
Parallel Simulation of DEVS and Cell-DEVS Models on Windows-based
PC Cluster Systems

Bo Feng, Qi Liu and Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University Centre on Visualization and Simulation (V-Sim)

Carleton University, Ottawa, ON, Canada K1S 5B6
gwainer@sce.carleton.ca

Keywords: Discrete event simulation, DEVS, Cell-DEVS,
parallel simulation, cluster systems

Abstract
 The growing popularity of Networks of Workstations
(NOW) in scientific computation has drawn increasing
interest from the M&S community. This paper addresses the
issue of parallel discrete-event simulation of DEVS and
Cell-DEVS models on a Microsoft Windows-based cluster
system comprising interconnected general-purpose personal
computers. We present the architecture and features of
PCD++Win, a parallel simulator that takes advantage of the
multi-purpose graphical user interface of the DeinoMPI
middleware for construction of ad-hoc PC clusters and
configuration of simulation environment. This environment
significantly reduces the learning curve for general users
and the cost of the simulation platform. PCD++Win has
been developed using a modular approach that promotes
code reuse and allows for easy switching to other
middleware technologies. The portability of the simulator is
enhanced with multi-platform programming and
compilation techniques. Moreover, it leaves open the
possibility of further extensions such as Web-based
distributed simulation and database-based model
construction by leveraging the native support of Microsoft
Visual Studio. The experiments demonstrate the capability
of the new simulator, making it an ideal M&S toolkit for
tapping the computational power of general-purpose
desktop computers.

1. INTRODUCTION

Modeling and simulation (M&S) has become a widely
used tool for tackling complex problems and supporting
efficient decision-making in a broad array of domains. With
the computing power and advanced software tools available
today, M&S allows for cost-effective and detailed analysis
of natural and artificial systems. Parallel and distributed
simulation (PADS) is accepted as the technology of choice
to speed up large-scale discrete-event simulation and to
promote reusability and interoperability of simulation
components. Traditionally, PADS is usually realized on
advanced parallel computing platforms using UNIX/Linux
servers or Beowulf configurations. The increasing
computational power of PCs and the growing popularity of

using Networks of Workstations (NOW) in scientific
computation have drawn significant interest from the M&S
community. Advanced PADS toolkits are being developed
to unleash the relatively untapped potential of idle capacity
of general-purpose desktop computers.

The Message Passing Interface (MPI) standard [1] is a
technique for high-performance communications on both
massively parallel machines and on workstation clusters. It
has been used as the enabling middleware in various parallel
and distributed simulators. However, many MPI packages
only offer a list of commands with numerous options and
parameters, making the configuration task intimidating for
most non-experienced users. Recently, several MPI
implementations with a graphical user interface (GUI) are
made available on Microsoft Windows platforms, allowing
for the construction of MPI-based PADS systems on
commodity off-the-shelf (COTS) Windows-based PCs,
promoting the adoption of cutting-edge M&S technologies
by a wider community of practitioners. Among them, the
DeinoMPI [2] is a freely available implementation of the
MPI-2 standard for 32 and 64-bit Microsoft 2000/XP/Server
2003 platforms. PCD++Win employs DeinoMPI as the
communication infrastructure due to its support for the latest
version of the MPI standard and Windows operating
systems, easy-to-use multi-purpose GUI tool for end users,
built-in debugging and diagnostic capabilities, and small
installation footprint.

The Discrete Event System Specification (DEVS) [3] is
a sound formal M&S methodology for discrete-event
systems. By decoupling the model and simulation concepts,
the DEVS framework offers two major benefits. First, the
same model can be executed on different simulators,
allowing for portability and interoperability at a high level
of abstraction. Moreover, the well-defined separation of
concerns permits models and simulators to be independently
verified and reused in later combinations with minimal re-
verification. Furthermore, DEVS supports hierarchical and
modular construction of models, reducing the development
and testing effort. The P-DEVS formalism [4] extends the
DEVS framework by eliminating the sequential execution
constraints that existed in the original DEVS definition,
allowing increased parallelism to be exploited in PADS
systems. The Cell-DEVS formalism [5] combines Cellular
Automata (CA) [6] with DEVS theory to describe n-

dimensional cell-spaces as discrete-event models, where
each cell is defined as a DEVS basic model with explicit
timing constructions. The synchronization mechanism used
in PADS generally falls into two categories [7]:
conservative protocols that strictly avoid violating the local
causality constraint, and optimistic protocols that
dynamically detect causality errors and provide mechanisms
to recover from them at runtime. Both approaches have their
strengths and weaknesses, and we followed the conservative
approach in this work.

CD++ [8] is an open-source M&S environment that
implements the P-DEVS and Cell-DEVS formalisms and
has been used to successfully solve a variety of
sophisticated problems. Over the years, CD++ has been
ported to different platforms, including a standalone version
called CD++Builder that runs as an Eclipse plug-in on
Windows systems to support sequential simulations [9],
several parallel versions, referred to as PCD++, that employ
both conservative and optimistic synchronization protocols
to achieve high-performance simulations on Linux cluster
systems [10][11], and a distributed version called DCD++
that supports Web-based simulations over the Internet on
Linux platforms [12]. The CD++ environment is further
extended in this research to support parallel conservative
simulation of DEVS and Cell-DEVS models on Microsoft
Windows-based PC clusters using DeinoMPI. The objective
is twofold. First, the resulting simulator, called PCD++Win,
is based on COTS PC hardware running the most commonly
used Windows operating system, allowing high-
performance parallel simulation in a cost effective way.
Secondly, by integrating PCD++Win with DeinoMPI,
general users can benefit from the easy-to-use multi-purpose
GUI tool in construction of flexible ad-hoc PC clusters.
Furthermore, the performance of PCD++Win is compared
with the conservative PCD++ running on Linux cluster
systems, showing the relative merits of both approaches.

The rest of the paper is organized as follows. Section 2
introduces the P-DEVS and Cell-DEVS formalisms and
gives a brief survey on alternative DEVS-based toolkits for
PADS. Section 3 discusses the techniques for parallel
conservative simulation in PCD++Win. Section 4 covers the
major features of the multi-purpose GUI tool provided by
DeinoMPI. Section 5 presents a performance analysis. And
Section 6 closes the paper with conclusion remarks.

2. BACKGROUND

2.1. P-DEVS and Cell-DEVS formalisms
 In a discrete-event simulation, the system being
simulated changes state only at discrete points in time, upon
the occurrence of an event. Based on dynamic systems
theory, the DEVS formalism [3] provides a framework for
defining hierarchical models in a modular way. A system is
described in DEVS as a composition of behavioral (atomic)

and structural (coupled) components. The P-DEVS
formalism [4] eliminates the sequential execution
constraints imposed by the original DEVS definition, and
provides a solid theoretical foundation for high-performance
parallel and distributed discrete-event simulation. A P-
DEVS atomic model is formally defined as:

M = <X, Y, S, δint, δext, δcon, λ, ta>.
At any given time, an atomic model is in some state s

∈ S. Without the occurrence of external events, it remains
in state s for a period of time of ta(s), which is referred to as
the lifetime of state s. When the lifetime expires, the atomic
model outputs value λ(s) ∈ Y, and changes to a new state
given by the internal transition function δint(s). A P-DEVS
model employs a bag of inputs (Xb) to support the execution
of multiple concurrent events. If one or more external events
x ∈ X occur before the expiration of ta(s), the model
transfers to a state that is determined by the external
transition function δext(s,e,Xb), combining the functionality
of multiple external transitions into a single one. A
confluent transition function (δcon) is defined to determine
the next state in the case of collisions when a component
receives external events at the same time of its internal
transition.

The P-DEVS formalism has a well-defined concept of
system modularity and component coupling to form
composite models. A P-DEVS coupled model is formally
defined as:

N = <X, Y, D, {Md | d∈D}, EIC, EOC, IC>.
The sets of input and output events are defined by X

and Y respectively. D is a set of indices for the components
of a coupled model and, for each d ∈ D, Md is a basic P-
DEVS model (atomic or coupled). The external input
coupling (EIC) specifies the connections between external
and component inputs, while the external output coupling
(EOC) describes the connections between component and
external outputs. The connections between the components
themselves are defined by the internal coupling (IC). It has
been shown that the P-DEVS formalism enjoys a nice
property known as closure under coupling [3], which allows
a coupled model to be reduced to a behaviorally equivalent
atomic model, and thus be treated as a basic component in
construction of more complicated hierarchical models.

CA [6] is a theory that is capable of producing a great
variety of complex behavior of systems represented as cell
spaces. Traditionally, CA models are implemented on a
computer using a discrete time approach. The behavior of a
cell space depends on synchronous evaluation of local
functions defined in the cells at discrete time intervals. To
improve execution efficiency and precision of the simulated
models, the Cell-DEVS formalism [5] was proposed to
define n-dimensional cell spaces as discrete-event DEVS
coupled models, where each cell is represented as a DEVS
atomic model. Further, it defines timing constructions for
each cell, allowing explicit timing specification,

asynchronous model execution, and seamless integration
with other types of models. A Cell-DEVS atomic model is
formally defined as:

C = <X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D>.
A cell has a modular interface (I) that is composed of a

fixed number of ports; each is connected to a neighboring
cell. It can input and output data (X and Y) with its
neighbors as well as other models outside of the cell space.
The future state of a cell is computed by the local transition
function (τ) based on the cell’s current state and input values.
State changes in a cell are transmitted only after a delay
given by the delay function (d). Each cell also has the
computing apparatus (δint, δext, and λ) as defined in DEVS
atomic models. Cells are coupled by the neighborhood
relationship to form a cell space, which can then be
integrated with other DEVS and Cell-DEVS models. A cell
space is formally defined as a Cell-DEVS coupled model:

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z>.
The cell space (C) consists of a fixed-sized n-

dimensional array of cells, and the relative position between
each individual cell and its surrounding neighbors is defined
by the neighborhood set (N). B specifies the border of the
cell space, which can be wrapped (i.e., all cells have exactly
the same behavior) or non-warped (i.e., the border cells
have a different behavior from others in the cell space). The
translation function (Z) defines the input/output coupling
between the cells.

2.2. DEVS-based toolkits for PADS

At present, there are many DEVS-based toolkits
intended for PADS that have been developed on different
platforms using various middleware technologies. However,
few of them target COTS PC cluster systems that are readily
available in most workplaces. A non-comprehensive list of
existing toolkits is given as follows.
• DEVS/CORBA [13] is a runtime infrastructure based on

CORBA middleware that supports distributed simulation
of DEVS models. It can be embedded in a larger network-
centric environment to provide a combination of graphical
process modeling, discrete-event simulation, animation,
activity-based costing, and optimization functions.

• DEVS/HLA [14] is an HLA-compliant M&S environment
implemented in C++ that supports high-level model
construction. It simplifies the programming effort
required to establish and participate in an HLA federation.

• DEVSCluster [15] is a CORBA-based, multi-threaded
distributed simulator implemented in Visual C++. It
utilizes a non-hierarchical model structure to facilitate the
synchronization of distributed simulations.

• DEVS/Grid [16] is an M&S framework implemented
using Java and Globus for the Grid environment. It
includes a set of automated simulation facilities, including
cost-based hierarchical model partitioning, dynamic
coupling restructuring, automatic model deployment, and

naming and directory service.
• DEVS/P2P [17] is a P-DEVS based M&S framework

implemented on top of Peer-to-Peer communication
infrastructure. It uses a customized DEVS simulation
protocol to achieve decentralized inter-node
communication. Simulators are synchronized by
themselves without involving a coordinator.

• DEVS/RMI [18] is a DEVS-based system that provides a
dynamic and re-configurable runtime infrastructure for
handling load balancing and fault tolerance in distributed
simulations. It reduces the overhead associated with
common middleware solutions by using the native
support of Java RMI to synchronize local and remote
simulators.

3. PARALLEL SIMULATION IN PCD++WIN

PCD++Win employs the layered software architecture
that was originally proposed in [10], as shown in Figure 1.

Figure 1. Layered software architecture in PCD++Win

The simulator has been built on top of the NoTime
module of the WARPED simulation kernel [19], which is a
configurable middleware that provides the abstract
definition of events, states, and simulation objects, as well
as MPI-based communication between the simulation
objects. The NoTime module does not provide any
synchronization mechanism. Instead, the parallel simulation
is controlled at the PCD++Win level.

CD++ decouples the modeling and simulation concepts
by providing two separate frameworks: a modeling
framework that allows users to define the behavior of
atomic and coupled models using a built-in specification
language or C++; and a simulation framework that creates
an executive entity for each component in the model
hierarchy to carry out the simulation in line with the P-
DEVS and Cell-DEVS formalisms. Figure 2 shows the class
hierarchies of the modeling and simulation frameworks.

Figure 2. Modeling and simulation frameworks in CD++

Based on the abstract DEVS simulator concept [4], the
simulation objects are specialized into two categories:
simulators and coordinators. A simulator is associated with
an atomic model to trigger the output and state transition
functions, while a coordinator is created for each coupled
model to keep track of the simulation time and to relay
messages between its child simulators and the parent
coordinator. A special root coordinator is created on node 0
(i.e., the first node in the PC cluster) to control the advance
of simulation time and to communicate between the
simulated model and the surrounding environment.

To reduce the communication overhead, PCD++Win
employs a master/slave structure of coordinators [10]. As a
result, when a coupled model is partitioned onto multiple
nodes, a coordinator is created on each of them to execute
the portion mapped on that specific node. The coordinator
on the first node involved in the partition is the master,
while all the other coordinators are slaves. The master
coordinator is deemed as the immediate parent of the slaves
residing on the other nodes. Figure 3 illustrates the
master/slave structure on two nodes. Suppose the coupled
model C1 is partitioned onto two nodes and each portion
has two atomic models. Two coordinators are created for C1:
a master (MasterC1) on node0 and a slave (SlaveC1) on
node1. The major advantage of this arrangement is that it
reduces the number of inter-node MPI messages to the
minimum. For example, if A1 sends a message to A3 and
A4 at the same time, then only one MPI message is actually
transmitted between the master and slave coordinators
instead of two. Due to the high cost of inter-node messaging,
this structure can significantly reduce the communication
overhead and improve the simulation performance.

Figure 3. Master/slave coordinator structure

 The simulation is carried out in a message-driven
fashion. Each message has a timestamp that indicates the
virtual time of the event. CD++ messages fall into two
categories: content messages include the external message
(X, t) and output message (Y, t) that encode the actual data
transmitted between the models, while control messages
include the initialization message (I, t), collect message (@,
t), internal message (*, t), and done message (D, t) that are
used to synchronize the simulation. The message-processing
algorithms are illustrated in the following UML sequence
diagrams.

Figure 4. Message-processing algorithms (simulator)
Figure 4 shows the algorithms for simulators. When a

simulator receives a (@, t) message from its parent
coordinator, it executes the output function defined in the
associated atomic model and sends a (Y, t) and a (D, t) to its
parent. If a (X, t) is received, the message is cached in the
simulator’s message bag. On the other hand, the arrival of a
(*, t) triggers state transitions in the atomic model based on
the simulation time and current status of the message bag.

The message-processing algorithms for master
coordinators are illustrated in Figure 5. A master
coordinator may have three different types of child
processors, including the slave coordinators on remote
nodes, the local child simulators, and other lower-level
master coordinators on the same node. When a (@, t)
arrives, the master coordinator forwards the message to all
imminent child processors and caches the receivers for later
state transitions. It then waits for a (D, t) from each of these
receivers. Afterwards, it sends a (D, t) with the updated
simulation time to its parent coordinator.

Three different cases may occur upon the arrival of a (Y,
t): if the message is sending to a local receiver, the master
coordinator translates it into a (X, t) and forwards it to the
destination; if the message targets remote receivers, the
master coordinator figures out the corresponding slave
coordinators, and relays the message to each of them;
otherwise, the message is forwarded to the higher-level
parent coordinator. The processing of a (X, t) is the same as
in the simulators. The master coordinator flushes all external
messages in its message bag to their destinations upon the
arrival of a (*, t). It also sends a (*, t) to each child that has a
scheduled internal or external state transition. After the state
transitions, the master coordinator calculates the next
simulation time and sends the information to its parent
coordinator in a (D, t).

Figure 5. Message-processing algorithms (master)
The slave coordinator handles (@, t), (X, t), and (*, t)

messages in the same manner as the master coordinator.
However, they differ in one aspect: whenever a (Y, t) has to
be sent to a remote receiver, the slave coordinator will
forward it to its parent master coordinator. In this
master/slave structure, a slave coordinator can have only
two types of child processors, namely the local child

simulators and lower-level master coordinators (i.e., it will
not have other slave coordinators as descendants). Figure 6
shows the slave coordinator algorithm for (Y, t).

Figure 6. Message-processing algorithms (slave)

When a (Y, t) arrives, the slave coordinator transforms
the message into a (X, t) and sends the resulting (X, t) to the
local child receivers. If the (Y, t) targets remote receivers on
other nodes, the slave coordinator simply forwards the
message to its parent master coordinator, which in turn will
send the message to other slave coordinators if necessary.
Notice that only one (Y, t) is forwarded to the master
coordinator, as guaranteed by the sendToMaster flag.

Figure 7. Root algorithm for simulation control

The root coordinator is a special processor that controls
the whole simulation and handles events exchanged between
the simulated model and the environment. Figure 7 shows
the root coordinator algorithm for controlling the simulation,
where it sends (*, t) and (@, t) alternatively with potential
external events as (X, t) messages to the top-level master
coordinator to drive the simulation forward.

In this project, several techniques were used to enhance
the modularity, portability and capability of the PCD++Win
simulator on Windows platforms. Following is a summary
of the major portion of our research effort.

1. Modular software development using dynamic-link
libraries (DLL): a DLL contains the implementation of a

shared library that allows for modular software development
and promotes code reuse. We compiled the NoTime Warped
kernel as a separate DLL module, which is dynamically
linked to the simulator at runtime. This approach reduces
the memory footprint of PCD++Win and makes it possible
to easily switch to other middleware technologies in future
developments.

2. Multi-platform compilation with preprocessor
macros. Although PCD++Win is intended for Windows-
based PC clusters, the code was written to be executed on
Linux OS as well. This is achieved by defining preprocessor
macros in the source code and using conditional compilation
to generate appropriate versions for different platforms,
increasing the portability of the toolkit.

3. Porting code from GCC (GNU Compiler
Collection) to Microsoft Visual Studio: PCD++Win was
developed based on the conservative simulator PCD++ [10],
which uses GCC on Linux systems. We ported the source
code to Microsoft Visual Studio that has native support for
Web service and SQL database access based on the .NET
Framework. As a result, it is now convenient to further
extend PCD++Win into Web services to carry out Web-
based distributed simulations, and to access a shared
database of predefined model components that would
greatly facilitate the model development process.

4. PARALLEL SIMULATION WITH DEINOMPI

By using the DeinoMPI GUI tool [2], users can easily
configure an ad-hoc PC cluster to carry out parallel
simulations with PCD++Win. This section explains how to
set up the cluster environment and monitor the simulation
progress. Figure 8 shows the GUI for cluster configuration.

Figure 8. Cluster configuration in DeinoMPI

Computers on a network can be added to the panel
either by scanning the whole network or by specifying their
host names. The tool can automatically check the machines
and present their status to the user. For instance, Figure 8
shows that ARS-10 and ARS-13 are available nodes that
have all necessary software to carry out parallel simulations,
while ARS-11 lacks the DeinoMPI package and hence

cannot be involved in the cluster. A question mark means
the condition of the node is not yet fully known. Detailed
information about each node is also probed and presented,
including CPU speed, memory size, disk space, network
connectivity and so on. With this information, the user can
then select appropriate nodes to form an ad-hoc cluster.

The main execution window is illustrated in Figure 9.
Users can specify the simulation parameters using the GUI
tool and dynamically change the nodes involved in the
cluster. The simulation-related information is shown in the
window underneath.

Figure 9. Main execution window in DeinoMPI

If errors happen in the simulation, users can diagnose
the error condition by using the job verification tab. As
shown in Figure 10, the tool gives a detailed description of
each job and the possible causes of the failure.

Figure 10. Job verification tool in DeinoMPI

As we can see, PCD++Win provides a user-friendly
environment for conducting parallel simulations by
leveraging the easy-to-use GUI tool of DeinoMPI. Any
Windows-based PCs interconnected via a network can be
used to form a cluster platform for parallel simulations that
are otherwise not possible on a single machine, making
advanced simulation technologies available not only to users
in traditional office environment equipped with wired
desktop PCs, but also to practitioners on the move working
on laptops connected by ad-hoc wireless networks.

5. EXPERIMENTATION RESULTS
This section presents a preliminary performance

analysis that compares PCD++Win with the conservative
PCD++ [10]. As these two simulators actually target
different platforms and computing environment, we should
stress that the data presented here are obtained on their
intended typical platforms, and only serves as a general
indicator of the simulation performance. Before moving to
the experimental results, it is important to highlight the key
differences existed in the computing environment to
eliminate any potential bias in judging the performance data.
The differences are described as follows.

1. PCD++Win executes on a group of desktop
workstations (Intel Core 2 Duo Processor E6400 @ 2.13
GHz, 2 GB DDR2-Synch DRAM) running Microsoft
Windows XP Professional connected through a shared local
area network (LAN) and communicating with DeinoMPI
1.1.0, while PCD++ executes on a HP PROLIANT DL
Server, a cluster of 32 compute nodes (Intel Xeon Dual
Processor @ 3.2 GHz, 1 GB PC2100 266 MHz DDR RAM)
running Linux WS 2.4.21 interconnected via a dedicated
Gigabit Ethernet and communicating over MPICH 1.2.6.
Although the differences in CPU speed, memory size,
network type (dedicated or shared), MPI middleware and
operating system might have a non-negligible effect on the
performance data, the setting is not materially biased in
favor of any of these two simulators.

2. In the case of PCD++Win, the log data generated
during the simulation are stored to the local file system on
each workstation. On the other hand, the data are transferred
over the network to a NFS (Network File System) when
PCD++ is executed on the Linux cluster. Since the file I/O
operations are much faster in the former case, this would
give a boost to the performance of PCD++Win.

Three Cell-DEVS models were tested in our experiment,
including a 20×20 fire propagation model and a 15×15×2
watershed model that are described in [20], as well as a
20×20 collision avoidance model that simulates the
behavior of moving robots trying to steer clear of obstacles
in their way [21]. The execution time and speedup shown in
Figure 11 is averaged over ten simulation runs for each
model.

As we can see, PCD++Win achieves comparable
performance to the conservative PCD++ in terms of
execution time and speedups. In some cases, PCD++Win
attains an improved execution time (by as much as 88.06%)
for the models evaluated in our experiments, mainly due to
the much more efficient local file I/O operations.
Comparing the speedups obtained by the simulators, the
data suggests that PCD++Win generally surpasses its
counterpart on a relatively small number of computers.
When the simulation involves greater number of nodes, the
communication overhead becomes the primary bottleneck
that eventually hinders the scalability of PCD++Win

running on a shared network.

Figure 11. Execution results of different Cell-DEVS models

6. CONCLUSION
This paper addresses the issue of parallel simulation of

DEVS and Cell-DEVS models on Microsoft Windows-
based cluster systems. A parallel simulator, PCD++Win, has
been developed as a new simulation engine for the CD++
environment. PCD++Win is integrated with the open-source
DeinoMPI middleware that provides an easy-to-use GUI for
construction of ad-hoc clusters from commodity PCs and
configuration of the simulation environment, significantly
reducing the learning curve for general users and the
simulation cost. It has been developed using a highly
modular approach that promotes code reuse and allows for
easy switching to other middleware technologies in future
development. The portability of the simulator is enhanced
with multi-platform programming and compilation
techniques. Moreover, it leaves open the possibility of
further extensions such as Web-based distributed simulation
and database-based model construction by leveraging the
native support of Microsoft Visual Studio. The experiments
demonstrate the capability of the new simulator, making it
an alternative M&S toolkit for tapping the computational
power of general-purpose desktop computers.

References
[1] MPI Forum. 2003. MPI: A Message-Passing Interface
Standard. http://www.mpi-forum.org/docs/docs.html.
[2] Deino Software. 2006. DeinoMPI – User Manual,
Version 1.1.0. http://mpi.deino.net/manual.htm.
[3] Zeigler, B.P.; H. Praehofer, and T. G. Kim. 2000.
Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems.
Academic Press, San Diego, CA.
[4] Chow, A.C., and B.P. Zeigler. 1994. “Parallel DEVS: A
Parallel, Hierarchical, Modular Modeling Formalism”. In
Proceedings of the 26th Winter Simulation Conference,
Orlando, FL, 716-722.
[5] Wainer, G., and N. Giambiasi. 2002. “N-dimensional
Cell-DEVS Models”. Discrete Event Dynamic Systems, 12,
no. 2, (April): 135-157.
[6] Wolfram, S. 2002. A New Kind of Science. Wolfram
Media Inc., Champaign, IL.
[7] Fujimoto, R.M. 2000. Parallel and distributed
simulation systems. John Wiley & Sons, New York, NY.
[8] Wainer, G. 2002. “CD++: A Toolkit to Develop DEVS
Models”. Software: Practice and Experience, 32, no. 13,
(September): 1261-1306.
[9] Chidisiuc, C. and G. Wainer. 2007. “CD++Builder: An
Eclipse-based IDE for DEVS Modeling”. In Proceedings of
the 2007 DEVS Integrative M&S Symposium (DEVS’07),
Norfolk, VA.
[10] Troccoli, A. and G. Wainer. 2003. “Implementing
parallel Cell-DEVS”. In Proceedings of the 36th IEEE
Annual Simulation Symposium (ANSS’03), Orlando, FL,
273-280.

[11] Liu, Q. and G. Wainer. 2007. “Performance Analysis of
an Optimistic Simulator for CD++”. In Proceedings of the
40th IEEE Annual Simulation Symposium (ANSS’07),
Norfolk, VA, 123-132.
[12] Madhoun, R. and G. Wainer. 2007. “Studying the
Impact of Web-Services Implementation of Distributed
Simulation of DEVS and Cell-DEVS Models”. In
Proceedings of the 2007 DEVS Integrative M&S
Symposium (DEVS’07), Norfolk, VA.
[13] Zeigler, B.P., D. Kim, and S. Buckley. 1999.
“Distributed Supply Chain Simulation in a DEVS/CORBA
Execution Environment”. In Proceedings of the 31st Winter
Simulation Conference, Phoenix, AZ, 1333-1340.
[14] Zeigler, B.P., and H.S. Sarjoughian. 1999. “Support for
Hierarchical Modular Component-based Model
Construction in DEVS/HLA”. In Proceedings of the 1999
Spring Simulation Interoperability Workshop, Orlando, FL.
[15] Kim, K. and W. Kang. 2004. “CORBA-based, Multi-
threaded Distributed Simulation of Hierarchical DEVS
Models: Transforming Model Structure into a Non-
hierarchical One”. In Proceedings of the International
Conference on Computational Science and Its Applications
(ICCSA 2004), Assisi, Italy, LNCS 3046: 167-176.
[16] Seo, C., S. Park, B. Kim, S. Cheon, and B.P. Zeigler.
2004. “Implementation of Distributed High-performance
DEVS Simulation Framework in the Grid Computing
Environment”. In Proceedings of the 2004 Advanced
Simulation Technologies Conference – High-Performance
Computing Symposium (ASTC’04), Arlington, VA.
[17] Cheon, S., C. Seo, S. Park, and B.P. Zeigler. 2004.
“Design and Implementation of Distributed DEVS
Simulation in a Peer to Peer Network System”. In
Proceedings of the 2004 Advanced Simulation Technologies
Conference – Design, Analysis, and Simulation of
Distributed Systems (ASTC’04), Arlington, VA.
[18] Zhang, M., B.P. Zeigler, and P. Hammonds. 2006.
“DEVS/RMI – An Auto-adaptive and Reconfigurable
Distributed Simulation Environment for Engineering
Studies”. In Proceedings of the 2006 DEVS Integrative
M&S Symposium (DEVS’06), Huntsville, AL.
[19] Radhakrishnan, R., D.E. Martin, M. Chetlur, D.M. Rao,
and P.A. Wilsey. 1998. “An Object-Oriented Time Warp
Simulation Kernel”. In Proceedings of the 2nd International
Symposium: Computing in Object-oriented Parallel
Environments (ISCOPE 98), Santa Fe, NM, LNCS 1505:
13-23.
[20] Wainer, G. 2006. “Applying Cell-DEVS Methodology
for Modeling the Environment”. SIMULATION:
Transactions of the Society for Modeling and Simulation
International, 82, no. 10, 635-660.
[21] Wainer, G. 2008. Discrete-Event Modeling and
Simulation: A Practitioner's Approach. Taylor and Francis.
To Appear.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

