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ABSTRACT

Interactions between synaptic vesicles and synapsin in a
presynaptic nerve terminal were modeled using the Cell-
DEVS formalism. Vesicles and synapsins move randomly
within the presynaptic compartment. Synapsins can bind
to more than one vesicle simultaneously, causing clusters
to form. Phosphorylation of synapsin reduces its affinity
for vesicles, and causes the clusters to break apart. Upon
dephosphosphorylation, new clusters form. Taking advan-
tage of Cell-DEVS, as opposed to traditional techniques for
implementing cellular automata, the model prevents colli-
sions between arbitrarily large clusters using transition rules
restricted to a 5-cell neighborhood. Simulation results in-
dicate that, in a qualitative sense, the behavior of vesicles
and synapsin in neurons was captured.

1 INTRODUCTION

Regulation of neurotransmitter release is important for
synaptic plasticity which mediates learning and memory. An
important challenge in modern neuroscience is to understand
the molecular structures and dynamics underlying regula-
tion of neurotransmitter release. Neurotransmitter release is
triggered by the arrival of an action potential in a presynaptic
nerve terminal. Within the presynaptic nerve terminal, small
synaptic vesicles containing neurotransmitters are present in
readily-releasable and reserve pools. Vesicles in the reserve
pool are tethered together by synapsins to form clusters.
The arriving action potential causes influx of calcium ions
through ion channels. Calcium ions trigger biochemical
events which result in readily-releasable vesicles releasing
neurotransmitters. Calcium also triggers phosphorylation
of synapsin by protein kinases. This reduces the affinity
of synapsin for vesicles and the cytoskeleton, which dis-
rupts the reserve pool cluster, and allows these vesicles to
participate in neurotransmitter release. Thus synapsin can
regulate the release of neurotransmitters by controlling the
distribution of synaptic vesicles.

Although experimental observations have led to numer-
ous theories describing the relationship between vesicle-
synapsin clusters and neurotransmitter release, the process
is far from thoroughly understood. Modeling and simula-
tion is frequently applied to the study of complex biological
processes, and may well aid the investigation of vesicles
and synapsins in a presynaptic nerve terminal. Approach-
ing this task from a software engineering perspective, we
have developed a cellular model that captures the motion
of vesicle-synapsin clusters and their interaction with the
nerve cell membrane. Our work extends a preexisting model
(Wainer et al. 2007), which captured the formation and dis-
ruption of clusters.

Departing from traditional cellular automata imple-
mented with fixed time increments, our work takes advantage
of the Cell-DEVS formalism (Wainer and Giambiasi 2002).
This methodology was found to be particularly useful for
describing the random motion of vesicle-synapsin clusters.
A traditional approach would typically require an algorithm
to process the entire cell-space in order to avoid collisions
between clusters. Using the timed events accommodated by
Cell-DEVS, we demonstrate how collisions between arbi-
trarily large structures can be avoided with transition rules
restricted to a 5-cell neighborhood.

First, an overview of Cell-DEVS is provided, followed
by an informal description of the model. The model spec-
ification, discussed in Sections 4 to 7, demonstrates the
use of Cell-DEVS and presents a formal description of the
cluster motion algorithm mentioned above. The model was
implemented using the CD++ toolkit, and as discussed in
Section 8, test results indicate that the desired qualitative
behavior of vesicles and synapsins was captured.

2 CELL-DEVS AND CD++

The DEVS formalism (Zeigler, Kim, and Praehofer 2000)
provides a framework for the construction of hierarchical
modular models, allowing for model reuse, and reducing
development and testing times. Basic models, called “atomic
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models”, are specified through transition functions. Multiple
DEVS models can be integrated together to form hierarchical
structural models, called “coupled models”.

The Cell-DEVS formalism was defined as an extension
to cellular automata (Wolfram 2002) combined with DEVS.
In Cell-DEVS, each cell in a cellular model is seen as a
DEVS atomic model, and a procedure for coupling cells is
defined based on the neighborhood relationship. Only the
active cells in the cell space are triggered, independently
from any activation period. Each cell of a Cell-DEVS
model holds state variables and a local computing function,
which updates the cell state by using its present state and
its neighborhood.

A timed DEVS cell atomic model, associated with each
cell in a cellular model, is specified as follows:

T DC = 〈X ,Y,S,N,delay,d,δext ,δint ,τ,λ ,D〉

The variable X defines the external inputs, Y defines
the external outputs, and S is the cell state definition. The
variable N represents the set of relative coordinates of each
cell in the neighborhood. The delay is the kind of delay used
for the cell, and d is its duration. A transport delay can be
associated with each cell, which defers the outputs for the
cell. A state change will be discarded if it is not steady during
an inertial delay. The local computing function τ is used to
evaluate the future state of the cell. The remaining functions
drive the cell’s behavior: δint for internal transitions, δext
for external transitions, λ for outputs, and D for the state’s
duration.

A Cell-DEVS coupled model, representing an entire
cell space, is specified as follows:

GCC = 〈Xlist ,Ylist ,X ,Y,n, [t1, . . . , tn],N,C,B,Z〉

Here, Xlist and Ylist are input/output coupling lists, used
to define the model’s interface. X and Y represent the
input/output events. The n value defines the number of
dimensions of the cell space, and [t1, . . . , tn] is the number
of cells in each dimension. N is the neighborhood set. The
cell space is defined by C, together with B, the set of border
cells, and Z, the translation function.

CD++ (Wainer 2002) is a modeling tool that imple-
ments the DEVS and Cell-DEVS formalisms. DEVS atomic
models are programmed in C++, while both DEVS cou-
pled models and Cell-DEVS models can be defined using a
built-in specification language. CD++ makes use of the in-
dependence between modeling and simulation provided by
DEVS, and different simulation engines have been defined
for the platform.

3 MODEL DESCRIPTION

In-depth discussions on the chemical interactions that take
place at a presynaptic nerve terminal can be found else-
where (Turner, Burgoyne, and Morgan (1999) and Fdez and
Hilfiker (2006), for example). At the risk of adopting an
over-simplistic interpretation of an extraordinarily complex
system, we will describe a presynaptic terminal as a spheri-
cal compartment containing mobile vesicles and synapsins.
The compartment is surrounded by a membrane, and we
will refer to one connected region in that membrane as the
“active zone”. It is at the active zone that readily-releasable
vesicles fuse and release contained neurotransmitters to the
extracellular fluid in response to a signal, or “action poten-
tial”.

Synapsins move freely through the compartment, bind-
ing with vesicles to form clusters. In the model, an individual
synapsin may bind with a most two vesicles, though a vesi-
cle may bind with more than two synapsins. When an
action potential arrives, the resulting influx of calcium ions
ultimately causes some of the bound vesicles and synapsins
to separate from one another. After the action potential
passes, the disrupted clusters begin to reform.

In the original cellular model (Wainer et al. 2007),
the locations of vesicles and synapsins were represented by
single cells in a 2-dimensional cell-space. Isolated vesicles
and synapsins would move randomly through the space.
After each cycle, they would bind to one another to form
stationary clusters. Arbitrary probabilities controlled the
binding of vesicles and synapsins, as well as their separation
from clusters.

Our enhancements include the introduction of action
potentials, the nerve cell membrane, the active zone, and
the motion of clusters. A reaction triggered by an action
potential is modeled as a period of time during which
the binding and separation of vesicles and synapsins occur
with an alternative set of probabilities. The membrane
introduces a circular boundary that vesicles and synapsins
cannot cross. The active zone is modeled as a region of
the membrane adjacent to which any vesicle or synapsin
is rendered motionless. Instead of requiring that clusters
remain motionless in general, as in the preexisting model,
they are now allowed to move randomly throughout the
compartment.

4 MODEL SPECIFICATION

The tuple below is a Cell-DEVS coupled model that rep-
resents a presynaptic nerve terminal. The parameter R,
which must be a positive integer, is the inner radius of the
terminal. The size of the active zone is described by the
angle θ , and the probabilities pV and pS describe the initial
distribution of vesicles and synapsins. In the absence of
an action potential, the probability that a vesicle will bind
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to an adjacent synapsin is prest . If they are already bound,
then there is a probability of qrest that they will separate.
The binding and separation probabilities during an action
potential are pact and qact respectively. As action potentials
induce the separation of clusters, one expects prest > pact
and qrest < qact .

presynaptic(R,θ , pV , pS, prest ,qrest , pact ,qact) =
〈Xlist ,Ylist ,X ,Y,n, [t1, t2],N,C,B,Z〉

The cell-space is a 2-dimensional square grid (n = 2),
just large enough to surround the inner terminal with a
membrane layer of at least one cell in any direction (t1 =
t2 = 2 ·R+1).

There are no outputs (Ylist = Y = ∅), but the model has
one input port, named in, with which to receive a value of
either receivingact or receivingrest . These values represent,
respectively, the arrival of an action potential from the axon
of the neuron, or the subsiding of the reaction triggered by
the action potential. Arbitrarily, the cell [0,0] was chosen
to receive these inputs (Xlist = {[0,0]}).

X = {[in,Φ′] |Φ′ ∈ {receivingact ,receivingrest}}

A 5-cell von Neumann neighborhood is used.

N = {[0,0], [1,0], [0,1], [−1,0], [0,−1]}

Because vesicles and synapsins never reach the actual
model boundary, it is safe and convenient to use a wrapped
border (B = ∅). The translation function Z is defined
by the Cell-DEVS formalism, while the timed DEVS cell
atomic model is defined by the tuple below for all absolute
coordinates [i1, i2] in the cell-space.

C([i1, i2]) = 〈X ,Y,S,N,delay,d,δext ,δint ,τ,λ ,D〉

A cell’s state must belong to the set S. It is described
by seven variables: type0, b0, Φ0, φ0, v0, z0, and σ0.

S = {[type0,b0,Φ0,φ0,v0,z0,σ0]}

The type0 variable indicates whether a cell is part of
the empty region inside the terminal, a vesicle, a synapsin,
part of the neuron’s membrane, or part of the active zone
within the membrane.

type0 ∈ {empty,vesicle,synapsin,membrane,zone}

The function b0 is defined for the four vectors pointing
from a cell to its adjacent neighbors. For each of these
directions, the function result can be either f ree, seeking,
unseeking, looking, or binding. This information facilitates

the modeling of vesicle-synapsin binding and separation.

b0([i, j]) ∈ { f ree,seeking,unseeking, looking,binding}

[i, j] ∈ {[1,0], [0,1], [−1,0], [0,−1]}

The variable Φ0 indicates whether the cell has received
an event external to the coupled model (receiving[...]), is
starting or ending a reaction induced by an action potential
(starting[...]), or is waiting for a change (holding[...]).

Φ0 ∈ {
receivingact ,receivingrest ,
startingact ,startingrest ,
holdingact ,holdingrest}

There are eight phases, which are cycled through in
succession each time vesicles and synapsins move. The
current phase is indicated by the variable φ0.

φ0 ∈ {
starting,holding,
selecting,bindingS,bindingV ,
aiming,steering,moving}

The vector v0 represents the direction in which a vesicle
or synapsin is intending to move (v0 ∈N), while the priority
number z0 (0≤ z0 ≤ 1) is used to resolve conflicts between
moving vesicles and synapsins.

The variable σ0 represents the time remaining until the
next internal transition (σ0 ≥ 0). This value is therefore
the result of D, the time advance function (D(s) = σ0).
As the model uses inertial delays (delay = inertial), the
transition indicated by σ0 may be interrupted by a change
in a neighboring cell. The duration d is not used.

The external transition function δext , internal transition
function δint , and output function λ are defined as in the
Cell-DEVS formalism. The local computing function τ is
described in Section 6.

5 INITIAL CONDITIONS

The type is the only state variable that depends initially
on a cell’s absolute coordinates. The radius R can be used
to partition the cell-space into a region inside the terminal,
and a bordering region representing the membrane of the
neuron. On the outside, all cells encompassed by the angle
θ are part of the active zone. Otherwise they are regular
membrane cells. On the inside, each cell has a probability
pV of being a vesicle, and a probability pS of being a
synapsin. Otherwise the cell is empty.

The initial type of a cell at [i1, i2] is given by the typeinit
function. In its definition below, the function uni f orm is
used to obtain random values uniformly distributed between
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0 and 1. Figure 1 shows one possible initial configuration
of cell types.

typeinit([i1, i2]) =
(

r ≥ R → typeouter
r < R → typeinner

)

typeouter =
(

i1−R > r · cos( θ

2 ) → zone
i1−R≤ r · cos( θ

2 ) → membrane

)

typeinner =

 U < pV → vesicle
pV ≤U < pV + pS → synapsin
pV + pS ≤U → empty


r =

√
(i1−R)2 +(i2−R)2

U = uni f orm()

Figure 1: An initial cell-space configuration is shown based
on the parameters R = 16, θ = 90◦, pV = 9%, and pS = 12%.
On the inside, black cells represent vesicles, light gray cells
are synapsins, and white cells are empty. On the outside,
the dark region at the bottom is the active zone, while the
remainder is the normal membrane. Though it is not part
of the model, one could imagine a connection to the axon
of the neuron somewhere near the top.

The function b0 initially results in f ree regardless of
position and direction, representing the absence of vesicle-
synapsin clusters (b0([i, j]) = f ree). The terminal is not
initially undergoing a reaction induced by an action potential
(Φ0 = holdingrest ). The initial phase is the first in the cycle
(φ0 = starting), and the remaining variables are zeroed
(v0 = [0,0],z0 = σ0 = 0).

6 TRANSITION RULES

In order to specify the transition to be made by a cell, a
few concepts must be formalized. The term “state” refers
to the value associated with each cell in the cell space. A
state must be a value in the set S. A “state function” is a
function that takes a pair of relative coordinates as an input,
and results in the state of the cell associated with those
coordinates. The state function s therefore maps values in
the set N to values in the set S (for all [i, j]∈N, s([i, j])∈ S).
The expression s([1,0]), for example, represents the state
of the cell with coordinates [1,0] relative to the cell making
the transition.

The functions type, b, Φ, φ , v, z, and σ are defined
implicitly by the equation below. It will be assumed that
they are all available in whatever context the state function s
is available. The expression z([1,0]), for example, gives the
priority number of the cell with coordinates [1,0] relative
to the transitioning cell.

s([i, j]) = [type([i, j]),b([i, j]),Φ([i, j]),φ([i, j]),
v([i, j]),z([i, j]),σ([i, j])]

For convenience, the variables type0, b0, Φ0, φ0, v0, z0,
and σ0 will be used to represent the state of the transitioning
cell. The expression Φ0, for example, will be used as an
alternative to Φ([0,0]).

s([0,0]) = [type0,b0,Φ0,φ0,v0,z0,σ0]

The local computing function τ maps the state function
s, which carries the present states of neighboring cells, onto
the new state of the transitioning cell. It is divided into eight
simpler phase-specific functions (τstarting, τholding, etc.).

τ(s) =



φ0 = starting → τstarting(s)
φ0 = holding → τholding(s)
φ0 = selecting → τselecting(s)
φ0 = bindingS → τbindingS(s)
φ0 = bindingV → τbindingV (s)
φ0 = aiming → τaiming(s)
φ0 = steering → τsteering(s)
φ0 = moving → τmoving(s)


The functions τstarting and τholding ensure that external

inputs, representing action potentials, are propagated to
every cell. At the completion of the holding phase, the Φ0
state variable is identical throughout the cell-space. The
value is either holdingact , indicating that a reaction triggered
by an action potential is underway, or holdingrest , indicating
the absence of such a reaction.

The functions τselecting, τbindingS , and τbindingV are re-
sponsible for the binding and separation of vesicles and
synapsins. It is in these functions that the probabilities prest ,
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qrest , pact , and qact come into play. If Φ0 = holdingrest ,
then any adjacent but unbound vesicle-synapsin pair has a
probability prest of becoming bound, and any bound pair
has a probability qrest of separating. If Φ0 = holdingact ,
then pact and qact are used instead.

At the completion of the bindingV phase, every value
of every binding function b0 is either f ree or binding. Also,
if any cell is binding in some direction, then the adjacent
cell to which it is bound must be binding in the opposite
direction.

The rules of binding are complicated by the fact that
synapsins can only bind along one axis or the other. The
formal specification of these rules is omitted, though a
simplified version can be found in the preexisting vesicle-
synapsin model (Wainer et al. 2007). Of greater interest in
the present model are the rules of cluster motion, captured
by the functions τaiming, τsteering, and τmoving. The formal
specification of these functions is given in Section 7

A few additional functions are defined here for con-
venience. The function anytype indicates whether any of
the adjacent cells are of the indicated type. Similarly, the
function anyφ indicates whether any of the adjacent cells
have the indicated phase.

anytype(s, type′) =
(type([1,0]) = type′)∨ (type([−1,0]) = type′)∨
(type([0,1]) = type′)∨ (type([0,−1]) = type′)

anyφ (s,φ ′) =
(φ([1,0]) = φ ′)∨ (φ([−1,0]) = φ ′)∨
(φ([0,1]) = φ ′)∨ (φ([0,−1]) = φ ′)

The function random takes a vector argument, and
results in a value randomly selected from that vector.

7 CLUSTER MOTION

While it would be relatively straightforward to allow isolated
single-cell particles to move randomly through the presy-
naptic nerve terminal, it is challenging to specify the motion
of vesicle-synapsin clusters. A cluster is any group of vesi-
cles and synapsins connected through binding links defined
by the b0 functions. Clusters move randomly, remaining
intact and avoiding obstacles such as other clusters. The
algorithm designed to accomplish this is based on priority
numbers.

Upon transitioning to the aiming phase (φ0 = aiming),
the direction v0 and priority number z0 have been initialized.
If a cell is a vesicle or synapsin, and if it is not adjacent to
the active zone, then both the direction and priority number
are randomized. Otherwise the direction is [0,0], indicating
a motionless cell. In this case, the priority number given
to empty cells is 1, which is the weakest number. If the
motionless cell is not empty, the priority number is zero,

which is the strongest.

[v0,z0] =
(

ismovable → [vrandom,zrandom]
¬ismovable → [[0,0],z f rozen]

)
ismovable =

(type0 ∈ {vesicle,synapsin})∧
¬anytype(s,zone)

vrandom() = random([[1,0], [0,1], [−1,0], [0,−1]])

zrandom() = uni f orm()

z f rozen(s) =
(

type0 = empty → 1
type0 6= empty → 0

)
The first condition to be specified in the τaiming function

is the last to take effect. If any cell has any neighbors that
have already advanced from the aiming phase to the steering
phase, that cell must itself advance immediately. Without
this condition, the intended transition to the steering phase
after 1 time unit could be interrupted, and consequently
postponed.

τaiming(s) =
(

anyφ (s,φ ′0) → s′now
¬anyφ (s,φ ′0) → τ ′aiming(s)

)
s′now = [type0,b0,Φ0,φ

′
0,v0,z0,σ

′
0]

φ ′0 = steering

σ ′0 = 0

During the aiming phase, directions and priority num-
bers are repeatedly shared within each cluster. A vesicle or
synapsin will adopt these values from an adjacent neigh-
bor to which it is bound, provided that the neighbor has
a priority number lower than its own. The process ends
when each vesicle and synapsin has the same direction and
priority number as any other cell in the same cluster.

It is useful to define a function gaiming, which results
in a truthful value if a neighbor at [i, j] has a lower priority
number and is bound to the cell. Another function, Gaiming,
is truthful if all neighbors have advanced past the preceding
bindingV phase, and gaiming([i, j]) is true for any adjacent
cell [i, j].

gaiming(s, [i, j]) = (z([i, j]) < z0)∧ (b0([i, j]) = binding)

Gaiming(s) = ¬anyφ (s,bindingV )∧ (
gaiming(s, [1,0])∨gaiming(s, [−1,0])∨
gaiming(s, [0,1])∨gaiming(s, [0,−1]))
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So long as the result of Gaiming is false, there is nothing
to do other than transition to the steering phase after 1 time
unit.

τ ′aiming(s) =
(

Gaiming(s) → τ ′′aiming(s)
¬Gaiming(s) → s′later

)
s′later = [type0,b0,Φ0,φ

′
0,v0,z0,σ

′
0]

φ ′0 = steering

σ ′0 = 1

If Gaiming(s) is true, the lower priority number and
direction are copied from the adjacent neighbor.

τ ′′aiming(s) =


gaiming(s, [1,0]) → obey(s, [1,0])
gaiming(s, [0,1]) → obey(s, [0,1])
gaiming(s, [−1,0]) → obey(s, [−1,0])
gaiming(s, [0,−1]) → obey(s, [0,−1])


The copying is specified by the obey function below. The

time advance of zero ensures that directions and priorities
are repeatedly copied until Gaiming(s) becomes and remains
false.

obey(s, [i, j]) = [type0,b0,Φ0,φ0,v([i, j]),z([i, j]),σ ′0]

σ ′0 = 0

By the time the first cell transitions beyond the aiming
phase, each cluster has a single direction. That direction may
change, however, as clusters must neither collide nor enter
the membrane. All possible collisions are to be resolved
during the steering phase.

The definition of τsteering is similar to that of τaiming, but
more complex. First, cells are to transition to the moving
phase if any adjacent neighbors have already done so.

τsteering(s) =
(

anyφ (s,φ ′0) → s′now
¬anyφ (s,φ ′0) → τ ′steering(s)

)
s′now = [type0,b0,Φ0,φ

′
0,v0,z0,σ

′
0]

φ ′0 = moving

σ ′0 = 0

As was the case in the aiming phase, a direction and
priority number are copied from an adjacent cell only if the
priority number is lower. In the case of steering, any one of
three conditions must also be met. One of those conditions
is the same as in the case of aiming; specifically, that the
transitioning cell is bound to the adjacent neighbor.

The second condition is that the cell is either a vesicle
or a synapsin, and is currently intending to move towards
the adjacent neighbor with the lower priority number. This
prevents a particle from entering a cell that might not
otherwise be empty.

The third condition is that the adjacent neighbor is a
vesicle or synapsin heading towards the transitioning cell.
This condition is relevant even if the transitioning cell is
empty. Empty cells take on priorities and directions to
prevent two clusters from approaching simultaneously from
different directions.

The conditions described above are defined formally in
the function gsteering.

gsteering(s, [i, j]) =
(z([i, j]) < z0)∧ (

(b0([i, j]) = binding)∨
((type0 ∈ {vesicle,synapsin})∧

(v0 = [i, j]))∨
((type([i, j]) ∈ {vesicle,synapsin})∧

(v([i, j]) = [−i,− j])))

Suppose that an empty cell has an approaching vesicle
on either side. Suppose also that the one on the right has
a lower priority number. The empty cell in the middle will
adopt the direction and priority number from the right. In
this case, the direction is pointing to the left. The vesicle
on the left will then adopt this lower priority number as
well, and reverse its direction. This example illustrates how
a possible collision is avoided.

Continuing the example above, suppose that the vesi-
cle on the right in now pushed upwards by a synapsin
with a lower priority number. The empty cell now has no
approaching particles. In order to reset its direction and
priority number, this condition is checked using the function
γsteering.

γsteering(s, [i, j]) =
(type0 = empty)∧
(v0 = [−i,− j])∧
(v([i, j]) 6= [−i,− j])

All the conditions described above are combined into
the single function Gsteering.

Gsteering(s) = ¬anyφ (s,aiming)∧ (
gsteering(s, [1,0])∨gsteering(s, [−1,0])∨
gsteering(s, [0,1])∨gsteering(s, [0,−1])∨
γsteering(s, [1,0])∨ γsteering(s, [−1,0])∨
γsteering(s, [0,1])∨ γsteering(s, [0,−1]))
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As long as Gsteering(s) is false, a cell has nothing to do
except wait 1 time unit then transition to the moving phase.

τ ′steering(s) =
(

Gsteering(s) → τ ′′steering(s)
¬Gsteering(s) → s′later

)
s′later = [type0,b0,Φ0,φ

′
0,v0,z0,σ

′
0]

φ ′0 = moving

σ ′0 = 1

If Gsteering(s) is true, then one of the conditions that
requires a change of direction and priority is also true. These
possible changes are specified below. The function obey is
the same as in the aiming phase, while obeyall resets empty
cells.

τ ′′steering(s) =

gsteering(s, [1,0]) → obey(s, [1,0])
gsteering(s, [0,1]) → obey(s, [0,1])
gsteering(s, [−1,0]) → obey(s, [−1,0])
gsteering(s, [0,−1]) → obey(s, [0,−1])
γsteering(s, [1,0]) → obeyall
γsteering(s, [0,1]) → obeyall
γsteering(s, [−1,0]) → obeyall
γsteering(s, [0,−1]) → obeyall


obeyall = [type0,b0,Φ0,φ0,v′0,z

′
0,σ

′
0]

v′0 = [0,0]

z′0 = 1

σ ′0 = 0

One might note that the aiming phase is somewhat
redundant, as the propagation of directions and priorities
within a cluster is also performed in the steering phase.
The inclusion of the aiming phase is certain to improve
computational efficiency. Also, it is likely to reduce any
directional bias in cluster motion that results from the non-
deterministic nature of the steering algorithm. While the
aiming phase merely selects the lowest priority number in
each cluster, the final state of the cell-space after steering
depends on the order in which simultaneous transitions are
evaluated.

The final phase in the cycle is moving, during which
vesicles and synapsins translate according to their directions.
As ensured in the steering phase, these directions will not
break bindings and will not cause collisions. Any empty
cell about to receive a vesicle or synapsin from one direction
has a v0 pointing in the other direction.

Four of the state variables are assigned as follows.

[φm,vm,zm,σm] = [starting, [0,0],0,1]

The function gmoving indicates whether a cell has an
incoming particle in a given direction. The function Gmoving
indicates whether a cell has an incoming particle in any
direction.

gmoving(s, [i, j]) =
(type([i, j]) ∈ {vesicle,synapsin})∧
(v([i, j]) = [−i,− j])

Gmoving(s) =
gmoving(s, [1,0])∨gmoving(s, [−1,0])∨
gmoving(s, [0,1])∨gmoving(s, [0,−1])

If a cell has an incoming particle, τ ′moving is evaluated.
Otherwise, its future state depends on a function named
move.

τmoving(s) =
(

Gmoving(s) → τ ′moving(s)
¬Gmoving(s) → move(s)

)
The τ ′moving function obtains the type0 and b0 values

from the cell with the incoming vesicle or synapsin. The
transition occurs after 1 time unit.

τ ′moving(s) =
gmoving(s, [1,0]) → f rom([1,0])
gmoving(s, [0,1]) → f rom([0,1])
gmoving(s, [−1,0]) → f rom([−1,0])
gmoving(s, [0,−1]) → f rom([0,−1])


f rom([i, j]) = [type([i, j]),b([i, j]),Φ0,φm,vm,zm,σm]

If there are no incoming particles, the one condition
to check is whether the cell represents a vacating vesicle
or synapsin. If so, the cell becomes empty. Otherwise, its
type remains as is.

move(s) =
(

vacating → vacated
¬vacating → remains

)
vacating =

(type0 ∈ {vesicle,synapsin})∧ (v0 6= [0,0])

vacated = [type′0,b
′
0,Φ0,φm,vm,zm,σm]

remains = [type0,b0,Φ0,φm,vm,zm,σm]

type′0 = empty

b′0([i, j]) = f ree
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Figure 2: Three snapshots are shown from the test described in the text. The one on the left shows clusters formed after
75 cycles. The first action potential arrived immediately after, and the resulting reaction lasted 5 cycles. Immediately after
these 5 cycles, as shown in the center image, the vesicles and synapsins in the large clusters dispersed. Different clusters
reformed, as shown on the right, after an additional 75 cycles. Black cells represent vesicles, while light gray cells are
synapsins. The active zone, where vesicles and synapsins become bound to the membrane, is at the bottom. The parameters
used were as follows: R = 16, θ = 90◦, pV = 9%, pS = 12%, prest = 100%, qrest = 1%, pact = 10%, and qact = 50%.

8 IMPLEMENTATION AND TESTING

The specified model was implemented using the CD++
toolkit, a task that involved expressing the mathematical
formulas in the built-in specification language. The rules
below, for example, implement part of the τ ′moving function.

rule : { #Macro(from_south) }
1
{ #Macro(is_moving) and

#Macro(south_is_particle) and
#Macro(south_is_moving_north) }

rule : { #Macro(from_east) }
1
{ #Macro(is_moving) and

#Macro(east_is_particle) and
#Macro(east_is_moving_west) }

The macros from_south and from_east corre-
spond to the expressions f rom([1,0]) and f rom([0,1]). The
number 1, on the second line of each rule, is the time value
σm. Following this are the conditions that must be satisfied
for either rule to take effect. In the first rule, the conditions
require φ0 = moving and gmoving(s, [1,0]).

While the specification defines a single Cell-DEVS
coupled model, the implementation also included an “axon”
model to provide external events at regular intervals. The
axon model was given two parameters: one to represent
the number of cycles between action potentials, and one to
specify the duration of each reaction triggered by an action
potential. A “cycle” is a complete rotation through each
of the eight phases, a time period during which vesicles
and synapsins can move at most once. For convenience,

the axon model was itself defined as a Cell-DEVS coupled
model containing a single cell. A DEVS atomic model
could have been implemented instead.

Tests demonstrated that the model captures the desired
qualitative behavior of vesicles and synapsins. The results
of one such test are shown in Figure 2. At the beginning
of the simulation, vesicles and synapsins were randomly
distributed in the terminal. Although this initial condition
is not realistic, clusters began forming within the first few
cycles. As intended, the clusters mostly broke up after the
arrival of an action potential, but regrouped thereafter.

Clusters are smaller and more numerous than they
appear in the snapshots of Figure 2. Noting that synapsins
may bind to at most two vesicles, and that the vesicles must
be opposite one another, one can identify groups of adjacent
clusters that at first appear as single larger clusters.

The tendency for clusters to form in straight lines was
not intended, and it is unclear why that trend emerges.
A greater value of the separation probability qrest would
likely result in rounder clusters. Were that the case, linear
clusters would be rendered unstable by the fact that a single
vesicle-synapsin separation would suffice to sever them.

9 CONCLUSION

A model of vesicle-synapsin interactions was specified us-
ing the Cell-DEVS formalism and implemented with CD++.
Simulations demonstrated that the model captured the de-
sired qualitative behavior of vesicles and synapsins in presy-
naptic nerve terminals. Specifically, test results showed the
formation and break-up of clusters in response to action
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potentials, the random motion of clusters, and the docking
of vesicles and synapsins near the active zone.

The Cell-DEVS formalism proved particularly useful
in describing the motion of vesicle-synapsin clusters. As the
algorithm relied on instantaneous transitions, it would have
been more cumbersome to implement using a traditional
approach to cellular automata with fixed time increments.
With Cell-DEVS, it was possible to avoid collisions between
arbitrarily large clusters using a neighborhood of only five
cells.

Possible future enhancements include the adaptation of
the model to a 3-dimensional cell-space, and the fusion and
formation of vesicles on the membrane. Binding probabil-
ities and other parameters may be further optimized based
on theory or experimental observation. Another challenge
would be the representation of long structures known as
“actin”, which are believed to influence vesicle-synapsin
clusters.
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