecified. Different DE simulatoesolve this problem in
different manner. Thus, [SLS00] states that theniidelel is ambiguous, in case of

simultaneous events.
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Although using M&S to design RTES has a promisimgeptial [CEP99], this survey
shows that none of the surveyed methodologies ifeqggefor RTES development.
However, due to the DEDS nature of the RTES, DiscEent Simulation seems to be
most suitable for RTES. Our focus, therefore, bezotio find the solution to resolve
Discrete Event Simulation’s limitation on ambigyitp make it adequate for modelling
RTES. That is, we want to find a discrete event eflody formalism that gives the
modeller the full control of defining a determimisbehaviour of the model upon the

occurrence simultaneous events.

2.2 The Original DEVS formalism

DEVS (Discrete EVents Systems Specificatign[Zei76, Zei00] is a Discrete Event
Simulation formalism for modelling and simulatingeDS systems. In DEVS, a model is
specified as a black box with a state and a durdtothat state. When the duration time
for the state expires, an output event is sentneernal transition takes place and the
model changes its current state. A change of s&tealso occur when an external event
is received. Then, a complete model is defined éscdbing the set of states a model
goes through, the internal and external transitioictions, the output function, and the
state duration function. DEVS models can be puettogr by linking the outputs of a
model to inputs of other models to focoupled models Models made out of only one

component are callemtomic models

DEVS not only proposes a framework for model carddion, but also defines an
abstract simulation mechanism that is independent of the model it3é&lfs mechanism
is high level description of how the simulation@EVS models should be executed by a
simulator. Two kinds ofsimulators are defined, one for atomic and another one for
coupled models, this latter known ag@ordinator. These simulators progress through
the simulation by exchanging messages as descrilyedhe abstract simulation

mechanism.

A real system modeled using DEVS can be descrilsed eomposition oatomic and

coupledcomponents. Atomic model (M) is defined by:
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M =< X! 81 Yéint, 66th A! ta>

where

X Is theset of external events

Y is theset of internal events

S is theset of sequential states

Oextt QxX - S is theexternal state transition function
where Q ={(s,e)$0 S el [0, ta(s)] } and eis the
elapsed time since the last state transition.

On: S S is theinternal state transition functign

ASS Y is theoutput function

ta:S— Ry’ U s thetime advance functign

A DEVS model is in a state[] Sat any given time. In the absence of external eyent
remains in that state for a lifetime defined tays). A transition that occurs due to the
consumption of time indicated l§(s) is called arinternal transition. Whenta(s) time
expires, the system outputs the vak(g) and then changes to a new state givediy).

On the other hand, aexternal transition occurs due to the reception of an external
event. In this case, the external transition furctietermines the new state, given by
Oex((S, €, X Wheres is the current state,is the time elapsed since the last transitionxand

00 X is the external event that has been received.

Thetime advance functioncan take any real value between 0 endA state for which
ta(s) = 0 is called atransient state In contrast, if thaa(s) = « thens is said to be a

passive statein which the system will remain perpetually uslemn external event is

received.

The following figure in [Gli04] shows the descrigti of states and variables in DEVS
models:
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s =Oext (S, €, X)
A(s)

s ———» =03 (9

=

Figure2 DEVS Semantics[Gli04]

A DEVS coupled model (CM)is composed of several atomic or coupled submodtels.

is formally defined by:

CM= <Xself1 Yself, D, {Mi}a {I i}’ {Zij}aseleCt>

where
D Is aset of components
for eachi in D,
Mi is abasic DEVS componef(ite. a coupled or atomic model);

for eachi in D U { self },
I is theset of influenceesf i (i.e. models that can be influenced by
outputs of model);
for eachj in I,
Z | is thei-to-j output-input translatiorfunction

Select is thetie-breakerfunction;

This structure is subject to the constraints thaeach in D,

Mi = <X|, Yi1 S! 16i int, aext, Ai! ta| > |S a DEVS mOdel

li is a subset dD U { self}, i is not inl;.
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Zself,j Xself = X

Ziselft Yi - Yself

Zi Yi — X

select subset of D~ D

such that for any non-empty subset E, select{E)

A coupled modefiroups several DEVS into a compound model thatbearegarded, due
to the closure property, as a new DEVS model. Talisws hierarchical model

construction.

In addition, eactcoupled modehas its own input and output events, as definethby
Xsef and Yser S€ts. When external events are received, the edupbdel has to redirect
the inputs to one or more components. Similarlyemva component produces an output,
it may have to map it as an input to another corepgror as an output of the coupled
model itself. Mapping between ports is defined gz function.

Two types of ambiguities may rise in DEVS simulaso The ambiguity rises when
multiple components are scheduled for internalditeons at the same time in a coupled
model. The way the DEVS formalism solves this amltygis by the use of theelect
function. The function defines an order over thenponents so that only one component
of the group of imminent models is allowed to hawe0. The other imminent models are
divided in two groups: those that receive an exeontput from this model, and the rest.
The former will execute their external transitiamé€tions with e = ta(s), and the latter
will be imminent during the next simulation cycléish may require again the use of the
select function to decide which model will exectirst. This tie-breaking approach,
however, is a potential source of errors sincestr@lization produce may not reflect the

correct system’s behaviour upon the occurrencamilg&aneous events.

The second type of the ambiguities may rise in t@mme model when it receives an
external event at the exact time when an intemaaisition is scheduled. It is not clear

which transition this model should execute firssr the DEVS formalism does not
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specify the order. So, two alternatives exist:xecaite the external transition first wigh
= ta(s) and then the internal transition, or else to etedhe internal transition first
followed by the external transition wigh= 0. It is up to the simulation software to decide
which alternative to choose. This serialization staaint, however, may again cause

errors.

2.3 Parallel DEVS Formalism

While the DEVS formalism suffers from its serialiba constraints, th@arallel DEVS
(P-DEVS) formalism [Cho94a] was introduced to resolve tbssie. AP-DEVS model is
described as a set of basic and coupled modeladdition, the model's interface was
also revised. A model will now have input and odfparts through which all interaction
with the environment takes place. Events determaadaes appearing on such ports. A
model receives outside events through its inputsp&fpon reception of such events, the
model description must determine how it respondthém. In addition, internal events
arising within the model change its state, and feahthemselves as events on the output

ports to be transmitted to other model components.

Atomic models are still the most basic construdjomhich can be combined with other
models into coupled models. A Parallel-DEVS coupladdel satisfies the closure
property [Cho94b], so it can be seen as anothec Inasdel. Therefore, Parallel-DEVS

preserves the hierarchical properties of the ocalgDEVS formalism.
TheP-DEVS atomic modelhas the following structure:
M =< X M YM ] S,Jext, Jinty 500[11/]1 ta >

where

Xwm={(p,v)| p JlPorts, v /X, } is the set ofnput ports and valus
Ywm={(p,v)| pJOPorts v 7Y } is the set obutput ports and values;
S is the set obequentiaktates;

Jexi QX Xu® - Sis theexternal state transition functio
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Oint: S - Sis theinternal state transition functig
Ocon QX Xu® — Sis theconfluent transition functio
A:S - Yu® is theoutput function;

ta:S - R" [Jwis thetime advance functig

with Q :={(s,e) | &1 S, O< e<ta(s) } the set of total states.

The semantics of the P-DEVS definition are as oAt any given time, a basic model
is in a states. And in the absence of external events, it withagn in that state for a
period of time as defined by 8 When an internal transition takes place, thdesys
outputs the valud(s), and changes to stafg(s). If one or more external evertis= { x;

Xn I x[O Xu } occurs before tg) expires, i.e., when the system is in the sfsite) withe
<ta(s), the new state will be given ks, e, E). Suppose that an external and an
internal transition collide, i.e., an external elvéh arrives whene = tag), the new
system’s state could either be givenday( dn(s), € E) or dni(Ax(S, €, E)). The modeler
can define the most appropriate behavior with d&ag: function. As a result, the new

system’s state will be the one defineddpy(s, E).
A P-DEVS coupled model (CM)is defined by:

CM =<X, Y, D, {Mq| d 7D}, EIC, EOC, IC>
where
X={(p,v)| p Z1Ports, v/ X p } is the set of input ports and values;

Y={(p,v)| p ZOPorts, v/7Y p } is the set of output ports and values;

Mg is a set of atomic models, abds a set of the atomic models’ names, where
for each/7D
M= (X4, Yd, S,0ext, Ointy Ocon A, ta) is @ DEVS basic structure
wikg = {(p,v)| p ZJIPorts, v 7 X, } ;
d¥{(p,v)| p JOPorts v 7Y };

The couplings are subject to the following conaisip
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» external input couplings (EIGonnect external inputs to component inputs:

EIC 7 {((N, ipn), (d, ipq)) | ipNn LZ1Ports, d//D, ip 4 [7IPorts 4 }

» external output couplings (EOECpnnect component outputs to external outputs:
EOC 7{((d, opg ), (N, opn)) | opn 7OPorts, d/7D, opq 7 OPortsq }

* internal couplings (IConnect component outputs to component inputs:

IC 7{((a, opa), (b, ipp)) | @, b/7/D, op, [/OPorts,, ipp, L71Portsy }

No direct feedback loops are allowed, i.e., no outport of a component may be
connected to an input port of the same component i.

((d, opy), (e, ipy) O IC impliesd Ze.

* Range inclusion constraints: the values sent frosowce port must be within the
range of accepted values of a destination port, i.e

O(N, ipn), (d, ipa)) ZEIC : Xipn X ipd

O ((a, opa), (N, opn)) ZEOC : Yopa 7Y opN

O ((a, opa), (b, ipp)) LJIC 1Y gpa LT X ipb.

Comparing with DEVS, P-DEVS has the following 2 ahilities that DEVS lacks of:

* Be able to give the modeller a complete controk dkre collision behaviour when
a component receives events at the time of itsnatetransition via the use
confluent functiomcon. This function will define a new model’s statken there
is a collision between internal and external tramss. Basically, this function
will allow the modeller to specify how the modebsitd behave in the presence of

collisions.

 Be able to eliminate the necessity for tie-breaksigultaneously scheduled
events, which is done by the SELECT functions inVISE In P-DEVS, the
external and output functions no longer handle event at a time. Instead, bags
of events are now being handled, allowing thensiamultaneous processing of
multiple events. In other words, P-DEVS providegafal activation of all

imminent children of a coupled model.
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2.4 Real-time DEVS (RT-DEVS) Formalism

The RT-DEVS [HSKP97] is a formalism for real-time discrete Bveystems modelling.
It is an extension of the DEVS formalism that pd®s a seamless framework for the
development of real-time control software that udgs modelling, design, analysis,
simulation, and implementation. The RT-DEVS hasitamithl specifications that are not
in the original DEVS formalism: the time intervainiction and the weak synchronization
communication mechanism [SKO05]. Since in real-tsgstems, an event occurrence time
may not be an exact value but an interval, the tatheance in RT-DEVS is given by a
time interval. An atomic model in RT-DEVS formalislRTAM, is given by the
following seven-tuple [SKO5]:

RTAM =< Xu, Ym, S,0exts Oints Ocon A, ti >

ti:S - R x R where ti(S)|min sta(s) <ti(S)|max, SLJS

Note that RTAM is the same as the original DEVSryatomodel, expect that the time

advance function is replaced by the time interuaktionti.

The definition of coupled models defined by RT-DEMShe same as that defined by P-
DEVS.

The DEVS formalism does not explicitly define a coomication mechanism between
components coupled together. The RT-DEVS, by centraxplicitly defines the
communication mechanism, calleegak synchronizatiorit has two characteristics:

« Concurrency on simultaneously scheduled eventsekample, suppose there are
two real-time atomic models A and B, and A’s outpott is connected to B’s
input port. As a result, A’'s output function gertesmaan external event to B. In
RT-DEVS, A’s internal transition and B’s externalarisition takes place
concurrently.

e Synchronization loss: A real-time component thatrygng to make an internal
transition should not block other components thae aot ready for

synchronization. For example, suppose that atonocdets A and B have no
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connections via any ports. Then A’s internal traosi changes its state alone.
That is, B’s state remains unchanged, causing sgnidation loss.

In practice, the implementation of P-DEVS providesak synchronization, because it
provides concurrent activation of all imminent dndn of a coupled model, and also
because it also guarantees synchronization los®94&d]. Therefore, the RT-DEVS
formalism can be constructed by implementing bah time interval function and P-
DEVS.

2.5 Applying DEVS to Embedded Systems Design

DEVS technology has been usually applied to lamges dynamic systems, with
implementations running on workstations and serv&sshese systems focus on the high
level modelling and simulation, another branch &M% application is on real-time
event-based control [HZCO1]. These low level agtians exist largely on embedded
systems, which are usually characterized as “igeit devices” consisting of computer
hardware and real-time software. This work mainbdes how to use DEVS technology

to design real-time embedded systems.

Comparing with serial DEVS, P-DEVS is a major adarnn modelling real-time

systems, because it provides an appropriate lmadsvielop simulation models exhibiting
concurrent behaviour. However, while P-DEVS prosideund modelling principles to
characterize structural and behaviour aspects al-tiree systems, recent research
suggests that transforming (or mapping) DEVS modelsctual designs of real-time

embedded systems is non-trivial [HS04].

Recent research, therefore, has been focusing weloeng schemes to support the
transformation from simulation modelling to desigrfsreal systems. One attempt was
the DEVS-on-a-chip approach, which implements DEA/Sa microprocessor that has
limited memory and processing ability [HZCO1]. lteates a just-as-needed real time

environment. This effort, however, did not implemem full scale of RT-DEVS
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specifications on the chip. As a result, it onlymbmstrates the capability of creating real-
time embedded systems that have relatively simmiepositions.

Another research effort in this area focused on tmwse RT-DEVS as a framework to
develop hardware-in-the-loop applications [LPWO0Bjese applications are complex as a
result of the high degree of interaction betweefiveoe and hardware components.
Therefore, the development of these applicatiormsdballenging process in which M&S
can become essential. The technique of applyindEVS to develop hardware-in-the-
loop applications seamlessly integrates simulatiadels with hardware components and
also enables incremental transition from the sitedlamodels to the actual hardware

counterparts.

2.6 DEVS-based simulation toolkits

Prior to this work, many DEVS-based toolkits halready been developed by different

research groups. A brief survey on these tooldkas given by [Gli04] as follows:

* ADEVS [Nut06] supports the construction of discreteent models based on a
variant of the P-DEVS formalism. It includes sugptor dynamic structure
models based on the Dynamic DEVS formalism [Uhr01a]

» DEVS-C++ [Zei06] is a high performance simulationvieonment that allows
portability of models across platforms at a higheleof abstraction. It uses a set
of C++ classes, called containers, to implemenalsaend parallel simulation.

« DEVS-Scheme [Zei93] is a knowledge-based environmemplemented in
Scheme for discrete-event model construction anshulstion. It allows
combining symbolic and hierarchical, modular diserevent modelling
approaches.

 DEVS/HLA [Zei99b] is an HLA-compliant M&S environmé implemented in
C++ that supports high level model construction.gieatly simplifies the
underlying programming details required to estébhsd participate in an HLA
federation.
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DEVS/Grid [Seo04] is an M&S framework implementesing Java and Globus
toolkit for Grid computing infrastructure.

DEVSCluster [Kim04] is a CORBA-based, multi-thredddistributed simulator
implemented in Visual C++. It transforms a hieracehDEVS model into a non-
hierarchical one to ease the synchronization ofitegibuted simulation.
DEVSJAVA [Sar98] is a DEVS-based Simulator that mags high-level
modelling.

GALATEA [Dav00] is offered as a family of languagés model multi-agent
systems to be simulated in a DEVS multi-agent ptatf

JDEVS [Fil02] is an M&S environment that enablescdete-event, general
purpose, object-oriented, component-based, GIS,odfGghic Information
System) connected, collaborative, visual simulatimodel development and
execution.

JAMES [Uhr01b] is a Java-based simulation enviromintleat allows the modeler
to describe agents and their environment as sduattomata.

PyDEVS is a simulator developed in ATOM3 [DelO2}toal for multi-paradigm
modelling. DEVS models are constructed using th@OMB-DEVS tool, which
generates Python code to be executed with the PyDdtiviulator.

PowerDEVS [Kof03] is an M&S toolkit developed in €-for hybrid systems.
Atomic DEVS models can be graphically coupled ieraichical block diagrams
to create complex systems.

SimBeans [Pra99] is a discrete-event simulatiomé&aork based on DEVS and
the JavaBean component model.

CD++ [Rod99, Wai02a] is an M&S toolkit developedGr+ that implements the

original DEVS formalism.

None of the toolkits listed above, however, is ddpaf applying RT-DEVS to real-time

embedded systems design using hardware-in-the-dogp.aim of this work is to create

such a toolkit. To do so, our strategy is to ressme of the existing CD++ software

components and build new functionalities as necgssehe resultant toolkit is the
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Embedded CD++ (E-CD++). In general, CD++ and E-CDwve the following major

differences:

CD++ implements DEVS, whereas E-CD++ implementsBEVS (i.e., P-DEVS
combined with the Time Interval Function).

CD++ runs on workstations, whereas E-CD++ runs @ingle board computer
(SBC).

CD++ uses logical time, whereas E-CD++ supportd Hogical and physical
clock.

E-CD++ has better simulation performance than CD=ijce E-CD++
implemented a Flattened Coordinator technique fwrawve the performance.
CD++ does not interact with real-world events, veasr E-CD++ does. It uses the
input ports on the SBC to receive events from nmgalit devices, such as sensors
and timers. As well, the outputs can be sent thmoogtput ports connected to
devices, such as motors and gears.

CD++ can only simulate homogenous DEVS models, wles E-CD++ can
seamlessly integrate DEVS components with hardwaingonents.

E-CD++ supports graphical modelling, which is a remctionality that CD++

does not have.

2.7 M&S Methods for RTES Design

In the past, M&S have been used to model and simtilee system under study, so that

the system behaviour can be analysed and examih&8. was used only to study the

target system in a simulated environment. This whidwever, attempts to apply the

M&S methodology directly to the design of the targgstem.

Using M&S to design real-time embedded systemsahasomising potential. [Ern98]

stated the importance of Modelling in modern emigeddystem design, and [SLSO00]

further claimed that formal models are essentiartibedded system design. However,

defining a formal modelling methodology that is qdate in modelling all kinds of

embedded systems is a challenge. We found that soogels, such as FSM, support
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event-driven reactive systems, while others tadgétflow systems. A combination using
both domains (e.g., telecom devices) implies sitradaoverhead. As well, some
simulators, such as MATLAB, are adequate in modgllICVDS, but not suitable for
DEDS. Due to their digital nature, embedded systears be categorized as DEDS.
Consequently, we found that RT-DEVS is an adequsttge-of-the-art modelling
methodology for embedded systems. Furthermore nteadvancement of the DEVS
research has extended DEVS to a new embedded sgs&gn paradigm in which RT-
DEVS is used as a framework that seamlessly integraimulation models with
hardware components and that also enables incramgansition from the simulated

models to the actual hardware counterparts.

However, although RT-DEVS is adequaterindellingembedded systems, no simulation
toolkit available can apply RT-DEVS directly to timeplementatiorof the target system.
Modelling and implementation differ in the way thet modelling, all models (including
hardware models) are simulated software componemksle implementation must
integrate hardware and software components. Inr etheds, implementation must face
the hardware/software partition problem, implyih@ttno instantaneous transition exists

from the modelling phase to the implementation phas

The aim of E-CD++ is to address this issue. Sire® hardware/software partition
problem is NP-complete, no formal methodology canfdund to solve this problem.
Therefore, imperial approach has to be used insias E-CD++ toolkit merges the RT-
DEVS formalism with hardware-in-the-loop design hwetology. That is, E-CD++
creates an real-time execution environment whithgirates RT-DEVS models with real
hardware components. In this way, RT-DEVS is diyeapplied to the implementation of

the system under design.
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Chapter 3 Embedded CD++ (E-CD++)

In this chapter, we introduce the Embedded CD+€[E-+) toolkit. We first give a brief
introduction to CD++ and E-CD++. We then extend discussion to exploring four
major functionalities of E-CD++: a GGAD (Genericaphic Advanced environment for
DEVS modelling and simulation) interpreter, P-DE\&mulation, the Flattened
Coordinator technique, and the Time Interval Fumctiwith the realization both P-
DEVS and the Time Interval Function, E-CD++ carriest RT-DEVS simulation.
Finally, performance is a critical attribute for ambedded simulator that performs real-
time simulations. E-CD++ adopts the Flattened Ciatdr technique to improve its
performance. We provide a theoretical discussion EB@D++ performance when

exploring the Flattened Coordinator technique.

3.1 CD++

Not only does DEVS propose a framework for modeistauction, it also defines an
abstract simulation mechanism that is independéthe model itself. This mechanism
provides a high level design on DEVS framework, armén be feasibly implemented by
computer softwareCD++ [Wai02] is a simulation software which implemetite DEVS
simulation formalism. In CD++, two kinds cfimulators are implemented, one for
atomic and the other for coupled models. The lagdmown as aoordinator. These
simulators progress through the simulation by emgivay messages as described by the

abstract simulation mechanism.

CD++ is written in C++. Two basic abstract classesteM®del andProcessor . The
former is used to represent the behaviour of tbenat and coupled models, while the

latter implements the simulation mechanisms. Fi@usbows the CD++ class hierarchy.
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Coordinator

Atomic
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Figure3 CD++ (a) Modé hierarchy, (b) Processor hierarchy

The user-defined DEVS models are subclasses defroad the Model class, which
defines the model states and the internal and madtestate transition functions. CD++
also allows the user to create a model file whiefings the model hierarchy and linkage

between ports.

Message passing are amomgocessor objects, which upon receiving certain

messages, trigger the appropriate state tranguiwtions.

3.2 E-CD++

CD++ was developed to run in a simulated envirortngamrying out only simulated
results. E-CD++, by contrast, is developed to aptilg RT-DEVS formalism to
embedded systems design which requires real-tinareston and interact on the
surrounding environment. The inputs of E-CD++ canréceived by ports connected to
real input devices such as sensors, timers, theatesm or data collected from human
interaction. The outputs can be sent through oupputs connected to devices such as

motors, transducers, gears, valves, or any othrapoaoent.

E-CD++ runs on a Single Board Computer (SBC). Ippsuts hardware-in-the-loop
simulations by developing hybrid hardware/softwsystems -- integrations of simulated

software models and real hardware components [LRWO03
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The DEVS model is then loaded onto the SBC run&fgD++ for validation. E-CD++
supports RT-DEVS in which time advancement is drilsg the wall-clock. Furthermore,
the inputs and outputs ports on the SBC are redWae that is used by the E-CD++ to
let the DEVS model interact with the environmemMCB++ can also integrate simulation
models with hardware components, which enablesemental transition from the

simulated models to the actual hardware countespart

The testing results obtained on the SBC can be aoedpwith the simulation results
obtained on the host workstation. If the two resdlh not agree, then the DEVS model or
the event file developed on the workstation caredésly modified or adjusted to obtain

more accurate results.

E-CD++ inherits all the functionalities of the drigl CD++, while adding the following
new functionalities:
» Supports the GGAD graphical modeller;
* Implements RT-DEVS by implementing the P-DEVS folista and the time
interval function;
* Implements the Flattened Coordinator technique;
* Is able to simulate DEVS models in an embedded ctimg environment with
limited resources;
* Is able to let DEVS models respond to real worlénds via input and output

ports of the embedded system.

3.3 GGAD Graphical Notation

E-CD++ provides a graphical user interface (GUI) foodellers to specify atomic
models graphically, enabling non-expert users tiindeatomic models in a easier and
more intuitive way. The tool generates textual gmetions of the models represented

graphically in the GUI.

The GUI is based on a DEVS-graph notation presemefHSKP97], which allows
defining atomic models using a graphical modelliogl. An atomic model is placed
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inside a box (Figure 4). An external state traositis represented by a dotted line in
which the input event is represented by “?”. Simylaan internal state transition is
represented by a solid line in which the outputnéve represented by “I”. For example,
an input evenin?m means that a messagearrives at the input porh, and an output

eventout!m means that a messageis run through porbut The input and output ports
are denoted by the black triangles. The atomi@state marked by circles in which the

state names and the time advance functions aneediefi

coin Coin_in?coin_amount

L Coin_out:integer
Coin_in:integer
Prepare >

External transition

Internal transition

v

Figure4 Graphical definition of an atomic model: Coin Displayer

Figure 4 is a graphical representation of an atomaxel calledcoin. This model
simulates the behaviour of the coins displayerwerading machine. It has one input port,
namely coin_in representing the input coins slot and one ougaut calledcoin_out
which represents the display of the inserted caamsbunt, and the port values of both
ports have integer data type. When coins are eddrito the coins slot, it takes one

second for the coins displayer to display the cansunt.

The two circles in the diagram represent the madelb internal states whose names and
time intervals are defined inside the circles. Tlide” state is the initial state of which
the time interval is set to infinity, which impligkat the model may remain idle if no

external events (e.g., inserting coins) arrivexdntrast, the “Prepare” state has only one

30



second time interval, meaning that it takes onersgcor the “Prepare” state to change to
another one. That is, when coins are insertedthntocoins slot, it takes one second for

the coins displayer to display the coins’ amount.

The external transition function of the coins déy@r is defined by the dotted arrow line
in Figure 4. When a coin is inserted via the inpatt, the external transition function
changes the model’s state from “Idle” to “Prepaaat stores the input value to the local
variable “coin_amount”. After one second time intdrelapses, the output function,
defined right below the solid arrow line, outpute t‘coin_amount” value to the output
port, and the internal state transition, definedh®y solid line, changes model state back
to “Idle”.

The textual specifications are defined by a modgllanguage called GGAD. A GGAD
file is a text file that contains an atomic modeltign in GGAD. As an example, Figure

5 provides the textual definition of the atomic rabcepresented in Figure 4.

[coin]

in: coin_in

out: coin_out

var : coin_amount

state: idle prepare

initial: idle

int: prepare idle coin_out!coin_amount
ext: idle prepare any(coin_in)?1 {coin_amount = coi n_in;}
idle: infinite

prepare: 0:0:1:0

coin_amount: 0

Figure5 GGAD textual definition of the coin model

This first line in the GGAD file is always the naroéthe atomic model encoded by the
square brackets. The rest of the file content defithe model’s ports, states, state
transition functions, local variables used in tiaos functions, and time advance
functions. The order of these definitions is agoir and tokens in GGAD are separated
by white spaces.

* The input ports (line 2) are defined by the keywtind followed by a colon and a

list of port names separated by white spaces.
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Similarly, the output ports (line 3) are definedthe keyword “out” followed by
a colon and a list of output port names.
The local variable list (line 4) and the state (iste 5) are both followed the same

%66

syntax rule, except their responding keywords aeg™and “state” respectively.
The keyword “initial” is used to define the initiatate. For example, the initial
state of the coin model (line 6) is “idle”.
The time advance function is defined by a stateenfotiowed by a colon and a
GGAD time. The GGAD time has the format “HH:MM:SS3VIFor example, the
elapse time of the prepare state is 1 section (i) In addition, the keyword
“infinite” defines the passive state. In our exaeyphe “idle” state is a passive
state (line 9).
The internal transition function is defined as dalk. It starts with the keyword
“‘int” followed by a colon. The next two tokens atkee start state and the
destination state. Then remainder part of the fanatefines the output function.
The keyword “!” is the output mark. The left handesof “I” is the output port
name, and the right hand side is the output vahee. example, the internal
transition of coin (line 7) starts at state “pregfaand ends at state “idle”. The
output function outputs the value of local variabieoin_amount” to port
“coin_out”.
The keyword “ext” denotes the start of an extetraisition function (line 8). The
external transition function also has a start sha# a destination state, which are
defined in the same syntax as that defined in madetransition functions. The
keyword “?” is the so-called input mark. The letind side of “?” is a GGAD
expression, while right hand side is an integerstamt. Once an external event
takes place, the GGAD modeller evaluates the egfmesnd compares the result
with the integer constant. If the two values agrékes GGAD modeller will
execute this external transition function. Othesyishe function will not be
executed. GGAD uses this approach to select theecoexternal transition
function to execute upon a particular external évém our coin example, the
expression “any(coin_in)” returns 1 if a new vahreives at input port “coin_in”
and returns O otherwise. So, the external tramsitefined is line 8 will be
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executed upon the event where new coins are imkséerte “coin_in”". Detailed
exploration on GGAD expressions will be coveredhi& next chapter.

The last part of the external transition functien d list of GGAD actions,
enclosed by curry brackets. They form the body led external transition
function. GGAD actions are C++ assignment likeestagnts and are separated by
semicolons. In the coin model example, the GGADoact'coin_amount =
coin_in;” assigns the input value arrived at inpatrt “coin_in” to the local
variable “coin_amount”. GGAD actions will be disees in the next chapter in
detail.

The complete definition to GGAD grammar can be fbum Appendix B: Grammar for
GGAD Models.

3.4 P-DEVS Simulation Algorithms

The formal definition and semantics of P-DEVS isegi in Chapter 2. This section
discusses the definition of P-DEVS simulation aitfpons used in E-CD++. That is, we
focus on how to transform the specifications of PM3 (written in mathematical terms)

into algorithms that can be implemented by compptegrams.

The P-DEVS formalism allows the modeller to spetifg state transition behaviours of
atomic and coupled models, as well as the port ettons among models. These
connections constitute the model hierarchy. Theindisveness of P-DEVS is that it
supports parallel executions on simultaneous dtatesitions of atomic models and
concurrent handling of simultaneously schedulecereeti events. Moreover, handling
external events from the environment, executingsiteon functions, and exchanging
messages among models through their input and owipis that trigger more state
transitions to happen constitute all the activities P-DEVS simulations. More

specifically, the following three functionalitieseaneeded:
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1. Parallel executions on simultaneous state transgid his functionality may be
achieved by periodically determining the immineribreic models at each
simulation cycle with time advancement and synciziog their state transition
activities. In E-CD++, each model has internal ables to keep the time of the
simulation, as listed below.

tL Time of last transition

tn Time of next transition

An imminent atomic model’'s simulator has the smallest value f among its
siblings. In other words, it is a model that hotldsimminent state transition that
will occur in the next simulation cycle in whichnte will advance to the model's
tn. A simulation cycle advances time framto ty, wheret, is the end time of the
previous simulation cycle ang is the finish time of the current cycle. Withingh
time period, there may be multiple imminent atomiodels. With P-DEVS
implementation, E-CD++ is capable of executing e¢hestate transitions
simultaneously. This capability differentiates E-€Dfrom the original CD++
simulator, where the SELECT functions are usedettakze the executions of

these simultaneous state transitions.

To achieve parallelism on state transitions, symaization of models’ activities

is necessary. The synchronization of atomic modsiate transitions can be
achieved by inter-component messaging. E-CD++ implgs a new inter-
component messaging architecture that is very reiffiefrom the original CD++
design, so that it can offer this functionality. @wnain categories of messages
exist: synchronization and content messages. Each of these categories consists
of several types of messages.

Synchronization messages:
@  Collect message
* Internal message

done Done message
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Content messages:
Q External message

Y  Output message

The Content Messages are used to exchange dategaronarponents via their
input and output port connections. The conceptyofcBronization Messages is
newly introduced by E-CD++. Each coupled model HCB++ maintains an
important data structure calleéslynchronization Set which is a subset of its
children that are scheduled to have state transitio the next simulation cycle.
That is, they are imminent components. Synchroiadflessages are exchanged
among components in order to periodically creat@date and clear

synchronization sets in each simulation cycle.

2. Handling simultaneous external events in paralléh the original DEVS
formalism, the atomic model can handle only onesrel event at a time. E-
CD++ overcomes this limitation by redesigning theeenal transition function.
Rather than invokingly immediately upon an arrival of an external evéft,
CD++ stores the external message in the receivingelis Message Bagwhich
is a set of external messages and then adds thislrtwothe Synchronization Set.
The model’s external transition function, once ke, processes all messages in
the Message Bag altogether, as opposed to one sxtgrnal message at a time.
In this design, simultaneous external events tal fplace within a simulation

cycle, i.e., between toty, are handled by in parallel.

3. Ability to resolve conflicts caused by simultanépuscheduled internal and
external state transition within one atomic mod#his functionality is achieved
by implementing the confluent functia®,, which is a new device introduced by
P-DEVS.

In E-CD++ implementation, th&imulator is responsible of invoking the atomic model's

A(S), &xs Anty &on functions, while theCoordinator is responsible for the simulation of
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coupled models. Both simulators and coordinatoescapable of sending and receiving
messages. Their implementations are described bdlbe algorithms that follow are

based on that in [Cho94b], with minor modifications

According to Cho’s algorithm, when a simulator iges a (@) message (Figure 6), it
executes the atomic model’s output functibfline 3) and sends the output to the parent
coordinator (line 4). Note that the simulator exesul at exactlyty time (line 2),
ensuring the correctness of the simulation. Finallgends out the Done message to its

parent, indicating the completion of the execufiare 5).

SIMULATOR
1. whena (@ t) message is received
2. if t=tythen
3 y = A(9)
4. send (y, t) to the parent coordinator
5. send (done t) to the parent coordinator
6 end if
7 elseraise error
8. end when
Figure6 Simulator Receiving Collect Message

When a simulator receives an External Message (&id, it simply adds it to the
Message Bag (line 3) and does so atomically (lia@®4) to avoid race conditions in the

concurrent computing environment.

SIMULATOR

1. whena(qg,t) message is received
2. lock thebag

3. Add eventg to thebag

4, unlock thebag

5. end when

Figure7 Simulator Receiving External Message

However, there is a minor difference between Cladgerithm and ours in handling the

External Message. Cho’s algorithm also sends agdgnmessage to the simulator’s
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parent coordinator after the event is added. Waddbat generating the done message is
not necessary, provided that the message handierthé synchronization messages
(namely @ and *) send done messages. That is, thare need for content message

handlers to send done messages. We have provagubthidy statement.

Figure 8 outlines Cho’s algorithm of the Simulasothternal Message handler. The
arrival of the(*, t) message indicates that an atomic model’s transitiaction must be
executed. The transition function to be executed deipend on the current timg,and
the content’'s of the Message Bag.tlk ty, then it is not the time for an internal
transition, and it must be the case that the Mes&ag is not empty, andl.is executed,

consuming all the external messages in the Me€3ageat once.

SIMULATOR
1. whena (* ,t) message is received
2 caset, <t<ty
3 e=t-1t
4, S = O S € bag)
5. emptybag
6 end case
7 caset = ty andbagis empty
8 S:=adu(s)
9. end case
10. caset = ty andbagnot is empty
11. S = Ao S, bag)
12. emptybag
13. end case
14. caset > tyort <t_
15. raise error
16. end case
17. L=t
18. ty :=ta (S)
19. send (done, t) to parent coordinator
20. end when
Figure8 Simulator Receiving Internal Message

If t =tn, it is the time for an internal transition. If rexternal messages has been
received, thenj,, is executed, but if there are external messagelkeirMessage Bag,

then &onis called instead. All other cases are considesestiars.
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Once the appropriate transition function is exetutiee simulator update itsto current
timet, andty to ta(s).

We now describe the behaviour @bordinator A coordinator is responsible for the
simulation of a coupled model. It executes thedliation function that translates output
events to input events, maintains the Synchrommaget which stores the imminent
children, and synchronize its children’s state sidon by sending out Synchronization
Messages.

Figure 9 illustrate how a Coordinator handles tludleCt Message. (This is also Cho’s
algorithm) Fist of all, it checks if the Collect B&age is received exactly at titpgline
2). If not, it raises an error (line 11). It thepdates itg, to t (line 3) and sends (@), to
all of its imminent children (line 5). The imminenhildren can now be stored in the
Synchronization Set (line 6), which implies thagithstate transitions are scheduled to
take place in the next simulation cycle when tindeaaces tont After it receive the
Done Message from all it imminent children (ling &e Coordinator sends a Done

Message to its parents indicating the completiotheftask (line 9).

COORDINATOR

1. whena (@ ) message is received from parent coordinator
2. if t =ty then

3. L=t

4, for all imminent child processorsvith minimumty
5. send ( @t) to childi

6. cachd in thesynchronizeset

7. end for

8. wait until (done t)’s have been received from all imminent processars
9. send (done t) to parent coordinator

10. end if

11. elseraise error

12. end when

Figure9 Coordinator Receiving Collect Message
When a Coordinator receives an Output Message @& igj0), the message must be sent
from one of its children, because in E-CD++ impletagion, Output Messages are only

sent upwards in the models hierarchy from childcetheir parents.
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COORDINATOR

1. whena (y,t) message is received from child
2. for all influenceesj, of childi

3. q:=z;i(y)

4. send (g, t) to childj

5. cachg in thesynchronizeset

6. end for

7. if selfl] I; (y is to be transmitted upwarthen
8. Y:=Zset(Y)

9. send (y, t ) to parent coordinator
10. end if

11. end when

Figure 10 Coordinator Receiving Output Message

The first action that a coordinator performs upbe arrival of an Output Message is to
invoke the translation function to translate thapdii Message into the External Message
and send it to all of its receiving models (line-2). Then the Coordinator caches the
receiving models into the Synchronization Set (B)eimplying that their external state

transitions are scheduled to occur in the next kitimn cycle.

If, however, the coordinator itself is also onetloé receiving models (line 7), it means
that the Output Message needs to be forwarded wapteaits parent. In this case, the
coordinator generates another Output Message am$ $eto its parent coordinator (line
8 &9).

The coordinator handles External Messages in the s@ay as a simulator does. That is,

it atomically adds the incoming message to its ge$Bag (Figure 11).

COORDINATOR
1. whena(qg,t) message is received from parent coordinator

2. lock thebag
3. Add eventg to thebag
4, unlock thebag

5. end when

Figure11 Coordinator Receiving External Message
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The behaviour of a coordinator receiving an InteMassage is illustrated in Figure 12.
When a coordinator receives an Internal Messadjestithecks whether the current time,
t, is somewhere in between the last transition @me the next scheduled transition (line
2). If not, it returns an error (line 20). If thiene is right, it processes all the External
Messages stored in the Message Bag by transldigmg into new External Messages
(line 5) and sending them to the receiving comptgline 6). These receiving

components are cached into the Synchronization f8etthey need to process the
External Messages that have just been sent to iléhe next simulation cycle. Having

processed all the External Messages, the coordieatpties the Message Bag (line 10).

Next, the coordinator sends out an Internal Messagevery component saved in the
Synchronization Set (line 11 — 13), to trigger gtate transitions of these imminent
children. Then, the coordinator is blocked waitiog the Done Messages from all the

imminent children which have just received the iné& Messages (line 14).

COORDINATOR

1. whena (* ,t) message is received from parent coordinator
2 if t <t<ty

3 for all g O bag

4. for all receivers of), j [ lse

5. 0 = Zserr,j(0)

6. send (, t) to]

7 cachg in the synchronize set
8 end for

9. end for

10. emptybag

11. for alli in thesynchronizeset

12. send ( *t) toi

13. end for

14. wait until all (done, t)’s are received
15. L=t

16. tn ;= minimum of componentgy’'s
17. clear thesynchronizeset

18. send (done ty) to parent coordinator
19. end if

20. elseraise an error

21. end when

Figure 12 Coordinator Receiving I nternal Message
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When all the Done Messages are arrived, the coataliminblocks itself and updatestits
andty, and clears its Synchronization Set (line 15 — And finally, it sends the Done

Message to its parent (line 18).

The last piece of work needs to be explained inB®® is theRoot Coordinatorlt is a
special processor that is above the topmost coatatinit is responsible for driving the
simulation and advancing the virtual simulationdinfrigure 13 represents the algorithm
of the Root Coordinator. First, it advances theusation time toty of the topmost
coordinator (line 1). This implies that the statnsition of the topmost coordinator may
occur right away. Then, the Root Coordinator kespsling the Collect Message and the
Internal Message to the topmost coordinator (line- ) as well as updating the

simulation time (line 7).

ROOT COORDINATOR

1. t:=tyof the topmost coordinator

2. while t # w0 or more external events to come

3. send ( @ t) to the topmost coordinator

4. wait until (done, t ) message is received from it
5. send ( * t) to the topmost coordinator

6. wait until (done ty ) message is received from it
7. t :=ty of topmost coordinator

8. if external event arrives

9. send ( g, t) to the topmost coordinator
10. end if

11. end while

12. raise simulation completed

Figure 13 Root Coordinator Behaviours

The Root Coordinator can also handle external svéiitese events may be stored in an
events file which contains a sorted queue of evaitsen an external event occurs, the
Root Coordinator sends an External Message tmfradst coordinator (line 8).

The simulation completes wheémecomes infinity and there are no more externahtes
left.
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3.5 Flattened Coordinator Technique

Real-time applications require the simulation saftsvbe able to carry out results within
specified time constraints. Therefore, performaiscessential to the success of a real-
time simulation software. The Flattened Coordina¢ahnique [Kim0OQ] is introduced to
improve the performance of E-CD++. The original GDreeds to build a DEVS model
hierarchy. As shown in Figure 14, CD++ builds a edmerarchy for coordinators and
simulators as that for DEVS models. When a DEVS ehedecutes, one simulatobject

is created for each atomic component, and one cwiod object for each coupled

component in the hierarchy.

Roo!
Coordinato
Couplec Coordinator Simulator
| Atomic | | Atomic | | Simulato | | Simulato |
(a) (b)

Figure14 CD++ (a) Model hierarchy, (b) Processor hierarchy [Gli04]

The problem with the hierarchical approach is {hatformance is not scalable. As the
size and complexity of DEVS models grow, so isghacessor hierarchy, resulting in the
reduction of the simulation performance. The simiafaalgorithms explained in Section
3.4 revealed how messages are generated and erchamgong coordinators and
simulators. Those algorithms showed that the nunolbenessages exchanging among
processors is proportional to the complexity of tmecessor hierarchy, which is
measured by the number of processors on the higralrt other words, as the hierarchy
grows, so is the performance overhead incurred &égsaging. In order to optimize the
performance, therefore, the simulator needs toaedbe complexity of the processor

hierarchy, i.e., the number of processors.
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This is the main concept behind the Flattened Qpatdr technique. Flattened
Coordinator, therefore, simplifies the simulationerbrchy by eliminating the

coordinators in the hierarchy and by making direeissaging communications between
the Flattened Coordinator and the simulators. Bibth model and the simulation
hierarchies for this case are shown in Figure 1Simdilar development for other DEVS

simulators can be found in [Gli02] and in [KimOO].

Couplec Model £1

\ \ | \ [
\Counle‘d Model #  [Atomic Model #] [Atomic Model #4 [Atomic Model #1

Atomic Model #4 |Atomic Model #* (@)

\ Root C‘oordinatc \

\ Flat Coordinatc \

\ [ |
[Simulator #| [Simulator # [Simulator #] |Simulator #
(b)

Figure 15 Flattened Coordinator Technique
(a) Example of a model hierarchy, (b) Associated processor hierarchy
The Flattened Coordinator transforms the hierasthgtructure of the model to a
flattened structure by eliminating coordinators.eTtransformation, however, must
preserve the original port linkage relationship amoatomic models, so that the
correctness of the simulation does not suffer. ideo to achieve this, the Flattened
Coordinator technique needs to rewire the model |idks to bypass the coordinator
ports. Consider, for example the model hierarchgwshin Figure 15 (a). Suppose
Atomic Model #1 needs to send a message to Atonade¥i#4. The message will first
be sent to Coupled Model #2, which will then fordiéine message to Atomic Model #4,
as shown in Figure 16 (a). When Coupled Model #iminated, however, the Flattened
Coordinator must rewire the port links of Atomic s #1 and Atomic Model #2, so that

messages can still be exchanged between them éFlguib)).
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Coupled_2

Atomic_1 Atomic_4

Port_A Port E ' Port C

(a) Port Links of the original DEVS model

Port A Port C

(b) Flattened DEVS model after port link rewiring

Figure 16 PortCimk Rewiring Techmmigque

Furthermore, as a result of the elimination of damators, the Flattened Coordinator
must receive and send messages directly from anidetdroot Coordinator in order to

carry out the simulation process.

Since the performance of E-CD++ is directly relatedhe efficiency of its messaging,
the performance can be quantitatively rated byntimaber of messages generated during
the simulation cycle, which is proportional to thember of Processors. Therefore, the
performance gain of the Flattened Coordinator teghen can be measured by the
reduction rate of the Processors. That is, theopmdnce improvement ratio of the
Flattened Coordinator technique (R), is one mirhes mumber of processors on the

flattened structure ¢Pdivided by that on the original non-flattenedrarehy (RB).

This formula is also verified by real simulationpeximents in Chapter 5.
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To illustrate this calculation numerically, we caes that a non-flattened processor
hierarchy is organized as arary tree withh levels. Then, the total number of Processors

on this tree (P) is given by the following formula:

The number of processors on the flattened hieranchgontrast, is equal to the number
of leaves (i.e., simulators) plus the Flattenedr@mator, which i\" + 1. Therefore, the
performance improvement ratio (R’) of flatteningracessor hierarchy that is a folary

tree withh levels is:

(N +(n-1)

R=1- "y
For instance, performance after flattening a fathary tree (an n-ary tree with n = 3)
with 2 levels is improved by 1 - 10/ 13 = 23%.

3.6 Time Interval Function

One major difference between evaluating the camesg of solutions developed in the
simulation world and that in the real world is ttia¢ former are evaluated in the virtual
time, whereas the latter often bind to real-timastraints. Areal-time systens defined

as a one whose correctness depends not only @othgutational results, but also on the
time at which the results are produced [Sta88, &td9 a system delivers the correct
answer after a certain deadline, it could be reghrds an unsuccessful response.
Consequently, a real-time simulator must offer thectionality of theTime Interval
Function where time constraints can be stated and validaEe@D++ offers this
functionality by implementing thevall-clock time advancemeiind theevent deadline
checking

In order to run real-time simulations, advancehaf simulation-clock is tied to the wall-

clock (.e. physical time). ThdRoot Coordinatorobject provides this functionality. The
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Root Coordinator manages the time advancement dtengxecution of a simulation. It
is also responsible for starting very new simulatigcle. When theirtual timeapproach

is used, after a simulation cycle finishes, thadalgclock time is incremented to the next
scheduled event by the Root Coordinator without @hysical delay. That is, the
Initialization Messages are immediately generated sent by the Root Coordinator to
start a new simulation cycle. For the real-timelgation, however, the Root Coordinator
must wait until the physical time reaches the resdnt time to initiate the new cycle.
This implies that the periods of inactivity mustt i skipped. The simulation process
remains quiescent while these periods are beingereqred. Instead of logically
advancing the virtual time up to the next schedéeent (as what's done by the virtual
time approach), the Root Coordinator expects theedwded wall-clock time to be
reached and only then starts the new simulatiotecye other words, a new simulation
cycle can be started either due to the receptiomroéxternal eventor due to the
consumption of the time indicated bg(s) of the Root CoordinatoitHence, messages

interchanged between processors are sent at theal scheduled wall-clock time.

E-CD++ creates a state machine to implement wattictime. The implementation uses
standard UNIX timer facilities provided by tRdinux/time.h> library. Figure 17

illustrates a state machine for this timing behawio

» The state machine’s starting state is the “Inacttage”, in which E-CD++ is
passive. When E-CD++ reads in the external eveal@sof when new events
arrive (E1), the Root Coordinator calisld_timer()  to create timers with the
associated expiry timestamps for all the externahts (Ala), and then it calls
interruptible_sleep_on() (Alb) to transfer the state to the “Timer

Counting-down state”, in which E-CD++ remains passintil timer expiry.
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timer
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(A3) Simulation cycle ends with ta(s) being
infinity and no more timers left

Figure 17 Stateachime Tmpltementation o watt-ctock time

» As the wall-clock time advances, those timers wxpire at the moments when
the external events arrive (E2), which will involtesir timeout functions. The
timeout functions will callwake_up_interruptible() to wake up E-
CD++ (A2a) to transfer to the “Simulation state’nda will also call

del_timer_sync() to delete the timer associated with the arrivetereal

event.

* In the Simulation state, a new simulation cyclestiarted, and a new ta(s) is
calculated. If the new ta(s) is set to infinitydaih there are no more timers left,
the Root Coordinator will calihterruptible_sleep_on() to go back to
the “Inactive state” (A3) (i.e., deactivating E-CBy+ E-CD++ will be waken up

upon the arrival of the next external event.
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» If ta(s) is infinite, but there are still activeners (E4) (e.g., there are still some
scheduled external events), then Root Coordinatdr move the state from

“Simulation” to “Timer Counting-down”.

* If, however, the new ta(s) calculated in the Sirtiaia state does not equal
infinity (E5), then the Root Coordinator will cread new timer with the expiry
timestamp set téa(s) and will move the state to “Timer Counting-dowats”
(A5), so that E-CD++ will be waken up again attg(s)time.

Timeliness along a simulation is a substantial prigpin the real time approach. In a
typical real-time situation, the model has to reacéin external event and generate the
output within a given time in order to solve a giyaroblem. When a model is executed
in real-time simulation, it is important to checkferent time constraints along the
simulation. Particularly, the time at which an evlbas been completely processed is a

meaningful measure of success.

During the simulation cycle, E-CD++ validates tivad constraints which are stated by
the Time Interval Function. The Time Interval Fuaotspecifies the deadline before
which a simulation cycle must complete (e.g., Aripati must be arrived at a certain
output port.). E-CD++ allows the modeller to indedéhe deadlines for external events.
E-CD++ checks the wall-clock time at which the diation of the external event is

finished against the specified deadline. If the ptation time is later than the deadline, it

indicates the failure.

E-CD++ creates a new format of the event file inoktthe deadlines are specified. The

new extended format of tlewvent fileis illustrated in Figure 18.

Event tinme Associ at ed i nput port associ at ed val ue
deadl i ne out put port
hh:mm:ss:mseg hh:mm:ss:mseg  port name porf name num eric value

Figure 18 Format of the event filein thereal time extension
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Figure 18 shows that not only @ssociated deadlinbut also aroutput portmust be

indicated in the new event file format. As a resthlie simulator can check whether the
physical time meets the associated deadline whewliregg an output through the
associated port. Once the execution has finisheth Buccessful and unsuccessful

deadlines are stored for further study of the satoih process.

When loading the event file, the E-CD++ simulattmres deadlines and their associated
output ports into a list of <deadline, port> painmeddeadlineList When the Root
Coordinator receives an Output Message, it seattihesgh the deadlineList to fetch out
the <deadline, port> pair of which the port numipatches that in the Output Message. It
then compares the wall-clock time with the deadlFigure 19 provides the pseudo code

of this algorithm.

ROOT COORDINATOR

parse the event file and create Deadlines Lidtdfisdeadline, port> pairs)
whena (y,t) message is received from TOP coordinator
for each <deadline, port> in Deadline List
if port == outport in yhen
if deadline >= wall-clock-timéhen
output value to port and mark simulation as sudaess
else
output value to port and mark simulation as unsssfcg
end if-else
delete <deadline, port> from Deadline List
quit loop
end if
end for loop
end when

Figure 19 Deadline checking algorithm
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Chapter 4 E-CD++ Software Architecture

In the previous chapter, we explainetiat E-CD++ could do. In this chapter, we will
discusshow these functionalities are designed and implemerfiedt of all, the Main
Simulator manages the general aspects of the dionlarhe Modelling subsystem
constructs the DEVS model hierarchy. An importanimponent of the Modelling
subsystem is the GGAD Model Loader that suppoegytaph-based notation, introduced
in section 3.3. The Simulation subsystem implemé&tg’s algorithms [Cho94b] for
simulators and coordinators, which were outlinethm previous chapter. The subsystem
also includes special coordinators including thattEhed Coordinator and the Root
Coordinator. Furthermore, The Modelling subsysterd the Simulation subsystem are
the major components that carry out the P-DEVS émgntation. The last subsystem we
will discuss is the Messaging Subsystem, whichesponsible for delivering various

types of messages.

4.1 E-CD++ software architecture overview

The E-CD++ software architecture is object orienfBde software is modularized as a
group of components that have well-defined behasi@nd have relatively independent

functionalities. E-CD++ software consists of thédwing major components:

Main Simulator

DEVS Modelling Subsystem

Simulation Subsystem

Messaging Subsystem

Figure 20 illustrates the interactions among trsedtvare components.
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Figure 20 E-CD++ software architecture

The high-level design walk-through is summarizedhi& rest of this section. This walk-
through provides an overview of the simulation éveeguence and also explains the
interactions among the subsystems. The detaildgrdet each subsystem is discussed in

the following sections.

1. The Main Simulator (MS) is the very first objeceated when E-CD++ starts.
The constructor of the MS, being called when thedfgct is instantiated,
performs the Atomic Models Registration, which atidsction pointers that point
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to the constructors of all the user-defined atomazlels’ classes into a Models
Manager’s table (a hashing table that serves aattiraic Models Objects
Database). These atomic models will be instantidtethg the Models Loading

process, which is the next step performed by the MS

. After the Atomic Models Registration is performéag MS constructs the DEVS
models hierarchy. The MS parses the user-defined3xaodels file in which the
DEVS components and their inter-relations are @efite.g., atomic and coupled
models, ports, links, states, etc.).

. While the MS parses the models file, it calls theddls Manager and the
Processors Manager to construct two tree-like statetures in parallel. The first
is the Models Hierarchy Tree, and the second iStheulators/Coordinators

Hierarchy Tree.

The nodes of the Models Hierarchy Tree belong ¢odMiodel class, which has
two subclasse®tomic andCoupled , representing atomic and coupled models
respectively. Every node on the Models Hierarchselis instantiated either as an
Atomic object or as &oupled object. The non-leafs nodes of the Models
Hierarchy Tree represent Coupled models, whildgaEnodes are Atomic
models, which are subclasses derived from the At@taiss and whose
behaviours are defined by the user-defined cla3$esCoupled model object
contains a data member called “children” which lsteof its children’s models
IDs. As well, each Coupled or Atomic object consaanlist Ports objects which
specify the input and output relationships amomgrtiodels. The top node of the
Models Hierarchy Tree is a special Coupled noded&Top”. After all the

nodes are loaded, the resulting Models Hierarcleg Tepresents the model
hierarchy defined by the input model file.

If the Flattened Coordinator technique is enalti@d, extra actions are taken

during the Models Hierarchy Tree construction:gflthe Coupled model objects
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are eliminated from the tree, and (2) all the Atomiodel objects’ port links are
rewired to bypass Coupled models.

The Models Hierarchy Tree and the Simulators/Coattirs Hierarchy Tree are
constructed in parallel. That is, when the Modebniiger adds a Coupled or an
Atomic node to the Models Hierarchy Tree, the Pssoes Manager adds a
Coordinator or a Simulator to the Simulators/Cooatiors, correspondingly. The
nodes on the two trees, therefore, have one-tav@pping relationship. Note that
if the Flattened Coordinator technique is usedCoordinator objects (except the
Top Coordinator) is created, since all the Couphedlels are eliminated from the
Models Hierarchy Tree.

. After the Models Hierarchy Tree and the Simulat@o®rdinators Hierarchy Tree
are constructed, the MS loads the External EvetdsifFthere is one, and creates
the Root Coordinator and calls its simulate() fiorct The Root Coordinator
manages the global aspects of the simulationcéives the external events either
from the pre-defined External Events File or frdra teal world via the physical
input ports on the embedded computer. It also masHe time advancement for
the simulation cycle. If a stop time is definede oot Coordinator terminates the

simulation cycle when the time is reached.

. The Root Coordinator also generates the veryriestsage in the simulation,
which triggers other processors and coordinatoredeive and send messages.
The Message Manager is responsible for messagesmgahroughout the
simulation cycle. It manages a Message Queue, whessages are received and
sent in a FIFO (First-In-First-Out) order.

. The simulation cycle continues by simulators anardmators keeping sending
and receiving messages among each other, and atoodiels’ transition
functions are executed accordingly. The Root Coatir advances the

simulation time. The simulation cycle stops whdmaldels become passive, and
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there is no external events left to process, omathe user-specified end

simulation time arrives.

The following sections elaborate on the detailsualeach subsystem.

4.2 Main Simulator

The Main Simulatormanages the overall aspects of the simulatiors. tihe first object
being created when the simulation starts. The digsgram of the Main Simulator is

shown in the following figure.

MainSimulator

run()
registerNewAtomics()
isFlatDEVS()
loadModels()
loadExternalEvents()
loadPorts()

loadLinks()
loadFlattenLinks()
updateOutLinks()
updateAtomicOutLinks()
addFlattenedLinksToFlatTop()

Figure21 Main Simulator Class Diagram
The simulation cycle starts with the execution loé Main Simulator object’sun()
method. This method performs the following 4 tasksequence:
* Atomic Models RegistratiofMheregisterNewAtomics() method is used to
store the pointers to the atomic model objectscivlare C++ objects derived

from the Atomic class, to Atomic Models Objects alzse.
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« External Events Table ConstructiohheloadExternalEvents() method is
invoked to parse the External Events file and es#te External Events Table
which is a sorted list sorted by time.

e Models Hierarchy Tree Constructiofihe methodtoadModels()
loadPorts() , andloadLinks() are called to read in the model file and to
build the Models Hierarchy Tree. If the Flattenemb@inator technique is
enabled, thetoadFlattenLinks() , updateOutLinks() ,
updateAtomicOutLinks() , andaddFlattenedLinksToFlatTop()
are called to construct the flattened processaatuhy.

* Root Coordinator CreatiorFinally, therun() method instantiates the Root
Coordinator object and calls ggmulate() method which sends the very first
initialization message in the simulation cyclehie top component, as we will see

in section 4.5.

The major portion of the Flattened Coordinator teghe is implemented in the Main
Simulator subsystem. The Flattened Coordinatorccbel either enable or disabled, and
this is done by the Main SimulatorisFlatDEVS()  method which returns a Boolean

value True if the flattened coordinator is enablealse otherwise.

As discussed in section 3.5, the Flattened Cootaliriattens the simulation hierarchy by
rewiring the port links and removing the couplednponents from the hierarchy. Due the
absence of coordinators, however, any port linkd limk to coordinators’ ports are re-
wired to reach the far-end atomic ports. Then,atponent links are handled directly

by the Flattened Coordinator, which forwards thessages to simulators as needed.

The port links rewiring is implemented by the M&mulator. As described in section
4.2, the Main Simulator calls its methodtsadModels() , loadPorts() , and
loadLinks() to construct the Models Hierarchy Tree. The method
loadLinks(Model& myModel) builds the links defined imyModel, which may be
either Atomic or Coupled. Aink between two ports is a directed connection from th

source port to the destination port. During theudation, messages are sent through the
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links. Usually, the destination port resides on iffecent component other than
myModel. It follows, therefore, that the components in Medels Hierarchy Tree are

connected by the links.

The loadLinks() method constructs the port links based on the DEp&ification
defined by the modeller. This implies that the nembf the port links and thus the
volume of message passing are proportional to eliel lof the models hierarchy. For
instance, the DEVS model structure shown in Figi#as a three-level hierarchy, with
the atomic modeRAtomic_A and the coupled mod€loupled_A being the first level,
the coupled modeCoupled_B being the second, and the atomic modigimic_B
being the third. Suppose that an external evemesrratAtomic_A . It will send an
external message from its output pétort A to the Coupled_A’'s input port
Port B . When theCoupled_A receives this message, it then sends an external
message to from its input polRort_ B to the Coupled_B’s input portPort C .
Finally, Coupled_B sends an external message frétart C to Atomic_B’s
Port D , which invokes Atomic_B’'s  external state transition function. In this
illustration, three messages need to be generaéatebAtomic_B’s  external state

transition is started.

By contrast, with the Flattened Coordinator, indted calling theloadLinks()
method, the Main Simulator callsadFlattenLinks() andupdateOutLinks()

when building the Models Hierarchy Tree. TheadFlattenLinks() method
rewires any port link that link to a coupled modetkctly to the far-end atomic model.
For example, suppose port A links to port B, and pBolinks to port C, where A and C
are atomic models’ ports, while C is a coupled nliedeport. Then the

loadFlattenLinks() method links port A directly to port C.
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Coupled_A

Atomic_B

(a) Port Links of the original DEVS model

Port_A » Port L

(b) Flattened DEVS model after port link rewiring

Figure22 Port Link Rewiring by Flattened Coordinator Technique

Part B of Figure 22 shows the rewired DEVS modeite\NthatAtomic_A’s  input port
Port_A is directly linked toAtomic_B’s input portPort_B , and also note that the

two coupled modelsCoupled_A andCoupled_B , are eliminated from the hierarchy.

Similarly, the updateOutLinks() method also rewires any atomic model’s output
port that originally links to a coupled model dilgcdo the far-end atomic model using

the same algorithm used for input ports.

4.3 Modelling Subsystem

* TheDEVS Modelling Subsystgmnovides a logical representation of the DEVS
models defined by the modeller. The subsystemngposed by the Models
Manager and the DEVS Models Hierarchy Tree.
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Port

portld: Integer
portName: String

influenceList: List of Port*

ModelAdmin

AtomicModelsDataBa
se: dictionary  of
<modelName,
Atomic*> pair

parentModelld: Integer 1
) operator ==()
Model registerAtomic()
influences() newAtomic()
model() modelld: Integer newCoupled()
addInfluence() parentModelld:
delinfluence() Integer
- Sty Coupled
findinfluence() modelName: String ouple
inputPorts:  List of children:  List of
Port* Model Ids
outputPorts: List of
Atomic Port* addModel()
children()
addinputPort() addInfluence()
operator = ()
addOutputPort()
operator == ()
. i nextChange()
initFunction()
) lastChange() ProcessorAdmin
externalFunction()
) , sendOutput()
internalFunction()
I
outputFunction()
confluentFunction ()
holdIn()
passivate()
state()

: it | I .

The Models Managemanages the models hierarchy. More preciselgkiés care of the
following 3 tasks:
* When the Main Simulator registers the Atomic mauigkcts, the Models
Manager creates and managesAtamic Models Objects Databa@eefer to the

class diagram in Figure 23), which is a dictiondaya structure that stores the
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Atomic model’s string name (pointer to the “modahre - Atomic object”
pairs).
* Itis employed by the Main Simulator to create Atemic and Coupled objects

in the Models Hierarchy Tree.

It employs the Processor Manager to create Procedass objects when the Main

Simulator loads atomic models.

The Models Manager is implemented by the ModelAdnttass, while the
implementations for the atomic and coupled modedseacapsulated by the Atomic and
Coupled class respectively. ThelodelAdmin objectis instantiated by the Root
Coordinator. ItsegisterAtomic() method is used by the Main Simulator object’s
registerNewAtomics() method during Atomic Models Registration, and its
newAtomic() and newCoupled() method are used by the Main Simulator to
construct the Models Hierarchy Tree. Figure 23 esents the class diagram for the
DEVS Modelling Subsystem.

Moreover, the ModelAdmin object contains the AtorModels Objects Database that
stores (modeller-defined) Atomic objects. The partass of Atomic is thdlodel class,
which is the data abstraction of the DEVS modeadldb provides the data abstraction that
is common to both atomic and coupled models. A Marass object has a unique
model ID . It also contains itparent’s model ID , SO that the Models Manager

can traverse the Models Hierarchy Tree upwards wieeessary.

The Model also contains a list ofput ports and a list ofoutput ports . They
are linked lists of pointers to Port objects. Theaii Simulator’'sloadModels()
method uses thaddInputPort() andaddOutputPort() method to construct the

lists when constructing the Models Hierarchy Tree.

In addition, the Model class provides the followimgthods that are inherited by Atomic

and Coupled class:
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» lastChange() . Records the time of the last state transition.

* nextChange() . Sets the time for the next scheduled state tiansi

» sendOutput (time, port, value) . Sends an output message through

the given port.

An atomic model can be created by the modellenbluding a new class derived from

the Atomicclass shown in Figure 23. In doing so, the follogvimethods may be

overloaded:

initFuntion() . This method is invoked when the simulation stdttallows
one to define initial values and to execute setunetions for the model.
externalFunction() . This method is invoked when an external event
arrives from an input port.

internalFunction() . This method is started when an internal eventiscc
(that is, the value of the Time Advance Functionero).

outputFunction() . This method executes before the internal fundtion
order to generate outputs for the model.

confluentFunction() . This method is invoked when an external event
and an internal event takes place simultaneouslis flinction is an important
feature offered by the P-DEVS formalism. The fumictenables the modeller to

control the collision behaviour.

These functions are equivalent to those defingtlerformal specifications for atomic

models. In addition the following primitives can bged when defining an atomic model.

holdIn (state, time) . A model executing this method remainsiate
duringtime (ta(s) == time) When the time is consumed (i.e., ta(s) == 0), the
model executes the internal transitions. This netlas included to make the
definition of the duration function easy.

passivate() . The model enters in passive mode (i.e., phasgassive; ta(s)
== infinite) and it is only reactivated by an extarevent.

state() . Returns the present model phase.
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Figure 23 also shows that th@oupled class object contains hst of its
children’s model IDs . The list is constructed by treldModel() method. It
defines the containment relation between the caouptemponent and its children. The
port connections that link these children are e@dty theaddinfluence() method,
which is employed the by Main SimulatofsadLinks() method during the Models

Hierarchy Tree construction.

As mentioned earlier, a Model may contain zero oramnput ports and output ports.
ThePort objects are created by the Main SimulatéoadPorts() method during the
models hierarchy construction time. A Port objemttains a numerical ID and a name. It
also stores its parent model’s ID, which can béeetd by itsmodel() method. This
implies that the port’s parent component must leated prior to the creation of the port,
and this order is enforced by the Main Simulatamedels hierarchy construction

algorithm.

Once a Port is created, the Main Simulator startsuild the Port’snfluence list ,
which is a list of pointers to a set of Port olgextpresenting the port’s destination end.
The Port’'s parent coupled componenéddinfluence() method calls the Port’s

addInfluence() method to build the list.

4.4 GGAD Model Loader

E-CD++ incorporates a GGAD model loader that par&SAD files and builds
equivalent atomic models. The GGAD model loadgrad of the Modelling subsystem.
It consists of the following software modules:

» GGAD Parser

» Symbol Table

* Syntax Tree

» GGAD Transitions Execution Engine

» Atomic Model Adapter
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The GGAD Model Loader’'s design follows the classmmpiler design pattern that
groups these modules into a front-end and a badk-me front-end contains the parser,
symbol table and syntax tree. The GGAD parser igemrin lex and yacc. It parses the
input GGAD files and builds the syntax tree and sgembol table in a similar way as

what a typical compiler’s front-end would do.

The back-end consists of the GGAD Transitions EtientEngine and the Atomic Model
Adapter. The former interacts with the syntax @med the symbol table to carry out the
state transitions, while the latter makes GGAD niwbdehave exactly the same as if they
were derived Atomic classes written in C++. Thisla;mie by the Atomic Model Adaptor
providing the same API as that provided by the Atoalass. Providing a consistent API
makes the integration of the GGAD model loader witih rest of the E-CD++ code
become easy.

Models Manager ang Back End

Front End
Processors Manag

)

Interfaces

Atomic Model Adaptor

(1a) Reads in

®)

Transactions

[ Table GGAD
Model
File

(4a) Transactio
|

Transactions
Execution
Engine

1
(4b) Transgctio
1

Syntax Tree

1
|
1
1
Figure24 GGAD Model Loader Architectural Overview

The interactions and relations among these modukedlustrated in Figure 24, and the

design walk-through of the GGAD parsing procesjslained as follows:
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1. Before the simulation cycle begins, the GGAD parsads in the GGAD model
file (1a) and constructs the symbol table and fimtax tree (1b).

2. When the simulation cycle begins, the Models Managed the Processors
Manager execute atomic models’ state transitiortfans at the scheduled time.
The Models Manager calls the transition functionlABrovided by GGAD’s
Atomic Model Adaptor. These APIs are consistenthwibhat defined in the
Model class, so that it does not require any speciallivapfor GGAD models.

3. The Atomic Model Adaptor calls the proper GGAD Ts#ions Execution Engine
APIs in order to fulfil the state transition reqteesbtained from the simulation
subsystem.

4. The Transitions Execution Engine starts to exedtitmteracts with the symbol
table (4a) and the syntax tree (4b) and carriestleitstate transitions. (The
Transitions Execution Engine is quite complex.désign is explained in section
4.4.4.)

4.4.1 GGAD Parser

The GGAD Parseris written in Lex and Yacc, which are the tooledido define the
context-free grammar of GGAD model files. The GGRBrser parses the GGAD model
file and builds the syntax tree and the symbolgalbhe implementation of the GGAD
Parser is encapsulated in tBgadParser class. The class diagram is shown in Figure
25.

The GgadParser object contains the symbol tajg@adSymTbl ) and the Transitions
Execution Engine ggadTransEngine ). Its parse() = method serves as the main
body of the parser, which performs two tasks inusege: it first calls the
initSymbolTable() method to initialize the symbol table and thensatll it the
GGAD keywords, which are summarized in Table 1 Wwelo
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GgadParser

ggadTransEngine: Ggadimpl
ggadSymTbl: GgadSymbolTable

initSymbolTable()
addFunction()
parse()

¢

Ggadimpl

See Figure 29

.

Figure25— GGAD Parser CtassDragraam

GgadSymbolTable

See Figure 26
.

Keyword | Description Example
in input port list in:in_portlin_port2 ...
out output port list out: out_portl out_port2 ...
state atomic model state list state statel state2 ...
initial initial state initial : statel
int Internal transition function| int: statel state2 out_port ! output_value {
ggad_transition_statements ... }
ext External transition function ext: statel state2 in_port ? input_value {
ggad_transition_statements ... }
infinite | infinite elapse time some_idle_staitafinite
var local variables list var: variablel variable2 ...
pi Constant Pi my_variable gi;

Table 1

GGAD Keywords

Since these keywords have special meanings in G@#dy,cannot be used for any other

purposes. That's why they are saved in the synaiétbefore the input file is parsed, so
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that when the parser encounters variable names, naones or state names during
parsing, it checks them against the keywords insgmebol table. If any of the keywords
are used as these names, the parser will raise@n FEurthermore, as part of the Symbol
Table initialization, theegisterFunctions() method is called by the constructor
of theggadSymTbl class to add GGAD built-in functions into the syhtable.

The second task that thmarse() method performs is to call th@ GADparse()
routine to start parsing proce§GADparse() is generated by the lex and yacc based
on the GGAD grammar, which is defined in AppendixtBarses the GGAD model file
and creates the syntax tree. It also adds moredgrtithe symbol table.

4.4.2 GGAD Symbol Table

The GGAD Symbol Tablestores input and output port names, state nanagble
names, keywords, and built-in functions. It is iepented by th&gadSymbolTable

class. The class has two data members given below:

* ggadSymbols is a dictionary of symbols, such as port nameste shames,
variable names, and keywords listed in Table 1.8ymebols in the dictionary are
represented by th&gadSymbol class and can be searched by their symbol
names. The symbols can be added to the dictionathdaddSymbol() and
setSymbolType() methods, and can be searched and retrieved by the

getSymbolType() method.

* The second data member, namghyadFunctionTable , is a built-in function
table. It is a dictionary data structure of <funatiname, function pointer> pairs.
That is, it a list of pointers t&gadFunc objects that are indexed by function
names. The built-in functions can be searched amdrieved by

getFunctionByName() method.
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Figure 26 is the class diagram fdegadSymbolTable , GgadSymbol, and

GgadFunc.
GgadSymbolTab GgadSymbol
ggadSymbols: map of o
<String, GgadSymbol> GaadFun hame: String
ggadFunctionTable: mag 9 type: Integer
of <String, GgadFunc*> numOfParameTters: Integer getName()
<> parameters: List of GgadValug getType()
setType
addSymbol () addParameter() ype(
isSymbol() execute()
getSymbolType()
setSymbolType() / \
registerFunctions()
initFunctionTable() | |
getFunctionByName() )
GgadFuncPi GgadFuncNotEqual GgadFuncCompare
GgadFuncAdd GgadFuncOr GgadFuncGreaterEqua GgadFuncBetween
GgadFuncGreater GgadFuncAnd GgadFuncEqual GgadFuncDivide
GgadFuncLess GgadFuncMultiply GgadFuncMinus GgadFuncValue
GgadFuncPow GgadFuncAny GgadFuncRand GgadFuncNot

Figure 26 GGAD Symbol Table Class Diagram

The GgadSymbol class is a simple class that contains slgebol name and its
associatecsymbol type . The symbol type determines if the symbol is a,pstate,
variable, or a keyword. The class constructor takethe symbol name as its input

parameter, so that the symbol name is stored whenGgadSymbol object is
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instantiated. Its symbol type, however, is setthiasetType()

method. The symbol

name and symbol type can be retrieved byg#t®&lame() andgetType() method.
Function Class Name Parameter Description of execute()
S method
value GgadFuncValue my_var Returns the value of variable
my_var
add GgadFuncAdd a,b Returnsa + b
minus GgadFuncMinus a, b Returnsa—b
multiply GgadFuncMultiply a, b Returnsa*b
divide GgadFuncDivide a,b Returnsa/b
pow GgadFuncPow ab Returns a to the power b
between GgadFuncBetween a, b, c Returns 1 if a <= b <=ittn6t
compare GgadFuncCompare a,b,c,dje Ifa<b,returh&@== b, return
d; else return e
equal GgadFuncEqual a, b Returns 1 ifa==Db 0 if not
notequal GgadFuncNotEqual a, b Returns 1 if a != b, O if not
less GgadFuncLess a, b Returns 1 if a < b, O if not
greater GgadFuncGreater a,b Returns 1 if a> b, 0 if not
greaterequal | GgadFuncGreaterEqual a, b Returns 1 if a >= b, 0 if not
and GgadFuncAnd a, b Returns (a && b))
or GgadFuncOr a,b Returns (a || b)
not GgadFuncNot a Returns 'a
any GgadFuncAny my_port| Returns 1 i_f the input_ port
my_port receives any input
values, O if not
rand GgadFuncRand a,b Returns a random number in
range [a, b]
pi GgadFuncPi N/A Returns 3.14159
Table 2

GGAD Built-in Functions (note: parameters a, b, ¢, d and e have

double data type; my_var and my_port are strings)

The first column in Table 2 are the function namgse 2% and ¥ column are the

associated class name and the parameter list tesgdgcwhile the last column describes

the implementation of thexecute()

method.
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The GGAD language specification defines 19 builfunctions. GGAD users can use
these functions to implement their state transifiorctions. The symbol table’s function
table @gadFunctionTable ) contains the behavioural specifications of these
functions. And the function table entries are @datby the method
GgadSymbolTable::registerFunctions() , Which is invoked by the class
constructor. Therefore, these built-in functions all available for execution once the
symbol table is constructed. This approach singsdithe GGAD parser’s design, which

would otherwise have to dynamically load the nedulgti-in functions.

Every built-in function table entry contains a pemto a GgadFunc object. The
GgadFunc class provides a data abstraction of a GGAD fonctlt contains two data
members: the list of function parameters and thal toumber of the parameters. The
functions parameters are added by #delParameter() method. Theexecute()

method is a pure virtual function that is overloddhg its subclasses.

The GgadFunc class has 19 subclasses, each of which speciiiegparticular built-in
function’s behaviour. These subclasses do not dotte any new data members or
methods. Their behaviours are differentiated byirthienplementations of the
execute() method. This method operates on the function peters and returns the
function’s result. Different functions have diffateimplementations. Table 2 illustrates

the various implementations of thgecute()  method.

4.4.3 GGAD Syntax Tree

The Syntax Treds used by the GGAD Transitions Execution Enginecarry out the
model simulation. It is a tree structure of Ggad8yNode class objects. The
GgadSyntaxNode class has 6 subclasses (referuoeR23 for the class diagram):

* GgadFunctionNode

» (GgadConstantNode

* GgadinputNode

* GgadPortinNode
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» (GgadVariableNode
» (GgadActionNode

In addition, theGgadActionNode class has 3 subclasses:
» GgadActionListNode
» (GgadSetVariableNode
* GgadNullActionNode

These classes, among with those representing th@atytable, form a run-time

presentation of the GGAD language schematics.Harowords, the symbol table and the
syntax tree provide the behaviours of an atomicehodterms of C++ objects that can

be executed during run time. As explained in thevisus section, the symbol table is
mainly used to store the input and output port raretate names, local variable names,
keywords, and built-in functions. The syntax trem,the other hand, mainly represents
the internal and external transition functions, sd@ontext-free grammar is defined in

Figure 28.

When parsing the input GGAD model file, the GGADd@a translates the elements of
the atomic model, such as input and output potétes, variables, and state transition
functions, into symbol table entries and GGAD synteode objects. Details of this

translation process are given below:

* When parsing the internal and external transitianctions from the GGAD
model file, the parser applies the grammar rules iecursively descendent order.
That is, it starts with applying rule 1 or ruledgpending on the transition type,
and recursively break the non-terminals into otihales. The non-terminal
“Actions” in rule 1 and 2 can be broken down intither a list of “Actions”
separated by semicolons (rule 9 & 12) includingui action (rule 10). For the
null action case, the parser simply createSgadNullActionNode object,
which has no data members or methods. In any otsas, the “ActionList” may

contain one or more “Actions” (rule 11 and 12); she parser creates a
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GgadActionListNode
and a method,addAction()

GgadSyntaxNode , and the parser cal&ldAction()

The ‘actions

is a list of pointers to

object, which contains a data membeagtions

to insert action objects

to the list.
GgadSyntaxNode
name()
evaluate()
GgadFunctionNode GgadConstantNode GgadinputNode
name: String ggadVariableValue: ggadFunctionPointer:
parameters: List of double GgadSyntaxNode*
GgadSyntaxNode* x ggadinputValue:
GgadConstantNode*
addPrameter() X
GgadActionNode
GgadVariableNode GgadPortInNode
gdeVariabIeName: portName: String
String
GgadActionListNode GgadSetVariableNode GgadNullActionNode
actions: List of ggadVariableName:
GgadSyntaxNode* String
ggadExpressionPointer:
GgadSyntaxNode*
addAction()

Figure27
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The non-terminal “Action” (rule 13) defines the $yx of local variables’
assignments. The parser createsGgadSetVariableNode object when
applying this rule. TheGgadSetVariableNode object contains two data
members: ggadVariableName and ggadExpressionPointer . The
former is a string representing the local variatdene, while the latter is a pointer

to GgadSyntaxNode representing the variable value, which is an “Espron”.

An “Expression” can be break down into a GGAD binlfunction call (rule 5), a
port name (rule 6), a variable name (rule 7) oumerical constant (rule 8). For a
function call (rule5), the parser createsGgadFunctionNode object. This
object contains thiunction_name and a list ofunction  parameters as
its data members. Rule 17 —19 define the syntafurmdtion parameters. When
applying one of these rules, the parser callgadFunctionNode 's

addParameter() = method to add the parameter to the object’s pasarst.

If the “Expression” is a port name (rule 6), thergem creates a
GgadPortinNode object, which has a string type data menbat_name .
Similarly, the parser creates a GgadVariableNode or a
GgadConstantNode object if the “Expression” is a variable name €ril) or a

constant (rule 8).

The last type of syntax node we need to introdsc&gadinputNode . This
syntax node is created when the parser reads implé value from an input port
defined in an external transition (rule 2). TBgadinputNode has two data
members: The ggadFuntionPointer data member is a pointer to
GgadSyntaxNode , which represents the “Expression” in rule 2. This
“Expression” is applied upon the input port witrethondition that triggers the
external transition to occur. For example, the egpion: “any ( myPort )” means

that if the input port “myPort” has any incomingtaarrived, start the external
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transition. The other data membeggadinputValue , is a pointer to

GgadConstantNode . It represents the incoming value at the port.

1) IntDef ->* int’" :’STATE STATE PortValueOutList Actions
2) ExtDef ->* ext’* :'STATE STATE Expression ?' CONSTANT Actions
3) PortValueOutList -> PORT * !'" Expression PortValueOutList

4) PortValueOutList -> /* empty */

5) Expression -> FunctionCall

6) Expression -> PORT

7 Expression -> VARIABLE_NAME

8) Expression -> CONSTANT

9) Actions ->* {" ActionList * }

10) Actions -> /[* empty */

11) ActionList -> Action * ;!

12)  ActionList -> ActionList Action ;)

13) Action -> VARIABLE_NAME * =’ Expression

14)  FunctionCall -> FUNCTION_NAME * (* ParameterList * )’
15) ParameterList -> Parameter

16) ParameterList -> Parameter , ' ParameterList

17) Parameter -> CONSTANT
18) Parameter -> VARIABLE_NAME
19) Parameter -> PORT

Figure28 Context grammar of GGAD internal and external transition functions

Figure 27 shows that GgadSyntaxNode class has iwoalV methods, name() and

evaluate(), that can be overloaded by its subcdasdee name() method simply returns
the class name as a literal string (mainly for dgjing purposes). The evaluate() method,
however, carries out syntax nodes activities. Thierént types of the syntax nodes,

introduced in Figure 27, have different implemeota (which are described in Table 3).

Note that it is our design intention to makgadSyntaxNode::evaluate() a pure
virtual function, so that its implementation in teebclasses can vary. This design has

two advantages:

» It makes the Syntax Tree is scalable and easyparek So, the GGAD language
evolution becomes relatively easy. Suppose, fomgia, in the future we want to

add confluent functions to GGAD. We only need tal al new subclass to
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GgadSyntaxNode class and implement the behaviour of confluenttions in

its evaluate() method. The rest of the backend code need nat thénged.

» It makes the interface between the Transitions &xac Engine and the Syntax
Tree very simple. This design takes the advantdgmlymorphism, so that the
Transitions Execution Engine only need to call thbstraction method
GgadSyntaxNode::evaluate() to execute various transition actions, as

opposed to finding different syntax node types eaiting different APIs.

Class Description of the evaluate() method

GgadFunctionNode 1Calls the mothod GgadSymbolTable::getFunctionByName
to retrieve the GGAD function (GgadFunc object)nfrohe
symbol table.

2. Uses GgadFunc’'s addParameter() method to add penane
to the function object

3. Calls function object’s execute() method (see Tadleto
execute the function and return the result

GgadConstantNode Returns the data member ggad\&ralbe, which stores the
constant value

GgadIinputNode 1 Calls ggadFunctionPointer->evaluate().
2. Calls ggadinputVaue->evaluate()
3. Returns 1 if return values from step 1 & 2 are shene; O

otherwise
GgadPortinNode Returns the data member portNamiehuhan input port name
GgadVariableNode Returns the value of the variatibd®se name is saved in the

data member ggadVariableName

GgadActionNode Nil operation

GgadActionListNode | Calls theevaluate() method of every syntax node in the
data membeactions

GgadSetVariableNodeCalls the evaluate() method of the syntax node tpdirby
ggadExpressionPointer. Then it assigns the valubewariable
with the name saved in ggadVariableName

GgadNullActionNode| Nil operation

Table3  Behavioursof the evaluate() method in GGAD syntax node classes

More details on the Transitions Execution Enginfe in the following section.
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4.4.4 GGAD Transitions Execution Engine

The GGAD Transitions Execution Engimethe main body of the GGAD Model Loader.
It is responsible for the executions of externaiteinal, output, and initialization
transition functions of the GGAD models. It inteisawith the symbol table and with the
GGAD syntax nodes objects to carry out the GGAD utation activities. The
implementation of the execution engine is encapsdlan theGgadimpl class, of which

the class diagram is shown in Figure 29.

Figure 29 shows that th@gadimpl class contains a collection of data members that

form a data portfolio for the GGAD model:

» First of all, the data membeymTable is a pointer to the symbol table, so that
the execution engine has direct access to it (giaatSymbolTable() and

getSymbolTable() methods).

 The Ggadimpl class contains a list of GGAD statgg#édStates ), which is
constructed by the parser. When parsing a state fhe GGAD file, the parser
calls the methods Ggadimpl::addState() and

Ggadlmpl::setTimeAdvance() to add the state and set its duration.

The GGAD state is represented by fBgadState class, which contains the
name of the state and its duration as the data mesmbhe state information can

be retrieved by the methdgigadimpl::getState()

» Ggadimpl also has a list of variableggadVariables ) as the data member.
This list is also built by the parser calling theédVariable() method during
parsing time. The variables in the list can beieedd by the method

getVariable()

74



Ggadimpl

symTable:
GgadSymbolTable*
ggadStates: List of
GgadState
ggadVariables: List of
GgadValue
ggadinputPorts: Hasl
Table of GgadPort
ggadOutputPorts:
Hash Table of
GgadPort
ggadExternalTrans:
GgadTransStore
ggadinternalTrans:
List of GgadTransint

GgadState

stateName: String
timeAdvance: Time

GgadPort

portName: String

addInPort()
getinPort()

getName()
getName()
getTimeAdvance()
getTimeAdvance()
GadFunc
GgadSymbolTable —_—
GgadSymbol
See Figure 26
\_/_ e
GgadTransint GgadTrans

outputsAtPorts: List

sourceState: String

addOutPort() of destinationState: String
getOutPort() GgadSyntaxNode* action: GgadSyntaxNode*
addState()
getState()
setTimeAdvance() getoutputs() operator=()
getTransExt() getDestination()
addTransIntOutput() GgadTransStore actionOnSyntaxNode()
getTransint()
getStateOutput() N ; )
setSymbolTable() TransitionsList: List
getSymbolTable() of GgadTransExt
addVariable() —
getVariables() addTransition()
findTransition() GgadTransExt
actionExpression:
GgadSyntaxNode*
GgadSyntaxNode
getExpression()
SeeFigure 2°
I ash
Figure29 GGAD Transitions Execution Engine Class Diagram
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The GGAD model's input ports and output ports ampresented by
Ggadimpl::ggadinputPorts and Ggadlmpl::ggadOutputPorts ,
respectively. Both of the data members are hadaiblgs ofGgadPort objects.
The GgadPort class contains the port name as its data memiath. IBts are
built by the parser, which calladdIinPort() and addOutPort() to add
input and output ports when parsing the GGAD fllbe elements in the two lists
can be retrieved by the method§&Sgadimpl::getinPort() and
Ggadimpl::getOutPort()

Finally, the data membeggadInternalTrans andggadExternalTrans
represent internal and external state transitioespectively. Astate transition
can be specified by three attributes: source stdstination state, and state
transition function. These attributes are reprekm theGgadTrans class as
its data members. The methddgadTrans::actionOnSyntaxNode()

carries out the state transition by updating theletie state from the source state
to destination state and also by executing thee stignsition function. The
transition function is represented by the data nesrattion , which is a pointer
to the Syntax Tree. TheactionOnSyntaxNode() method calls the
evaluate() method (see Table 3) in the Syntax Tree which @escthe state

transition actions defined in the GGAD file.

The data membeggadinternalTrans is a list ofGgadTransint , which
represents the internal state transition and thpuddunction. It is a list because
GGAD allows multiple definitions of internal stateansitions, and the list is
constructed byGgadimpl::addTransIntOutput() , Which is called by the
parser to add the internal transition function atite output function.
GgadTransint IS a subclass of GgadTrans. Its method
actionOnSyntaxNode() executes the internal transition function, white i

getOutPuts() method runs the output function.
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Similarly, the data memberggadExternalTrans is a list of
GgadTransExt , which represents the external state transitidms Tist is also
created by the parser callin@gadimpl::addTransExt() to add each
individual external transition. Thé&gadTransExt class is a subclass of
GgadTrans . Its actionOnSyntaxNode() method executes the external
transition function. It also contains a data mendadiedactionExpression ,
which is a pointer to the Syntax Tree. This datamiver represents the
“Expression” in rule 2 of the GGAD grammar in Figur28, and the
getExpression() method executes the expression by calling

actionExpression 's evaluate() method.

The Transition Execution Engine is used by the AtoModel Adaptor. The Adaptor
calls the member methods in tBgadimpl class to carry out state transitions. Details

about the adaptor are discussed in the followiotj@®

4.4.5 GGAD Atomic Model Adaptor

The Ggad class serves as ti#gomic Model Adaptor- a software adaptation layer that

encapsulates the GGAD Transitions Execution Engiaalescribed in Figure 30.

The Ggad class is a subclass of tAéomic class. Thus, it can provide the same public
methods as that provided Byomic :

* Model& Ggad::initFunction ()

* Model& Ggad::externalFunction ( const ExternalMegs& )

* Model& Ggad::internalFunction ( const InternalMegs&: )

* Model& Ggad::outputFunction ( const InternalMessé&ge

It is our design intention to make the Models Maragnd the Processor Manager from
the Modelling Subsystem only interface with theg@l®dprovided by th&gad class, so
that the detailed implementation of GGAD is hiddemay from other subsystems. This

77



decoupling makes implementation changes to GGAD,esnace they will not impact

other subsystems.

Model Ggad

myTransEngine: Ggadlmpl*
— modelState: AtomicState
- initFunction()

Atomic externalFunction() Gaadimol
internalFunction() gadimp
outputFunction()

—_— getActualState() —

Figure 30 GGAD Atomic Model Adaptor Class Diagram

On the implementation side, tlégad class needs to map its public methods to the
methods in the Transitions Execution Engine. Ittams a pointer to the Transitions
Execution Engine as its data member, namajifransEngine , so that it executes the
public methods by invoking the appropriate ExeaqutiEngine methods through
myTransEngine . Table 4 summarizes how tBgad methods employ the methods in

theGgadimpl class. Thos&gadimpl methods are explained in the previous section.

Ggad method name Implementation of the Ggad method

Ggad::initFunction() Calls myTransEngine->getState() to find the initial
state and setvodelState to initial state

Ggad::externalFunction() Calls myTransEngine->getTransExt() to execute
the external state transition function

Ggad::internalFunction() | Calls myTransEngine->getTransInt() to execute
the internal state transition function

Ggad::outputFunction() | Calls myTransEngine->getStateOutput() to
execute the output function

Table4  Implementations of the Ggad class methods

With the design of this adaptation layer, therefahe entire GGAD subsystem can be

seamlessly integrated into E-CD++.
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4.5 Simulation Subsystem

The Simulation Subsysteroonsists of Simulators, Coordinators, and the &ssars

Manager. Figure 31 shows the Simulation subsystem.

The Processorclass is the parent class for Simulator and Coatdr. So, it abstracts the
commonality between them. This class containsdhewing data members:
» EachProcessor has a uniqu@rocessor_ID , which is an integer. This ID is
used by the Processor Manager (PeqcessorAdmin  class) to keep track of
each Simulator and Coordinator.

 TheProcessor class uses two data members to keep the timeditiulation:

t Absolute time of last transition
N Time of next transition relative to
The lastChange() and nextChange() method returns [t and ty,

respectively. The absoluteNext() method returns ghsolute time of the next
transition, which is the sum qf andty.

*» The Processor class also contains a data member caflernalMsgs
which serves as thmessagebag of external messages. The message bag is a
device introduced by the P-DEVS formalism to acki@arallel simulation. Its
functionality is implemented by thilessageBaglass, which contains a list of
pointers to theMessage objects. (The Message class will be explainechi t
next section.) In addition, itaddExternalMessage() and eraseAll()
method are used by Processors to insert individwdrnal messages to the bag

and empty the entire bag, respectively.

* The last data member need to mentiomisdel , which is an instance of the
Model class. EachProcessor object contains onélodel object, which
reflects the one-to-one mapping relation betweecgssors hierarchy and models
hierarchy. Furthermore, the Processor's messagdldrarcan access the model’s

transition functions and port links through thisadenember.
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Root

initialize()
simulate()

stop()
addExternalEvent()
stopTime()
addDeadline()

Processor

MessageBag

model: Model
externalMsgs: MessageBal
next: Time

last: Time

processorld: Integer

msgs: List of Message*
msgCout: Integer
msgTime: Time

addExternalMessage()
eraseAll()

Simulator

Coordinator

syncSet: Set off
Modellds

imminentChildren()

Model

operator==()

operator=()
receivelnitMessage ()
receivelnternalMessage ()
receiveOutputMessage ()
receiveExternalMessage (
receiveDoneMessage ()
receiveCollectMessage ()
nextChange()
lastChange()
absoluteNext()

FlatDEVSCoordinator

syncSet: Set of Modelldg

imminentChildren()
nextChange()
lastChange()
absoluteNext()

ProcessorAdmin

processorsDatabase: Lig
of Processor*

5t

generateRoot()
generateProcessor()
add2DB()

Figure31

Furthermore, the Processor class defines the ppEstof handlers that respond to
various DEVS messages, including initializationtemal and external state transition,
output, collect and done messages. These methdtie Rrocess class, however, are

pure virtual functions which will be overloaded twe Simulator

class.

The Processor

FlatDEVSCoordinator

Simutation Subsysterm Ctass Diagram

, andRoot .
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TheSimulator  class implements the P-DEVS Atomic models, andemo
precisely, it is responsible for invoking the atormodel'sA(S), duxs Ant, Gon
functions. The message handler functions defingdefrocessor class are
virtual functions that are overloaded by Bienulator  class. The algorithms of
these message handlers have been described ionsgeti Other than inheriting
the data members and the methods fronPtloeessor  class, the Simulator
class does not introduce any new ones.
Similarly, theCoordinator  class implements the P-DEVS Coupled models.
Coordinator  objects are responsible to carry out the simulatiothe coupled
models. TheCoordinator  class also overloads the message handlers défined
theProcessor class. (The algorithms of these message handiweslteen
described in section 3.4.) Other than inheritirgdiata members and the methods
from theProcessor class, the&€Coordinator  class also adds a new data
member calledyncSet , which serves as the synchronization set in P-DEN'S
addition, the new methadchminentChildren() calculates the coupled
models imminent children and updates the synchatioiz set.
The Flattened Coordinator is implemented by EiatDEVSCoordinator
class. Its implementation is mainly the same asdhtheCoordinator  class,
except that it overloads thdastChange() , nextChange() and
absoluteNext() methods. Also, the Flattened Coordinator recearessends
messages directly from and to the Root Coordinator.
The last subclass derived froRrocessor is Root. It represents th&oot
Coordinator. Its simulate() method starts the simulation by sending the very
first initialization message to theop Coordinatoy and this method is invoked by
the Main Simulator. Similarly, thetop() = method is also used by the Main
Simulator to stop or abort the entire simulatiomeTRoot Coordinator is also
responsible for interacting with the environmerts. dddExternalEvent()
method receives the incoming external events, efliigeading from the External
Events Table or by receiving it directly from theal world via real hardware
ports in real-time mode. It then sends the cormedimy External Messages to the
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Top Coordinator. In addition, Root also advances @lobal Simulation Time

during every simulation cycle. In real-time simidat it binds the simulation time
with wall-clock time. In addition, itsaddDealine() method associates
deadlines to external events, so that deadlinelatin can be performed for real-
time DEVS.

The Processors Managerwhich is implemented by th@rocessorAdmin  class,
manages the Processor class objects. Every Procesgect is identified by its
Processor ID  data member. ThBrocessorAdmin  object is created by the Root
Coordinator. It maintains thBrocessors Database , Which is a hashing table of
pointers to Simulator and Coupled class objectshabactions, such as searching, can be
performed upon those objects. The methgederateRoot() is called in Root class
constructor to create the Root Simulator. And the ethod
generateProcessor(Atomic or Coupled) is called by the Models Manager
during the Models Hierarchy Tree construction tine create Simulators and
Coordinators, and it then calls thdd2DB() method to add simulators and coordinators

to the Processors Database.

4.6 Messaging Subsystem

The Messaging Subsysteim responsible for message delivery. Messagesused by
simulators and coordinators to exchange data anchsgnize activities. The nature and

usage of messages are explained in section 3.£WhBEVS is discussed in detail.

The Messaging Subsystem consists of the Messageagdarand various types of
Message objects. Figure 32 shows the class diagfatme subsystem. Simulators and
coordinators send messages via khessages Managewhich is implemented by the
MessageAdmin class. TheMessageAdmin object is responsible for delivering
messages among components (including both atondacaupled). It is created by the

Root Coordinator when it sends the very first aliation message to the Top

82



component. During its operation, it first bufferbet incoming messages to its

Unprocessed Message Queue , which is a queue of pointers to Message objects.

% Message

time: Time
destinationProcossorld: Integer

MessageAdmin

sendTo()
unprocessedQueue: g;?)i%()
Queue of Message* . operator==()
ﬂ operator=()
_ clone()
operator ==
b 0 type()

operator =()
run()

stop()
send()
OutputMessage InitMessage CollectMessage DoneMessage|
port: Port*
value: double
port() ExternalMessage InternalMessage
value()
port: Port*

value: double

port()
value()

Figure 32 Messaging Subsystem Class Diagram

These messages are then processed by the Messagagévliin the FIFO (first-in-first-

out) order. TheMessageAdmin class provides the following public methods.
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* Send (message, modellThis method is used by the simulators and
coordinators to sendraessagé¢o the component specified by tmedellD The
method simply adds theessag¢o the FIFO Message Queue.

* Run() This method is called by the Root Coordinatsifaulate() method
at the beginning of the simulation cycle. It loapsough theJnprocessed
Message Queue and sends out the messages by calling segidTo()
method defined in the Message class. Rba() method continuously checks
the message queue, and it stops only whestihyg() method is called.

» Stop() This method is used by the Main Simulator to stegpMessage Manager
when the simulation stops.

Messagesare represented by thMessage class. Its data membé&me records the
creation time of the message, and it can be reidw thetime() method. It also
contains message receiver’s ID (data mendestinationProcessorld ), which
is used by itssendTo() method to deliver the message to the destinafitis is
achieved by invoking the receiving processor's ragsshandler. A time-stamp (data
membertime ) for the message and an associavatlie are also included in the
Message object. The Message class has seven subclassespfewhich represents a

particular message type. Table 5 lists these mesypgs and their corresponding class

names.
Message Type Message Symbol Corresponding Class Nam
Initialization message I InitMessage
Collect message @ CollectMessage
Internal message * InernalMessage
Done message D DoneMessage
External message q ExternalMessage
Output message y OutputMessage

Table5  Various Types of Messages Supported by the Messaging Subsystem

Thetype() method in the Message class is a virtual funotbich is implemented by
each of the subclasses to return the correct medgpg. While all other message types
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contain only the time-stamp, message type, andnagéisin ID, the output and external
message also need to specify the message port assage value. Accordingly, the
OutputMessage and ExternalMessage  class contain two new data members:
port andvalue . The receiving components of these two types ofsages can

retrieve the ports and message values by callirg gbrt() and value() method
respectively.
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Chapter 5 Case Study

We have used E-CD++ to build a number of exampleshis chapter, we use one of
them as a case study to demonstrate how to use 45-QD develop a complete
embedded application. The example shows the creafian Automated Manufacturing
System (AMS), which evolves from a fully simulateersion to a model with hardware-
in-the-loop, and to a complete embedded applicafionillustrate how E-CD++ is used
to develop the AMS, we focus on the discussion g particular development phase
where the AMS is a hybrid system in which the seedl components are mixed and
interact with hardware surrogates. We will dematstthow the AMS is modelled as a
hybrid system and how GGAD notation is used for rtnadelling. We will then show
how the model is executed by E-CD++ in an embeddrdronment. We will examine

deadline checking, flattened coordinator perforneaand confluent function execution.

5.1 Modelling the AMS

Figure 33 shows the physical layout of the AMS, ehhtonsists of four workstations and
two conveyor belts to transport the products (A &)dEach of the four workstations
performs a specific task on a given product. Thalpct is partially built when it goes
through each of the workstations. The AMS also uses conveyor belts moving in
opposite directions carrying the products to thieedaled workstation. The production
cycle is organized by a scheduler, which dependthertype of piece being assembled.
The scheduler determines which station should vecand work on the product. The
AMS has real-time constraints (i.e., the producsthe delivered to and departure from

the predetermined workstations at the exact sckdduhe).

The AMS in this case study consists of two conveyeach conveyor has an engine and
a sensor controller), one controller unit, one dciher, one display controller, and two

notification bells, as shown in Figure 34.
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Station 1
Station 2
LA B !
Station 3
Station 4
Conveyor A Conveyor B

Figure 33 Cayoutof the AMS

The behaviour of each AMS component is describddlkmsvs:

The Schedulercontains the working schedule as for which statibave to work

on a specific product. It sends the schedule t&ihretrol Unit.

The Control Unit (CU)is the most complex part in AMS. It receives thkeslule
from the Scheduler and controls the two conveyeigure 35 represents a block
diagram of the CU.

The Scheduler sends schedules (external evenpertestation_ij indicating that
the product in conveyor bejthas to be sent to station Events received via
sensor_ij indicate that the product in conveygr has reached statiom

Consequently, the CU activates or deactivates tigtne of the corresponding
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conveyor (viadirection_jandactivate ). It can also signal the Display Controller
when the conveyor belt starts moving or a prodeeiches a new station (via

direction_display_pndstation_display )}

Schedule

Conveyor_A

q Engine

A\ 4

Controller Unit

Sensor Controller

A

A

Conveyor_B

> Engine

Display Bell A Bell B Sensor Controller
Controllel

Figure 34 Scheme of the AMS

* TheConveyorcontains a Sensor Controller and an Engine.Hifginedrives the
conveyor belt. It can move in both directions, &ednovements are controlled by
CU. The Sensor Controllereceives the working piece’s displacement location
from the engine, and forwards this information td,@vhich then determines the
next action for the engine (e.g., deactivation he tpiece has reached the

destination station, or activation if otherwise).
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station_1A

\ 4

Controller Unit

station_display_A

station_2/
direction_A#
station_3A —>
activation_A
station_4/ >
direction_display_A
sensor 1, >
sensor_2A bell_A R
sensor_3A > station_display
sensor_4A —>
station_1B direction_B -
station_28B > activation_B
station_3B R ”
station_4B direction_display B
sensor_1B g
sensor_2B bell_B >
sensor_3B
sensor_4B
Figure35 Diagram of the Controller Unit

The Display Controllerhandles the digital display (showing the locatadnthe
piece in each conveyor belt), based on the siginaia the Controller Unit. It
displays the moving directions of the 2 conveyerd the position statuses of the
moving products. The moving directions are disptbge the output value 0, 1, or
2 indicating stopping, moving forward, or movingckaard, respectively. The
position status of a moving piece is also showrvase ij, indicating that the
product in conveyof has reached station The Display Controller also has four
LEDs output ports, namelyedl, Led2 Led3 and Led4 These LEDs are
destination indicators, and each LED port is asgedi with one station. If, for

instance, Led3 is on (with value being 1), that nsea product needs to be
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transported to station 3. And the LED will be twneff (with value being 0)

when the product reaches its destination.

* There are twoNotification Bells one for each conveyor. Once the conveyor

finishes transporting the product to the destimasitation, the bell associated with

that conveyor will ring indicating the completiofThe actual completion time

will then be checked against the specified deadigfened by the Scheduler.)

5.1.1 Hybrid System Modelling

After defining a fully simulated version of the nmeddwe developed the AMS using

hardware-in-the-loop. To best demonstrate the wemknt of E-CD++ in this

development, this case study chooses to studytanrmiadiate development phase where

the AMS is a hybrid system in which the simulatednponents are mixed and interact

with the real hardware parts. In that developmdrasp, the real hardware parts are: the
Scheduler, the Display Controller, and the 2 Ncdifion Bells. And the rest of the AMS

components are still in simulation mode. Table Bsarizes the model composition of

the hybrid system. (Note that we model the SengmtiGller using graphical notations.

We will explain how this is done in the next sestjo

Component Name Component | DEVS Model | Graphical | Component
Type Name Notation Quantity
Used

Scheduler Real hardwarg N/A N/A 1

Display Controller Real hardwarée N/A N/A 1

Notification Bell Real hardware N/A N/A 1

Controller Unit Atomic model CU No 1

Conveyor Coupled model  ConveyorA, No 2

ConveyorB
Engine Atomic model| EngA, EngB No 2
Sensor Controller Atomic model ScA, ScB Yes 2

Table6  TheHybrid AMS Model

The resulting hardware-in-the-loop configuratiortloé hybrid system is shown in Figure

36. The Scheduler, Display Controller and NotificatBells interact with the simulated

90



Controller Unit through the real 1/0O ports on thevelopment board (i.e., SBC). The
Controller Unit interacts with the four hardwarengmonents the same way as if they

were simulated atomic components.

Scheduler Display controller Bell A Bell B

Microcontrollel

E-CD++ running on SBC

Conveyor_A

Controller Unit

> Engine

|

Sensor Controller

Conveyor_B

Engine

|

Sensor Controller

Figure 36 Hybrid AMS Scheme (scheduler, display and bellsin hardware)

In order to model this hybrid system, we need téindethe DEVS model for the
simulated portion of AMS and identify the model/®©Ilports that interface with real
hardware. We first need to define the componentalsly and the port linkage among
the components. This is defined in the DEVS moilie] $hown in Figure 37. The DEVS
model file defines CU as an atomic model (line 538) and Conveyor as a coupled
model (line 35 — 56), which consists of two atommodels: Engine (line 59 - 62) and
Sensor (line 63 - 66). Note that the two Sensort©@bars are defined in GGAD

graphical notation, which are stored in sensorA.@oiet 64) and sensorB.cdd (line 66)
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file. (We will use the GGAD model to examine E-CDgraphical modelling capability.

More details will follow in the next section.)

1. [top]

2. components : conveyorA conveyorB cu@ECU

3. in: btn1A btn2A btn3A btn4A btn1B btn2B btn3B btn4 B

4. out : ledl led2 led3 led4 stn_disp_A stn_disp_B dir n_disp_A dirn_disp_B
bellA bellB

5. Link: btnlA blA@cu
6. Link: btn2A b2A@cu
7. Link : btn3A b3A@cu
8. Link: btn4A b4A@cu
9. Link: btnlB b1B@cu
10. Link : btn2B b2B@cu
11. Link : btn3B b3B@cu
12. Link : btn4B b4B@cu

13. Link : activate_ A@cactivate_ A@conveyorA
14. Link : direction_eng_A@cudirection_eng_A@conveyorA
15. Link : activate_B@cactivate_B@conveyorB
16. Link : direction_eng_B@cudirection_eng_B@conveyorB

17. Link : slIA@conveyorA s1A@cu
18. Link : s2A@conveyorA s2A@cu
19. Link : s3A@conveyorA s3A@cu
20. Link : s4A@conveyorA s4A@cu
21. Link : s1B@conveyorB s1B@cu
22. Link : s2B@conveyorB s2B@cu
23. Link : s3B@conveyorB s3B@cu
24. Link : sAB@conveyorB s4B@cu

25. Link : 11@cu led1
26. Link : 12@cu led2
27. Link : I3@cu led3
28. Link : l14@cu led4
29. Link : ringBellA@cu bellA
30. Link: ringBellB@cu bellB

31. Link: station_display_A@cu stn_disp_A
32. Link: station_display_B@cu stn_disp_B
33. Link: direction_display_A@cu dirn_disp_A
34. Link : direction_display_B@cu dirn_disp_B

35. [conveyorA]

36. components : engA@engine scA@sensorboxA
37. in: activate_A direction_eng_A

38. out: s1A s2A s3A s4A

39. Link : activate_/startstop@engA

40. Link : direction_eng_Aengdirection@engA
41. Link : senlA@scA s1A

42. Link : sen2A@scA s2A

43. Link : sen3A@scA s3A

44. Link : sendA@scA s4A

45. Link : floor@engA s1A_eng@scA

46. [conveyorB]

47. components : engB@engine scB@sensorboxB
48. in : activate_B direction_eng_B

49. out:sl1B s2B s3B s4B

50. Link : activate_Bstartstop@engB
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51. Link : direction_eng_Bengdirection@engB
52. Link : sen1B@scB s1B

53. Link : sen2B@scB s2B

54. Link : sen3B@scB s3B

55. Link : sen4B@scB s4B

56. Link : floor@engB s1B_eng@scB

57. [cu]
58. preparation : 00:00:00:200

59. [engA]
60. preparation : 00:00:01:000

61. [engB]
62. preparation : 00:00:01:000

63. [sCA]
64. source : sensorA.cdd

65. [scB]
66. source : sensorB.cdd

Figure37 Definition of the AMS system in E-CD++

The DEVS model file in Figure 37 also defines theut ports (line 3) that connect to the
Scheduler and the output ports (line 4) that contee¢he Display Controller and the
Notification Bells. Through these 1/O ports, thenslated models interact directly with

the hardware components.

Figure 38 is the graphical presentation of the AM&del file, which shows the port
linkage more intuitively. From Figure 38, we seattthe Scheduler hardware sends the
command to CU by writing to one of its 8 input gorindicating the destination station.
The CU then forwards the command to one of the €gons via the “activate” and
“direction” port links shown in the figure. The G@yor then forwards the command to
the Engine through the ports connecting these tarmponents. While executing the
command, the Engine outputs its operation statubdgdSensor via its output port. The
Sensor then forwards the Engine status to the Gomnyehich once again forwards the
message to the CU, which then sends the transiportstatus to the Display Controller
through its output ports. If the working piece ha@ached its destination, the CU will also
notify the Notification Bells. All these informatioexchanges are done via the port links

shown in Figure 38.

93



Controller Unit Conveyor_A

Engine A

m—’ startStol
direction eng I—’ directior |

activate_A

\4

direction_eng_A

y

8 . floor
% o button: P
s1A |« s1A senlt Sensor A
) s2A S2A sen2/
4 LEDs S3A S3A sen3/ s1A _eng
2 s4A S4A sen4/

Station display A & B
2 Conveyor_B

Direction display A & B )
Engine B
activate_B activate f |—> startStop
| direction enq | direction eng | I_’ directior |
i floor
s1E |« S1E senlE Sensor B
s2E s2E sen2E
S3F l¢——| S3E <en3F s1B_en
SAF  j&——| s4E sen4E

Figure 38 Modelling Scheme of the Smulated Part of AMS

5.1.2 GGAD Graphical Modelling

In this experiment, we define the Sensor ContralkeGGAD graphical notations. To
illustrate, Figure 39 shows the graphical notatiérSensor Controller A, ascA. scA
has one input ports(LA) and four output ports (senlA, sen2A, sen3A amdiAg The
input port connects to the conveyor’s engine. Wtrenconveyor delivers the working
product to a particular workstation, the engind s&nd the workstation number $0A
through its input pors1A. The 4 output ports of scA correspond to the 4kat@ations
respectively. After receiving the input from thegere, scA will toggle the output port

which corresponds to the input workstation number.
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SCA

Position1
TL=0

____________________________ sen2A : ]
s1A: intege> Positionl >
TL=0
~~~~~~~~~ sen3A : ]
\s‘lA_\eng ?4 ?Sig’onl >
\ sendA : ]

sendAl

Position1
TL=0

External transitio
Internal transitio

v

Figure 39

GGAD Graphical Notation of the Sensor Controller

The graphical notation will be automatically corteerto the GGAD model file. Figure

40 shows the generated GGAD model file of SensoitiGber A.

1. [scA]
2. in: s1A_eng
3. out: senlA sen2A sen3A sen4A
4. var : cur_value last_value
5. state: idle positionl position2 position3 position4
6. initial: idle
7. ext: idle positionl equal(s1A_eng, 1)?1 {cur_value =slA _eng;}
8. ext: idle position2 equal(s1A_eng, 2)?1 {cur_value =slA _eng;}
9. ext: idle position3 equal(s1A_eng, 3)?1 {cur_value =slA_eng;}
10.  ext: idle position4 equal(s1A_eng, 4)?1 {cur_value =slA _eng;}
11.  int: positionl idle sen1Al!1 {last_value = cur_value i}
12.  int: position2 idle sen2A!1 {last_value = cur_value i}
13. int: position3 idle sen3A!l {last_value = cur_value i}
14.  int: position4 idle sen4Al1 {last_value = cur_value i}
15. idle: infinite
16.  positionl: 0:0:0:0
17.  position2: 0:0:0:0
18.  position3: 0:0:0:0
19.  position4: 0:0:0:0
20. cur_value: 1
21. last_value: 1
Figure 40 GGAD Mode File of the Sensor Controller

Sensor Controller A has connections to Engine A@bdas shown in Figure 38. We can

see, in Figure 38, thacA has one input pors{A_eng) and 4 output portssénlA,
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sen2A, sen3A, andsen4A). These ports are also defined in the GGAD maitee(line
2-3). ThescA’s external transition function is defined in line-240 of Figure 40. When
an external message arrives at the input bt eng , the input value N is an integer in
range [1, 4], denoting the station where the produgcrently arrives. The external
transition function checks this message value, u&GAD built-in functionequal

(s1A_eng, N)?1 , and moves the model state from idle to positign{N

Since the elapsed time of the position{N} stateaso (line 16—-19), the internal transition
function (line 11 — 14) is triggered immediatelyeafthe external transition. It sends the
output value of 1 to output port sen{N}A, where 8lthe same as that in position{N},
and moves the model state back to idle, whichagptssive state (as defined in line 15).

E-CD++ is able to load the Sensor Controller GGADBdel file and simulate the model
behaviour described above. This graphical modeltiagability reduces our modelling
efforts. Without this technique, the modeller haswrite a C++ class for the Sensor

Controller. For comparison, a C++ implementatioahiswn in Figure 41.

SensorBoxA::SensorBoxA( const std::string &name ) : Atomic( name ),
s1A_eng( addinputPort( "s1A_eng")), sen1lA( addOutp utPort( "senl1A")),
sen2A( addOutputPort( "sen2A")), sen3A( addOutputP ort( "sen3A")),
sen4A( addOutputPort( "send4A")), preparationTime( 0 ,0,0,0){

if( time I="") preparationTime = time ;
}

Model &SensorBoxA::initFunction() {
cur_value = last_value = 1;
return *this ;

}

Model &SensorBoxA::externalFunction( const External Message &msg ) {
/I New value arrived on the input port
if( msg.port() == s1A eng) {
cur_value = msg.value();
holdIn( Atomic::active, preparationTime );

}

return *this;
}

Model &SensorBoxA::internalFunction( const Internal Message & ) {
passivate();
return *this ;

}
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Model &SensorBoxA::outputFunction( const InternalMe ssage &msg ) {
if (last_value != cur_value) {

if (cur_value == 1){ sendOutput( msg.time(), senlA,1);}
else if (cur_value == 2){ sendOutput( msg.tim e(),sen2A,1);}
else if (cur_value == 3){ sendOutput( msg.tim e(),sen3A,1);}
else if (cur_value == 4){ sendOutput( msg.tim e(),sendA,1);}
else last_value = cur_value;

}

else

return *this ;

}
Figure4l The Sensor Class

We can see that the GGAD notation is also simpian the C++ code. Furthermore, the

GGAD model file can be formally validated, wherdélas C++ code cannot.

5.2 Model Execution using E-CD++

This section defines an experimental frame forAMS simulation. We use it to test the
hybrid AMS. As explained in the previous sectidme hybrid AMS has four hardware
components — the Scheduler, the Display Contraltet the two notification bells, and
the rest of the components are in simulation. Oxppeement runs tests on every

component.

The experiment starts with creating the work iteneslule. The schedule is generated by
the Scheduler. It defines which stations have tokvem a specific product at what time.
The Controller Unit (CU) controls the movement betConveyors according to the
schedule. So, the schedule serves the same rale @sternal event file sent to the CU.

Figure 42 is the schedule we use for this experimen

Start tine Associ at ed i nput port associ at ed val ue
deadl i ne out put port
00:00:02:100  00:00:05:300 Bin3A bellA 1
00:00:06:130  00:00:10:300 Bin4B bellB 1

Figure42 An experimental event file generated by the scheduler

The initial conditions of the experiment are: (¢ product is always placed on the first

workstation of each conveyor belt, and (2) the expent starts at time 00:00:00:000
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(The time format is hh:mm:ss:msec). The valuef©iendchedule are relative to the initial

conditions. In Figure 42, there are two schedudettg:

* The first task is scheduled to start at time O@AMOO. It requires Conveyor A to
move the product from workstation 1A to workstati®A before the deadline
00:00:05:300. This is done by the Scheduler sendisggnal to the CU’s input
portbtn3A (which corresponds to the workstation 3A) at tidde00:02:100. The
CU’s output portellA
the CU rings Bell A (by writing value 1 to its ouwtipport bellA ). E-CD++

is used for deadline checking. When the task coespe

compares this completion time against the specdestline.

» Similarly, the second task is scheduled to statina¢ 00:00:06:130. It requires
conveyor B to move its product from workstation tbBvorkstation 4B before the
deadline 00:00:10:300.

The CU component running on the SBC interacts with Scheduler chip via 1/0O ports

and sends the simulation results to the Display ti©ber. Figure 43 shows the

experiment results displayed by the Display Coldrol

act ual out put time|Associ at ed resul t out put port [val ue
(physi cal tinme) deadl i ne
00:00:02:300 No deadline |Led3 1
00:00:02:300 No deadl i ne |dirn_disp_a 1
00:00:03:350 No deadline |stn_disp_a 21
00:00:04:350 No deadl i ne |stn_disp_a 31
00:00:04:350 No deadline |dirn_disp_a 0
00:00:04:350 No deadline |Led3 0
00:00:04:360 00]00:05:300 Succeeded Bell A 1
00:00:06:330 No deadline |Led4 1
00:00:06:330 No deadl i ne |dirn_disp_b 1
00:00:07:380 No deadline |stn disp_b 22
00:00:08:380 No deadl i ne |stn_disp_b 32
00:00:09:380 No deadline |Stn_disp b 42
00:00:09:380 No deadl i ne |dirn_disp_b 0
00:00:09:380 No deadline |Led4 0
00:00:09:380 00{00:100:300 Succeeded Bell_B 1
Figure43 Simulation results displayed by the Display Controller

The result in the first column of Figure 43 shoWwsdctual timeat which the output has
been sent, which is the wall-clock value at thaeti(the time elapsed since the beginning
of the simulation execution). The second colummghtheassociated deadline tinfer

98



the given event. The third column indicates whetherdeadline has been mee(the
actual output time< the associated deadline). Finally, i&put portsand theiroutput

valuesare shown in the remaining two columns, respedtivel

5.2.1 Executions of Simulated Components

As mentioned earlier, the hybrid system has thtemi@ models running in simulation
mode: Engine , Sensor , and Controller_Unit . E-CD++ provides a runtime
environment for these 3 models to interact eackroffheEngine andSensor model
work together to constitute the behaviour of theupted modelConveyor . The
Engine model is written in C++. Its inputs ports are ceated to theController

Unit . When an external message is sent from the CUEtiggne’s external transition
function (Figure 44) will be executed. The extertrahsition function mainly sets the

Engine model to new states based on the input values.

Model &Engine::externalFunction( const ExternalMess age &msg ) {
if ( msg.port() == startstop ) {
if ((msg.value() == 1) && ( 'working ) }{
if (cur_direction==1) {
ready2Up = true;
holdIn( Atomic::active, preparationTime2 Start);

else if (cur_direction == 2){
ready2Down = true;

holdIn( Atomic::active, preparationTime2 Start);
}
else if ( (msg.value() == 0) && (working ) ) {
ready2Stop = true;
holdIn( Atomic::active, preparationTime2Stop );
}
}

/I Second, is it a direction request?
else if (msg.port() == engdirection) {
if ('working) {
cur_direction = msg.value();
}
}

return *this;
} /1 End of dExt

Figure44 External Transition Function of the Engine Model

After the external transition is finished, E-CD++llvexecute theEngine’'s Internal

Transition Function (Figure 45), which will set thewta(s).
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Model &Engine::internalFunction( const InternalMess age &) {
/l Was it ready to stop? -> STOP
if (ready2Stop) {
working = 0;
cur_direction = 0;
ready2Stop = false;

/l Was it ready to go forward? -> GO FORWARD
else if (ready2Up ) {

working = 1;

cur_direction = 1;

ready2Up = false;

next_floor = cur_floor + 1;

holdIn( Atomic::active, floorTime );

}

/l Was it ready to back? -> GO BACKWARD
else if (ready2Down ) {

working = 1;

cur_direction = 2;

ready2Down = false;

next_floor = cur_floor - 1;

holdIn( Atomic::active, floorTime );

}
/[ This is a new station now! Going forward?
else if (working && (cur_direction==1)) {
cur_floor = next_floor;

next_floor = cur_floor + 1;

holdIn( Atomic::active, floorTime );

/I Going backwards?
else if (working && (cur_direction==2)) {
cur_floor = next_floor;
next_floor = cur_floor - 1;
/I Next transition depends on time that takes to go back 1 station,
/I unless external event received
holdIn( Atomic::active, floorTime );
}
else
passivate();
return *this ;
} /1 End of dint

Figure 45 Internal Transition Function of the Engine Model

Whenta(s) is elapsed, E-CD++ will executengine’s  Output Function (Figure 46),
which sends an external message toStesor model (which is built in GGAD). Note
that, via this external message, tgine model’'s activities are synchronized with the

Sensor model. This is how these two models work together.

Model &Engine::outputFunction( const InternalMessag e &msg ) {
/I If this is not happening while ready to stop,
/it is a station forward or backward, then issu e the value
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if ('ready2Stop) {
/' Working and going forward, inform new stati on
if (working && (cur_direction==1) ) {

/I Send the next station, that will be set

/I as current station in dint, immediately

sendOutput( msg.time(), floor, next_floor ) ;

/I Working and going backwards, inform new sta tion
else if (working && (cur_direction==2) ) {
/I Send the next station, that will be set a S

/I current station in dint, immediately
sendOutput( msg.time(), floor, next_floor )

}
}

return *this;

}
Figure 46 Output Function of the Engine Model

When conducting this experiment, we recorded thesages generated during E-CD++
runtime. The message log is an important deviceérdoe and examine the internal
activities of the simulated models, as well asrtivgeractions. It serves as a supplement
to the output file (shown in Figure 43) for verdion purposes. To illustrate how the
message log can be used for verification, conglteesample portion of the message log
shown in Figure 47.

. Line 1 shows that the simulation started at time&dQ@@0:000, which is what we
expected. (Time is wall-clock time.)

. Line 3 shows that an external event arrived to ptrBa at time 00:00:02:100.
This was the first scheduled event by generate&dhneduler.

. Line 5 shows that th&ontroller_Unit 's external transition function is

executed at the same time to handle this exteusste

. Line 13 and 14 are where tBagine’s external transition function is called.
. Line 33 is where th&ngine’s  output function sends an external message to the
Sensor .
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CENoTO~WNE

MSG

MSG:
MSG.

MSG:
MSG

MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG

MBG

MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MSG:
MBG

MSG:
MSG:

I / 00:00:00:000 / Root(00) TO flattop(01)

D / 00:00:00:000 / flattop(01) / ... TO Root(0 0)

X/ 00:00:02:100 / Root(00) / btn3a / 1. 00000 TO flattop(01)
*/00:00:02:100 / Root(00) TO flattop(01)

X/ 00:00:02:100 / flattop(01) / b3a / 1. 00000 TO cu(08)
*/00:00:02:100 / flattop(01) TO cu(08)

D/ 00:00:02:100 / cu(08) / 00:00:00:200 TO fl attop(01)

D /00:00:02:100 / flattop(01) / 00:00:00:200 TO Root(00)

@ / 00:00:02:300 / Root(00) TO flattop(01)

@ / 00:00:02:300 / flattop(01) TO cu(08)

Y /00:00:02:300 / flattop(01) / led3/ 1 .00000 TO Root(00)

Y / 00:00:02:300 / flattop(01) / dirn_disp_a / 1.00000 TO Root(00)
X/ 00:00:02:300 / flattop(01) / engdirection/1. 00000 TO enga(03)

X/ 00:00:02:300 / flattop(01) / startstop / 1.00000 TO enga(03)
D /00:00:02:300 / cu(08) / ... TO flattop(01)

D /00:00:02:300 / flattop(01) / 00:00:00:000 TO Root(00)

* [ 00:00:02:300 / Root(00) TO flattop(01)

*/00:00:02:300 / flattop(01) TO enga(03)

* [ 00:00:02:300 / flattop(01) TO cu(08)

D / 00:00:02:300 / enga(03) / 00:00:00:050 TO flattop(01)

D /00:00:02:300 / cu(08) / ... TO flattop(01)

D /00:00:02:300 / flattop(01) / 00:00:00:050 TO Root(00)
@ / 00:00:02:350 / Root(00) TO flattop(01)

@ / 00:00:02:350 / flattop(01) TO enga(03)

D/ 00:00:02:350 / enga(03) / ... TO flattop(0 1)

D / 00:00:02:350 / flattop(01) / 00:00:00:000 TO Root(00)
*/00:00:02:350 / Root(00) TO flattop(01)

* [ 00:00:02:350 / flattop(01) TO enga(03)

D /00:00:02:350 / enga(03) / 00:00:01:000 TO flattop(01)

D / 00:00:02:350 / flattop(01) / 00:00:01:000 TO Root(00)
@ / 00:00:03:350 / Root(00) TO flattop(01)

@ / 00:00:03:350 / flattop(01) TO enga(03)

X/ 00:00:03:350 / flattop(01) / sla_eng / 2.00000 TO sca(04)
D /00:00:03:350 / enga(03) / ... TO flattop(0 1)
D / 00:00:03:350 / flattop(01) / 00:00:00:000 TO Root(00)

* [ 00:00:03:350 / Root(00) TO flattop(01)

:*/00:00:03:350 / flattop(01) TO enga(03)
:*/00:00:03:350 / flattop(01) TO sca(04)

: D /00:00:03:350 / enga(03) / 00:00:01:000 TO flattop(01)
: D /00:00:03:350 / sca(04) / 00:00:00:000 TO f lattop(01)
: D /00:00:03:350 / flattop(01) / 00:00:00:000 TO Root(00)

By examining the messages, we can verify if thevitiets are done at the right time with

Figure 47 Sample Message Log Trace

the right values.

5.2.2 Measurements on Flattened Coordinator’'s Performance

We want to use this experiment to measure the pedioce improvements gained from

the flatten coordinator technique. To do that, wetfcompare the flattened model
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hierarchy with the original model hierarchy. Thégoral AMS model, shown in Figure
38, is a two-level hierarchy. The Controller and tvo Conveyors are at the upper level,
and the Engines and Sensors are at the bottom. l&jghout Flattened Coordinator
technique, messaging needs to go through this éwel-imodel hierarchy. For instance,
suppose that a user presses a button (an inpubpdine Controller Unit) that triggers the
activation of Engine A. To simulate this event, thentroller Unit simulator sends an
external message from its output pacdtivate_ A  to the Conveyor_A models input
port activate_ A . When the coordinator conveyor_A receives this gags, it then
sends an external message from its input adiivate_ A to the Engine_A model’s
input portstartStop , which triggers Engine_A to start. In this simidat example,
two messages need to be generated before Engia@ Aecactivated. We can see, from
this example, that in order to complete the simogatmessages must be generated at
every level of the model hierarchy. Therefore, peeformance will be improved if we

can eliminate middle levels in the hierarchy.

In comparison, the Flattened Coordinator technitpteens the AMS model hierarchy by
eliminating the coordinators and hence reducingrtheber port links. The technique
rewires any port link that link to a coupled modekctly to the far-end atomic model..
For example, after the rewiring, the Controller tniport activate_ A is directly
linked to the Engine A'startStop  port. Also, the two coupled models, conveyor A
and B, are eliminated. Moreover, the technique asdgres any atomic model’s output
port that originally links to a coupled model dilgco the far-end atomic model. The
two Sensors output ports, for example, are diretitiked to the Controller Unit,
eliminating the intermediate links to the Conveygrerts. From the comparison, we
observe that the flattened model has less pors lihéin the original model, which implies
that the simulation will also generate less numifemessages if we use the flattened

model.

The simulator's performance is measured by the rummbmessages it generates during
the simulation. The fewer the messages, the b#ieemperformance of the simulator.
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Figure 48 shows a portion of the message log delieduring the AMS simulation using

the flattened coordinator technique.

MSG: | / 00:00:00:000 / Root(00) TO flattop(01)

MSG: D / 00:00:00:000 / flattop(01) / ... TO Root(0 0)

MSG: X / 00:00:02:100 / Root(00) / btn3a/ 1.0 0000 TO flattop(01)
MSG: * / 00:00:02:100 / Root(00) TO flattop(01)

MSG: X / 00:00:02:100 / flattop(01) / b3a/ 1. 00000 TO cu(08)
MSG: * / 00:00:02:100 / flattop(01) TO cu(08)

MSG: D/ 00:00:02:100 / cu(08) / 00:00:00:200 TO fl attop(01)

MSG: D/ 00:00:02:100 / flattop(01) / 00:00:00:200 TO Root(00)

MSG: @ / 00:00:02:300 / Root(00) TO flattop(01)
MSG: @ / 00:00:02:300 / flattop(01) TO cu(08)

MSG: Y / 00:00:02:300 / flattop(01) / led3/ 1 .00000 TO Root(00)
MSG: Y / 00:00:02:300 / flattop(01) / dirn_disp_a / 1.00000 TO Root(00)
MSG: X / 00:00:02:300 / flattop(01) / engdirection [/ 1.00000 TO enga(03)
MSG: X / 00:00:02:300 / flattop(01) / startstop / 1.00000 TO enga(03)
MSG: D/ 00:00:02:300 / cu(08) / ... TO flattop(01)

MSG: D/ 00:00:02:300 / flattop(01) / 00:00:00:000 TO Root(00)

MSG: */ 00:00:02:300 / Root(00) TO flattop(01)
MSG: * / 00:00:02:300 / flattop(01) TO enga(03)
MSG: */ 00:00:02:300 / flattop(01) TO cu(08)

MSG: D/ 00:00:02:300 / enga(03) / 00:00:00:050 TO flattop(01)
MSG: D/ 00:00:02:300 / cu(08) / ... TO flattop(01)
MSG: D/ 00:00:02:300 / flattop(01) / 00:00:00:050 TO Root(00)

MSG: @ / 00:00:02:350 / Root(00) TO flattop(01)
MSG: @ / 00:00:02:350 / flattop(01) TO enga(03)

Figure48 Message Log Generated During the AMS Simulation

To measure the performance improvements made by Hadened Coordinator

technigue, we used the AMS event file in Figuramaur experiment. We compared the
number of messages generated during the simulasorg the Flattened Coordinator
technique with that generated by not using the riegle. There are 257 messaged
generated when the technique is used, compared 3@Bhmessages generated when

otherwise. So, the performance improvement rat88i.

We now compare the performance improvement rattaioéd from the experimental
results with the theoretical value. The original EMomponent hierarchy contains 7
nodes, and this number is reduced to 5 by thedrlatt Coordinator technique (Figure
49).
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Root

Conveyor A Cu Conveyor B
Engine A Sensor A Engine B Sensor B
(a) Original Hierarchy
Root

Flattened Coordinator
Engine A Engine B Cu Sensor A Sensor B

(b) Flattened Hierarchy
Figure49 Origmal AMtSMode Hierarchy Vs, Frattened Hierarchy

Based on the theory we developed in section 3 thkoretical improvement ratio is

29%, comparing to the experimental result of 33%{& 7 shows the calculations).

Theoretical Result

Experimental Result

R=1-(R/P)=1-5/7=29%

(385 —257) /385 = 33%

Table7

Flattened Coordinator Technique
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Theoretical Vs. Experimental Performance |mprovement Ratio of

There is a 12% difference between the two resuhis disagreement is resulted from the
bias of the data sample collected by the experimBms experiment only ran a small
simulation of processing two external events. Wharger simulations were run, the

experimental results tended to agree more withdhtite theoretical.




5.2.3 Execution of Confluent Functions

Confluent functions are introduced by the P-DEV&alism to resolve the conflict
when, in an atomic model, the internal transitiod ¢he external transition happen at the
same time. The confluent function is called to kréae tie. The confluent functions
feature is a major difference between the parél@#+ and the non-parallel version. In
the non-parallel CD++, the internal transition Ievays executed first to break the tie.
The confluent function, however, gives the modettex control to define the conflict

resolution.

As an experiment, a confluent function is definedthe Controller Unit (CU). The
external transition function in the CU, as shownHRigure 50, handles the incoming
events from the scheduler and the signals froms#msor controllers in the conveyors.
The internal transition function sets the CU moslétiternal state variable. The variable
is called button_enabled ", which has impact on the logic of the externahsition
function. If the CU detects that conveyers arel stéinsporting the products, its
button_enabled variable is set to false. As a result, the CU’'semal transition
function ignores any external events coming through buttons input port. The
button_enabled variable is set to true by the internal transitfanction when the
conveyor delivers the product to its destinatioatish. By then, the CU can start to

handle the events coming through the buttons ipptttagain.

When the product reaches a station, the sensorotientof the conveyor sends a signal
to the CU indicating the current product positidhe CU’s external transition function
handles this external event, and based on the prgasition information, the CU make
decisions to control the conveyor’s engine (e.gntinue moving or stopping). When this
external transition time is elapsed, the internahgition function will be invoked to set
the button_enabled value. If the product has reached the destination,

button_enabled  will be set to true. Otherwise, it will remain $al
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Model &ECU::confluentFunction( const InternalMessag e &msg, const
MessageBag &msgbag ){
internalFunction( msg );

MessageBag::iterator cursor = msgbag.begin();
for( ; cursor = msgbag.end(); cursor++) {

if ( ((*cursor)->port() == b2A) && (cur_station _A==21)) {
led2 = true;
req_station_A = 21;
direction_A = 0; /Istop engine!!!
holdIn(Atomic::active, Time::Zero);
lelse{
externalFunction( *(( ExternalMessage* )( *cu rsor)));
Ylif-else
Y/for

return *this;
Y/IECU::confluentFunction

Figure 50 Confluent Function of the Controller Unit

Conflicts may rise when a button is pressed as#raee time when the internal transition

function should also be invoked (i.e., t_n = Ogufe 51 is an example of this situation.

Event tinme Associ at ed i nput port associ at ed Val ue
deadl i ne out put port
00:00:02:100  00:00:05:300 Bin3A bellA 1
00:00:03:550  00:00:05:300 Bin2A bellA 1

Figure51 A schedule eventsfile that can cause conflicts

In the initial state, the product is placed atistatl. At the time 00:00:02:100, the button
3A is pressed indicating that the product needsettransported to station 3. At the time
00:00:03:550, the button 2A is pressed. Figuressthe non-parallel CD++ simulation
output of these 2 events.

act ual out put time |Associ at ed Resul t out put port |val ue
(physical or wall-clock|deadline

tinme)

00:00:02:300 No deadline |Led3 1
00:00:02:300 No deadl i ne |dirn_disp_a 1
00:00:03:550 No deadl i ne |stn_disp_a 21
00:00:04:550 No deadline |stn_disp_a 31
00:00:04:550 No deadl i ne |dirn_disp_a 0
00:00:04:550 No deadline |Led3 0
00:00:04:550 00]00:05:300 Succeeded Bell A 1

Figure 52 Output results generated by non-parallel CD++

Figure 52 implies that, the time 00:00:03:550, @ld’s output function was called to
make the display controller display the productifpms via the output port stn_disp_a.
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Since the output function is always called rightobe the internal transition function is
invoked, and also since that the hold in time efdisplay controllers’ external transition
function is zero, it follows that the CU'’s interrtahnsition function was scheduled to be
invoked at 00:00:03:550, which is the same timehef 2¢ external event in the event
file. This leads to a conflict. The non-parallel €D conflict resolution is to let the
internal transition function be invoked first. Asresult, the 2 external event, i.e., the

press of button 2A, is ignored becauseldb#on_enabled  variable was set to false.

The modeller wants to change this conflict resolutbehaviour, he or she must use
parallel CD++ simulator and define a confluent fimet. Figure 53 captures the

simulation results generated by the parallel CDuator.

act ual out put time|Associ at ed resul t out put port [val ue
(physi cal or wal | - cl ock | deadl i ne

time)

00:00:02:300 No deadline |Led3 1
00:00:02:300 No deadl i ne |dirn_disp_a 1
00:00:03:550 No deadl i ne |stn_disp_a 21
00:00:03:550 No deadline |Led2 1
00:00:03:550 No deadl i ne |dirn_disp_a 0
00:00:03:550 No deadline |Led2 0
00:00:03:550 No deadline |Led3 0
00:00:03:550 00{00:05:300 Succeeded Bell A 1

Figure53 Output results generated by parallel CD++

Figure 53 shows that the product on conveyor A stap station 2 at the time
00:00:03:550. This is a result of the executiotthefconfluent function. That is, the CU’s
confluent function decides to stop the engine wihenproduct reaching station 2 and the

press of button 2A happens at the same time.
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Chapter 6 Conclusions

This dissertation proposes a novel Modelling andnubation-based development
methodology for Real-time Embedded Systems. Thavatain behind proposing this
new framework is that the current state-of-the-design methods for RTES are
inadequate for providing a consistent and unifiedigh framework throughout the entire
development lifecycle, as well as failing to pravia formal product verification strategy.
The proposed framework addresses these issuegrdopesed methodology consists of
modelling, model verification, and incremental miodeplacement phase. This new
development cycle provides a consistent toolkitsl a@rminology among analysis,
design, implementation, and test. For instancely (@EVS models created in the
modelling phase will not be abandoned but direatlysed in the model verification and

model replacement phase.

The creation of E-CD++ is a necessary and impodtey towards the realization of the
proposed methodology. E-CD++ supports the RT-DEdM&&lism by implementing P-
DEVS and the Time Interval Function. We showed thet RT-DEVS formalism is
adequate to model RTES. Consequently, DEVS moddigiorations can be formally
verified against the target system’s specificatidnsanwhile, E-CD++ also implemented
a graphical model loader to support the GGAD gregdhotation. The AMS experiment,
shows that defining a DEVS model using GGAD takeximless effort than that doing
so in C++. The work also draws another conclusioat the Flattened Coordinator
Technique improves E-CD++ performance. The AMS erpent shows that the

technique improves the E-CD++ performance by 33%.

Finally, with the help of E-CD++, DEVS models came lexecuted directly in an
embedded environment and can also interact dir@gdtly hardware surrogates and real-
world events, which supports the seamless transifrom the modelling phase to
implementation phase. We illustrated this transitoy showing how E-CD++ was used

to design and develop the AMS.
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6.1 Future work

E-CD++ is a newly created software. There are atitit of areas where E-CD++ can be

improved or extended. We list two topics of intétéat we think worthwhile to study.

The first topic would be th@arallel Execution of Multiple Flattened Coordinago In
theory, the Flattened Coordinator Technique carrangthe performance of any DEVS
model hierarchy. In implementation, however, thisra scalability issue, because time
delay exists in accessing and retrieving Atomic etazbjects from the Atomic Model
Database. As the size of the model hierarchy greess the database. Currently this
database is implemented as an ordered list on %A(s¢n the database size grows too
large (e.g., containing thousands of Atomic modéels) time delay incurred in accessing
the database will eventually outnumber the perfoirreamprovements gained from the
technique itself. One solution to solve this praobls to partition the Atomic models into
multiple smaller databases and create multipleédfiati Coordinators. And ideally, these
Flattened Coordinators can run in their own taskcep, so that they can run in parallel

and, therefore, maximize the performance.

We may also be interested iAdding Confluent Function Support in the GGAD
Language The current GGAD language does not support cenfldunctions. To add
confluent functions, we first need to make GGADnfrend changes to add confluent
function’s grammar definition to the GGAD Parsere\Wlso need to make back-end
changes. We need to create a new subclassgagConfluentFunction , under
the GgadSyntaxNode class to represent the confluent function in tlyat& Tree.
Then we capture the behaviour of confluent fundionn the method
GgadConfluentFunction::evaluate() . The major back-end work is the

implementation of this function.
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Appendix A E-CD++ System Architecture

A.1.The Client-Server System Architecture

The Ampro LB700™ board is chosen as the SBC for E-CD++, althoughing prevents
the E-CD++ from running on other hardware platfarifise LB700 board has a 700MHz
Intel x86 CPU, 256 megabytes of RAM and 2 Ethepuets. It has no hard disk. All the

software images running on the board is loadedemtemory during run time.

A customized Linux 2.4 kernel is used as the oppggatystem (OS) for E-CD++. The OS
supports NFS over Ethernet and ramdisk, yet the ongswapping is disabled (due to
the lack of the hard disk on the SBC).

Figure 54 illustrates the system architecture ef ERCD++ toolkit. The E-CD++ system
architecture adopts the client-server computingehothe SBC interacting with the real
world is the client, and the host simulation woakin is the server. The client and the
server are connected via Ethernet ports. The Boofionware image on the SBC is
configured to be able to transfer the Linux keiinedge from the server over the Ethernet
and load it into the SBC’s memory, when the SBBast up.

.ma, .ev files (load from server via NFS)

E-CD++ run in user space (Loaded from server vi&NF

Linux Kernel (Boot from server vig Device Drivers run in
etherboot) kernel space

SBC Hardware (Ethernet port connected to server)

Figure54 E-CD++ Software Architecture
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A.2.The SBC Booting Sequence

The following is the SBC’s booting sequence:

1.The Bootrom firmware on the SBC is Etherboot —ss lthan 16K bootable image
stored in the Ethernet socket on the SBC. The Btim¢rimage is configured to load
the customized Linux kernel that is stored on thwer into the SBC’s memory via

the dhcp and the tftp protocol.
2.0nce the kernel has been loaded into memory, litbedin executing.
3.The kernel will initialize the entire system antladlthe peripherals on the SBC.

4. During the kernel loading process, a ramdisk imadjealso be loaded into memory.
A kernel command line argument odot=/dev/ramO tells the kernel to mount the

image as the root directory.

5.When the kernel is finished booting, it is instectto launch thdinuxrc script. This

is achieved passingit=/linuxrc on the kernel command line.

6.The /linuxrc script begins by loading the correct Ethernet elrimodule into the

kernel space.

7.A small DHCP client calledihclient will then be run, to make another query from
the DHCP server. This separate user-space quaecessary, because we need more

information than the Etherboot retrieved with thistfdhcp query.

8.When dhclient gets a reply from the server, it will run thetc/dhclient-script file,

which will take the information retrieved, and ciguire the ethO interface.

9.Upto this point, the root filesystem has been a disk. Now, the /linuxrc script will

mount a new root filesystem via NFS. The directitiat is exported from the server
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is /tftpboot/henryRoot. It can't just mount the new filesystem as /. lismfirst
mount it as /mnt. Then, it will do pivot_root. pivot_root will swap the current root
filesystem for a new filesystem. When it completd®e NFS filesystem will be

mounted on /, and the old root filesystem will beumted on /oldroot.

10.0nce the mounting and pivoting of the new rootsfjigem is complete, we are done

with the /linuxrc shell script and we need to inedke realsbin/init program.

11.Init will read the file and begin setting up thenkstation environment.

12.0ne of the first items in the inittab file is the.sysinit command that will be run

while the workstation is in theysinit' state.

13.The rc.sysinit script will create a 1mb ramdiskctimtain all of the things that need

to be written to or modified in any way.

14.The ramdisk will be mounted as the directory. Ailgs that need to be written will

actually exist in the directory, and there are Bght links pointing to these files.

15.The filesystem is mounted.

16.Memory swapping is disabled by rc.sysinit.

17.The loopback network interface is configured. This is the natwuag interface that
has127.0.0.1as its IP address.

18.Local applications are enabled, for E-CD++ runsiser space. Thaisr/local/bin

directory is mounted. That is location where E-CDs-installed.

19.Several directories are created in the file systenholding some of the transient

files that are needed while the system is runfingectories such as:
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* /tmp/compiled

e /tmpl/var

e /tmp/var/run

e /tmplvar/log

e /tmp/var/lock

e /tmp/var/lock/subsys

will all be created.

20.0nce the rc.sysinit script is finished, controlures back to the /sbin/init program,
which will change the runlevel fromsysinit to 5. This will cause any of the entries
in the file to be executed.
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Appendix B Grammar for GGAD Models

B.1. Context-free Grammar for GGAD models

rule 1 Ggad -> ModelName GGADT_EOL GgadRules
rule 2 ModelName -> GGADT_LBRACKET GGADT_ID
GGADT_RBRACKET

rule 3 GgadRules -> GgadRule GGADT_EOL GgadRules
rule 4 GgadRules -> GgadRule GGADT_EOL

rule 5 GgadRules -> GgadRule

rule 6 GgadRule -> InDecl

rule 7 GgadRule -> OutDecl

rule 8 GgadRule -> StateDecl

rule 9 GgadRule -> VarDecl

rule 10 GgadRule -> StateDef

rule 11 GgadRule -> InitialState

rule 12 GgadRule -> IntDef

rule 13 GgadRule -> ExtDef

rule 14 GgadRule -> VarDef

rule 15 InDecl -> GGADT_IN GGADT_COLON PortInidLi st
rule 16 OutDecl -> GGADT_OUT GGADT_COLON PortOuitl dList
rule 17 VarDecl -> GGADT_VAR GGADT_COLON VarldLis t

rule 18 VarDef -> GGADT_VARIABLEID GGADT_COLON
GGADT_CONSTANT

rule 19 StateDecl -> GGADT_STATE GGADT_COLON Stat eldList
rule 20 StateDef -> GGADT_STATEID GGADT_COLON
GGADT_TIME_CONSTANT

rule 21 StateDef -> GGADT_STATEID GGADT_COLON
GGADT_INFINITE

rule 22 InitialState -> GGADT_INITIAL GGADT_COLON
GGADT_STATEID

rule 23 IntDef -> GGADT_INT GGADT_COLON GGADT_STA TEID
GGADT_STATEID PortValueOutList Actions

rule 24 PortValueOutList -> GGADT_PORTID GGADT_OU TPUT
Expression PortValueOutList

rule 25 PortValueOutList -> /* empty */

rule 26 ExtDef -> GGADT_EXT GGADT_COLON GGADT_STA TEID
GGADT_STATEID Expresion GGADT_INPUT GGADT_CONSTANT Actions
rule 27 Expresion -> FunctionCall

rule 28 Expresion -> GGADT_PORTID

rule 29 Expresion -> GGADT_VARIABLEID

rule 30 Expresion -> GGADT_CONSTANT

rule 31 FunctionCall -> GGADT_FUNCTIONID GGADT_LP AR
ActualParamList GGADT _RPAR
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rule 32 ActualParamList -> ActualParameter

rule 33 ActualParamList -> ActualParameter GGADT_

ActualParamList
rule 34 ActualParameter -> GGADT_CONSTANT

rule 35 ActualParameter -> GGADT_VARIABLEID

rule 36 ActualParameter -> GGADT_PORTID
rule 37 StateldList -> StateldList GGADT_ID

rule 38 StateldList -> GGADT_ID

rule 39 PortinldList -> PortinldList GGADT_ID
rule 40 PortinldList -> GGADT _ID

rule 41 PortOutldList -> PortOutldList GGADT _ID
rule 42 PortOutldList -> GGADT _ID

rule 43 VarldList -> VarldList GGADT _ID

rule 44 VarldList -> GGADT_ID

rule 45 Actions -> GGADT_BEGIN ActionList GGADT_E

rule 46 Actions -# empty */

rule 47 ActionList -> Action GGADT_SEMICOLON
rule 48 ActionList -> ActionList Action GGADT_SEM

COMMA

ND

ICOLON

rule 49 Action -> GGADT_VARIABLEID GGADT_ASSIGNME NT

Expresion

B.2. Tokens:

GGADT_CONSTANT

GGADT_IN reserved word "in"
GGADT_OUT reserved word "out"
GGADT_STATE reserved word "state"
GGADT_INITIAL reserved word "initial"
GGADT_ID an identifier
GGADT_STATEID a state identifier
GGADT_PORTID a port identifier
GGADT_FUNCTIONID a function identifier
GGADT_VARIABLEID a variable identifier

GGADT_INT reserved word "int"
GGADT_EXT reserved word "ext"
GGADT_VAR reserved word "var"
GGADT_CONSTANT integer o real constant
GGADT_TIME_CONSTANT time constant in cd++ forma
GGADT_INFINITE reserved word "infinite"
GGADT_COLON M

GGADT_EOL end of line character
GGADT_OUTPUT output operator "I"
GGADT_INPUT input operator "?"
GGADT_LPAR "("

GGADT_RPAR )"

GGADT_LBRACKET "
GGADT_RBRACKET "
GGADT_COMMA
GGADT_BEGIN n
GGADT_END e
GGADT_SEMICOLON :
GGADT_ASSIGNMENT  "="
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B.3. GGAD Built-in Functions

addFunction( "value", new GgadFuncValue() );
addFunction( "add", new GgadFuncAdd() );
addFunction( "minus", new GgadFuncMinus() );
addFunction( "multiply", new GgadFuncMultiply() );
addFunction( "divide", new GgadFuncDivide() );
addFunction( "pow", new GgadFuncPow() );
addFunction( "between", new GgadFuncBetween() );
addFunction( "compare", new GgadFuncCompare() );
addFunction( "any", new GgadFuncAny() );
addFunction( "pi", new GgadFuncPi() );

addFunction( "equal”, new GgadFuncEqual() );
addFunction( "notequal”, new GgadFuncNotEqual() );
addFunction( "and", new GgadFuncAnd() );
addFunction( "or", new GgadFuncOr() );
addFunction( "not", new GgadFuncNot() );
addFunction( "rand", new GgadFuncRand() );
addFunction( "less", new GgadFuncLess() );
addFunction( "greater", new GgadFuncGreater() );
addFunction( "greaterequal”, new GgadFuncGreaterEqu
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