
Definition of Dynamic DEVS Models- Dynamic Structure CD++

Monageng Kgwadi Hui Shang Gabriel Wainer
mkgwadi@connect.carleton.ca shanghuibox@gmail.com gwainer@sce.carleton.ca

Department of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON, K1S5B6, Canada

Keywords: Dynamic Structure DEVS, CD++.

Abstract Dynamic Structure DEVS allows one
to model systems that under go structural
and behavioural changes. Dynamic Structure
CD++ is a modelling and simulation tool that
allows models to be changed at run time to fa-
cilitate accurate modelling of dynamic systems.
We model and simulate two different examples
of dynamic systems focusing on their dynamic
behaviour using DS-CD++.

1 INTRODUCTION

Discrete event system specification (DEVS) is a tech-
nique derived from system theory that describe systems
whose state variables change at discrete set of points
in time [4] [2]. DEVS framework provides well-defined
definitions for modular model description, coupling of
components and heirarchy[3].Dynamic DEVS is a mod-
elling technique that addresses behavioural and struc-
tural changes that models incur as a result of changes
in the environment. A dynamic model is a model that
change its behaviour and/or structure based on a set
of input variables or its environment. Dynamic Struc-
ture CD++ (DS-CD++) is a modelling and simula-
tion tool that allows changes to be made on models
at run-time. DS-CD++ is an extension to Embedded
CD++(e-CD++) and Real-Time CD++(RT-CD++)
which were designed to model systems for embedded
applications in real-time. DS-CD++ uses the Dynamic
DEVS formalism to define models.
We introduce two different dynamic models in DS-
CD++ specifications showing the main features of
this environment. The models presented herein are
an active fuel management system of a vehicle and

a threaded server. Both models exhibit dynamic be-
haviour and change their structure with time. The ac-
tive fuel management system of a vehicle is a system
that minimises fuel consumption by turning off some
engine cylinders when the vehicle does not require a
lot of power. A threaded server running on a computer
may have multiple threads at any time based on the
number of clients which it is in communication with
at any instant in time. This paper present a detailed
and formal descriptions of the models in section 2 and
the tests performed on the models. A conclusion of the
project and references are presented in sections 3 and
4.

2 MODEL DESCRIPTIONS

CD++ toolkit allows object oriented model specifica-
tion based on DEVS formalism [4]. CD++ defines two
types of models, atomic and coupled models. Coupled
models are made up of interconnected atomic and/or
coupled model components. DS-CD++ defines mod-
els as basic and network models. Basic models are
atomic structures while network models are coupled
components made of basic and/or network models. DS-
DEVS formalism describes a special model called a net-
work executive which performs the structural changes
of the dynamic network models [1],[3] . Hence DS-
CD++ defines a network executive model which is a
specialized atomic model that performs the network
structural changes at run-time. This section presents
sample models that were developed in DS-CD++. The
models were developed and defined using the Dynamic
DEVS formalism as described in [1] and [3].

2.1 Active Fuel Management Model

An Active Fuel Management system (AFM) is a sys-
tem that manages fuel consumption of a vehicle during
driving. In a high-power vehicle with an eight cylin-
der (V8) engine, the AFM system allows the full use of
the engine cylinders when demanded by the driver and
conditions [5]. For example when the driver is acceler-
ating, maximum capacity of the engine is used. When
the driver does not demand a lot of power, the AFM
system turns off some cylinders to minimise power con-
sumption.

2.1.1 Conceptual Model Description

The Active Fuel Management system is modelled
herein as a system that manages a V8 engine that
changes to a V6 engine to minimise fuel consumption.
The system has a control module that takes inputs
from the driver and the environment and then changes
the engine structure based on the inputs. The control
model takes inputs from the driver and environment.
The driver inputs are defined as:

0: driver stopping the engine
1: driver starting the engine
2: driver accelerating
3: driver idle (taking his foot off the gas pedal)

The states of the engine depend on the inputs from
the driver and are defined as:

OFF: the engine is off
IDLE: the engine is on but not accelerating
ACCELERATE:the engine is accelerating
DECELERATE: the engine is decelerating

The inputs from the environment are modelled as
discrete events that tells the system that maximum
power is required or power-save mode can be used.
These are environment conditions that may result from
the road conditions or from terrain sensors on the car.
They are presented here as:

1: power-save
2: maximum power required

The states of the control unit are

POWERSAVE: minimal fuel consumption
MAXPOWER: maximum power.

2.1.2 Dynamic DEVS Formalism Description

The system is defined using the description in [1] and
[3] as follows: DSDENAFM = (XAFM , YAFM , X,Mx)
where:

AFM: network name
XAFM = {(driver,N), (enviro, N)}

input set of AFM network
YAFM = {(revsperminute, N)}

output set of AFM network
X = activeexec : network executive
Mx = (Xx, Sx, So,x, Yx, γ, Σ∗,

δx, λx, τx) :defines the network structure
Xx : inputs to the network
Yx : output of the network
Sx : current network structure
So,x : the initial netwrok structure
γ : Sx...Σα : the structure function that converts

current network structure to the next structure
based on inputs where:

ΣαεΣ∗ and
Σ∗ = {(EngControl, EngineV 6),
(EngControl, EngineV 8)} the set of all

possible network structures.

Figure 1 shows the coupling descriptions of the AFM
model. The network executive(activeexec) is defined
as a component of the engine coupled model, and is
responsible for changing the structure of the network
when the EngContrl module executes the code shown
in figure 2. The method strucChange(int i) invokes
the network executive to change the network to the
structure with the identity i as specified by the Scomm
variable in the structure couplinng definition file, refer
to figure1.

Figure 1: Definition of the structure couplings

2.1.3 Testing of Models and Integration

The models were designed using a top-down approach.
To start, the EngControl model was created which

Figure 2: Code snippet showing how the structure is
changed in run-time

takes control inputs from the driver and environment
then chooses the suitable engine for the combination of
state and inputs. The network executive was then cre-
ated to allow structural changes. Initially the EngCon-
trol model changed between two void engine models
that did not do anything. After the Engcontrol model
was verified to work properly, the EngineV6 model and
the EngineV8 models were created using DEVS formal-
ism. The two models are similar the difference being
that the EngineV8 model produces more power than
that of the EngineV6 hence reach higher engine revo-
lutions per minute faster than the EngineV6. Figure
3 is an extraction of the logfile which shows structural
changes at execution time. The first line in bold shows
the current engine model is EngineV6, the following
bold line reflects an input from the driver correspond-
ing to acceleration and hence the structural change to
an EngineV8 model shown by the third line in bold.

Figure 3: part of logfile showing structural change

2.2 Threaded Server Model

The threaded server model is designed herein to model
a multitask server that runs on a computer. A multi-
task server offers parallel service to multiple clients by
creating threads to serve each client. The threads are
created on demand by the server. A multitask server
runs a main thread that just listens to clients requests
on a port on the computer. Each time a client requests
service, a new thread to serve the client is created. The
thread is then closed at the request of the client after
the service is finished.

2.2.1 Conceptual Model Description

The threaded server is described by a main server
thread that listens for client requests on a port. Every
time a client requests a connection to the server, a new
thread is created provided the number of threads does
not exceed a predefined maximum number of threads.
The client can then stay connected for a time and then
close the connection. The inputs that the main server
thread takes are:

1: Service Request
2: Close Request

The main server thread keeps the number of threads
created and updates the number each time a new
thread is created or closed. A predefined maximum
number of threads is used to keep control of the num-
ber of existing threads and consequently the number of
open connections with clients at a given point in time.
The states of the main server thread are:

LISTEN : server is listening to client requests
ACCEPT : server creates a new thread
DELETE : server deletes an existing thread

The threads are represented by models that take input
from a client and the main server thread.

2.2.2 Dynamic DEVS Formalism Description

The Multitask server system is defined using the
description in [1] as follows:
DSDENThrdServer = (XThrdServer, YThrdServer, X,Mx)
where:

ThrdServer: network name
XThrdServer = {(driver,N), (enviro,N)}

input set of ThrdServer network
YThrdServer = {(revsperminute, N)}

output set of ThrdServer network
X = activeexec : Network executive

Mx = (Xx, Sx, So,x, Yx, γ, Σ∗, δx, λx, τx)
The structure function represented as: γ : Sx...Σ∗

The structure definition function that maps a network
structureΣαεΣ∗ where

Σ∗ = {(ServerThread), (ServerThread, Thread1),
(ServerThread, Thread1, Thread2),
(ServerThread, Thread1, Thread2, Thread3)}

Figure 4 shows the structure of the network. For this
example only a maximum of 3 threads is presented but
that could be extended by extending the Σ∗ set and
performing the necessary editing in the model descrip-
tion files .

Figure 4: The Structure definition of the Server

2.2.3 Testing of models and Integration

The threaded server model was created using an in-
cremental method. Initially the serverThread model
was designed and tested for operational correctness by
having an empty executive model that shown when
a change was to be performed. After the operation
of the serverThread model was verified, the network
executive was then filled in to perform the structural
changes that were to be performed by adding and re-
moving threads. The Thread model was then created
and the overall system was tested and verified to work
as expected under different inputs scenarios. Figure 5
shows the output of the threaded server which reflects
the number of active threads at a time

3 CONCLUSIONS

The DS-CD++ toolkit provides an effective and effe-
cient way of capturing the dynamic nature of models.
Network modules allow structural changes to be made

Figure 5: Output of the number of threads

to network models at run-time facilitating easy repre-
sentation of model bahaviour. The toolkit allows the
DEVS framework of modular design, and hierarchy to
be applied to dynamic models. Thus complex dynamic
behaviour can be easily represented by using simple
basic and network models in a hierarchical design.
In the examples presented in this paper, we showed
that the dynamic nature of the models can be easily
produced using simple models. DS-CD++ allows dy-
namic systems to be modeled by simple models which
would otherwise require complex models.

References

[1] Fernando J. Barros, Bernard P. Zeigler and Paul
A. Fishwick Multimodels and Dynamic Struc-
ture Models: An Integartion of DSDE/DEVS and
OOPM, Proceedings of the 1998 Winter Simula-
tion Conference

[2] Jerry Banks, John S. Carson II, Barry L. Nelson,
David M. Nicol Discrete-Event System Simulation
, Prentice Hall, 2005

[3] Hui Shang, Gabriel Wainer A simulation Algo-
rithm for Dyanamic Structure DEVS Modelling
Proceedings of the 2006 Winter Simulation Con-
ference

[4] Gabriel Wainer CD++: A Toolkit to Develop
DEVS Models In Software, Practice and Expe-
rience. Wiley. Vol 32, No 3. November 2002. pp
1261-130. CA, TO

[5] Engine af Engine Advances; cited 13-02-2008,
Available at:
www.gm.com/explore/fuel economy/engine advances/

