
Experiences with the DEVStone Benchmark

Marcelo Gutierrez-Alcaraz Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.
gwainer@sce.carleton.ca

Keywords: DEVS, synthetic benchmark, M&S tool, simulator
performance evaluation, CD++, ADEVS.

Abstract

DEVS is a formal modeling and simulation (M&S) frame-
work that supports hierarchical, modular model composi-
tion. DEVS-based M&S environments have been used suc-
cessfully to understand, analyze, and develop a variety of
systems. As the systems under study become more large and
complex, performance of the simulator becomes critical.
Nevertheless, evaluating the operation of such simulators is
a complex process. We present DEVStone, a synthetic
benchmark devoted to automate the evaluation of DEVS-
based simulators, which generates models with varied
structure and behavior. DEVStone was used to study the ef-
ficiency of different simulation engines provided by the
CD++ toolkit, this results were later compared with similar
results on ADEVS with a demanding set of experiments,
enabling thorough performance analysis. DEVStone facili-
tates performance analysis for successive versions (e.g., up-
grades or fixes) of the same simulation engine, and pro-
vides a common metric to compare different M&S environ-
ments.

1. INTRODUCTION
 In recent years, the DEVS (Discrete Event systems
Specifications) formalism [1] has gained popularity. DEVS
was successfully applied in a variety of applications due to
the ease for model definition, improved composition and re-
use. DEVS includes explicit specification of the model timing,
and it uses a discrete event approach for simulation. Several
tools have implemented DEVS theory, including: CD++
[2,3,4,5], ADEVS [6], DEVS-C++ [7] , DEVS/HLA [8] ,
DEVSJAVA [9] , DEVSim++ [10] and others [11,12,13].
 As the systems under study become larger and complex,
performance of the simulator becomes critical; however,
evaluating the operation of such simulators is a complex
process. To provide uniform means for obtaining meaningful
metrics, we introduce the DEVStone benchmark, a synthetic
model generator that automatically creates models according
to our goals. Its accuracy relies on the execution of a large
pool of models to provide a robust test set for the study.
DEVStone generates models with different size, complexity
and behavior, resembling different kinds of applications.

Hence, it is possible to analyze the efficiency of a simulation
engine with relation to the characteristics of a category of
models of interest. The tool can be used to assess the effi-
ciency of several DEVS simulation engines, and provides a
common metric to compare the results using different tools.

Initially, we used the synthetic generator to analyze the
performance of different simulation techniques in CD++,
which allowed us to show the feasibility of our approach
[14]. Moreover, the performance results permitted us to
characterize execution time of a standard DEVS simulator. A
second step presented here, includes the execution of
DEVStone in CD++ and ADEVS. DEVStone was used to
study the efficiency of different simulation engines provided
by the CD++ toolkit, and later compared with similar results
in ADEVS with a demanding set of experiments, enabling
thorough performance analysis. The present paper shows
how DEVStone can be used to measure and improve DEVS
simulation tools, by providing a unified mechanism for com-
paring different tools and environments.

2. DEVS AND THE DEVSTONE BENCHMARK
 DEVS is a formal M&S framework based on generic dy-
namic systems concepts [1]. A real system modeled with
DEVS can be described as a composite of submodels that
can be behavioral (atomic) or structural (coupled). The
framework supports the construction of models in a hierar-
chical, modular fashion, allowing component reuse; reducing
development and testing time. An atomic DEVS model is
formally described as:

M = < X, S, Y, δint, δext, λ, ta >
where X is the set of input events; S is the state set; Y is the
set of output events; δint is the internal transition function;
δext is the external transition function; λ is the output func-
tion; and ta is the time advance function.

A DEVS coupled model, composed of several atomic or
coupled submo dels, is formally described as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >
where X is the set of input events; Y is the set of output
events; D is an index for the components of the coupled
model, and ∀ i ∈ D, Mi is a basic DEVS (i.e., an atomic or
coupled model), Ii is the set of influencees of model i (i.e.,
models that can be influenced by outputs of mo del i), and ∀
j ∈ Ii, Zij is the i to j translation function. Coupled models are
defined as a set of basic comp onents (atomic or coupled) in-
terconnected through the models’ interfaces. The influ-

encees of a model define to which model outputs must be
sent. The translation function converts the outputs of a
model into inputs for other models. To do so, an index of in-
fluencees is created for each model (Ii). This index defines
that the outputs of the model Mi are connected to inputs in
the model M j, where j is an element of Ii.
 Analyzing the performance of a simulation tool is a
complex task because the users can create a wide variety of
models with different structures, levels of complexity and
degrees of interaction. When analyzing previous studies on
the performance of DEVS environments, we can see that
they were only focused in performance results for a given
tool, and were usually limited to a given type of models. For
instance, in [15], the authors presented performance studies
of a parallel simulation environment. Those studies provide
an analysis of the execution of models with different charac-
teristics, although DEVS tools permit running a wider variety
of models . Such application lacks a common metric to com-
pare results among different simulators.

We propose a method to compare not only different ver-
sions of a particular simulation engine but also different
DEVS-based simulators. Varied model structures permit ob-
taining prototypes representative of those found in real
world applications. The idea is to use a synthetic model gen-
erator (which we called DEVStone), which produces a variety
of models with diverse structure and performing a mix of
common operations. We focus in the aspects of the models
that have impact on performance, namely size of the model
and the workload carried out in the transition functions. A
DEVStone generator produces models using the following
parameters:
- type: different structure and interconnection schemes be-

tween the comp onents.
- depth: the number of levels in the modeling hierarchy.
- width: the number of components in each intermediate

coupled model.
- internal transition time: the execution time spent by internal

transition functions.
- external transition time: the execution time spent by exter-

nal transition functions.
In general, being d the depth and w the width, we build a

coupled model with d coupled components in the hierarchy,
all of which consist of w–1 atomic models (in the lower level
of the hierarchy, the coupled component consists of a single
atomic model). Basically when an external event is received it
triggers the external transition function, which runs
Drhystones [16] for a certain time, right after it an internal
transition function is scheduled which also runs
Drhystones, this is replicated by all atomic blocks in the
model. The use of integer arithmetic makes Dhrystone the
best suitable choice for analyzing models like DEVS in which
discrete state variables are used.

 DEVStone uses four different types of models with
variations in their internal and external structure:
§ LI models, with a low level of interconnections for each

coupled model
§ HI models with a high level of input couplings,
§ HO models with high level of coupling and numerous

outputs.
§ HOmod models with an exponential level of coupling

and outputs.
In LI models, every coupled component includes only

one input and one output port. The input port is connected
to each component, and only one component generates an
output through the output port in the external component.
Figure 1 shows a sample LI model, in which we have four
layers of coupled components, each containing three sub-
models (arrows: input/output ports; white boxes: coupled
components; gray boxes: atomic components). Coupled
Component #0 in Figure 1 (a) consists of one coupled and
two atomic components. Lower levels in the hierarchy (Cou-
pled Component #1/#2) use the same internal structure.
Coupled Component #3 is a “leaf” model, which contains
one atomic child (#7) connected to its output port in the
lower layer.

(a)

 Coupled Component #3

in
 in

 Atomic Component #7
 (at the last level – level 4)

out
 out

(b)

Figure 1: Example of a LI (HI) model: (a) top level; (b)
level 4.

Since the model structure is known and the time spent by
each component in executing transition functions is known,
we can compute its minimum theoretical execution time. First,
we need to devise the number of atomic and coupled models
in the structure. In LI models of depth d and width w, we
have d coupled components with w-1 atomic comp onents
each (except for the innermost one, with only one atomic
component). Consequently, the total number of atomic com-
ponents is:

Atomic Models = (width – 1) * (depth – 1) + 1

Since these models follow a predefined interconnection
pattern, we can anticipate the message routes triggered by
an external event and the time spent in transition functions.
LI models produce one external event for each coupled com-
ponent; external events trigger the external transition func-
tion and, subsequently, an internal transition is scheduled.
Thus, the number of transition functions to be triggered
equals the number of atomic components in the model, as
shown below.

Internal Transitions = # Atomic Models
External Transitions = # Atomic Models

(1)

HI models have the same number of atomic components,
but more interconnections (Figure 1a). Each atomic
component k connects its output to the input port of
component k+1 (with the exception of one last atomic
component on each level, which does not have any output
port). Therefore, there are more messages interchanged upon
the reception of an external event. In a model with depth d,
and width w, we have,

Atomic Models = (w – 1) * (d – 1) + 1
Internal Transitions = ((w-1)+(w-2)) * (d – 1) + 1
External Transitions = ((w-1)+(w-2)) * (d – 1) + 1

(2)

For each external event, each coupled model forwards the
received message to its w-1 atomic children and also to its
coupled child. This process of forwarding messages is re-
peated in each coupled component except for the leaf com-
ponent, which forwards the messages to its single atomic
child.

HO type models have a more complex interconnection
scheme with the same number of atomic and coupled com-
ponents. HO coupled models have two input and two output
ports in each level. The second input port in the coupled
component is connected to its first atomic component. That
atomic model connects its output to the second output of its
parent. The increased number of interconnections results in
the execution of more transition functions after the model is-
sues its output. For this model type we have,
Atomic Models = (w – 1) * (d – 1) + 1
Internal Transitions = ((w-1)+(w-2)) * (d – 1) + 1
External Transitions = ((w-1)+(w-2))* (d – 1) + 1

(3)

 HOmod models have a second set of (w-1) models
where each one of the atomic components triggers the entire
first set of (w-1) atomic models. These in turn have their
outputs connected to the second input of the coupled model
within the level. With such interconnections, the inner model
receives an amount of events that has an exponential rela-
tionship between the width and the depth at each level. The
equation that rules the behavior of the HOmod Model is
given by:

(4)

External events are forwarded by each coupled comp o-
nent to its w-1 atomic children and to its coupled child, and
the process is repeated in each coupled module until the ar-
rival to the leaf comp onent.

Figure 2: DEVStone HOmod model (shown explicitly

for w = 3)

DEVStone can be used in any simulator with capabilities
for defining and executing Dhrystone code.
 ADEVS (A Discrete EVent System simulator) is a C++ li-
brary for constructing discrete event simulations based on
the Parallel DEVS and Dynamic DEVS formalisms. The mo d-
els are constructed based on a template of classes in C++
and then compiled and linked to the library to produce the
simulation executable. Every atomic or coupled model in
ADEVS is comprised of two files: a header file (.h); where the
name of the model, input and output ports and local vari-
ables are defined for the particular atomic model, and a
source code file (.cpp); where the actual model is built based
on a template, common elements of the class include: con-
structor, internal transition function, external transition func-
tion, time advance function, output function, and destructor.

3. PERFORMANCE ANALYSIS OF DEVS SIMULATORS
Based on the DEVStone benchmark [16], we developed a
tool to measure the performance of different versions of
CD++ and ADEVS. Parameters of comparison needed to be
defined to compare performance metrics among simulators;
the test environment used for the benchmarking came with
the following commercial grade characteristics: CPU: Pentium
4 Dual Core @ 3.2GHz (800MHz FSB, HT, 1MB L2), RAM: 2
GB (4 x DDR2-533), Hard Drive: 80 GB - 35 GB ex3 Linux parti-
tion (7,200 rpm, SATA), OS: Fedora Core 6
 Running DEVStone, we found the following general limi-
tations to the experimental setup:
• The depth of a model in ADEVS cannot be greater than

195 levels (due to the GCC compiler, which finds too
many nested loops inside the executable of ADEVS).
CD++ does not seem to have a limit on the depth.

()

() 1)1(*)1(*21sTransition External #

1)1(*)1(*21sTransition Internal #

2

1

)1(*2
et

2

1

)1(*2

+−







+−+−==

+−







+−+−==

∑

∑
−

−

−
−

diwwn

diwwn

w
d

w
d

it

• The minimum depth and minimum width for any model
generated by DEVStone for CD++ or ADEVS is 2.

• In most extreme cases it is possible to initialize the simu-
lation, but it is not possible to run the simulation to any
time longer than 0. In CD++, an ‘unexpected error’ mes-
sage is displayed or the process is killed by the Out-Of-
Memory (OOM) kernel service; and in ADEVS, the
simulation is killed by the OOM kernel service. It seems
that whenever the simulator requests massive amounts
of memory to the operating system, beyond the avail-
able physical memory and some of the virtual memory,
the OS decides to terminate a potentially harmful proc-
ess.
We started the benchmarking process by measuring the

initialization time for CD++ and ADEVS. We selected a
nominal value to start measure the initialization time: since
the depth limit is set by ADEVS (195 levels) it is just natural
to select this value; the width does not have an upper limit,
however, we decided to select a width value that could fit a
line in CD++ (nominally, 1839 components). For the LI model
the outcome of the initialization test was:

(depth = 195, width = 1839, δint = 1.0 ms, δext = 0.1 ms,
Tsim = 0)

Figure 3: DEVStone Initialization time LI model

In Figure 3, we consider the initialization time for this

purpose as the required time for the compilation of the
source code and the initial execution of the executable to
setup the model before simulating it, i.e. the simulation time
to Tsim = 0. The compilation time of CD++ for big models is
negligible; because the simulator and the model are two
completely separated entities the compilation of the simula-
tor takes only a couple of minutes and can be used for any
model, in our case the simulator was compiled only once and
reused for all the simulations in this report. On the other
hand the compilation time in ADEVS is taken into account,
only for initialization purposes, mainly because any change
in the model involves a new compilation of the source code.
Therefore, for small to medium sized models where a minor
correction of the model was required the compilation time
surpassed the simulation time. This affects the performance
of the simulator whenever a change needs to be made. From

Figure 3 it is obvious that ADEVS outperforms CD++ in
terms of initialization time, even when the compilation time is
considered. To find out the process that take up most of the
time we used a profiler to analyze the execution of the simu-
lation.
Table 1: Profiler output. Flat profile: for the simulation of LI
models

%
time calls Name

29.09 1427848
ProcessorAdmin::processor (ba-
sic_string<...> const &)

17.91 450903011 basic_string<...>::compare
(basic_string<...> const &, unsigned
int, unsigned int) const

15.86 162000611 basic_string<...>::rep(void)const

9.59 3307266338 basic_string<...>::length(void) const

7.91 989592590 basic_string<...>::data(void) const

 According to the initial result of the profile in Table 1
most of the initialization time, 29.09 % of it, is spent some-
where inside the processor block. Other important source of
delay during initialization seems to be the search and com-
pare of symbols done by C++ libraries, which are performed
while loading the model. A more exhaustive analysis is pos-
sible, using the profiler’s option that indicates functions in-
side the program and the relative time that the computer
takes running those functions. The caveat here is that the
percentage of time spent in each function is not an absolute
time, i.e. the sum of the percentages will not yield 100%. This
time is relative to the total running time but also to the time
spent inside the ‘parent function’. An edited listing of the
output is provided in Table 2.
Table 2: Call Graph of the CD++ Simulator
Granularity: each sample hit covers 4 byte(s) for 0.00% of
82897.48 seconds
in-
dex

%
time

Function name

[2] 98.5 MainSimulator::run(void) [2]

MainSimulator::loadModels(istream &, bool)
[3]

 …

[4] 85.4
Basic_string<...>::compare (basic_string<...>
…) const [4]

 Basic_string<...>::length(void) const [7]

 Basic_string<...>::data(void) const [13]

 …

 Basic_string<...>::data(void) const [13]

 Basic_string<...>::length(void) const [7]

[5] 83.8 Basic_string<...>::rep(void) const [5]

 …

Basic_string<...>::compare (basic_string<...>
…) const [4]

LI model - Initialization time - max. depth & width

ADEVS, 3615

CD++, 27024

0 5000 10000 15000 20000 25000 30000

1

Seconds

[7] 64.1 Basic_string<...>::length(void) const [7]

 Basic_string<...>::rep(void) const [5]

...

 CD++ seems to spend most of the time looking and
comparing the new incoming symbols –model names– in a
linear fashion, this would explain the excessive time spent
comparing and handling them. Most of the workload is spent
in library functions that are specific to the compiler used.

 Because ADEVS takes much more time compiling large
depth models, another good piece of information would be
to compare the performance of both simulators with a model
of maximum depth and minimum width and see if CD++ be-
haves the same way. An event file was created that provides
10 external events evenly spaced every 0.250 (s), the same
file was used in all subsequent simulations; the results of the
first simulation with such file are shown in Figure 4.

1 2 3
Length Width δint δext δint δext δint δext

195 2 0.1 0.1 0.1 1 1 0.1

Figure 4: Minimum width and maximum depth of models.
δint and δext are measured in ms.

In this case CD++ proves to be faster than ADEVS,

mainly because for CD++ the models are loaded in memory
as they are needed, regardless of their nature and processed
accordingly by the CD++ entity that controls each node, ei-
ther atomic models or coupled models. One interesting note
in this case is that for the first scenario where the internal
transition function equals the external transition function
ADEVS takes almost 50% more time, than the rest of the
tests, to finish the simulation, this suggests that ADEVS
loads the entire code of the model-simulator into memory,
then performs the simulation and finally flushes all contents
from RAM and terminates, the reading and writing of the
whole file to and from the hard-drive would explain the in-
crease in simulation time. In addition, a check to the memory
usage in a second run demo nstrated that while ADEVS is
running, it takes up to 99% of the available memory right
from the beginning while CD++ increases the memory usage

incrementally. However, a detailed analysis of the memory
usage was not deemed necessary for our purposes because
we assume that all the resources will be given to the simula-
tion during its execution, i.e. a dedicated system will be put
in place for a simulation and it will only run simulations of a
particular model.

Having provided a feasible methodology to analyze the
performance of CD++, it is possible to show the flexibility of
DEVStone in both different environments and at the same
time extract a more reliable tendency of the performance of
the simulators. With this idea a set of simulations were exe-
cuted with different models of similar values for every model,
except for the last HOmod model. For the rest of the tests,
the simulators were compiled without any option that might
slow down the performance.

We tested the performance of the simulators based on 4
main parameters:

• the model type,
• variations in the width of the model,
• variations in the length of the model.
• variations in the real-time running internal and ex-

ternal transition functions (in ms)
We simulated the same model with equal time spent in

the transitions, the internal transition longer than the exter-
nal transition and finally the external transition longer than
the internal transition. By changing the width of the model
the analysis can focus on the time that the simulator spends
sending messages back and forth to atomic blocks within
each level.

1 2 3
Length Width δint δext δint δext δint δext

10
5-10

100-600
100

0.1 0.1 0.1 1 1 0.1

Figure 5: LI Plot; δint = δext

 In Figure 5, we can see that ADEVS outperforms CD++ by
a significant margin for large models . The major difference
between CD++ and ADEVS becomes wider when the internal
and external transition times are equal; however the ten-
dency is similar for the other variations of internal and exter-
nal transition functions. One possible reason for this is that
CD++ runs using a temporary file where intermediate results

width vs time - equal d

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600

Width

tim
e

(s
)

CD++
ADEVS
Theoretical

are stored and read when necessary whereas ADEVS runs
the simulation in the available memory. With a similar ap-
proach, we could see if this trend remains constant when
running the simulation varying the depth variable, in this
case by increasing the depth levels of the model we are ana-
lyzing the variation in the performance when the interchange
messages travel among coupled blocks.

depth vs time - equal d

0

1

2

3

4

5

6

5 6 7 8 9 1 0

Depth

tim
e

(s
)

CD++
ADEVS
Theoretical

depth vs time - dint <dext

0

2

4

6

8

10

12

14

5 6 7 8 9 10

Depth

tim
e

(s
)

CD++
ADEVS
Theoretical

depth vs time - dint >dext

0

2

4

6

8

10

12

14

5 6 7 8 9 10

Depth

ti
m

e
(s

)

CD++
ADEVS
Theoretical

Figure 6: LI Plot; δint = δext; δint < δext ; δint > δext

 In Figure 6 we can see a change in the performance, the
difference between ADEVS and CD++ is not so big for mu l-
tiple levels of coupled models.
 The HI type of model connects the atomic blocks in lin-
ear fashion but with a greater number of interconnections
between the components within the coupled model. For the
simulation-runs of HI, the same values used for the depth
and width of the LI models were used.

width vs time - equal d

0
10
20
30
40
50
60
70
80

90
100

100 200 300 400 500 600

Width

tim
e

(s
)

CD++
ADEVS
Theoretical

Figure 7: HI Plot; δint=δext ;δint > δext

 In Figure 7 we can see that the performance of the simu-
lators have changed, for δint<δext the curves are similar to
δint=δext but with a shorter gap between them. Although CD++
still lags behind ADEVS when the transition functions are

equal, the performance when the internal transition function
is less than the external transition is not as big as the one we
could expect based on the results of the simulation of LI
models. Even more unexpected is the result when the exter-
nal transition is greater, where for large models CD++ outper-
forms ADEVS.
 The same experiment was done by varying the depth of
the levels and keeping the width constant. The same three
different sets of internal and external transition functions
were used. For variable depth HI models with constant width
the simulation parameters were:

Figure 8: HI Plot; δint = δext; δint > δext

 In figure 8 we can see the results of varying the depth in
the HI model. When the transition functions are equal
ADEVS behaves somewhat better than CD++, for δint<δext
both simulators had the exact same performance. It seems
that, for this type of models, the way transitions are trig-
gered and processed in CD++ contribute to the overall per-
formance of the simulator.
 In HO models, the model structure is similar to HI mo d-
els but there are more messages coming through the coupled
models, via the second input. We used the same values for
the width, depth and the transition functions.

width vs time - dint >dext

0

20

40

60

80

100

120

140

160

100 200 300 400 500 600

Width

ti
m

e
(s

)

CD++
ADEVS
Theoretical

depth vs time - equal d

0

1

2

3

4

5

6

7

8

5 6 7 8 9 1 0

Depth
tim

e
(s

)

CD++
ADEVS
Theoretical

depth vs time - dint >dext

0

5

10

15

20

25

5 6 7 8 9 10

Depth

ti
m

e
(s

)

CD++
ADEVS
Theoretical

width vs time - equal d

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600

Width

tim
e

(s
)

CD++
ADEVS
Theoretical

width vs time - dint <dext

0

20

40

60

80

100

120

140

160

180

100 200 300 400 500 600

Width
tim

e
(s

)
CD++
ADEVS
Theoretical

width vs time - dint >dext

0

20

40

60

80

100

120

140

100 200 300 400 500 600

Width

ti
m

e
(s

)

CD++
ADEVS
Theoretical

Figure 9: HO Plot; δint = δext; δint < δext ; δint > δext

In figure 9, neither simulator could complete the last test

for 600 atomic components; both were terminated by the
OOM Linux service. In the first graph, with equal transition
functions, we can see a drastic difference in the performance
of the simulators; CD++ is clearly being outperformed by
ADEVS by as much as 4 times the theoretical value, just like
the simulation results for the LI models. A possible answer
to this CD++ behaviour would be in the way models are
loaded into virtual memory for processing but only accessed
when they are needed, therefore the time to load an incum-
bent block to the memory and then writing the results to vir-
tual memory lags the performance of CD++ in respect to
ADEVS. We can analyze these last results when the depth
varies and keeping the rest of the values constant.

depth vs time - equal d

0

1

2

3

4

5

6

7

5 6 7 8 9 1 0

Depth

tim
e

(s
)

CD++
ADEVS
Theoretical

depth vs time - dint >dext

0

5

10

15

20

25

5 6 7 8 9 10

Depth

ti
m

e
(s

)

CD++
ADEVS
Theoretical

Figure 10: HO Plot; δint = δext; δint > δext

 From the graphs, it can be seen that the overall ten-
dency is kept, when δint = δext ADEVS behaves better than
CD++, and when δint < δext both simulators have similar per-
formance and lastly when δint > δext CD++ outperforms

ADEVS. For HOmod models the parameters need to be
changed, due to the exponential growth of messages be-
tween coupled components, however the time given to each
transition function is kept equal. But even then, CD++ had
some problems with the last simulation, being terminated by
the OOM Linux service. In this case the number of messages
passing between components is many times greater than the
number of components. The simulation parameters used for
the width test were:

1 2 3
Length Width δint δext δint δext δint δext

5
3-6

5-8
5

0.1 0.1 0.1 1 1 0.1

width vs time - equal d

0

200

400

600

800

1000

1200

1400

1600

1800

5 6 7 8

Width

tim
e

(s
)

CD++
ADEVS
Theoretical

width vs time - dint <dext

0

1000

2000

3000

4000

5000

6000

7000

5 6 7 8

Width

tim
e

(s
)

CD++
ADEVS
Theoretical

width vs time - dint >dext

0

2000

4000

6000

8000

10000

12000

5 6 7 8

Width

ti
m

e
(s

)

CD++
ADEVS
Theoretical

Figure 11: HOmod Plot; δint = δext; δint < δext ; δint > δext

 From the graphs it can be seen that the general overall
tendency is kept constant, ADEVS behaves better than
CD++ for the first and second cases. It is important to note
that CD++ could not provide a result for w=8 and was termi-
nated by the OOM service, most likely by the use of symbol
look-up library of CD++. In the second case where δint < δext
ADEVS seems to perform better than expected, very close to
the theoretical value. The behaviour captured so far sug-
gests that ADEVS performs very close to the theoretical
curve, whereas CD++ is almost 0-20% slower than ADEVS,
which is a different behaviour compared to the one seen us-
ing previous models of DEVStone.
 For the last case both simulators have similar behaviour
or very little difference in the performance. When δint > δext,
although inconclusive, CD++ and ADEVS seem to match
each other performance for larger values of w.

width vs time - equal d

0

100

200

300

400

500

600

700

3 4 5 6

Depth

tim
e

(s
)

CD++
ADEVS
Theoretical

width vs time - dint <dext

0

500

1000

1500

2000

2500

3000

3 4 5 6

Depth
tim

e
(s

)
CD++
ADEVS
Theoretical

width vs time - dint >dext

0

500

1000

1500

2000

2500

3000

3 4 5 6

Depth

ti
m

e
(s

)

CD++
ADEVS
Theoretical

Figure 12: HOmod Plot; δint = δext; δint < δext ; δint > δext

This last test confirms the results provided by the test
analyzed before. Where CD++ and ADEVS present a very
close performance for models where the internal transition
function is greater than the external transition function. For
the rest of the cases ADEVS performs better than CD++, al-
though depending on the model and complexity of it. Along
with this trend, CD++ offers equivalent performance for
models that consume equal time in the transition functions
as well as models that have bigger loads in the external tran-
sition function.

4. CONCLUSIONS
Evaluating the performance of a simulation tool is typically a
tedious and complex process, which requires the execution
of a wide variety of models with different characteristics. Our
main goal was to provide means for evaluating the efficiency
of existing simulation engines with focus on DEVS-based
tools, and facilitating a qualitative and objective comparison
of different tools.

DEVStone makes it possible to: (i) create models with
different sizes, shapes, and behavior; (ii) generate an arbi-
trarily large number of such models; and (iii) execute those
models using the simulator(s) under study. A precise per-
formance characterization of a simulator allows modelers to
consider the actual overhead of the tool based on solid re-
sults, and then analyze the feasibility of executing timed
models with specific timing constraints. Our framework pro-
vides a common metric to compare the results that were ob-
tained using the different simulation tools , although we re-
stricted our case study to the existing CD++ and ADEVS
simulation engines, the same ideas may hold for other DEVS-

based simulators. There is no doubt that the particular im-
plementations of the DEVStone benchmark for both CD++
and ADEVS can be improved for code efficiency or for simu-
lation performance depending on what the end-user requires.

REFERENCES
1. Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling

and Simulation: Integrating Discrete Event and Con-
tinuous Complex Dynamic Systems. Academic Press.
2000.

2. Wainer, G. “CD++: a toolkit to develop DEVS mo dels”.
Software - Practice and Experience. vol. 32, pp. 1261-
1306. 2002.

3. Rodriguez, D.; Wainer, G. “New extensions to the CD++
tool”. Proceedings of the SCS Summer Computer Simula-
tion Conference. Chicago, USA. 1999.

4. Troccoli, A.; Wainer, G. “Implementing Parallel Cell-
DEVS”. Proceedings of 36th IEEE/SCS Annual Simula-
tion Symposium. Orlando, USA. 2003.

5. Glinsky, E.; Wainer, G. “Definition of Real-Time simula-
tion in the CD++ toolkit”. Proceedings of the SCS Sum-
mer Computer Simulation Conference. San Diego, USA.
2002.

6. Nutaro, J. ADEVS website. Available via
http://www.ece.arizona.edu/~nutaro/. Accessed on May
27, 2003.

7. Zeigler, B.; Moon, Y.; Kim, D. “DEVS-C++: A High Per-
formance Modeling and Simulation Environment”. 29th
Hawaii International Conference on System Sciences
(HICSS'96) Volume 1: Software Technology and Archi-
tecture. Hawaii, USA. 1996.

8. Zeigler, B.P.; H.S. Sarjoughian, “Support for Hierarchical
Modular Component-based Model Construction in
DEVS/HLA”. Simulator Interoperability Workshop, 99S-
SIW-066.

9. Sarjoughian, H.S.; Zeigler, B.P. “DEVSJAVA: Basis for a
DEVS-based collaborative M&S environment”. Proceed-
ings of the SCS International Conference on Web-Based
Modeling and Simulation, vol. 5, pp. 29­36. San Diego,
USA. 1998.

10. Kim, T.G. “DEVSim++: C++ based Simulation with Hier-
archical Modular DEVS Models”. User’s Manual CORE
Lab, EE Dept, KAIST, Taejon, Korea. 1994.

11. Filippi, J-B.; Bernardi, F.; Delhom, M. “The JDEVS envi-
ronmental modeling and simulation environment” Pro-
ceedings of the the IEMSS’02 Conference on Integrated
Assessment and Decision Support. Lugano, Switzer-
land. 2002.

12. de Lara, J.; Vangheluwe, H. “ATOM3: A Tool for Multi-
Formalism Modeling and Meta-Modeling". European
Joint Conferences on Theory And Practice of Software.
Grenoble, France 2002.

13. Praehofer, H.; Sametinger, J.; Stritzinger, A. “Discrete
Event Simulation using the JavaBeans Component
Model”. Proceedings of International Conference On
Web-Based Modeling & Simulation. California. 1999.

14. DEVSTONE: a Benchmarking Technique for Studying
Performance of DEVS Modeling and Simulation Envi-
ronments”. E. Glinsky, G. Wainer. In Procedings of IEEE
in IEEE/DS-RT. Montréal, QC. 2005.

15. Troccoli, A.; Wainer, G. “Performance Analysis of Cellu-
lar Models with Parallel Cell-DEVS”. Proceedings of the
SCS Summer Computer Simulation Conference. Florida.
2001.

16. Weicker, R. P. “Dhrystone: A synthetic systems pro-
gramming benchmark”. Communications of the ACM,
volume 27, pages 1013-1030, 1984.

