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Abstract 
Simulation of selected elements of Brain Machine, 

specifically those based on quantum dot technology and 

defined by quantum cellular automata, is demonstrated in 

Cell-DEVS environment employing CD++ toolkit.  Models 

of quantum dot cellular devices are implemented within 

Cell-DEVS formal definitions.  For Cell-DEVS modeling 

the following quantum dot based devices have been 

selected: quantum XOR, quantum wire and majority vote 

gates.  Operation of models of these devices is visualized by 

CD Modeler animation as well as draw-log tools within 

Cell-DEVS environment.  Test rules for functionality 

verification of the models are presented and verified to 

validate the models.  

  

1.  INTRODUCTION 

Modeling and simulation of the various elements of the 

Brain Machine are gaining of the simulation and design 

research communities [1, 2], as new technological approach, 

such as nano-technology, is gaining its recognition as 

foundation of new generation of transistor-free electronics 

of the years to come.  The benefits of the modeling and 

simulation techniques include efficient optimization of the 

designs of sophisticated quantum dot based nano-

technological devices, implementation of and 

experimentation with of which is challenging task by itself 

both technologically and price-wise.  DEVS (Discrete Event 

System Specification) methodology gained deserved 

recognition in modeling complex artificial systems [3, 4] by 

offering hierarchical approach of building complex systems 

from elementary blocks of sub-models, which in turn can be 

atomic (lowest level) or coupled (intermediate level) models 

by itself.  The extension of DEVS formalism to the systems, 

which can be described by cellular automata approach, is 

Cell-DEVS.  Herewith the implementations of the quantum 

dot based devices models are demonstrated using Cell-

DEVS formal specifications.  Herewith the CD++ toolkit is 

used for programming the models.   

 

 

 

2.   Cell-DEVS PROBLEM IMPLEMENTATION  

2.1 Quantum Automata for modeling of quantum dot 

devices 

In the present study Cell-DEVS formalism is employed to 

model operation of basic quantum dot devices, which are 

described by quantum cellular automata.  For Cell-DEVS 

modeling the following quantum dot based devices have 

been selected: quantum XOR, quantum wire and majority 

vote gates.  Demonstrated herewith is operation of models 

of these devices in Cell-DEVS environment employing 

CD++ tool kit.   Therefore, the real system of choice here is 

Cellular Automata implementation of Quantum Logic 

Circuits, which are used in the current state-of-the-art 

Quantum Computing and Artificial Brain Machines.  

Quantum Cellular Automata (QCA) refers to a model of 

quantum computation, which has been devised in analogy to 

conventional models of cellular automata introduced by von 

Neumann. Important for a model of quantum cellular 

automata is that it should be universal for quantum 

computation [5, 6] (i.e. that it can efficiently simulate 

quantum Turing machines, or equivalently, uniform families 

of quantum circuits).  Additional restrictions are that 

quantum cellular automata should be reversible and/or local 

unitary, and have an easily determined global transition 

function from the rule for updating individual cells [5].   

Examples of the quantum devices can be found in [5 - 12]. 

 

2.2   Structures of Quantum Cellular Automata in 

Cell-DEVS 

The subject of this project is implementation of the Cellular 

Automata for logic device based quantum dot cells.  Each 

quantum cell contains two electrons which interact with the 

neighbors Coulombically.  Each cell is designed having two 

perpendicular axes of preferential alignment of the pair of 

electrons in it.  Such states of preferential alignment are 

used to encode binary bits of 0 and 1.  Employing such 

cells, various quantum devices can be built for the digital 

circuits to operate at nanometer scale, which hold a promise 

of faster speed and reduced size.  Shown below are the 

cellular automata’s for XOR quantum gates (Fig.1) and for 

the 3 inputs delayed Majority Vote Gates (Fig.2).  
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Figure 1. Quantum Cellular Automata for XOR gates.     

 

In the cellular field there are several zones of inactive cells, 

which are not involved in the operation of the device, but 

rather are affecting indexes of the operational cells.  Among 

operational cells there are input cells, transport cells, 

calculation cell and output cell.    

 

 
 

Figure 2. Quantum Cellular Automata for 3 inputs 

Delayed Majority Vote Gate device.  Inputs are a, b 

and c.  Output function is ab+bc+ac (modulo 2). 

 
2.3 Properties of Quantum Cellular Automata devices 

(Cell-DEVS) 

The properties of the models of XOR and delayed Majority 

Vote Gates had been verified using the “black box” testing 

method.  Initially both models were tested by setting all 

inputs to the value of 1 by the following lines in the 

program for respective devices: 

(1) (for XOR gate) 
initialvalue : 0 

initialrowvalue :  0   101   

(2) (for 3 inputs Majority Vote Gates) 
initialvalue : 0 

initialrowvalue :  0   00010   

initialrowvalue :  3   10000   

initialrowvalue :  6   00010   

Under such conditions the output of 1 is expected in both 

models.  Obtaining 1 at the output implies that that model is 

likely to be functional with other external inputs.  After that 

the external input had been introduced via external events 

file *.ev.  For XOR gates the rule was that output “-1” is if 

both inputs are equal (i.e. both to “1” or to “-1”) and output 

“1” otherwise and calculation as well as clearing time 

constants set both at 100 msec: 

[calculus-rule]  

rule : -1 100 { (0,-1)=-1 and (0,1)=-1 }  

rule : 1 100 { (0,-1)=1 and (0,1)=-1 }  

rule : 1 100 { (0,-1)=-1 and (0,1)=1 }  

rule : -1 100 { (0,-1)=1 and (0,1)=1 }  

rule : 0 100 { t } 

 
Calculation rules for 3 inputs Majority Vote gates  were set 

to make the output function to be ab+bc+ac in modulo 2 and 

containing “-1” instead of “0” , which is needed to avoid 

confusion between neutral state of the cell and signal “0” (as 

also was the case for XOR gates): 
[calculus-rule]  
rule : 1 10 { (-1,0)=1 and (0,-1)=1 and (1,0)=1 }  

rule : 1 10 { (-1,0)=1 and (0,-1)=1 and (1,0)=-1 }  
rule : 1 10 { (-1,0)=1 and (0,-1)=-1 and (1,0)=1 }  

rule : 1 10 { (-1,0)=-1 and (0,-1)=1 and (1,0)=1 }  
rule : -1 10 { (-1,0)=1 and (0,-1)=-1 and (1,0)=-1 }  
rule : -1 10 { (-1,0)=-1 and (0,-1)=1 and (1,0)=-1 }  

rule : -1 10 { (-1,0)=-1 and (0,-1)=-1 and (1,0)=1 }  
rule : -1 10 { (-1,0)=-1 and (0,-1)=-1 and (1,0)=-1 }  

rule : 0 10 { t }    

where calculation and clearing time constants are both set at 

10 msec value.  

                         
Figure 3. Operation of quantum automata XOR gates in 

drawlog tool of CD++.   

For both models the test cases were introduced by adding 

different combinations of inputs to the event file (.ev), run 

the simulation (.scp) and check whether the outputs in the 

output file (.out) are what was expected.    

The properties of the XOR gate model can be formulated as 

a following set of rules, which are confirmed by the data 

presented in Table 1 (enumeration starts from xxiii as 

continuation of the initial work presented in [13]): 

(xxiii) signal inputs and signal outputs are connected with 

XOR relations;  

(xxiv) delay for signal output is equal to the programmed 

processing time; 

(xxv) each signal output is followed by clearing “0” output 

after additional delay of programmed clearing time.   

     

     

     

     

     

     

     0,0 0,1 0,2 0,3 0,4 

1,0 1,1 1,2 1,3 1,4 

2,0 2,1 2,2 2,3 2,4 

3,0 3,1 3,2 3,3 3,4 

4,0 4,1 4,2 4,3 4,4 

5,0 5,1 5,2 5,3 5,4 

6,0 6,1 6,2 6,3 6,4 

a 

b ab+bc+ac 

Input #1 

Input #2 

Input #3 

Output 

In_1@3inMVG(0,3) 

In_2@ 
3inMVG(3,0) 

In_3@3inMVG(6,3) 

out@3inMVG(3,4) 

c 

out@XOR(0,1) 

In_2@XOR(0,2) 
In_1@XOR(0,0) 

(0,0) (0,1) (0,2) 

   Time: 00:00:00:000 
           0      1      2  
    +---------------------+ 
   0|   -1.0          -1.0| 
    +---------------------+ 
 

  Time: 00:00:00:100 
           0      1      2  
    +---------------------+ 
   0|          -1.0       | 
    +---------------------+ 

  Time: 00:00:00:200 
           0      1      2  
    +---------------------+ 
   0|   -1.0           1.0| 
    +---------------------+ 

  Time: 00:00:00:300 
           0      1      2  
    +---------------------+ 
   0|           1.0       | 
    +---------------------+ 

 Time: 00:00:00:400 
           0      1      2  
    +---------------------+ 
   0|    1.0          -1.0| 
    +---------------------+ 

 Time: 00:00:00:500 
           0      1      2  
    +---------------------+ 
   0|           1.0       | 
    +---------------------+ 

   Time: 00:00:00:600 
           0      1      2  
    +---------------------+ 
   0|    1.0           1.0| 
    +---------------------+ 

   Time: 00:00:00:700 
           0      1      2  
    +---------------------+ 
   0|          -1.0       | 
    +---------------------+ 



Rule (xxiii) is confirmed in Table 1 by correspondence with 

the XOR relations.  The rule (xxiv) is also followed as the 

delay for all output signals are equal to the programmed 

value of 100 msec.  And the last rule (xxv) is confirmed by 

the fact, that each signal is followed by the clearing output 

of “0” after programmed value of clearing time (also 100 

msec).   

 

Drawlog tool in CD++ allows for graphic view of signal 

propagation, shown in Fig.3.  Similarly, animation tool of 

CD++ Modeler allow visualization of the automata XOR 

gates operation, as it is shown in Fig.4.   

 

 
 

Figure 4. Visualization of the operation of quantum 

automata XOR gates in CD++ Modeler animation 

tool.  Lines (1)-(4) represent various input-output 

combinations.   

The above consideration conclusively confirms functionality 

and validity of the quantum automata of XOR gates.  

Similar consideration has been given to the properties of the 

quantum cellular automata of 3 inputs Majority Vote Gates 

shown in Fig.2  

 

The properties of the Delayed Majority Vote Gates model 

can be formulated as a following set of rules, confirmation 

of which is sought in Table 2: 

 (xxvi) signal inputs and signal outputs are connected with 

Majority Vote relations;  

(xxvii) delay for signal output is equal to the number of 

steps multiplied by the programmed processing time at 

each step; 

(xxviii) each signal output is followed by clearing “0” 

output after additional delay of programmed output 

clearing time.   

Cases (1)-(4) in Table 2 provide majority of “1” at the input, 

so expected output value is “1” and the obtained value is 

also “1”, as it is seen in the Table 2 in accord with the rule 

(xxvi).  It is also seen that the output is delayed by 40 msec , 

 

Table 1. Test results for comparing inputs and output 

mapping to the expected values of the XOR gates.  

 
# Initiating Events  

(the cause) 

Output result, 

confirming the rules 
1 00:00:00:000 in1 -1 

00:00:00:000 in2 -1 

00:00:00:100 out -1 

00:00:00:200 out 0 

2 00:00:00:200 in1 -1 00:00:00:300 out 1 

00:00:00:400 out 0 

3 00:00:00:400 in1 1 

00:00:00:400 in2 -1 

00:00:00:500 out 1 

00:00:00:600 out 0 

4 00:00:00:600 in1 1 

00:00:00:600 in2 1 

00:00:00:700 out -1 

00:00:00:800 out 0 

 

 

Table 2. Test results for comparing inputs and output 

mapping to the expected values of the Delayed 

Majority Vote Gates.  

 

 

 

which is due to total of four cells distance between the input 

and output cells, each cell having the delay time of 10 msec, 

thus confirming rule (xxvii).  There is also expected “0” 

signal 1 msec after output of “1” – this is due to reset of the 

output cell value to 0, which is programmed  
to occur with 1 msec delay as the rule (xxviii) requires.   

Respectively, cases (5) - (8) provide majority of “-1” at the 

input, so expected output value is “-1” and the obtained 

value is also “-1”, as it is also confirmed in the Table 10 in 

accord with the rule (xxvi).  Again, the output is delayed by 

40 msec, which is due to total of four cells distance between 

the input and output cells, each cell having the delay time of 

# Initiating Events  

(the cause) 

Output result, 

confirming the rules 

1 00:00:00:000 in1 1 

00:00:00:000 in2 1 

00:00:00:000 in3 1 

00:00:00:040 out 1 

00:00:00:041 out 0 

 

2 00:00:00:100 in1 1 

00:00:00:100 in2 1 

00:00:00:100 in3 -1 

00:00:00:140 out 1 

00:00:00:141 out 0 

 

3 00:00:00:200 in1 1 

00:00:00:200 in2 -1 

00:00:00:200 in3 1 

00:00:00:240 out 1 

00:00:00:241 out 0 

 

4 00:00:00:300 in1 -1 

00:00:00:300 in2 1 

00:00:00:300 in3 1 

00:00:00:340 out 1 

00:00:00:341 out 0 

 

5 00:00:00:400 in1 1 

00:00:00:400 in2 -1 

00:00:00:400 in3 -1 

00:00:00:440 out -1 

00:00:00:441 out 0 

 

6 00:00:00:500 in1 -1 

00:00:00:500 in2 1 

00:00:00:500 in3 -1 

00:00:00:540 out -1 

00:00:00:541 out 0 

 

7 00:00:00:600 in1 -1 

00:00:00:600 in2 -1 

00:00:00:600 in3 1 

00:00:00:640 out -1 

00:00:00:641 out 0 

 

8 00:00:00:700 in1 -1 

00:00:00:700 in2 -1 

00:00:00:700 in3 -1 

00:00:00:740 out -1 

00:00:00:741 out 0 

( 1 ) 

( 2 ) 

( 3 ) 

( 4 ) 



 

 

 
 

Figure 5. Comparison of visualization of signal propagation with drawlog tool of CD++ (top line) and 

animation tool (bottom line) in CD++ Modeler toolkit. (Input condition of case 6 of Table 2). 

 

 

10 msec (rule (xxvii)).  There is also expected “0” signal 1 

msec after output of “-1”  as was the case above for the 

same reason of resetting the output cell value to 0 with 1 

msec delay (rule (xxviii)). 

Animation example of the signal propagation in the Delayed 

Majority Vote Gates model is shown in Fig.5 produced by 

CD++ Modeler.  For comparison on the top in Fig.5 shown 

is visualization with drawlog tool.  

 

3.   CONCLUSIONS 
The following conclusions can be drawn form the above 

considerations.  

1. CD++ toolkit is demonstrated as a suitable environment 

for simulation and visualization of the operation of 

quantum cellular automata type of nano-devices under 

Cell-DEVS formalism. 

2. The models of quantum dot based XOR gates, quantum 

wires and majority vote gates are successfully 

implemented in Cell-DEVS formal definitions.  

3. Hierarchy of the quantum cellular automata models has 

been successfully validated via establishing test rules 

and conducting the tests.  
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