
Modeling Spiking Neural Terminals in DEVS

Yuri Boiko and Gabriel Wainer

Carleton University

1125 Colonel By Drive,

Ottawa, ON, K1S 5B6 CANADA

yuri.boiko@rocketmail.com , gwainer@sce.carleton.ca

Keywords: Discrete event simulation, DEVS, spiking neu-

ron, neural network, atomic model, coupled model.

Abstract
 We introduce the simulation of a spiking neural termi-

nal using the CD++ toolkit. Operation of the neuron spike

sequences are split between two channels – one for initiating

and another one for terminating spikes. The firing condition

for the spiking neuron is reached when two rectangular re-

sponses, one for the initiating spike and another one for ter-

minating spike, overlap in time domain. A Coupled model

of the spiking neuron consists of two atomic models, the

timer and the controller, which ensure detection of the

spikes in time domain and reaction of the neuron.

1. INTRODUCTION

Modeling of the various elements of the Brain Machine,

particularly those involving spiking neurons, is currently in

the focus of the simulation and design research communities

[1 –6]. The expected technological impact of the progress in

the area, as well as due to its benefits, can influence design

optimization and operational efficiency of complex systems.

 DEVS (Discrete Event System Specification) recently

gained recognition for its usefulness in modeling various

systems of artificial and/or natural descent [7, 8]. DEVS

atomic models are used as building blocks of more complex

coupled models, which constitute next level in the hierarchy

of model complexity. In turn, coupled models can be used

as building blocks for the next hierarchical levels, thus

opening way of creating models of any desired level of so-

phistication. The discrete-event representation, in which

only meaningful events are accounted for in simulation,

allows retaining speed of the simulation even of highly

complex models. Herewith we show how the CD++ toolkit

was used for programming the hierarchy of models, which

allow constructing Spiking Neural Terminal – the essential

part of various devices of the Brain Machine [9 - 11].

2. SPIKING NEURON TERMINAL MODEL

Each spiking neuron was represented as a terminal consist-

ing of two parallel routing lines connecting two nodes with

rectangular response function, as shown in Fig.1. One rout-

ing line (1) is for the initiating spikes (odd spikes) while the

other one (2) is for terminating spikes (even spikes). Nodes

(3) and (4) are to generate rectangular response for the in-

coming spike as well as node (3) of the initiating spike is

introducing time delay ∆τ∆τ∆τ∆τ to ensure that only for the spikes

with predetermined time interval between initiating and

terminating spikes the rectangular pulses overlap. The over-

lapping of the rectangular pulses (which are the node’s re-

sponses to the incoming spikes) ensures that the peak ampli-

tude of the signal at the output node reaches threshold value

or neuron firing condition, which makes the output node to

produce “1”. Alternatively, when pulses do not overlap in

time, the threshold condition is not met and the output node

of the neuron produces “0” (non-firing output).

Figure 1. Schematic of the Spiking Neural Terminal.

 Fig. 2 shows the coupled model of the spiking neuron

terminal model, which includes a timer, and a controller to

generate proper outputs depending on the time interval be-

tween initiating and terminating spikes.

 The model uses two inputs: the reference (a time refer-

ence point to measure the delay), and the signal input. The

Neuron will fire iif the signal pulse is following the refer-

ence within the required time frame (here, 5 ms < t < 8 ms).

Other pulses will be discarded. The SNT coupled model

includes a Spike/Pulse Transformer (amplifies the incoming

sequences of pulses to both inputs) and the Spiking Neuron

just described. The behavior of Spike Transformer is to ad-

just amplitude of the incoming spikes to the required level,

satisfying sensitivity of the circuits. As a result the two se-

ries of the spikes with the same amplitude (1 unit), but sepa-

rated by various time intervals. Identification of qualified

spike sequences is done by the neuron via interaction of the

internal Timer with the output Controller.

mailto:gwainer@sce.carleton.ca
mailto:yuri.boiko@rocketmail.com

[top]

components : Transformer Neuron

in : in_1 in_2

out : terminal_output control_output

Link : in_1 in_1@Transformer

Link : in_2 in_2@Transformer

Link : out_1@Transformer neuron_on@Neuron

Link : out_2@Transformer neuron_off@Neuron

Link : neuron_out@Neuron terminal_output

Link : clk_control@Neuron control_output

[Transformer]

components : amp_1@Amp_1 amp_2@Amp_2

in : in_1 in_2

out : out_1 out_2

Link : in_1 in_1@amp_1

Link : out_1@amp_1 out_1

Link : in_2 in_2@amp_2

Link : out_2@amp_2 out_2

[amp_1]

cycle : 00:00:00:000

[amp_2]

cycle : 00:00:00:000

[Neuron]

components : timer@Timer controller@Controller

in : neuron_on neuron_off

out : neuron_out clk_control

Link : neuron_on m_inTurnOn@timer

Link : out_clk@timer clk_control

Link : out_count@timer m_inCount@controller

Link : neuron_off m_in@controller

Link : m_outFire@controller neuron_out

Link : m_outOff@controller m_inTurnOff@timer

[timer]

in : m_inTurnOn m_inTurnOff

out : out_clk out_count

[controller]

in : m_in m_inCount

out : m_outFire m_outOff

Figure 2. Coupled model of Spiking Neural Terminal.

3. SUBMODEL DEFINITION AND TESTING

The different atomic and coupled models were tested using

the individually, as we will discuss in this section. The first

model to test is the Amplifier, considering the sequence of

the input spikes and their transformation into the sequence

of the spikes with larger amplitude. Table 1, shows a testing

scenario for this model

Table 1. Test data verifying operation of the Amplifier

Initiating Events Outputs
00:000 in_1 0.1

00:006 in_1 0.2

00:007 in_1 0.2

00:008 in_1 0.2

00:009 in_1 0.2

00:010 in_1 0.2

00:011 in_1 0.2

00:012 in_1 0.2

00:014 in_1 0.1

00:000 out_1 1

00:006 out_1 2

00:007 out_1 2

00:008 out_1 2

00:009 out_1 2

00:010 out_1 2

00:011 out_1 2

00:012 out_1 2

00:014 out_1 1

Table 2. Test data for atomic model Timer

 The Timer model is activated by the input of the refer-

ence pulse (spike) via input1= m_inTurnOn and terminated

by the stop signal (of 1) via input2= m_inTurnOff.

The following properties need to be verified in the Timer’s

test (rules (i)-(v)):

(i) internal counting in the timer starts exactly on the entry

of the reference signal (with no time delay on that);

(ii) internal counting terminates at exactly same time as stop

signal arrives;

(iii) in the active state intervals between the state change of

the parameter clk ={(+1); (-1)} are exactly equal to the

value of cycleTime parameter, i.e. 1 msec.;

(iv) reference spikes arriving in the active state do not inter-

rupt the counting of the clk cycles;

R

U

L

E

Input Events Outputs

i 00:000 m_inTurnOn 1.0

00:025 m_inTurnOn 1.0

00:001 out_clk 1

00:001 out_count 1

00:026 out_clk 1

00:026 out_count 1

ii 00:010 m_inTurnOff 1.0

00:040 m_inTurnOff 1.0

00:009 out_count 9

and no output the

next cycle

00:039 out_count 14

and no output the

next cycle

iii 00:025 m_inTurnOn 1.0 00:026 out_clk 1

00:026 out_count 1

00:027 out_clk -1

00:027 out_count 2

00:028 out_clk 1

00:028 out_count 3

00:029 out_clk -1

00:029 out_count 4

iv 00:035 m_inTurnOn 1.0 00:034 out_clk 1

00:034 out_count 9

00:035 out_clk -1

00:035 out_count 10

00:036 out_clk 1

00:036 out_count 11

v

00:010 m_inTurnOff 1.0

00:020 m_inTurnOff 1.0

00:025 m_inTurnOn 1.0

00:009 out_clk 1

00:009 out_count 9

00:026 out_clk 1

00:026 out_count 1

(v) stop signal arriving at the passive state does not activate

the clk counter of the Timer.

 The following sequence table shows the resulting outputs

for this model. We can see that the internal cycles counting

in the Timer start exactly on the entry of the reference signal

(with no time delay on that), because the very key points of

Timer activation produce values out_clk=1 and out_count=1

the first output after the occurrence of activation entry. This

is what is expected and confirming rule (i), because in pas-

sive state the respective values of the variables are clk=-1

and count=0. The next rule (ii) is also confirmed that inter-

nal counting terminates at exactly same time as stop signal

arrives, as seen from the fact that termination signal

“m_inTurnOff 1.0” prevents output immediately, as there is

no output at and after the timing of termination signal. The

third rule (iii - active state intervals between the state

change of the parameter clk ={(+1); (-1)} are exactly equal

to the value of cycleTime parameter) as illustrated in Table

2. The reference spike (00:035 m_inTurnOn 1.0) arriving

in the active state is seen as not interrupting the counting of

the clk cycles, thus confirming rule (iv) (Table 2, (iv)). And

finally, the stop signal (00:020 m_inTurnOff 1.0) arriving

at the passive state of the Timer does not activate the clk

counter of the Timer, as it is seen in the non-interrupted

inactivity of the passive state until the next activating influ-

ence by arriving reference spike, as required by the rule (v)

and gathered in the Table 2, (v).

 Similar tests were carried out for the Controller, the

Spiking Neuron coupled model, and the Pulses Transformer

coupled model.

The Controller is activated by the input of the signal spike

via input2 and self-terminates after taking the first available

count at the reference input (input1) and producing the out-

put events {1;0} at the output1 and {1} at the output2.
The Controller’s properties needed to be verified are (vi-x):

(vi) that the Controller is producing outputs only when

spike via input2 is followed by the signal intake via input1

(and not otherwise, as states the next criteria vii);

(vii) signals to input1 are ignored unless it was preceded

by the signal at input2;

(viii) firing output of 1 is resulting only when the value

the count from the input1 satisfies the firing condition (i.e. 5

msec < count < 8 msec);

(ix) when firing condition is not met, the output at out-

put1 is 0, even though other conditions of Controller activa-

tion are met;

(x) firing condition holds on the borders of the interval

(i.e. upper and lower limits of the interval are still valid fir-

ing conditions).

The confirmation that as required by the rule (vi) the Con-

troller is producing outputs only when spike via input2=

m_in is followed by the signal intake via input1=

m_inCount is seen in the fact that all combinations
00:00:00:00t m_in 1
00:00:00:00(t+1) m_inCount a

do produce the response at the both output ports (even when

non-firing signal of 0 occurs at the output1= m_outfire.

This is summarized in the Table 3,(vi). Combination
00:00:00:00t m_in 1

00:00:00:00t m_inCount a

does the same as the previous one, which means that time

shift between the two input signals can be anything within

interval [0 – cycleTime] (also included in the Table 3,(vi)).

Table 3. Test data confirming the rules (vi)-(x) for

the atomic model of Controller.

 Verification of the Controller’s feature (rule (vii)) that sig-

nals to input1= m_inCount are ignored unless it were pre-

ceded by the signal at input2= m_in is seen in the fact that

the singular input of
00:00:00:015 m_inCount 7

unaccompanied by the preceding or simultaneous input to

the port m_in is ignored, while others with accompanying

pulse are not, (see Table 3,(vii)). Spiking neuron firing out-

put of 1 is resulting only when the value the count from the

input1= m_inCount satisfies the firing condition (i.e. 5 msec

< count < 8 msec), as it is seen in the fact of the rule (vii)

requires and the Table 3,(vii) summarizes. Outside of the

firing timing interval (i.e. 5 msec < count < 8 msec), for

example as in the events below the lower limit, i.e. too early

spike (00:00:00:008 m_inCount 2), as well as above it, as

too late spike of (00:00:00:021 m_inCount 9) – both pro-

duce non-firing output of 0, verifying the rule (ix) prescrip-

tion (see Table 3,(ix)). The borders of the interval are also

verified by events (00:00:00:031 m_inCount 5) and

R
U
L
E

Initiating Events

(the cause)

Output result,

confirming the rule

1 2 3
vi 00:00:00:002 m_in 1

00:00:00:003 m_inCount 6
00:00:00:007 m_in 1
00:00:00:008 m_inCount 2

00:00:00:012 m_in 1
00:00:00:012 m_inCount 7

00:00:00:003 m_outoff 1
00:00:00:003 m_outfire 1
00:00:00:008 m_outoff 1
00:00:00:008 m_outfire 0

00:00:00:012 m_outoff 1
00:00:00:012 m_outfire 1

vii 00:00:00:015 m_inCount 7
and
00:00:00:020 m_in 1
00:00:00:021 m_inCount 9

Ignored, no outputs

00:00:00:021 m_outoff 1
00:00:00:021 m_outfire 0

viii 00:00:00:002 m_in 1
00:00:00:003 m_inCount 6
00:00:00:012 m_in 1
00:00:00:012 m_inCount 7

00:00:00:003 m_outoff 1
00:00:00:003 m_outfire 1
00:00:00:012 m_outoff 1
00:00:00:012 m_outfire 1

ix 00:00:00:007 m_in 1
00:00:00:008 m_inCount 2
00:00:00:020 m_in 1
00:00:00:021 m_inCount 9

00:00:00:008 m_outoff 1
00:00:00:008 m_outfire 0
00:00:00:021 m_outoff 1
00:00:00:021 m_outfire 0

x 00:00:00:030 m_in 1
00:00:00:031 m_inCount 5
00:00:00:040 m_in 1
00:00:00:041 m_inCount 8

00:00:00:031 m_outoff 1
00:00:00:031 m_outfire 1
00:00:00:041 m_outoff 1
00:00:00:041 m_outfire 1

(00:00:00:041 m_inCount 8) producing firing output 1, as

the rule (x) requires (see Table 3,(x)).

The coupled model of Spiking Neuron consists of two com-

ponents or sub-models: the Timer and the Controller (Fig.3).

The Coupled model validation requires verification of the

consistency in the interaction between the sub-models under

various relations in the input combinations. In the tests of

the Atomic models such interaction was substituted by the

external events listed in the *.ev files, separate for each sub-

model.

[top]

components : timer@Timer controller@Controller

in : neuron_on neuron_off

out : neuron_out clk_control

Link : neuron_on m_inTurnOn@timer

Link : out_clk@timer clk_control

Link : out_count@timer m_inCount@controller

Link : neuron_off m_in@controller

Link : m_outFire@controller neuron_out

Link : m_outOff@controller m_inTurnOff@timer

Figure 3. External connections of the coupled model of

Spiking Neuron (inserted is it’s CD++ code).

Now, the external events will be supplied to the Coupled

Model, and the consistency in the internal interactions will

be estimated based on the resulting overall output.

For validation purposes in addition to the firing output,

which represents the functionality of the model, introduced

is one controlling output coming directly from the Timer

and which allows following the synchronous change of state

of both sub-models during the coupled model operation.

The file neuron.ev was created as shown in left column of

Table 4, which together with sequential neuron_on and neu-

ron_off spikes includes multiple sequential repetition of

either the neuron_off spikes as well as neuron_on spikes to

verify that such sequences do not disrupt neither fully pas-

sive state of the Spiking Neuron as a whole as well as acti-

vated Timer in combination with passive state of the Con-

troller. Additionally, various intervals are tested between

neuron_on and neuron_off spikes to verify firing interval

conditions within the interval itself, as well as on its borders

and on outside of the interval, shown in the right column of

the Table 4.

Table 4. Test data confirming the rules (xi)-(xv) for

the coupled model of the Spiking Neuron, comprising

Timer and Controller as components
rule Initiating Events

(the cause)

Output result,

confirming the rule
xi 00:00:00:000 neuron_on 1

00:00:00:006 neuron_off 1

00:00:00:001 clk_control 1
00:00:00:002 clk_control -1
00:00:00:003 clk_control 1
00:00:00:004 clk_control -1
00:00:00:005 clk_control 1
00:00:00:006 clk_control -1
00:00:00:006 neuron_out 1

xii 00:00:00:014 neuron_on 1
00:00:00:016 neuron_off 1

00:00:00:019 neuron_on 1
00:00:00:029 neuron_off 1

00:00:00:015 clk_control 1
00:00:00:016 clk_control -1
00:00:00:016 neuron_out 0

00:00:00:020 clk_control 1
00:00:00:021 clk_control -1
00:00:00:022 clk_control 1
00:00:00:023 clk_control -1
00:00:00:024 clk_control 1
00:00:00:025 clk_control -1
00:00:00:026 clk_control 1
00:00:00:027 clk_control -1
00:00:00:028 clk_control 1
00:00:00:029 clk_control -1
00:00:00:029 neuron_out 0

xiii 00:00:00:031 neuron_on 1
00:00:00:036 neuron_off 1

00:00:00:038 neuron_on 1
00:00:00:046 neuron_off 1

00:00:00:032 clk_control 1
00:00:00:033 clk_control -1
00:00:00:034 clk_control 1
00:00:00:035 clk_control -1
00:00:00:036 clk_control 1
00:00:00:036 neuron_out 1

00:00:00:039 clk_control 1
00:00:00:040 clk_control -1
00:00:00:041 clk_control 1
00:00:00:042 clk_control -1
00:00:00:043 clk_control 1
00:00:00:044 clk_control -1
00:00:00:045 clk_control 1
00:00:00:046 clk_control -1
00:00:00:046 neuron_out 1

xiv 00:00:00:006 neuron_off 1
00:00:00:007 neuron_off 1
00:00:00:008 neuron_off 1
00:00:00:009 neuron_off 1
00:00:00:010 neuron_off 1
00:00:00:011 neuron_off 1
00:00:00:012 neuron_off 1
00:00:00:014 neuron_on 1

00:00:00:006 clk_control -1
00:00:00:006 neuron_out 1
00:00:00:015 clk_control 1

xv 00:00:00:048 neuron_on 1
00:00:00:049 neuron_on 1
00:00:00:050 neuron_on 1
00:00:00:051 neuron_on 1
00:00:00:052 neuron_on 1
00:00:00:053 neuron_on 1
00:00:00:054 neuron_off 1

00:00:00:049 clk_control 1
00:00:00:050 clk_control -1
00:00:00:051 clk_control 1
00:00:00:052 clk_control -1
00:00:00:053 clk_control 1
00:00:00:054 clk_control -1
00:00:00:054 neuron_out 1

The rules to be verified for the coupled model of Spiking

Neuron are (xi-xv):

(xi) within firing interval of the qualified spike se-

quences the Spiking Neuron produces firing output of 1;

Controller

Timer

Terminating signal

Firing
Output

Spiking Neuron

controlling output

Input
#2

Input
#1

(xii) outside of the firing interval of the qualified

spiking sequences the Spiking Neuron does produce non-

firing output of 0;

(xiii) on the borders of the firing interval of the qualified

spiking sequences the Spiking Neuron does produce firing

output of 1;

(xiv) repetitions of signal spike sequences do not disturb

passive state of the whole Neuron unless there if reference

spike;

(xv) repetitive reference spikes do not disturb combina-

tion of active Timer with passive Controller, which repre-

sent the waiting state of the Spiking Neuron for the signal

spike to come; importantly, only first reference spike

counts, and the rest are ignored until the input of the signal

spike.
The rule (xi) is verified by sequences of the qualified spikes

within the firing interval of the Spiking Neuron to produce

firing output of 1. Outside of the firing interval even for

qualified spiking sequences the Spiking Neuron produces

non-firing output of 0, thus confirming rule (xii). For the

upper and lower limits of the firing interval the qualified

spiking sequences result in the firing output of 1 of the

Spiking Neuron, thus confirming validity of the borders of

the firing interval of rule (xiii). Repetitions of signal spikes

in a sequences shown not disturb the passive state of the

whole Neuron (i.e. those are ignored, producing no clk-

outputs) unless the reference spike comes in, which verifies

rule (xiv). Similarly repetitive reference spikes do not dis-

turb operation of active Timer under passive Controller, in

which case the waiting state of the Spiking Neuron is main-

tained until arrival of the signal spike. In this case only first

reference spike produces effect (activates the Timer) while

others are disregarded until obtaining the input of the signal

spike, thus verifying the rule (xv).

[top]

components : amp_1@Amp_1 amp_2@Amp_2

in : in_1 in_2

out : out_1 out_2

Link : in_1 in_1@amp_1

Link : out_1@amp_1 out_1

Link : in_2 in_2@amp_2

Link : out_2@amp_2 out_2

Figure 4. Pulses Transformer Coupled Model.

The coupled model of Pulses Transformer includes two in-

dependent and identical atomic models of Pulses Amplifiers

(see Fig.4), obeying the rule (xvi):

(xvi) the two parallel series of spikes are amplified inde-

pendently, i.e. with different amplification coefficient,

routed to different outputs with preserved time differences.

 The tests for this coupled model are shown in Table5. It is

seen that (1) difference in the amplitude between two series

is eliminated, (2) connections between in_1 to out_1 and

in_2 to out_2 are kept, as well as (3) time labels are pre-

served. The spike (00:000 out_2 0) at the output 2 is 0,

because there was no actually input for in_2 for the starting

point (left column).

Table 5. Test data for the Pulses Transformer

Input Events Outputs
00:000 in_1 0.1

00:006 in_2 0.2

00:007 in_2 0.2

00:008 in_2 0.2

00:009 in_2 0.2

00:010 in_2 0.2

00:011 in_2 0.2

00:012 in_2 0.2

00:014 in_1 0.1

00:000 out_1 1

00:000 out_2 0

00:006 out_2 1

00:007 out_2 1

00:008 out_2 1

00:009 out_2 1

00:010 out_2 1

00:011 out_2 1

00:012 out_2 1

00:014 out_1 1

4. SPIKING NEURAL TERMINAL SIMULATOR

 The coupled model of Spiking Neural Terminal (SNT)

was schematically presented in Fig.2, and it is composed of

two coupled sub-models: (1) Pulses Transformer and (2)

Spiking Neuron.

 Functionally, the top model of SNT appears to be very

similar to that of the coupled model of Spiking Neuron itself

with only one addition – the spike source represented by the

list of the spiking events undergoes amplification by Pulses

Transformer prior to transfer to the inputs of Spiking Neu-

ron. Therefore, the major additional rule, we need to be veri-

fied in the top-model SNT is that the rules for the coupled

model of Spiking Neuron are preserved for the SNT model,

but complimented with the rules of the coupled model of

Pulses Transformer.

This means that offering to the SNT model an event list

same as to the Neuron model, but with reduced amplitude

(to enable Pulses Transformer to compensate for the ampli-

tude implementing rule) has to result in the identical output

for both models – SNT and Neuron’s one

 This is illustrated in Table 6, where first row (titled

“INPUTS”) shows similarity in the offered events lists for

the Neuron (on the left) and for the SNT with amplitude

being the only difference. Second row (titled “OUTPUTS”)

compares the outputs for both models, which are seen to be

identical. This verifies the validity of the coupled model

under consideration – Spiking Neuron Terminal Simulator.

It is seen from the Table 6 that the initial differences in the

event list of the input spikes produces the logically sound

differences in the output of the two models until the time

slot of 00:015, starting from which the preserved similarity

in the input events results in the identical end output for

both models. By this the validity of the rule (xvii) is con-

firmed by sample events verification, thus validating SNT

Pulses
Transformer

 Input #1

signal

reference

Input #2

output #2

output #1

Amp-1

Amp-2

model in DEVS environment.

Table 6. Comparative test of SNT and Spiking Neuron

Coupled Models
 Spiking Neuron Model SNT Model
I

N

P

U

T

S

00:000 neuronOn 1

00:006 neuronOff 1

00:007 neuronOff 1

00:008 neuronOff 1

00:009 neuronOff 1

00:010 neuronOff 1

00:011 neuronOff 1

00:012 neuronOff 1

00:014 neuronOn 1

00:016 neuronOff 1

00:017 neuronOff 1

00:018 neuronOff 1

...

00:049 neuronOn 1

00:050 neuronOn 1

00:051 neuronOn 1

00:052 neuronOn 1

00:053 neuronOn 1

00:054 neuronOff 1

00:000 in_2 0.2

00:000 in_1 0.1

00:001 in_1 0.1

00:006 in_2 0.2

00:007 in_2 0.2

00:008 in_2 0.2

00:009 in_2 0.2

00:010 in_2 0.2

00:011 in_2 0.2

00:012 in_2 0.2

00:014 in_1 0.1

00:016 in_2 0.2

00:017 in_2 0.2

00:018 in_2 0.2

...

00:049 in_1 0.1

00:050 in_1 0.1

00:051 in_1 0.1

00:052 in_1 0.1

00:053 in_1 0.1

00:054 in_2 0.2

O

U

T

P

U

T

S

00:001 clk_ctl 1

00:002 clk_ctl -1

00:003 clk_ctl 1

00:004 clk_ctl -1

00:005 clk_ctl 1

00:006 clk_ctl -1

00:006 neuronOut 1

00:015 clk_ctl 1

00:016 clk_ctl -1

00:016 neuronOut 0

00:020 clk_ctl 1

00:021 clk_ctl -1

00:022 clk_ctl 1

...

00:028 clk_ctl 1

00:029 clk_ctl -1

00:029 neuronOut 0

00:032 clk_ctl 1

00:033 clk_ctl -1

00:034 clk_ctl 1

00:035 clk_ctl -1

00:036 clk_ctl 1

00:036 neuronOut 1

00:039 clk_ctl 1

00:040 clk_ctl -1

00:041 clk_ctl 1

00:042 clk_ctl -1

00:043 clk_ctl 1

00:044 clk_ctl -1

00:045 clk_ctl 1

00:046 clk_ctl -1

00:046 neuronOut 1

00:049 clk_ctl 1

00:050 clk_ctl -1

00:051 clk_ctl 1

00:052 clk_ctl -1

00:053 clk_ctl 1

00:054 clk_ctl -1

00:054 neuronOut 1

00:001 ctlOutput 1

00:001 terminalOutput 0

00:013 terminalOutput 0

00:015 ctlOutput 1

00:016 ctlOutput -1

00:016 terminalOutput 0

00:020 ctlOutput 1

00:021 ctlOutput -1

00:022 ctlOutput 1

...

00:028 ctlOutput 1

00:029 ctlOutput -1

00:029 terminalOutput 0

00:032 ctlOutput 1

00:033 ctlOutput -1

00:034 ctlOutput 1

00:035 ctlOutput -1

00:036 ctlOutput 1

00:036 terminalOutput 1

00:039 ctlOutput 1

00:040 ctlOutput -1

00:041 ctlOutput 1

00:042 ctlOutput -1

00:043 ctlOutput 1

00:044 ctlOutput -1

00:045 ctlOutput 1

00:046 ctlOutput -1

00:046 terminalOutput 1

00:049 ctlOutput 1

00:050 ctlOutput -1

00:051 ctlOutput 1

00:052 ctlOutput -1

00:053 ctlOutput 1

00:054 ctlOutput -1

00:054 terminalOutput 1

3. CONCLUSIONS

The following conclusions can be drawn from the above:

1. CD++ toolkit is demonstrated as a suitable environment

for simulation of the Spiking Neural Terminal under

DEVS formalism.

2. Sub-models of timer and controller can successfully

implement rectangular response function of the spiking

neuron.

3. The model of the Spiking Neural Terminal capable of

detecting pre-programmed spike sequences and based

on spiking neurons with rectangular response function

is successfully implemented and validated in DEVS

formal definitions.

4. Hierarchy of the atomic models of amplifier, timer and

controller, as well as coupled models of Pulses Trans-

former and Spiking Neuron comprising the top model

have been successfully validated together with the top

model of Spiking Neural Terminal.

References:

[1] Zeigler, B.P., The brain-machine disanalogy revisited,

BioSystems, Vol. 64, pp. 127-140. (2002).

[2] Buller A (2003a) CAM-Brain Machine and Pulsed Para-

Neural Networks (PPNN): Toward a hardware forfuture

robotic on-board brains, Proceedings of the Eighth Interna-

tional Symposium on Artificial Life and Robotics (AROB 8th

'03), January 24-26, 2003, Beppu, Oita, Japan, 490-493.

[3] Eeckhaut H, Van Campenhout J., (2003) “Handcrafting

Pulsed Neural Networks for the CAM-Brain Machine”,-

Proceedings of the Eighth International Symposium on Arti-

ficial Life and Robotics (AROB 8th '02),January 24-26,

2002, Beppu, Oita, Japan, 494-501.

[4] M. Conrad, "The brain-machine disanalogy"- Biosys-

tems, 1989 - vol.22, no.3, pp197-213, Elsevier, 1989.

[5] Michael Korkin1, Norberto Eiji Nawa, Hugo de Garis, A

"Spike Interval Information Coding" Representation for

ATR's CAM-Brain Machine (CBM) Volume 1478 (1998).

[6] Obeid, I. Wolf, P.D, "Evaluation of spike-detection algo-

rithms fora brain-machine interface application",- Biomedi-

cal Engineering, IEEE Transactions on, Volume 51, Issue 6,

page(s) 905- 911, June 2004.

[7] Zeigler, B.P., DEVS Component-Based M&S Frame-

work: An Introduction , Topics Seminar: Object Oriented

Simulation-Discrete Event Modeling Spring 2007.

[8] G. Wainer. "CD++: a toolkit to define discrete-event

models". G. Wainer. In Software, Practice and Experience.

Wiley. Vol. 32, No.3. November 2002. pp. 1261-1306

[9] R Mayrhofer, M Affenzeller, H Prahofer, G Hofer, A.,

“DEVS Simulation of Spiking Neural Networks”, - Pro-

ceedings of Cybernetics and Systems (EMCSR), 2002.

[10] Thomas Natschläger, Wolfgang Maass, “Fast Analog

Computation in Networks of Spiking Neurons.”- (1999)

http://www.cis.tu-graz.ac.at/igi/maass/src-esann99.ps.gz

[11] Wolfgang Maass, “Networks of Spiking Neurons: The

Third Generation of Neural Network Models”, - (1996)

http://www.cis.tu-graz.ac.at/igi/maass/85j.ps.gz

http://www.cis.tu-graz.ac.at/igi/maass/85j.ps.gz
http://www.cis.tu-graz.ac.at/igi/maass/src-esann99.ps.gz

