

Distributed Simulation and Web Map Mash-Up for Forest Fire Spread

Yosri Harzallah1, Vincent Michel2, Qi Liu3, Gabriel Wainer3

University of New Brunswick, Fredericton, NB, Canada 1,2
Ecole Nationale Supérieure des Mines, Saint-Étienne, France 1,2
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada 3

yosri.harzallah@unb.ca 1, vincent@vincent-michel.fr 2, {liuqi, gwainer@sce.carleton.ca} 3

Abstract

The emergence of recent XML-based technologies
paved the way for new types of architectures and message
exchanges on the Internet through Web services. Mash-
Ups consist in combining existing systems capabilities in
order to create new added value services. This paper
focuses on a Mash-Up of different Web Services that can
be used by emergency planning teams and firefighters to
better understand the behavior of wildfires. This mash-up
uses a distributed simulation system (DCD++) and it
combines it with the Global Weather service, displaying
the results on a Google Map. The weather data is
combined in real-time with the theoretical fire spreading
model to obtain precise results. An XML-based solution
has been developed in order to serve performance,
interoperability and usability around a two-tier
architecture consisting of a Java Servlet and a
Javascript client. This effort paves the road for even more
advanced solutions integrating the simulation location
environment with Geographic Information System (GIS)
data, which would highly improve the results obtained
by the emergency managers.

1. Introduction

The emergence of recent XML-based technologies
paved the way for new types of architectures and message
exchanges on the Internet. This eXtensible Markup
Language has provided interoperability between partners
and enabled companies to deploy a myriad of machine-
consumable Web-based services, which can be later
integrated in many different ways to produce multiple sets
of services. A system reusing existing distributed services
and combining them to provide added value through a
web application is called a Mash-Up. For example, Web
services for currency conversion and stock quotation can
be associated to return financial information expressed in a

target currency. We present the implementation of a
Mash-Up applied to the field of wildfire spreading
prediction (the reader can find a demo version available at
[1]). This Mash-up combines three components: a
simulator to predict the spread rate and direction of a
wildfire, a worldwide weather service to adjust fire model
parameters, and a Google Map to view the fire spread on-
line.

2. Motivation

There is a growing need for emergency teams to have

tools that can provide rapid and accurate information
about the situation they are facing. In particular, in the last
few years the increasing influence of global warming on
the environment has produced wildfires with devastating
consequences (including the recent 2007 fires in Greece,
Utah, British Columbia and Southern California). In the
case of wildfire management, fire managers and firefighters
must make important decisions quickly. However, wildfires
are so unpredictable that reducing their impact is still a
complex task. In order to assist the experts in the area, we
need to provide on-line information about the fire
evolution, including real-time updates with weather data
and improved decision-making tools [2].

Fire evolution is a complex natural phenomenon that
makes a mathematical analysis intractable. Instead,
simulation provides a means to study fire spread by
creating a software application that approximates the
evolution of fire behavior. Simulation software has highly
enhanced the understanding of the phenomenon, as
facing simulation results to experimental data improves the
model definition and helps understanding the fire
behavior.

Fire models can be classified according to the methods
used in their construction [3]. They can be statistical
(i.e., without involving physical mechanisms) or semi-
empirical (i.e., based on the principle of energy

conservation). Many of the existing simulation models are
based on Rothermel’s stationary model, which integrates
wind and slope parameters empirically [4]. Additional
mechanisms of heat transfer and production can be
incorporated to the models, in order to make them more
robust.

The results obtained in the field of fire simulation are
nowadays encouraging enough to contemplate real-world
study cases. In real fire scenarios, visualization over a map
interface and integration with live data can improve the
ability of a fire control center to coordinate firefighters in
the field. In order to do so, it is necessary to have a
platform that can interface with a wide range of technically
diverse data sources and present the computation results
to decision makers in an intuitive and user-friendly
manner. Nevertheless, a major drawback of most existing
simulators is that they do not link the geospatial data with
the simulated model in real time. As a consequence, the
fire control center could not properly coordinate firemen
teams on the field. The Mash-Up developed in this project
aims at bridging this gap.

3. Related Work

3.1. Fire model

The fire model of interest in this paper is described in

[5]. It is an advanced fire model based on Rothermel’s
forest-fire propagation rules. The model has been created
using the Cell-DEVS formalism [6]. Cell-DEVS is a variant
of DEVS (Discrete-Event Systems specifications), a
modeling and simulation formalism that provides a
mathematical representation of discrete-event systems [7].
Numerous studies have showed that DEVS is suited for
the simulation of fire spread (including [8, 9] and
numerous others). Cell-DEVS is also widely used for this
purpose thanks to its natural support for spatial relations
and explicit timing constructions [2, 5, 10]. The formal
specifications are focused on modeling systems organized
as cell spaces (e.g., a burning area in a forest).

Figure 1. Informal definition of Cell-DEVS [6].

Cell-DEVS allows defining cellular models as a composite
of atomic cells . Each cell is seen as having a set of N
inputs to compute its future state (generally received from
the neighboring cells). Upon reception of a new input, a
local function is activated. The results are transmitted to
the neighbors after a delay. Once the cell’s behavior is
defined, they can be put together to form a coupled model
composed of an array of atomic cells , each of them
connected to its neighborhood. As the cell space is finite,
the borders should be provided with a different behavior
than the rest of the space. Otherwise, the space can be
defined as wrapped, meaning that cells in a border are
connected with those in the opposite one.
 The fire model uses environmental and vegetation
conditions, and it computes the ratio of spread (i.e., the
distance and direction the fire moves in a given timeframe)
and the intensity of fire on each cell. Three parameter
groups determine the fire spread ratio:
- vegetation type (caloric content, mineral content and
density);
- fuel properties (the vegetation is classified according to
its size);
- environmental parameters (wind speed, fuel humidity and
field slope).

When Rothermel’s rules are applied to a given fuel
model and environmental parameters, it can determine the
spread ratio in every direction. The spread ratio is then
used to define the rules that dictate how fire spreads from
one cell in the cellular space to its eight neighboring cells.

3.2. CD++ toolkit

The CD++ simulation toolkit [11] is a core component
of our Mash-Up. CD++ is based on the DEVS and Cell-
DEVS formalisms and thus allows for simulating the fire
model introduced previously.

 CD++ is available in different versions running on
different platforms. There are standalone (single machine),
parallel (over a cluster of machines) and distributed (over a
network of computers) versions as described in [12]. The
distributed version, called as DCD++, relies on the proper
functioning of a Web service wrapper that interacts with
the CD++ simulation engine and exposes its functionality
to remote web service clients using SOAP messaging over
the HTTP protocol, as shown in Figure 2.

Figure 2. Components of the wrapper [12]

CD++ is written in C++ and the technology chosen to
develop the Web service wrapper is Java. To interface
these two components, the Java Native Interface (JNI) that
allows Java programs to interact with C/C++ libraries was
used. The wrapper consists of two separate layers. A layer
to expose the CD++ simulator’s functions and the other to
expose the Java objects. This approach was followed
because C++ is well-suited for efficient computations,
while Java is widely supported by web service middleware
for interoperability [12]. Figure 3 gives a closer look at the
DCD++ software architecture.

JNI
Wrapper
Proxy
(C++)

Web Service
components

(Java)

Axis engine CD++

Simulation
Components (C++)

Message Queues
(Linux Kernel)

CD++

Simulation
Components (C++)

CD++

Simulation
Components (C++)

Figure 3. DCD++ software architecture [12]

Upon the authentication of a user, the simulation
service creates a new session with a unique ID.

- A separate workspace containing the source files is
created on the server for the new session.

- The wrapper creates two message queues in the
Linux kernel to implement a bidirectional
communication channel between the web service
component and the corresponding simulation
component.

- The user sets the parameters of the simulation by
uploading configuration files using a predefined
format.

- The user starts the simulation.
- When the simulation is over, the user can get the

simulation results from the server along with a
session log file that records detailed client
operations.

The user interacts with the simulator through SOAP
messages as defined in a WSDL file that specifies the
interface of the simulation service. The following Figure 4
is an excerpt of this WSDL file where three SOAP
messages are defined by specifying the name and type of
the parameters and return values. As we can see, DCD++
makes use of SOAP attachments through the DataHandler
type of the JavaBean Activation Framework to exchange

data in complex type formats (in this case, .cpp, .h, .log,
.ma, etc.).

<wsdl:definitions
targetNamespace="http://www.sce.carleton.ca/ars/CDpp">
 <wsdl:message name="retrieveLogFileRequest">

 <wsdl:part name="in0" type="xsd:int"/>
</wsdl:message>

 <wsdl:message
 name="getCurrentSimulationTimeResponse">

 <wsdl:part
name="getCurrentSimulationTimeReturn"

 type="soapenc:string"/></wsdl:message>
 <wsdl:message name="setGridConfigFileRequest">

 <wsdl:part name="in0" type="xsd:int"/>
 <wsdl:part name="in1" type="soapenc:string"/>
 <wsdl:part name="in2"
 type="apachesoap:DataHandler"/>
</wsdl:message>

…

Figure 4. Excerpt of the WSDL file.

The simulation results are stored in a log file that
records the detailed message exchanges between model
components. These messages can be used to visualize the
simulation progress, as shown in Figure 5. In this case,
after 02:23:946, cell (17,12) is activated (* message). As a
result of the spreading rules, the cell informs its current
spreading rate (message Y with value 3.3991), and it
passivates (Done message, informing that the next
activation time is at infinity). The spreading rate is
informed to the neighbors (i.e., cells (16,11), (16,12), etc.)
using an X message carrying the spread rate value.

...
* / 02:23:946 / top to forestfire
* / 02:23:946 / forestfire to forestfire(17,12)
Y / 02:23:946 / forestfire(17,12) / out / 3.3991 to forestfire
D / 02:23:946 / forestfire(17,12) / infinity to forestfire
X / 02:23:946 / forestfire / neighborchange / 3.3991 to
forestfire(16,11)
X / 02:23:946 / forestfire / neighborchange / 3.3991 to
forestfire(16,12)
...

Figure 5. Excerpt of the LOG file

Wrapping CD++ into a Web service allows for the
execution of complex models on heterogeneous machines
across multiple domains. Furthermore, it enables users to
use a browser as a high-end client to invoke the simulation
and visualize the results.

3.3. Global Weather Web service

The British company WebserviceX.net [13] is one of
the publicly available Web services that offer access to a
worldwide live weather information. This is achieved by
exposing two methods called as

GetCitiesByCountry and GetWeather
respectively. Both support GET, POST and SOAP
requests.

The first method is used to retrieve a list of cities in
XML format when given a country name as input. Figure 6
shows the XML response of a GetCitiesByCountry
query for Luxembourg. The element NewDataSet lists
the only city available in Luxembourg as a child element.

<?xml version="1.0" encoding="utf-8"?>
 <NewDataSet>
 <Table>
 <Country>Luxembourg</Country>
 <City>Luxembourg / Luxembourg</City>
 </Table>
 </NewDataSet>

Figure 6. Result of a GetCitiesByCountry query
As shown in Figure 7, the second method returns an

XML string, representing the weather information for a
previously retrieved city name: last update time, wind
speed and direction, temperature, humidity and other
parameters.

<?xml version="1.0" encoding="utf-16"?>
 <CurrentWeather>
 <Location>Luxembourg / Luxembourg, Luxembourg
 (ELLX) 49-37N 006-13E 379M</Location>
 <Time>Mar 26, 2008 - 07:20 PM EST / 2008.03.27 0020

UTC
 </Time>
 <Wind> Variable at 1 MPH (1 KT):0</Wind>
 <Visibility> 4 mile(s):0</Visibility>
 <Temperature> 37 F (3 C)</Temperature>
 <DewPoint> 35 F (2 C)</DewPoint>
 <RelativeHumidity>93%</RelativeHumidity>
 <Pressure> 29.47 in. Hg (0998 hPa)</Pressure>
 <Status>Success</Status>
 </CurrentWeather>

Figure 7. Result of a GetWeather query

3.4. Google Map API

Google Map is a powerful service that can be
embedded in Web applications. Based on the Google
AJAX API Loader, Google Map v2.0 provides a clear and
simple Javascript API to interface the main Web service
map [14]. Capabilities of personalizing the map behavior
and adding customized content have been exploited in this
project to display fire spread evolution dynamically.

4. The Service Oriented Architecture for
Simulating and Visualizing Forest Fire

4.1. Architecture

To realize this Mash-Up, several requirements have to

be met:
• For the simulator:
o The format of the file returned by the simulator

has to be converted to be correctly displayed on
the Google Map. Due to Javascript’s poor
performance and so as not to overload the client,
a server has to be involved to realize this task.

o The programming language used to implement
the application on the server must have libraries
supporting SOAP calls and especially
DataHandlers in the methods parameters. So
Javascript is excluded.

• For the Google Map API:
o The API is written in Javascript. So to display

dynamical information on the map, this requires
querying the server through AJAX.

Considering the second requirement, it has been
decided to use Java for its portability and a Servlet as a
HTTP server for its straightforward implementation. On
the one hand, Java is used to query Web services with
AXIS library, and on the other hand, it receives AJAX
queries, processes it and returns the response. Moreover,
designing the Mash-Up by distributing the main tasks
between several Servlets reduces the development costs.
Adding a new functionality simply means creating a new
Java Servlet.

Figure 8. An overview of the Mash-Up architecture

SOAP SOAP

XML

XML

Tomcat Servlet Engine

Simulation
Client
Java

Servlet

Weather

Java
Servlet

Javascript Engine

Client Host

AJAX Engine

Google Map API
Webservice

DCD++ DEVS-Cell

Simulator
Webservice

WebserviceX.net
Global Weather

 Webservice

4.2. Common Servlet development framework

Communication between Servlets and clients are made

through the POST method. Like any Web service, the
parameter “method” specifies Java application’s behavior.
If the method targets a call to a distant Web service, the
next POST parameters will have the same name as the Web
service WSDL expects.

<response type=”result”>
…
</response>

<response type=”error”>
 <faultString>This is a description of the error</faultString>
 <faultTrace></faultTrace>
</response>

<response type=”notAuthenticated” />

Figure 9. The three types of XML messages exchanged
between the client and the Servlets

A common set of XML messages have been defined to
provide a coherent Servlet communication interface with
the client. Figure 9 shows an example of the three message
types differentiated by the type attribute in the root
element: the value “result” will be used to denote a
successful query. A type “error” implies a Servlet
processing error, where the child element faultString
gives the reason for the error. A type value
“notAuthenticated” indicates that the user is not
connected. The attribute type in the root element allows
for efficient selection of appropriate actions at the early
stage of the Javascript callback process.

Java Exceptions are handled by a common class called
as ClientException. Should any error arise during
data processing, this exception is thrown and handled at
the top level method of the Servlet to return an
XMLResponse error message.

4.3. Simulation Client Servlet

The Simulation Servlet aims at providing Web service
query capabilities to the Javascript client side, which does
not support SOAP messages. As a result, DCD++ WSDL
has been exploited to generate the Java stubs used to
communicate with the simulator. The interface of the
simulation service includes the following methods [12].
- authenticate: authenticates the user and initializes

a new session for each successful login.
- setMAFile: uploads a model definition file to the

simulation service.

- setSupportFile: uploads other supporting files
(e.g., the initial cell values of a Cell-DEVS model)
required by the simulation engine.

- setGridConfigFile: uploads an XML file
containing the configuration of the distributed grid of
computers used during the simulation.

- startSimulationService: sends a start
simulation signal to the simulator.

- retrieveLogFile: retrieves the generated
simulation log file.

- getStatus: returns the current simulation status.
- deleteSession: deletes the temporary files created

on the server.
- retrieveSessionLogFile: retrieves operation

information or error messages logged during the current
session.

- setExecutionTime: sets the end time of the
simulation.

- killSimulation: forces a simulation to stop
prematurely.

- getCurrentSimulationTime: returns the current
simulation time.

- logOff: logs off the user and erases the session.
In addition, several methods have been added to

match the client side requirements. The methods
setMAFileMIME, setSupportFileMIME and
setGridConfigFileMIME were added to upload the
corresponding files from the client to the simulation server
through the Servlet engine server. We also modified
setMAFile, setSupportFile and
setGridConfigFile to take a string instead of a file
as input and to upload a file on the server.

Another method added is
retrieveCustomXMLDrw. This method does not
match any of the Simulator Web service interface. It is
derived from the fact that the format of the simulation
results is inadequate to be processed on the client side. A
CD++ utility tool bridges this gap by generating a plain
text matrix representation of the cell space and a graphical
2D representation. However, even for a middle-sized fire
model the file size can easily reach more than 2MB, which
is bulky to be transmitted over the network.
retrieveCustomXMLDrw brings a solution to this
problem. It retrieves the simulation log file and processes
it with a customized parser. Instead of sending plain text
data, an XML document is generated and sent. For each
simulation time step, only those values that have been
changed are specified in the XML document.
Consequently, the 2MB text file becomes a 49KB XML
document. More than just an optimization in the file size,
this also allows for communication using standard XML
messages.

<matrices number='387' x=’30’ y=’30’>
 <mat step='1' time='00:00:00:000'>
 <point x='19' y='10' value='1.0' />
 </mat>
 <mat step='2' time='00:01:11:973'>
 <point x='18' y='11' value='2.200000047683716' />
 </mat>
 <mat step='3' time='00:02:23:946'>
 <point x='17' y='12' value='3.4000000953674316' />
 </mat>
 <mat step='4' time='00:02:59:049'>
 <point x='18' y='10' value='4.0' />

 <point x='19' y='11' value='4.0' />
 </mat>
….

Figure 10. Log file transformed into an XML document.

On the client side this XML file is processed and
shown on the map. The attributes of the root element give
the number of steps in the simulation and the size of the
matrix representing the burning area. Each mat tag
represents the system status at a specified time. The
point child elements contain the information on modified
cells. Each point is mapped to a GPolygon object
defined in the Google Map API and is shown on the map.
A reference to each polygon is kept so that the user can
run the simulation backward or forward. The data structure
holding the GPolygon objects is a multidimensional
array indexed with the step number and the order of the
points in the step.

To finish, the system keeps track of the user’s
authentication using Servlet sessions. The Servlet looks
up the session object associated with every request. This
object is created upon authentication and stores the
session ID until the user logs off. This restricts the use of
the simulator to authorized users.

4.4. Global Weather Servlet

The Global Weather Web service is used to provide the
user with details about weather conditions, especially the
wind speed and direction, as these parameters are needed
to generate correct simulation results.

The main purpose of the Global Weather Servlet is to
interface the Web service with the client and return an
HTML response to reduce the processing time required by
Javascript. The POST method parameter can be set to
either GetCitiesByCountry or GetWeather. Once
the call of the Web service is finished, an XSLT processor
is launched with a style sheet according to the method
and the final presentation requirements.

In the case of the first method, each City element is
transformed with XSLT to be inserted into a <select>
HTML tag. So option elements are created. City names
are also sorted for better usability. Before being embedded

into a response element to create the response, tag
delimiters of the XSLT transformation are replaced by
HTML special characters < and >. This
technique is useful for the Javascript client. It aims at
parsing the document quickly with DOM without having
to browse the entire tree and reprocessing it.

…
<xsl:template match="/NewDataSet">
 <xsl:for-each select="Table">
 <xsl:sort select="City" />
 <xsl:apply-templates mode="city"/>
 </xsl:for-each>
</xsl:template>

<xsl:template match="City" mode="city">
 <option>
 <xsl:attribute name="value">
 <xsl:value-of select="text()" />
 </xsl:attribute>
 <xsl:value-of select="text()" />
 </option>
</xsl:template>
<xsl:template match="*" mode="city" />

Figure 11. Part of the city presentation XSL style sheet

For the second method, another style sheet is used to
extract the content of each information element included in
the Weather Web service response (Figure 7), and it
inserts a simple line-break
 between each of them.
In case of a city where no weather information is available,
the content of the response will be “No Data Result”. The
result is finally returned to the client. The content of the
Location element is kept in another sub-element of the
response to be able to extract it later in Javascript and to
query the Google Map Web service to move to the target
location on the map interface.

<?xml version="1.0" encoding="utf-8"?>
<response type="result">

 <location> Luxembourg / Luxembourg, Luxembourg
</location>
 <text>
 Time: Mar 27, 2008 - 12:20 PM EST / 2008.03.27 1720
 UTC< ;br /> ;
 Wind: from the W (280 degrees) at 9 MPH (8 KT):0< ;br
/> ;
 Visibility: greater than 7 mile(s):0< ;br /> ;
 SkyConditions: mostly cloudy< ;br /> ;
 Temperature: 37 F (3 C) < ;br /> ;
 DewPoint: 35 F (2 C) < ;br /> ;
 RelativeHumidity: 93%< ;br /> ;
 Pressure: 29.53 in. Hg (1000 hPa) < ;br /> ;
 </text>
 </response>

Figure 12. Example of the result returned by the Global
Weather Servlet

XSL technology has been chosen to process XML
since it is an XML standard and can be authored
efficiently.

4.5. Client Side

The client side must complete several objectives,

including:
• Interfacing with the Google Map Web service
• Providing a simple GUI for the user
• Querying the two Servlets with AJAX
The client has been implemented around four key

standards: XHTML for content organization, CSS for
presentation, Javascript for data processing, and XML for
information streams in order to guarantee a complete
interoperability with future work or technologies involved.
Frames have been used to present a console displaying
information and error messages coming from Javascript
functions. Frames are organized as follow:

• Main Frame: main frame container
o Main Content: displays and reloads user pages
o Console Frame: console frame container
§ Console Menu: contains console controls and

status.
§ Console Content: displays information and

error messages.
Figure 13 shows the frame organization, including the

Console Frame (in the bottom panel) and the Main
Content Frame (in the center panel) for user information
and controls.

Figure 13. Screenshot of the client side interface

More than just a means to log information, the console
implements a system of variable storage. The Javascript
object Console exhibits three methods to achieve this
goal: create(“myVar”), set(“myVar”,

“value”) and get(“myVar”). Since the console
frame is not reloaded, the variables keep their values and
can be reused in the user frame. The button “enable
debug mode” allows the user to display Java exception
traces if there is one.

When the user connects to the system for the first
time, a user name and a password are required to create a
session on the Simulator Web service. If the
authentication is successful, a session is created on the
Servlet to keep the trace of the user. The following steps
are necessary to initiate the simulation.
1. The location of the wildfire is specified via two HTML

select fields. Queries are sent to the Global Weather
Servlet to retrieve the list of available cities and the
current weather condition. Weather information is
printed directly on the Google Map. The map center
and zooming scale are updated automatically. The
user can now update the fire model with the weather
information (wind direction and speed, humidity, air
temperature, etc.). A specific location can also be
selected manually on the map but weather information
may not be available for that location.

2. The fire model can be uploaded to the server in two
possible ways: using a file in the local file system, or
copying the model directly in the text field. A
confirmation message is displayed in the console.

3. Similarly, the user uploads a grid configuration file,
which defines the mapping of the fire model on the
remote hosts involved in the distributed simulation.

4. The simulation can be started upon the successful
completion of the previous steps. By clicking on the
start button, the simulation is launched through the
Simulation Servlet and the user is redirected to the
map interface. When the simulation is finished and
the information retrieved successfully, the map
controls are enabled for the user.

Figure 14. Screenshot of the simulation map interface

Note that the user can go back to a previous step at
any time to modify the data and/or to upload a different
file.

Before showing the simulation results on the map
interface, the user can adjust the simulation area, as seen
in Figure 14. The scaled values of the width and height of
a cell are updated and displayed along with the simulation
time and steps when the animation is running. The log file
and session log file generated by the Simulation Service
can also be downloaded for further investigation. The
animation rate can be adjusted with the delay cursor in the
top panel.

5. Conclusion

We have introduced a Mash-Up combining three Web
services to improve the ease of use and effectiveness of
wildfire simulation. The Web Services were designed to
transform information and to bring an advanced
visualization support to a Cell-DEVS based fire model.
Around a two-tier architecture consisting of a Java Servlet
and a Javascript client, different XML-based technologies
such as XHTML, SOAP, XPATH and XSLT have been
used to enhance performance, interoperability and
usability.

Based on a predefined model and reducing the number
of input parameters can make the simulator easier to use
and make it more likely to be used in a real-world
application for emergency purposes.

The Mash-Up developed in this project can be
enhanced by adding new sources of information on the
simulation parameters in addition to the weather
conditions, so that the user can define a more accurate
model. Since the slope field and the vegetation type are
also important parameters of the simulation model [11], we
can envision the integration with a GIS Web service to
incorporate the topography of the field and mashing it to
our system.

Another functionality that warrants further research is
to allow the model to be dynamically modified according
to the information reported by the weather service on the
wind speed and direction. This work is currently in
progress and the functionality should be available soon.

References

[1] Fire Simulation Mash-up (Demo Version). [Online]
available at http://isel.cs.unb.ca/~michelv/. 2008.

[2] A. Muzy, G. Wainer, E. Innocenti, A. Aiello, J-F.
Santucci, “Dynamic and discrete quantization for
simulation time improvement: fire spreading application

using the CD++ tool”. in Proceedings of 2002 Winter
Simulation Conference, San Diego, U.S.A. 2002.

[3] A.M. Grishin, “Mathematical modeling of forest fires
and new methods of fighting them”. Publishing house of
the Tomsk state university. Albini Ed. pp. 81-91. 1997

[4] R. Rothermel, “A mathematical model for predicting fire
spread in wild-land fuels”. Research Paper INT-115.
Ogden, UT: U.S. Department of Agriculture, Forest
Service, Intermountain Forest and Range Experiment
Station. 1972.

[5] G. Wainer, “Applying cell-DEVS methodology for
modeling the environment”, in SIMULATION, October
2006, Vol. 82, No. 10, pp. 635-660.

[6] G. Wainer, N. Giambiasi, “N-dimensional Cell-DEVS
models”. Discrete Event Dynamic Systems. Springer
Netherlands. ISSN 0924-6703. Vol. 12. No. 2. 2002.

[7] B.P. Zeigler, H. Praehofer, T.G. Kim, Theory of
modeling and simulation:Integrating discrete event and
continuous complex dynamic systems, Second Edition,
Academic Press, 2000.

[8] M. Vasconcelos, J. Pereira, B. Zeigler, “Simulation of
fire growth using discrete event hierarchical modular
models” in Advances in Remote Sensing, EARSeL, 1995,
Vol. 4, No. 3, pp. 54-62.

[9] L. Ntaimo, B. Khargharia, B. Zeigler, M. Vasconcelos,
“Forest fire spread and suppression in DEVS” in
Simulation, Transactions of the SCS, 2004, Vol. 80, No. 10,
pp. 479-500.

[10] J. Ameghino, A. Troccoli, G. Wainer “Models of
complex physical systems using Cell-DEVS” in
Proceedings of Annual Simulation Symposium, 2001,
Seattle, WA, U.S.A..

[11] G. Wainer, “CD++: a toolkit to define discrete-event
models” in Software, Practice and Experience, Wiley,
November 2002, Vol. 32, No. 3, pp. 1261-130.

[12] R. Madhoun, B. Feng, G. Wainer, “Web-Service-
Based Distributed CD++” in Artificial Intelligence,
Simulation and Planning, AIS 2007, Buenos Aires,
Argentina.

[13] WebserviceX.net [Online] available at
http://www.webservicex.net

[14] Google Map API, [Online] available at
http://code.google.com/apis/maps

