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Abstract 
 The growing popularity of Networks of Workstations 
(NOW) in scientific computation has drawn increasing 
interest from the M&S community. This paper addresses the 
issue of parallel discrete-event simulation of DEVS and 
Cell-DEVS models on a Microsoft Windows-based cluster 
system comprising interconnected general-purpose personal 
computers. We present the architecture and features of 
PCD++Win, a parallel simulator that takes advantage of the 
multi-purpose graphical user interface of the DeinoMPI 
middleware for construction of ad-hoc PC clusters and 
configuration of simulation environment. This environment 
significantly reduces the learning curve for general users 
and the cost of the simulation platform. PCD++Win has 
been developed using a modular approach that promotes 
code reuse and allows for easy switching to other 
middleware technologies. The portability of the simulator is 
enhanced with multi-platform programming and 
compilation techniques. Moreover, it leaves open the 
possibility of further extensions such as Web-based 
distributed simulation and database-based model 
construction by leveraging the native support of Microsoft 
Visual Studio. The experiments demonstrate the capability 
of the new simulator, making it an ideal M&S toolkit for 
tapping the computational power of general-purpose 
desktop computers. 
 
1. INTRODUCTION 

Modeling and simulation (M&S) has become a widely 
used tool for tackling complex problems and supporting 
efficient decision-making in a broad array of domains. With 
the computing power and advanced software tools available 
today, M&S allows for cost-effective and detailed analysis 
of natural and artificial systems. Parallel and distributed 
simulation (PADS) is accepted as the technology of choice 
to speed up large-scale discrete-event simulation and to 
promote reusability and interoperability of simulation 
components. Traditionally, PADS is usually realized on 
advanced parallel computing platforms using UNIX/Linux 
servers or Beowulf configurations. The increasing 
computational power of PCs and the growing popularity of 

using Networks of Workstations (NOW) in scientific 
computation have drawn significant interest from the M&S 
community. Advanced PADS toolkits are being developed 
to unleash the relatively untapped potential of idle capacity 
of general-purpose desktop computers. 

The Message Passing Interface (MPI) standard [1] is a 
technique for high-performance communications on both 
massively parallel machines and on workstation clusters. It 
has been used as the enabling middleware in various parallel 
and distributed simulators. However, many MPI packages 
only offer a list of commands with numerous options and 
parameters, making the configuration task intimidating for 
most non-experienced users. Recently, several MPI 
implementations with a graphical user interface (GUI) are 
made available on Microsoft Windows platforms, allowing 
for the construction of MPI-based PADS systems on 
commodity off-the-shelf (COTS) Windows-based PCs, 
promoting the adoption of cutting-edge M&S technologies 
by a wider community of practitioners. Among them, the 
DeinoMPI [2] is a freely available implementation of the 
MPI-2 standard for 32 and 64-bit Microsoft 2000/XP/Server 
2003 platforms. PCD++Win employs DeinoMPI as the 
communication infrastructure due to its support for the latest 
version of the MPI standard and Windows operating 
systems, easy-to-use multi-purpose GUI tool for end users, 
built-in debugging and diagnostic capabilities, and small 
installation footprint.  

The Discrete Event System Specification (DEVS) [3] is 
a sound formal M&S methodology for discrete-event 
systems. By decoupling the model and simulation concepts, 
the DEVS framework offers two major benefits. First, the 
same model can be executed on different simulators, 
allowing for portability and interoperability at a high level 
of abstraction. Moreover, the well-defined separation of 
concerns permits models and simulators to be independently 
verified and reused in later combinations with minimal re-
verification. Furthermore, DEVS supports hierarchical and 
modular construction of models, reducing the development 
and testing effort. The P-DEVS formalism [4] extends the 
DEVS framework by eliminating the sequential execution 
constraints that existed in the original DEVS definition, 
allowing increased parallelism to be exploited in PADS 
systems. The Cell-DEVS formalism [5] combines Cellular 
Automata (CA) [6] with DEVS theory to describe n-



dimensional cell-spaces as discrete-event models, where 
each cell is defined as a DEVS basic model with explicit 
timing constructions. The synchronization mechanism used 
in PADS generally falls into two categories [7]: 
conservative protocols that strictly avoid violating the local 
causality constraint, and optimistic protocols that 
dynamically detect causality errors and provide mechanisms 
to recover from them at runtime. Both approaches have their 
strengths and weaknesses, and we followed the conservative 
approach in this work. 

CD++ [8] is an open-source M&S environment that 
implements the P-DEVS and Cell-DEVS formalisms and 
has been used to successfully solve a variety of 
sophisticated problems. Over the years, CD++ has been 
ported to different platforms, including a standalone version 
called CD++Builder that runs as an Eclipse plug-in on 
Windows systems to support sequential simulations [9], 
several parallel versions, referred to as PCD++, that employ 
both conservative and optimistic synchronization protocols 
to achieve high-performance simulations on Linux cluster 
systems [10][11], and a distributed version called DCD++ 
that supports Web-based simulations over the Internet on 
Linux platforms [12]. The CD++ environment is further 
extended in this research to support parallel conservative 
simulation of DEVS and Cell-DEVS models on Microsoft 
Windows-based PC clusters using DeinoMPI. The objective 
is twofold. First, the resulting simulator, called PCD++Win, 
is based on COTS PC hardware running the most commonly 
used Windows operating system, allowing high-
performance parallel simulation in a cost effective way. 
Secondly, by integrating PCD++Win with DeinoMPI, 
general users can benefit from the easy-to-use multi-purpose 
GUI tool in construction of flexible ad-hoc PC clusters. 
Furthermore, the performance of PCD++Win is compared 
with the conservative PCD++ running on Linux cluster 
systems, showing the relative merits of both approaches. 

The rest of the paper is organized as follows. Section 2 
introduces the P-DEVS and Cell-DEVS formalisms and 
gives a brief survey on alternative DEVS-based toolkits for 
PADS. Section 3 discusses the techniques for parallel 
conservative simulation in PCD++Win. Section 4 covers the 
major features of the multi-purpose GUI tool provided by 
DeinoMPI. Section 5 presents a performance analysis. And 
Section 6 closes the paper with conclusion remarks. 

 
2. BACKGROUND 
 
2.1. P-DEVS and Cell-DEVS formalisms 
 In a discrete-event simulation, the system being 
simulated changes state only at discrete points in time, upon 
the occurrence of an event. Based on dynamic systems 
theory, the DEVS formalism [3] provides a framework for 
defining hierarchical models in a modular way. A system is 
described in DEVS as a composition of behavioral (atomic) 

and structural (coupled) components. The P-DEVS 
formalism [4] eliminates the sequential execution 
constraints imposed by the original DEVS definition, and 
provides a solid theoretical foundation for high-performance 
parallel and distributed discrete-event simulation. A P-
DEVS atomic model is formally defined as: 

M = <X, Y, S, δint, δext, δcon, λ, ta>. 
At any given time, an atomic model is in some state s 

∈  S. Without the occurrence of external events, it remains 
in state s for a period of time of ta(s), which is referred to as 
the lifetime of state s. When the lifetime expires, the atomic 
model outputs value λ(s) ∈  Y, and changes to a new state 
given by the internal transition function δint(s). A P-DEVS 
model employs a bag of inputs (Xb) to support the execution 
of multiple concurrent events. If one or more external events 
x ∈  X occur before the expiration of ta(s), the model 
transfers to a state that is determined by the external 
transition function δext(s,e,Xb), combining the functionality 
of multiple external transitions into a single one. A 
confluent transition function (δcon) is defined to determine 
the next state in the case of collisions when a component 
receives external events at the same time of its internal 
transition. 

The P-DEVS formalism has a well-defined concept of 
system modularity and component coupling to form 
composite models. A P-DEVS coupled model is formally 
defined as: 

N = <X, Y, D, {Md | d∈D}, EIC, EOC, IC>. 
The sets of input and output events are defined by X 

and Y respectively. D is a set of indices for the components 
of a coupled model and, for each d ∈  D, Md is a basic P-
DEVS model (atomic or coupled). The external input 
coupling (EIC) specifies the connections between external 
and component inputs, while the external output coupling 
(EOC) describes the connections between component and 
external outputs. The connections between the components 
themselves are defined by the internal coupling (IC). It has 
been shown that the P-DEVS formalism enjoys a nice 
property known as closure under coupling [3], which allows 
a coupled model to be reduced to a behaviorally equivalent 
atomic model, and thus be treated as a basic component in 
construction of more complicated hierarchical models. 

CA [6] is a theory that is capable of producing a great 
variety of complex behavior of systems represented as cell 
spaces. Traditionally, CA models are implemented on a 
computer using a discrete time approach. The behavior of a 
cell space depends on synchronous evaluation of local 
functions defined in the cells at discrete time intervals. To 
improve execution efficiency and precision of the simulated 
models, the Cell-DEVS formalism [5] was proposed to 
define n-dimensional cell spaces as discrete-event DEVS 
coupled models, where each cell is represented as a DEVS 
atomic model. Further, it defines timing constructions for 
each cell, allowing explicit timing specification, 



asynchronous model execution, and seamless integration 
with other types of models. A Cell-DEVS atomic model is 
formally defined as: 

C = <X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D>. 
A cell has a modular interface (I) that is composed of a 

fixed number of ports; each is connected to a neighboring 
cell. It can input and output data (X and Y) with its 
neighbors as well as other models outside of the cell space. 
The future state of a cell is computed by the local transition 
function (τ) based on the cell’s current state and input values. 
State changes in a cell are transmitted only after a delay 
given by the delay function (d). Each cell also has the 
computing apparatus (δint, δext, and λ) as defined in DEVS 
atomic models. Cells are coupled by the neighborhood 
relationship to form a cell space, which can then be 
integrated with other DEVS and Cell-DEVS models. A cell 
space is formally defined as a Cell-DEVS coupled model: 

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z>. 
The cell space (C) consists of a fixed-sized n-

dimensional array of cells, and the relative position between 
each individual cell and its surrounding neighbors is defined 
by the neighborhood set (N). B specifies the border of the 
cell space, which can be wrapped (i.e., all cells have exactly 
the same behavior) or non-warped (i.e., the border cells 
have a different behavior from others in the cell space). The 
translation function (Z) defines the input/output coupling 
between the cells. 

 
2.2. DEVS-based toolkits for PADS 

At present, there are many DEVS-based toolkits 
intended for PADS that have been developed on different 
platforms using various middleware technologies. However, 
few of them target COTS PC cluster systems that are readily 
available in most workplaces. A non-comprehensive list of 
existing toolkits is given as follows. 
• DEVS/CORBA [13] is a runtime infrastructure based on 

CORBA middleware that supports distributed simulation 
of DEVS models. It can be embedded in a larger network-
centric environment to provide a combination of graphical 
process modeling, discrete-event simulation, animation, 
activity-based costing, and optimization functions. 

• DEVS/HLA [14] is an HLA-compliant M&S environment 
implemented in C++ that supports high-level model 
construction. It simplifies the programming effort 
required to establish and participate in an HLA federation. 

• DEVSCluster [15] is a CORBA-based, multi-threaded 
distributed simulator implemented in Visual C++. It 
utilizes a non-hierarchical model structure to facilitate the 
synchronization of distributed simulations. 

• DEVS/Grid [16] is an M&S framework implemented 
using Java and Globus for the Grid environment. It 
includes a set of automated simulation facilities, including 
cost-based hierarchical model partitioning, dynamic 
coupling restructuring, automatic model deployment, and 

naming and directory service.  
• DEVS/P2P [17] is a P-DEVS based M&S framework 

implemented on top of Peer-to-Peer communication 
infrastructure. It uses a customized DEVS simulation 
protocol to achieve decentralized inter-node 
communication. Simulators are synchronized by 
themselves without involving a coordinator.   

• DEVS/RMI [18] is a DEVS-based system that provides a 
dynamic and re-configurable runtime infrastructure for 
handling load balancing and fault tolerance in distributed 
simulations. It reduces the overhead associated with 
common middleware solutions by using the native 
support of Java RMI to synchronize local and remote 
simulators. 

 
3. PARALLEL SIMULATION IN PCD++WIN 

PCD++Win employs the layered software architecture 
that was originally proposed in [10], as shown in Figure 1. 

 
Figure 1. Layered software architecture in PCD++Win 

The simulator has been built on top of the NoTime 
module of the WARPED simulation kernel [19], which is a 
configurable middleware that provides the abstract 
definition of events, states, and simulation objects, as well 
as MPI-based communication between the simulation 
objects. The NoTime module does not provide any 
synchronization mechanism. Instead, the parallel simulation 
is controlled at the PCD++Win level. 

CD++ decouples the modeling and simulation concepts 
by providing two separate frameworks: a modeling 
framework that allows users to define the behavior of 
atomic and coupled models using a built-in specification 
language or C++; and a simulation framework that creates 
an executive entity for each component in the model 
hierarchy to carry out the simulation in line with the P-
DEVS and Cell-DEVS formalisms. Figure 2 shows the class 
hierarchies of the modeling and simulation frameworks. 

 
Figure 2. Modeling and simulation frameworks in CD++ 



Based on the abstract DEVS simulator concept [4], the 
simulation objects are specialized into two categories: 
simulators and coordinators. A simulator is associated with 
an atomic model to trigger the output and state transition 
functions, while a coordinator is created for each coupled 
model to keep track of the simulation time and to relay 
messages between its child simulators and the parent 
coordinator. A special root coordinator is created on node 0 
(i.e., the first node in the PC cluster) to control the advance 
of simulation time and to communicate between the 
simulated model and the surrounding environment. 

To reduce the communication overhead, PCD++Win 
employs a master/slave structure of coordinators [10]. As a 
result, when a coupled model is partitioned onto multiple 
nodes, a coordinator is created on each of them to execute 
the portion mapped on that specific node. The coordinator 
on the first node involved in the partition is the master, 
while all the other coordinators are slaves. The master 
coordinator is deemed as the immediate parent of the slaves 
residing on the other nodes. Figure 3 illustrates the 
master/slave structure on two nodes. Suppose the coupled 
model C1 is partitioned onto two nodes and each portion 
has two atomic models. Two coordinators are created for C1: 
a master (MasterC1) on node0 and a slave (SlaveC1) on 
node1. The major advantage of this arrangement is that it 
reduces the number of inter-node MPI messages to the 
minimum. For example, if A1 sends a message to A3 and 
A4 at the same time, then only one MPI message is actually 
transmitted between the master and slave coordinators 
instead of two. Due to the high cost of inter-node messaging, 
this structure can significantly reduce the communication 
overhead and improve the simulation performance. 

 
Figure 3. Master/slave coordinator structure 

      The simulation is carried out in a message-driven 
fashion. Each message has a timestamp that indicates the 
virtual time of the event. CD++ messages fall into two 
categories: content messages include the external message 
(X, t) and output message (Y, t) that encode the actual data 
transmitted between the models, while control messages 
include the initialization message (I, t), collect message (@, 
t), internal message (*, t), and done message (D, t) that are 
used to synchronize the simulation. The message-processing 
algorithms are illustrated in the following UML sequence 
diagrams. 

 
Figure 4. Message-processing algorithms (simulator) 
Figure 4 shows the algorithms for simulators. When a 

simulator receives a (@, t) message from its parent 
coordinator, it executes the output function defined in the 
associated atomic model and sends a (Y, t) and a (D, t) to its 
parent. If a (X, t) is received, the message is cached in the 
simulator’s message bag. On the other hand, the arrival of a 
(*, t) triggers state transitions in the atomic model based on 
the simulation time and current status of the message bag. 

The message-processing algorithms for master 
coordinators are illustrated in Figure 5. A master 
coordinator may have three different types of child 
processors, including the slave coordinators on remote 
nodes, the local child simulators, and other lower-level 
master coordinators on the same node. When a (@, t) 
arrives, the master coordinator forwards the message to all 
imminent child processors and caches the receivers for later 
state transitions. It then waits for a (D, t) from each of these 
receivers. Afterwards, it sends a (D, t) with the updated 
simulation time to its parent coordinator. 

Three different cases may occur upon the arrival of a (Y, 
t): if the message is sending to a local receiver, the master 
coordinator translates it into a (X, t) and forwards it to the 
destination; if the message targets remote receivers, the 
master coordinator figures out the corresponding slave 
coordinators, and relays the message to each of them; 
otherwise, the message is forwarded to the higher-level 
parent coordinator. The processing of a (X, t) is the same as 
in the simulators. The master coordinator flushes all external 
messages in its message bag to their destinations upon the 
arrival of a (*, t). It also sends a (*, t) to each child that has a 
scheduled internal or external state transition. After the state 
transitions, the master coordinator calculates the next 
simulation time and sends the information to its parent 
coordinator in a (D, t). 



 
Figure 5. Message-processing algorithms (master) 
The slave coordinator handles (@, t), (X, t), and (*, t) 

messages in the same manner as the master coordinator. 
However, they differ in one aspect: whenever a (Y, t) has to 
be sent to a remote receiver, the slave coordinator will 
forward it to its parent master coordinator. In this 
master/slave structure, a slave coordinator can have only 
two types of child processors, namely the local child 

simulators and lower-level master coordinators (i.e., it will 
not have other slave coordinators as descendants). Figure 6 
shows the slave coordinator algorithm for (Y, t). 

 
Figure 6. Message-processing algorithms (slave) 

When a (Y, t) arrives, the slave coordinator transforms 
the message into a (X, t) and sends the resulting (X, t) to the 
local child receivers. If the (Y, t) targets remote receivers on 
other nodes, the slave coordinator simply forwards the 
message to its parent master coordinator, which in turn will 
send the message to other slave coordinators if necessary. 
Notice that only one (Y, t) is forwarded to the master 
coordinator, as guaranteed by the sendToMaster flag. 

 
Figure 7. Root algorithm for simulation control 

The root coordinator is a special processor that controls 
the whole simulation and handles events exchanged between 
the simulated model and the environment. Figure 7 shows 
the root coordinator algorithm for controlling the simulation, 
where it sends (*, t) and (@, t) alternatively with potential 
external events as (X, t) messages to the top-level master 
coordinator to drive the simulation forward. 

In this project, several techniques were used to enhance 
the modularity, portability and capability of the PCD++Win 
simulator on Windows platforms. Following is a summary 
of the major portion of our research effort. 

1. Modular software development using dynamic-link 
libraries (DLL): a DLL contains the implementation of a 



shared library that allows for modular software development 
and promotes code reuse. We compiled the NoTime Warped 
kernel as a separate DLL module, which is dynamically 
linked to the simulator at runtime. This approach reduces 
the memory footprint of PCD++Win and makes it possible 
to easily switch to other middleware technologies in future 
developments. 

2. Multi-platform compilation with preprocessor 
macros. Although PCD++Win is intended for Windows-
based PC clusters, the code was written to be executed on 
Linux OS as well. This is achieved by defining preprocessor 
macros in the source code and using conditional compilation 
to generate appropriate versions for different platforms, 
increasing the portability of the toolkit.  

3. Porting code from GCC (GNU Compiler 
Collection) to Microsoft Visual Studio: PCD++Win was 
developed based on the conservative simulator PCD++ [10], 
which uses GCC on Linux systems. We ported the source 
code to Microsoft Visual Studio that has native support for 
Web service and SQL database access based on the .NET 
Framework. As a result, it is now convenient to further 
extend PCD++Win into Web services to carry out Web-
based distributed simulations, and to access a shared 
database of predefined model components that would 
greatly facilitate the model development process. 
 
4. PARALLEL SIMULATION WITH DEINOMPI 

By using the DeinoMPI GUI tool [2], users can easily 
configure an ad-hoc PC cluster to carry out parallel 
simulations with PCD++Win. This section explains how to 
set up the cluster environment and monitor the simulation 
progress. Figure 8 shows the GUI for cluster configuration. 

 
Figure 8. Cluster configuration in DeinoMPI 

Computers on a network can be added to the panel 
either by scanning the whole network or by specifying their 
host names. The tool can automatically check the machines 
and present their status to the user. For instance, Figure 8 
shows that ARS-10 and ARS-13 are available nodes that 
have all necessary software to carry out parallel simulations, 
while ARS-11 lacks the DeinoMPI package and hence 

cannot be involved in the cluster. A question mark means 
the condition of the node is not yet fully known. Detailed 
information about each node is also probed and presented, 
including CPU speed, memory size, disk space, network 
connectivity and so on. With this information, the user can 
then select appropriate nodes to form an ad-hoc cluster. 

The main execution window is illustrated in Figure 9. 
Users can specify the simulation parameters using the GUI 
tool and dynamically change the nodes involved in the 
cluster. The simulation-related information is shown in the 
window underneath. 

 
Figure 9. Main execution window in DeinoMPI 

If errors happen in the simulation, users can diagnose 
the error condition by using the job verification tab. As 
shown in Figure 10, the tool gives a detailed description of 
each job and the possible causes of the failure. 

 
Figure 10. Job verification tool in DeinoMPI 

As we can see, PCD++Win provides a user-friendly 
environment for conducting parallel simulations by 
leveraging the easy-to-use GUI tool of DeinoMPI. Any 
Windows-based PCs interconnected via a network can be 
used to form a cluster platform for parallel simulations that 
are otherwise not possible on a single machine, making 
advanced simulation technologies available not only to users 
in traditional office environment equipped with wired 
desktop PCs, but also to practitioners on the move working 
on laptops connected by ad-hoc wireless networks. 



5. EXPERIMENTATION RESULTS 
This section presents a preliminary performance 

analysis that compares PCD++Win with the conservative 
PCD++ [10]. As these two simulators actually target 
different platforms and computing environment, we should 
stress that the data presented here are obtained on their 
intended typical platforms, and only serves as a general 
indicator of the simulation performance. Before moving to 
the experimental results, it is important to highlight the key 
differences existed in the computing environment to 
eliminate any potential bias in judging the performance data. 
The differences are described as follows. 

1. PCD++Win executes on a group of desktop 
workstations (Intel Core 2 Duo Processor E6400 @ 2.13 
GHz, 2 GB DDR2-Synch DRAM) running Microsoft 
Windows XP Professional connected through a shared local 
area network (LAN) and communicating with DeinoMPI 
1.1.0, while PCD++ executes on a HP PROLIANT DL 
Server, a cluster of 32 compute nodes (Intel Xeon Dual 
Processor @ 3.2 GHz, 1 GB PC2100 266 MHz DDR RAM) 
running Linux WS 2.4.21 interconnected via a dedicated 
Gigabit Ethernet and communicating over MPICH 1.2.6. 
Although the differences in CPU speed, memory size, 
network type (dedicated or shared), MPI middleware and 
operating system might have a non-negligible effect on the 
performance data, the setting is not materially biased in 
favor of any of these two simulators.  

2. In the case of PCD++Win, the log data generated 
during the simulation are stored to the local file system on 
each workstation. On the other hand, the data are transferred 
over the network to a NFS (Network File System) when 
PCD++ is executed on the Linux cluster. Since the file I/O 
operations are much faster in the former case, this would 
give a boost to the performance of PCD++Win. 

Three Cell-DEVS models were tested in our experiment, 
including a 20×20 fire propagation model and a 15×15×2 
watershed model that are described in [20], as well as a 
20×20 collision avoidance model that simulates the 
behavior of moving robots trying to steer clear of obstacles 
in their way [21]. The execution time and speedup shown in 
Figure 11 is averaged over ten simulation runs for each 
model.  

As we can see, PCD++Win achieves comparable 
performance to the conservative PCD++ in terms of 
execution time and speedups. In some cases, PCD++Win 
attains an improved execution time (by as much as 88.06%) 
for the models evaluated in our experiments, mainly due to 
the much more efficient local file I/O operations. 
Comparing the speedups obtained by the simulators, the 
data suggests that PCD++Win generally surpasses its 
counterpart on a relatively small number of computers. 
When the simulation involves greater number of nodes, the 
communication overhead becomes the primary bottleneck 
that eventually hinders the scalability of PCD++Win 

running on a shared network.  

 
Figure 11. Execution results of different Cell-DEVS models 
 



6. CONCLUSION 
This paper addresses the issue of parallel simulation of 

DEVS and Cell-DEVS models on Microsoft Windows-
based cluster systems. A parallel simulator, PCD++Win, has 
been developed as a new simulation engine for the CD++ 
environment. PCD++Win is integrated with the open-source 
DeinoMPI middleware that provides an easy-to-use GUI for 
construction of ad-hoc clusters from commodity PCs and 
configuration of the simulation environment, significantly 
reducing the learning curve for general users and the 
simulation cost. It has been developed using a highly 
modular approach that promotes code reuse and allows for 
easy switching to other middleware technologies in future 
development. The portability of the simulator is enhanced 
with multi-platform programming and compilation 
techniques. Moreover, it leaves open the possibility of 
further extensions such as Web-based distributed simulation 
and database-based model construction by leveraging the 
native support of Microsoft Visual Studio. The experiments 
demonstrate the capability of the new simulator, making it 
an alternative M&S toolkit for tapping the computational 
power of general-purpose desktop computers. 
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