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ABSTRACT
Cell-DEVS, an extension of the DEVS formalism, is
used to model tumor-immune systems that involve grow-
ing tumors interacting with immune cells. Tumors can
be regarded as a core of necrotic cells, surrounded by
dormant cells, surrounded in turn by proliferative cells.
The growth of a tumor is effected by the division of its
proliferative cells, but inhibited by nearby immune cells.
We present a Cell-DEVS model representing a tumor-
immune system. The use of Cell-DEVS is advantageous
as it facilitates the formal specification and reuse of cel-
lular models. The Cell-DEVS model was implemented
and tested using the CD++ toolkit. Simulation results in-
dicate that, in a qualitative sense, the desired behaviour
of tumors and immune cells was captured.

INTRODUCTION
Tumor growth is a complex process; more complicated
still when the response of an immune system to the
tumor is considered as well. The combination of a
growing tumor and the immune response will be referred
to as a “tumor-immune system”. Animal experiments
have revealed many interesting aspects of tumor-immune
systems. It has been observed, for example, that while
inoculation with a certain number of tumor cells results
in the rejection of the tumor by the immune system, a
smaller number of tumor cells may lead to progressive
tumor growth (Takayanagi et al., 2006). The modelling
of tumor-immune systems is of interest as a means of
investigating tumor growth and immunity.

Deterministic models based on differential equations
have been designed for tumor-immune systems, but are
regarded as inadequate for processes of considerable

complexity. They are often restricted to 1-dimensional
or radially symmetric tumor growth. Such limitations
have been overcome by the adoption of stochastic cel-
lular automata (Mallet and Pillis, 2006). In one case, a
3-dimensional cellular model was developed to simulate
tumors growing over three orders of magnitude in radius
(Kansal et al., 2002). Another cellular automaton has
modelled the release of proteins by immune cells in
response to a tumor (Takayanagi et al., 2006).

Facilitating the formal specification and reuse of
cellular models, Cell-DEVS (Wainer and Giambiasi,
2002) is a compelling tool for the modelling and simu-
lation of biological systems (Wainer et al., 2007). This
paper demonstrates how the formalism can be applied,
using a tumor-immune system model as an example.
One such cellular automaton was chosen for this purpose
(Huricha and Ruanxiaogang, 2003), which defines a
2-dimensional cell space through which immune cells
wander in search of a tumor. Tumors generally form a
core of necrotic cells, surrounded by a ring of dormant
cells, surrounded in turn by a ring of proliferative cells.
The tumor grows as the outermost proliferative cells
divide. A growing tumor may overwhelm the immune
system, or may be defeated by the immune cells. The
Cell-DEVS model was implemented and tested using
the CD++ toolkit (Wainer, 2002). Simulation results
exhibited the desired qualitative behavior of tumors and
immune cells.

After providing a brief overview of Cell-DEVS
and a more detailed description of the model we based
our work on, we describe the formal specification of
a tumor-immune system model. Following this is a
description of the CD++ implementation of the model.
Several test results that demonstrate the behaviour of the
model under simulation, showing how the Cell-DEVS
formalism may aid in the modelling and simulation of
biological systems such as these.



CELL-DEVS AND CD++
The DEVS formalism (Zeigler et al., 2000) provides a
framework for the construction of hierarchical modular
models, allowing for model reuse, and reducing devel-
opment and testing times. Basic models, called “atomic
models”, are specified through transition functions.
Multiple DEVS models can be integrated together to
form hierarchical structural models, called “coupled
models”.

The Cell-DEVS formalism was defined as an ex-
tension to cellular automata (Wolfram, 2002) combined
with DEVS. In Cell-DEVS, each cell in a cellular model
is seen as a DEVS atomic model, and a procedure for
coupling cells is defined based on the neighborhood
relationship. Only the active cells in the cell space are
triggered, independently from any activation period.
Each cell of a Cell-DEVS model holds state variables
and a local computing function, which updates the cell
state by using its present state and its neighborhood.

A timed DEVS cell atomic model, associated with
each cell in a cellular model, is specified as follows:

TDC = 〈X,Y, S,N, delay, d, δext, δint, τ, λ,D〉

The variable X defines the external inputs, Y defines
the external outputs, and S is the cell state definition.
The variable N represents the set of relative coordinates
of each cell in the neighborhood. The delay is the
kind of delay used for the cell, and d is its duration. A
transport delay can be associated with each cell, which
defers the outputs for the cell. A state change will be
discarded if it is not steady during an inertial delay.
The local computing function τ is used to evaluate the
future state of the cell. The remaining functions drive
the cell’s behavior: δint for internal transitions, δext for
external transitions, λ for outputs, and D for the state’s
duration.

A Cell-DEVS coupled model, representing an en-
tire cell space, is specified as follows:

GCC = 〈Xlist, Ylist, X, Y, n, [t1, . . . , tn], N,C,B,Z〉

Here, Xlist and Ylist are input/output coupling lists,
used to define the model’s interface. X and Y represent
the input/output events. The n value defines the number
of dimensions of the cell space, and [t1, . . . , tn] is the
number of cells in each dimension. N is the neighbor-
hood set. The cell space is defined by C, together with
B, the set of border cells, and Z, the translation function.

CD++ (Wainer, 2002) is a modelling tool that im-
plements the DEVS and Cell-DEVS formalisms. DEVS
atomic models are programmed in C++, while both
DEVS coupled models and Cell-DEVS models can be
defined using a built-in specification language. CD++
makes use of the independence between modelling and
simulation provided by DEVS, and different simulation
engines have been defined for the platform.

TUMOR-IMMUNE SYSTEM MODEL
A cellular automaton, describing the growth of tumors
interacting with an immune system, was previously de-
signed and tested (Huricha and Ruanxiaogang, 2003).
This original model, upon which the new Cell-DEVS
version is based, consists of a 2-dimensional cell space.
Each cell of the model represents a biological cell. The
various types of cells are listed below.

• Normal Cell: a cell that is neither part of a tumor,
nor a part of the immune system.

• Immune Cell: a cell that is part of the immune sys-
tem. No distinction is made between the different
types of immune cells that may respond to a tumor.

• Proliferative Cell: a tumor cell that divides, facili-
tating tumor growth.

• Dormant Cell: a tumor cell that was once prolifer-
ative, but no longer divides.

• Necrotic Cell: a tumor cell that was once dormant,
but is now considered dead.

In a typical simulation, the initial cell space is composed
primarily of normal cells. Dozens of immune cells
are scattered throughout the cell space, and a single
proliferative cell is situated in the center.

With the simulation underway, the single prolifera-
tive cell divides, converting adjacent normal cells into
other proliferative cells. These converted cells then
divide in turn, effecting the growth of the tumor. The
innermost proliferative cells gradually become dormant
cells, and the innermost dormant cells later become
necrotic. The necrotic, dormant, and proliferative cells
are expected to form three roughly concentric circles.

The immune cells wander randomly through the
space of normal cells that surround the tumor. When
an immune cell encounters a tumor cell, one of the two
cells is destroyed. Such interactions may eventually lead
to the death of the entire tumor.



CELL-DEVS MODEL SPECIFICATION
The tuple below is a Cell-DEVS coupled model that de-
scribes a tumor-immune system as a cell space.

TIS(t1, t2, d, presisting, pmoving, pcuring,
pdividing, pdying)

= 〈Xlist, Ylist, X, Y, n, [t1, t2], N,C,B,Z〉

The parameters t1 and t2 are the dimensions of the cell
space, and d is the delay for each cell. The parameters
presisting, pmoving , and pcuring represent, respectively,
the probabilities with which an immune cell is added to
the model, moves from its present location, and cures
a proliferative cell. Higher values of these probabilities
favour the immune system. The parameter pdividing

represents the probability with which a proliferative cell
divides, and pdying is the probability that a dormant cell
becomes necrotic.

In our case, the model has neither inputs nor out-
puts, and is always 2-dimensional.

Xlist = Ylist = X = Y = ∅

n = 2

The model uses a 5-by-5 cell extended Moore neighbor-
hood, defined below.

N = {[i, j] | i ∈ {−2,−1, 0, 1, 2}
∧ j ∈ {−2,−1, 0, 1, 2}}

The borders of the model are wrapped. This is con-
venient in that it ensures that immune cells incident on
the border are not removed from the model completely.
The disadvantage is that the model losses validity as the
growing tumor nears the boundary.

B = ∅

The translation function Z is defined by the Cell-DEVS
formalism, while each timed DEVS cell model is defined
as follows.

C([i, j]) = 〈X,Y, S,N, delay, d, δext, δint, τ, λ,D〉

The input and output event sets X and Y are defined by
the Cell-DEVS formalism.

The state associated with each individual cell con-
sists of both a type and a direction. The type indicates
whether the represented biological cell is a normal,
immune, proliferative, dormant, or necrotic cell. The
direction, which is either [0, 0] or the coordinates of an

adjacent cell, indicates either the way immune cells are
moving or the way proliferative cells are dividing.

S = {[type, direction] | type ∈ types
∧ direction ∈ directions}

types = {normal, immune, prolif,
dormant, necro}

directions = {[i, j] | i ∈ {−1, 0, 1}
∧ j ∈ {−1, 0, 1}}

The model uses transport delays.

delay = transport

The variables δint, δext, λ, andD are defined by the Cell-
DEVS formalism. The following section describes the
local computing function τ .

LOCAL COMPUTING FUNCTION
The term “state” refers to the value associated with each
cell in the cell space. A state must be a value in the set
S. A “state function” is a function that takes a pair of
relative coordinates as an input, and results in the state
of the cell associated with those coordinates. The state
function s therefore maps values in the set N to values
in the set S. The example equation below indicates that
there is an dormant cell at a relative position of [−2, 1].

s([−2, 1]) = [dormant, [0, 0]]

In any scope that contains the state function s, the func-
tions type and direction will also be available. These
functions provide the types and directions associated
with neighboring cells. They are defined implicitly be-
low.

s([i, j]) = [type([i, j]), direction([i, j])]

The local computing function τ maps the state function
s, which carries the present states of neighboring cells,
onto the new state of the cell with relative coordinates
[0, 0]. It is defined below, using a conditional expression
in which conditions are placed on the left of arrows that
point to the corresponding results.

τ(s) =
type([0, 0]) = normal → τnormal(s)
type([0, 0]) = immune → τimmune(s)
type([0, 0]) = prolif → τprolif (s)
type([0, 0]) = dormant → τdormant(s)
type([0, 0]) = necro → τnecro(s)





The local computing function depends on the functions
τnormal, τimmune, τprolif , τdormant, and τnecro. Each
of these were formally specified, and the definition of
τnormal is presented below as an example. Several other
sets and functions are described first.

Two random value functions are used. The func-
tion rand results in a value randomly selected from the
argument set. The expression rand({1, 2, 3, 4}), for
example, would have a 25% chance of resulting in 2.
The function randU takes no arguments, and results in a
real number randomly chosen between 0 and 1.

The variable adj represents the set of relative co-
ordinates of all adjacent cells. In this specification,
“adjacent cells” are the eight cells surrounding the one
in question.

adj = directions− {[0, 0]}

The function countnear results in the number of cells,
with coordinates contained in the argument M , that are
of type typenear. Among other things, it is used to deter-
mine whether there is a proliferative cell adjacent to an
immune cell.

countnear(s, typenear,M)

=
∑

[i,j]∈M

(
type([i, j]) = typenear → 1
type([i, j]) 6= typenear → 0

)

The function countincoming results in the number of
cells, with coordinates adjacent to [k, l], that are of type
typeincoming . In order to be counted, those adjacent
cells must also be have a direction that points to [k, l].
Among other things, this function is used to prevent col-
lisions between immune cells.

countincoming(s, typeincoming, [k, l])

=
∑

[i,j]∈L

(
incoming([i, j]) → 1
¬incoming([i, j]) → 0

)

incoming([i, j])
= (s([i, j]) = [typeincoming, [k − i, l − j]])

L = {[k − i, l − j] | [i, j] ∈ adj}

Demonstrating the countincoming function, Figure 1
shows a possible arrangement of types and directions of
each cell in a neighborhood.

normal normal immune normal normal
[0, 0] [0, 0] [1,−1] [0, 0] [0, 0]

normal normal prolif normal immune
[0, 0] [0, 0] [1, 0] [0, 0] [−1, 0]

normal normal prolif immune normal
[0, 0] [0, 0] [0,−1] [−1,−1] [0, 0]

normal normal normal normal normal
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

normal normal normal normal normal
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Figure 1: A hypothetical neighborhood of types and direc-
tions. Cell [0, 0], at the center, is a proliferative cell pointing
downwards. Cell [1, 1] is indicated by boldface text.

There are three immune cells adjacent to the cell [1, 1],
The immune cell on the upper left and the one to the right
are both approaching that cell. The one below, however,
is pointing elsewhere. The cell [1, 1] therefore has 2 in-
coming immune cells.

countincoming(s, immune, [1, 1]) = 2

As specified above, the function τnormal is used to eval-
uate the local computing function for a cell that is cur-
rently normal. A normal cell is considered to be “re-
ceiving” an immune cell if there is exactly one incoming
immune cell. In this event, the cell becomes an immune
cell that is “preparing” its next action. If a normal cell
is not “receiving”, then it is “praying” that is will not be
overtaken by the tumor.

τnormal(s)

=
(
receiving(s) → τpreparing(s)
¬receiving(s) → τpraying(s)

)
receiving(s)

= (countincoming(s, immune, [0, 0]) = 1)

If a “praying” cell has any incoming proliferative cells,
the previously normal cell is considered to be “mutat-
ing”. It then becomes a proliferative cell itself, “plotting”
its next division. A “praying” cell that is not “mutating”
is “waiting”.

τpraying(s)

=
(
mutating(s) → τplotting(s)
¬mutating(s) → τwaiting(s)

)
mutating(s)

= (countincoming(s, prolif, [0, 0]) > 0)

An option to replenish immune cells was added to the
Cell-DEVS version of the model. A “waiting” cell may



spontaneously become an immune cell. This happens
with a probability of presisting, but only if the cell is sur-
rounded by normal cells. Otherwise, the “waiting” cell
remains a normal cell.

τpraying(s)

=
(
resisting(s) → τpreparing(s)
¬resisting(s) → [normal, [0, 0]]

)
resisting(s) = ((countnear(s, normal, adj) = 8)

∧ (randU () < presisting))

Note that if presisting is zero, immune cells will never
spontaneously appear. Instead they will die off until
there are none left, or until there are no proliferative
cells left that can kill them.

The remainder of the local computing function was
also specified in this manner. The formulae above,
for example, indicate situations in which a normal cell
receives an incoming immune cell. Similar logic is used
to determine when an immune cell vacates its present
location, leaving a normal cell in its place.

In the original cellular automaton, the radius of a
tumor was restricted by a constant parameter. This
parameter was omitted from the Cell-DEVS version to
allow the interaction of the tumor and immune cells
to determine the extent to which the tumor grows. In
the Cell-DEVS model, immune cells only interact with
proliferative cells. If they manage to destroy all prolifer-
ative cells, a cluster of necrotic cells may remain. This
scenario is interpreted as an immune system victory.
The alternative possibility is that the tumor reaches the
boundary of the cell space. This result is interpreted as a
tumor victory.

CD++ IMPLEMENTATION

The specified model was implemented using the CD++
toolkit, a task that involved re-writing the mathemati-
cal formulae in the built-in specification language. The
τwandering formula, which determines the direction of an
immune cell, provides an example of this translation.

τwandering(s)

=
(
moving(s) → [immune, rand(adj)]
¬moving(s) → [immune, [0, 0]

)
moving(s) = (randU () < pmoving)

Below is a CD++ expression corresponding to the right-
hand side of the definition of τwandering.

if(
((uniform(0,1)) < #Macro(p_moving)),
1 + ((trunc(uniform(0,8))+1)*0.0625),
1)

The condition moving(s) is captured by the sub-
expression on the second line. If this condition is true,
the value of the entire expression is taken from the third
line. The integer 1 indicates the immune cell type,
while the random multiple of 0.0625 represents the
random direction. If moving(s) is false, a stationary
immune cell results from the fourth line.

For testing purposes, a parameter was introduced
to approximate the initial density of immune cells. Each
cell was given a probability pinitial of starting as an
immune cell instead of a normal cell. This feature was
defined in CD++ by the rule below. The if expression
chooses between the immune cell type with value 1, and
the normal cell type with value 0. The next line specifies
the duration d of the delay. As indicated by the last
line, the transition takes effect only at the beginning of a
simulation, when all cells have been initialized with the
value -1.

rule :
{ if(

uniform(0, 1) < #Macro(p_initial),
1,
0) }

#Macro(d)
{ (0,0) = -1 }

SIMULATION RESULTS
The four simulation results presented below demonstrate
the uninhibited growth of a tumor, the movement of
immune cells, the victory of a tumor over the immune
system, and the victory of the immune system over
a tumor. All tests were performed on cell spaces of
41-by-41 cells.

The first test investigates the growth of a tumor in
the absence of immune cells. As shown in Figure 2, the
simulation exhibited a growing tumor roughly shaped as
three concentric circles.

The images in Figure 3 show the results of a simu-
lation of immune cell movement. A pcuring value
of 1 ensured that immune cells were never killed by
proliferative cells, while a presisting value of 0 ensured
that immune were never added to the cell space. As
there were 21 immune cells at the beginning and end of
the simulation, the test served to partially verify that the
issue of collision detection was adequately addressed.



(a) time = 11 (b) time = 23

(c) time = 49 (d) time = 64

Figure 2: A simulation of tumor growth uninhibited by the
immune system. In (a), the tumor consists of a small number
of proliferative cells. In (b), the tumor has developed an inner
cluster of dormant cells. These dormant cells, as shown in (c)
and (d), later become an inner ring around a core of necrotic
cells. The parameters were as follows: pinitial = presisting =
0, pdividing = pdying = 0.5.

(a) time = 1 (b) time = 100

Figure 3: A simulation of immune cell movement. The im-
age (a) shows the initial distribution of immune cells, and (b)
shows a cell space with the same number of immune cells after
100 time units. These results were obtained with the follow-
ing parameters: pinitial = 0.01, presisting = 0, pmoving =
pcuring = 1, pdividing = 0.2, pdying = 0.

The final two tests demonstrate the interaction between
growing tumors and immune cells. Figure 4 shows the
results of a test in which the immune cells were defeated
by a growing tumor. In the simulation presented in Fig-
ure 5, the parameters were changed such that the tumor
was defeated by the immune system.

(a) time = 38 (b) time = 64

Figure 4: A simulation in which a tumor overwhelms the im-
mune system. In (a), the immune cells have cleared away a
large section of proliferative cells on the upper side of the tu-
mor. Later, in (b) the tumor is shown having regained this re-
gion. It thereafter proceeded to expand towards the boundaries
of the cell space. The parameters for this test were chosen to
favour the tumor: pinitial = 0, presisting = 0.01, pmoving =
0.5, pcuring = 0.8, pdividing = 0.6, pdying = 0.6.

(a) time = 65 (b) time = 150

Figure 5: A simulation in which a tumor is defeated by im-
mune cells. In (a), the proliferative cells were restricted to a sin-
gle side of the otherwise dead tumor. The mass of necrotic cells
increased roughly four times thereafter, but as shown in (b), the
last proliferative cell was eventually destroyed. The parameters
for this test were as follows: pinitial = 0, presisting = 0.03,
pmoving = 0.4, pcuring = 0.8, pdividing = 0.4, pdying =
0.8.

CONCLUSION

A tumor-immune system model was specified using the
Cell-DEVS formalism and implemented with CD++.
Simulation results indicated that the model captured
the intended qualitative aspects of tumor growth and
immune system response.

Although similar simulations have previously been
developed without Cell-DEVS, the use of this formalism
was advantageous in that it facilitated the complete
formal specification of the model. It was not necessary
to explicitly indicate the advancement of time, nor the
application of the local computing function to each
cell in the cell space. These rules were part of the



simulation, not the model, and were therefore implicit in
the formalism itself.

Another advantage of DEVS was not demonstrated
in the paper, but is worth noting. Any two DEVS or
Cell-DEVS models can be integrated by the specification
of a link between the output of one model and the input
of the other. Suppose, for example, that the Cell-DEVS
model of the tumor-immune system was re-designed
with the ability to accept immune cells as input values.
Other DEVS models, perhaps representing blood vessels
or lymph nodes, could be defined to output immune
cells. All the models could be then be integrated, with
the lymph nodes and blood vessels supplying immune
cells to the site of a tumor.

Though inherently complex, biological systems can
often be regarded as sets of interacting subsystems. The
DEVS and Cell-DEVS formalisms offer a compelling
approach to the modelling and simulation of such
systems.
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