
Modeling quantum dot devices in Cell-DEVS environment

Yuri Boiko and Gabriel Wainer

Carleton University

1125 Colonel By Drive,

Ottawa, ON, K1S 5B6 CANADA

yuri.boiko@rocketmail.com , gwainer@sce.carleton.ca

Keywords: Discrete event simulation, Cell-DEVS, quantum

dot, quantum automata, cellular automata, XOR gates,

majority vote gates, quantum wire

Abstract
Simulation of selected elements of Brain Machine,

specifically those based on quantum dot technology and

defined by quantum cellular automata, is demonstrated in

Cell-DEVS environment employing CD++ toolkit. Models

of quantum dot cellular devices are implemented within

Cell-DEVS formal definitions. For Cell-DEVS modeling

the following quantum dot based devices have been

selected: quantum XOR, quantum wire and majority vote

gates. Operation of models of these devices is visualized by

CD Modeler animation as well as draw-log tools within

Cell-DEVS environment. Test rules for functionality

verification of the models are presented and verified to

validate the models.

1. INTRODUCTION

Modeling and simulation of the various elements of the

Brain Machine are gaining of the simulation and design

research communities [1, 2], as new technological approach,

such as nano-technology, is gaining its recognition as

foundation of new generation of transistor-free electronics

of the years to come. The benefits of the modeling and

simulation techniques include efficient optimization of the

designs of sophisticated quantum dot based nano-

technological devices, implementation of and

experimentation with of which is challenging task by itself

both technologically and price-wise. DEVS (Discrete Event

System Specification) methodology gained deserved

recognition in modeling complex artificial systems [3, 4] by

offering hierarchical approach of building complex systems

from elementary blocks of sub-models, which in turn can be

atomic (lowest level) or coupled (intermediate level) models

by itself. The extension of DEVS formalism to the systems,

which can be described by cellular automata approach, is

Cell-DEVS. Herewith the implementations of the quantum

dot based devices models are demonstrated using Cell-

DEVS formal specifications. Herewith the CD++ toolkit is

used for programming the models.

2. Cell-DEVS PROBLEM IMPLEMENTATION

2.1 Quantum Automata for modeling of quantum dot

devices

In the present study Cell-DEVS formalism is employed to

model operation of basic quantum dot devices, which are

described by quantum cellular automata. For Cell-DEVS

modeling the following quantum dot based devices have

been selected: quantum XOR, quantum wire and majority

vote gates. Demonstrated herewith is operation of models

of these devices in Cell-DEVS environment employing

CD++ tool kit. Therefore, the real system of choice here is

Cellular Automata implementation of Quantum Logic

Circuits, which are used in the current state-of-the-art

Quantum Computing and Artificial Brain Machines.

Quantum Cellular Automata (QCA) refers to a model of

quantum computation, which has been devised in analogy to

conventional models of cellular automata introduced by von

Neumann. Important for a model of quantum cellular

automata is that it should be universal for quantum

computation [5, 6] (i.e. that it can efficiently simulate

quantum Turing machines, or equivalently, uniform families

of quantum circuits). Additional restrictions are that

quantum cellular automata should be reversible and/or local

unitary, and have an easily determined global transition

function from the rule for updating individual cells [5].

Examples of the quantum devices can be found in [5 - 12].

2.2 Structures of Quantum Cellular Automata in

Cell-DEVS

The subject of this project is implementation of the Cellular

Automata for logic device based quantum dot cells. Each

quantum cell contains two electrons which interact with the

neighbors Coulombically. Each cell is designed having two

perpendicular axes of preferential alignment of the pair of

electrons in it. Such states of preferential alignment are

used to encode binary bits of 0 and 1. Employing such

cells, various quantum devices can be built for the digital

circuits to operate at nanometer scale, which hold a promise

of faster speed and reduced size. Shown below are the

cellular automata’s for XOR quantum gates (Fig.1) and for

the 3 inputs delayed Majority Vote Gates (Fig.2).

mailto:gwainer@sce.carleton.ca
mailto:yuri.boiko@rocketmail.com

Figure 1. Quantum Cellular Automata for XOR gates.

In the cellular field there are several zones of inactive cells,

which are not involved in the operation of the device, but

rather are affecting indexes of the operational cells. Among

operational cells there are input cells, transport cells,

calculation cell and output cell.

Figure 2. Quantum Cellular Automata for 3 inputs

Delayed Majority Vote Gate device. Inputs are a, b

and c. Output function is ab+bc+ac (modulo 2).

2.3 Properties of Quantum Cellular Automata devices

(Cell-DEVS)

The properties of the models of XOR and delayed Majority

Vote Gates had been verified using the “black box” testing

method. Initially both models were tested by setting all

inputs to the value of 1 by the following lines in the

program for respective devices:

(1) (for XOR gate)
initialvalue : 0

initialrowvalue : 0 101

(2) (for 3 inputs Majority Vote Gates)
initialvalue : 0

initialrowvalue : 0 00010

initialrowvalue : 3 10000

initialrowvalue : 6 00010

Under such conditions the output of 1 is expected in both

models. Obtaining 1 at the output implies that that model is

likely to be functional with other external inputs. After that

the external input had been introduced via external events

file *.ev. For XOR gates the rule was that output “-1” is if

both inputs are equal (i.e. both to “1” or to “-1”) and output

“1” otherwise and calculation as well as clearing time

constants set both at 100 msec:

[calculus-rule]

rule : -1 100 { (0,-1)=-1 and (0,1)=-1 }

rule : 1 100 { (0,-1)=1 and (0,1)=-1 }

rule : 1 100 { (0,-1)=-1 and (0,1)=1 }

rule : -1 100 { (0,-1)=1 and (0,1)=1 }

rule : 0 100 { t }

Calculation rules for 3 inputs Majority Vote gates were set

to make the output function to be ab+bc+ac in modulo 2 and

containing “-1” instead of “0” , which is needed to avoid

confusion between neutral state of the cell and signal “0” (as

also was the case for XOR gates):
[calculus-rule]
rule : 1 10 { (-1,0)=1 and (0,-1)=1 and (1,0)=1 }

rule : 1 10 { (-1,0)=1 and (0,-1)=1 and (1,0)=-1 }
rule : 1 10 { (-1,0)=1 and (0,-1)=-1 and (1,0)=1 }

rule : 1 10 { (-1,0)=-1 and (0,-1)=1 and (1,0)=1 }
rule : -1 10 { (-1,0)=1 and (0,-1)=-1 and (1,0)=-1 }
rule : -1 10 { (-1,0)=-1 and (0,-1)=1 and (1,0)=-1 }

rule : -1 10 { (-1,0)=-1 and (0,-1)=-1 and (1,0)=1 }
rule : -1 10 { (-1,0)=-1 and (0,-1)=-1 and (1,0)=-1 }

rule : 0 10 { t }

where calculation and clearing time constants are both set at

10 msec value.

Figure 3. Operation of quantum automata XOR gates in

drawlog tool of CD++.

For both models the test cases were introduced by adding

different combinations of inputs to the event file (.ev), run

the simulation (.scp) and check whether the outputs in the

output file (.out) are what was expected.

The properties of the XOR gate model can be formulated as

a following set of rules, which are confirmed by the data

presented in Table 1 (enumeration starts from xxiii as

continuation of the initial work presented in [13]):

(xxiii) signal inputs and signal outputs are connected with

XOR relations;

(xxiv) delay for signal output is equal to the programmed

processing time;

(xxv) each signal output is followed by clearing “0” output

after additional delay of programmed clearing time.

 0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

5,0 5,1 5,2 5,3 5,4

6,0 6,1 6,2 6,3 6,4

a

b ab+bc+ac

Input #1

Input #2

Input #3

Output

In_1@3inMVG(0,3)

In_2@
3inMVG(3,0)

In_3@3inMVG(6,3)

out@3inMVG(3,4)

c

out@XOR(0,1)

In_2@XOR(0,2)
In_1@XOR(0,0)

(0,0) (0,1) (0,2)

 Time: 00:00:00:000
 0 1 2
 +---------------------+
 0| -1.0 -1.0|
 +---------------------+

 Time: 00:00:00:100
 0 1 2
 +---------------------+
 0| -1.0 |
 +---------------------+

 Time: 00:00:00:200
 0 1 2
 +---------------------+
 0| -1.0 1.0|
 +---------------------+

 Time: 00:00:00:300
 0 1 2
 +---------------------+
 0| 1.0 |
 +---------------------+

 Time: 00:00:00:400
 0 1 2
 +---------------------+
 0| 1.0 -1.0|
 +---------------------+

 Time: 00:00:00:500
 0 1 2
 +---------------------+
 0| 1.0 |
 +---------------------+

 Time: 00:00:00:600
 0 1 2
 +---------------------+
 0| 1.0 1.0|
 +---------------------+

 Time: 00:00:00:700
 0 1 2
 +---------------------+
 0| -1.0 |
 +---------------------+

Rule (xxiii) is confirmed in Table 1 by correspondence with

the XOR relations. The rule (xxiv) is also followed as the

delay for all output signals are equal to the programmed

value of 100 msec. And the last rule (xxv) is confirmed by

the fact, that each signal is followed by the clearing output

of “0” after programmed value of clearing time (also 100

msec).

Drawlog tool in CD++ allows for graphic view of signal

propagation, shown in Fig.3. Similarly, animation tool of

CD++ Modeler allow visualization of the automata XOR

gates operation, as it is shown in Fig.4.

Figure 4. Visualization of the operation of quantum

automata XOR gates in CD++ Modeler animation

tool. Lines (1)-(4) represent various input-output

combinations.

The above consideration conclusively confirms functionality

and validity of the quantum automata of XOR gates.

Similar consideration has been given to the properties of the

quantum cellular automata of 3 inputs Majority Vote Gates

shown in Fig.2

The properties of the Delayed Majority Vote Gates model

can be formulated as a following set of rules, confirmation

of which is sought in Table 2:

 (xxvi) signal inputs and signal outputs are connected with

Majority Vote relations;

(xxvii) delay for signal output is equal to the number of

steps multiplied by the programmed processing time at

each step;

(xxviii) each signal output is followed by clearing “0”

output after additional delay of programmed output

clearing time.

Cases (1)-(4) in Table 2 provide majority of “1” at the input,

so expected output value is “1” and the obtained value is

also “1”, as it is seen in the Table 2 in accord with the rule

(xxvi). It is also seen that the output is delayed by 40 msec ,

Table 1. Test results for comparing inputs and output

mapping to the expected values of the XOR gates.

Initiating Events

(the cause)

Output result,

confirming the rules
1 00:00:00:000 in1 -1

00:00:00:000 in2 -1

00:00:00:100 out -1

00:00:00:200 out 0

2 00:00:00:200 in1 -1 00:00:00:300 out 1

00:00:00:400 out 0

3 00:00:00:400 in1 1

00:00:00:400 in2 -1

00:00:00:500 out 1

00:00:00:600 out 0

4 00:00:00:600 in1 1

00:00:00:600 in2 1

00:00:00:700 out -1

00:00:00:800 out 0

Table 2. Test results for comparing inputs and output

mapping to the expected values of the Delayed

Majority Vote Gates.

which is due to total of four cells distance between the input

and output cells, each cell having the delay time of 10 msec,

thus confirming rule (xxvii). There is also expected “0”

signal 1 msec after output of “1” – this is due to reset of the

output cell value to 0, which is programmed
to occur with 1 msec delay as the rule (xxviii) requires.

Respectively, cases (5) - (8) provide majority of “-1” at the

input, so expected output value is “-1” and the obtained

value is also “-1”, as it is also confirmed in the Table 10 in

accord with the rule (xxvi). Again, the output is delayed by

40 msec, which is due to total of four cells distance between

the input and output cells, each cell having the delay time of

Initiating Events

(the cause)

Output result,

confirming the rules

1 00:00:00:000 in1 1

00:00:00:000 in2 1

00:00:00:000 in3 1

00:00:00:040 out 1

00:00:00:041 out 0

2 00:00:00:100 in1 1

00:00:00:100 in2 1

00:00:00:100 in3 -1

00:00:00:140 out 1

00:00:00:141 out 0

3 00:00:00:200 in1 1

00:00:00:200 in2 -1

00:00:00:200 in3 1

00:00:00:240 out 1

00:00:00:241 out 0

4 00:00:00:300 in1 -1

00:00:00:300 in2 1

00:00:00:300 in3 1

00:00:00:340 out 1

00:00:00:341 out 0

5 00:00:00:400 in1 1

00:00:00:400 in2 -1

00:00:00:400 in3 -1

00:00:00:440 out -1

00:00:00:441 out 0

6 00:00:00:500 in1 -1

00:00:00:500 in2 1

00:00:00:500 in3 -1

00:00:00:540 out -1

00:00:00:541 out 0

7 00:00:00:600 in1 -1

00:00:00:600 in2 -1

00:00:00:600 in3 1

00:00:00:640 out -1

00:00:00:641 out 0

8 00:00:00:700 in1 -1

00:00:00:700 in2 -1

00:00:00:700 in3 -1

00:00:00:740 out -1

00:00:00:741 out 0

(1)

(2)

(3)

(4)

Figure 5. Comparison of visualization of signal propagation with drawlog tool of CD++ (top line) and

animation tool (bottom line) in CD++ Modeler toolkit. (Input condition of case 6 of Table 2).

10 msec (rule (xxvii)). There is also expected “0” signal 1

msec after output of “-1” as was the case above for the

same reason of resetting the output cell value to 0 with 1

msec delay (rule (xxviii)).

Animation example of the signal propagation in the Delayed

Majority Vote Gates model is shown in Fig.5 produced by

CD++ Modeler. For comparison on the top in Fig.5 shown

is visualization with drawlog tool.

3. CONCLUSIONS
The following conclusions can be drawn form the above

considerations.

1. CD++ toolkit is demonstrated as a suitable environment

for simulation and visualization of the operation of

quantum cellular automata type of nano-devices under

Cell-DEVS formalism.

2. The models of quantum dot based XOR gates, quantum

wires and majority vote gates are successfully

implemented in Cell-DEVS formal definitions.

3. Hierarchy of the quantum cellular automata models has

been successfully validated via establishing test rules

and conducting the tests.

References:

[1] Zeigler, B.P., The brain-machine disanalogy revisited,

BioSystems, Vol. 64, pp. 127-140. (2002).

[2] Obeid, I. Wolf, P.D, "Evaluation of spike-detection

algorithms for a brain-machine interface application",-

Biomedical Engineering, IEEE Transactions on, Volume 51,

Issue 6, page(s) 905- 911, June 2004.

[3] G.Wainer, N. Giambiasi. "Timed Cell-DEVS: modelling

and simulation of cell spaces ". Invited paper for the book:

Discrete Event Modeling & Simulation: Enabling Future

Technologies. Springer- Verlag, 2001.

[4] G. Wainer. “Applying Cell-DEVS Methodology for

Modeling the Environment”. In Simulation, Transactions of

the SCS. Vol. 82, No. 10, 635-660. October 2006.

[5] Neto, O.P.V.; Pacheco, M.A.C.; Barbosa, C.R.H.,

"Neural Network Simulation and Evolutionary Synthesis of

QCA Circuits",- Transactions on Computers, Volume 56,

Issue 2, Feb. 2007 Page(s):191 - 201

[6] Buller A (2003b) Reversible Cascades and 3D Cellular

Logic Machine, Technical Report TR-0012, ATR Human

Information Science Laboratories, Kyoto.

[7] W.J. Townsend, JA Abraham - Nanotechnology, 2004.

4th IEEE Conference on, Complex gate implementations for

quantum dot cellular automata, 2004

www.cerc.utexas.edu/~whitney/pdfs/nano04.pdf

[8] J. Watrous, "On one-dimensional quantum cellular

automata", Proc. 36th FOCS, 1995: pp. 528–537.

[9] Aubrey Jaffer, "4-Neighbor 3-State Universal Cellular

Automaton", Copyright 1974, 2002, 2004.

http://swiss.csail.mit.edu/~jaffer/Cell/CAN4S3

[10] C.S. Lent, “Bypassing the Transistor Paradigm,”

Science, pp. 1597-1599, June 2000.

[11] Neto, O.P.V.; Pacheco, M.A.C.; Barbosa, C.R.H.;

“Neural Network Simulation and Evolutionary Synthesis of

QCA Circuits”,- Transactions on Computers, Volume 56,

Issue 2, Feb. 2007 Page(s):191 – 201.

[12] Bajec, I. L. Mraz, M., "Multi-Valued Logic Based on

Quantum-Dot Cellular Automata",- International J.,

Unconventional Computing, vol.3; issue 4, pp. 311-322,

2007.

[13] Y. Boiko and G. Wainer, “Modeling Spiking Neural

Terminal in DEVS”,- 2008 Spring Simulation

Multiconference (SpringSim'08 Poster Session, paper #30).

 Line : 1676 - Time: 00:00:00:500

 0 1 2 3 4

 +--+

 0| -1.0 |

 1| |

 2| |

 3| 1.0 |

 4| |

 5| |

 6| -1.0 |
 +--+

 Line : 1756 - Time: 00:00:00:510

 0 1 2 3 4

 +--+

 0| |

 1| -1.0 |

 2| |

 3| 1.0 |

 4| |

 5| -1.0 |

 6| |
 +--+

 Line : 1834 - Time: 00:00:00:520

 0 1 2 3 4

 +--+

 0| |

 1| |

 2| -1.0 |

 3| 1.0 |

 4| -1.0 |

 5| |

 6| |
 +--+

 Line : 1885 - Time: 00:00:00:530

 0 1 2 3 4

 +--+

 0| |

 1| |

 2| |

 3| -1.0 |

 4| |

 5| |

 6| |
 +--+

 Line : 1910 - Time: 00:00:00:540

 0 1 2 3 4

 +--+

 0| |

 1| |

 2| |

 3| -1.0 |

 4| |

 5| |

 6| |
 +--+

http://swiss.csail.mit.edu/~jaffer/Cell/CAN4S3
http://www.cerc.utexas.edu/~whitney/pdfs/nano04.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1392440
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1392440

