
Lightweight Time Warp – A Novel Protocol for Parallel Optimistic
Simulation of Large-Scale DEVS and Cell-DEVS Models

Qi Liu, Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University Centre on Visualization and Simulation (V-Sim)

Carleton University, Ottawa, Canada
{liuqi, gwainer}@sce.carleton.ca

Abstract

This paper proposes a novel Lightweight Time

Warp (LTW) protocol for high-performance parallel
optimistic simulation of large-scale DEVS and Cell-
DEVS models. By exploiting the characteristics of the
simulation process, the protocol is able to set free most
logical processes (LPs) from the Time Warp
mechanism, while the overall simulation still executes
optimistically, driven by only a few full-fledged Time
Warp LPs. The LTW protocol includes a rule-based
event-scheduling mechanism using two types of event
queues, an aggregated state-saving technique for
optimal risk-free state management, and a new
rollback algorithm that recovers lightweight LPs from
causality errors without sending anti-messages. The
impact on global control mechanisms such as GVT
computation, fossil collection, and load migration is
also discussed. The basic concepts of the protocol
could also apply to a broad range of Time Warp
systems under certain conditions and with appropriate
control over the LPs.

1. Introduction

With the computing power and advanced software
available today, Modeling and Simulation (M&S) has
become a cost-effective tool for detailed analysis of a
broad array of natural and artificial systems. Parallel
and distributed simulation (PADS) is widely accepted
as the technology of choice to speed up large-scale
discrete-event simulation and to promote reusability
and interoperability of simulation components.
Originally introduced in [1], Jefferson’s Time Warp
protocol remains the most well-known optimistic
synchronization algorithm that provides a solid
foundation for many high-performance PADS systems.
A Time Warp simulation is executed via several LPs
interacting with each other by exchanging time-

stamped event messages. The protocol consists of two
distinct pieces that are sometime called the local
control and global control mechanisms [2]. Rollback is
used to recover LPs from causality errors upon the
arrival of straggler or anti-messages with time stamps
less than the LP’s Local Virtual Time (LVT). Each LP
maintains three data structures for this purpose: an
input queue of recently arrived messages, an output
queue of negative copies of recently sent messages, and
a state queue of the LP’s recent states. The historical
events and states in these queues cannot be discarded
until their time stamps have been surpassed by the
Global Virtual Time (GVT). GVT computation and
fossil collection are crucial components of the global
control mechanism to reclaim memory resources and to
commit I/O operations. Over the years, many
algorithmic and data structure based optimizations have
appeared in the literature to improve the efficiency of
the original Time Warp protocol (e.g., [3]). The
WARPED simulation kernel [7] is a configurable
middleware that implements the Time Warp protocol
and a variety of optimization algorithms.

The Discrete Event System Specification (DEVS)
[8] is a general modeling framework for discrete-event
systems. The P-DEVS formalism [9] eliminates the
serialization constraint existed in the original DEVS
definition, allowing increased parallelism to be
obtained in PADS systems. The Cell-DEVS formalism
[10] combines Cellular Automata [11] with DEVS
theory to describe n-dimensional cell spaces as discrete
event models, where each cell is represented as a
DEVS basic model that can be delayed using explicit
timing constructions. Both P-DEVS and Cell-DEVS
formalisms are implemented in CD++ [12], an open-
source M&S environment that supports standalone and
parallel/distributed simulations on different platforms.

Although the Time Warp protocol has been
discussed in a great number of studies, its applicability
to simulating DEVS models is only rarely explored in
the PADS literature (but see, e.g., [13]). Recently, we

developed a parallel optimistic simulator, called as
PCD++ [15], for high-performance simulation of
complex DEVS and Cell-DEVS models based on the
WARPED simulation kernel. However, several technical
challenges remain to be addressed to tackle the issues
related to performance, scalability, and complexity of
Time Warp based large-scale parallel simulation
systems. Some of these issues are outlined as follows:

1. With a large number of LPs loaded on each
available processor (or node), the memory resources
can exhaust quickly due to the excessive amount of
space used for saving past events and states. Hence, the
simulator is forced to reclaim historical data with
frequent GVT computation and fossil collection, an
operation that itself is an important contributor to the
overall operational overhead. Other existing algorithms
such as pruneback [16], cancelback [17], and artificial
rollback [18] attempt to recover from a memory stall
only at the expense of additional computation and
communication overhead. It is desired to have a
protocol that can support large-scale optimistic
simulation even when memory resources are tight,
while at the same time reducing the overhead of GVT
computation and fossil collection to the minimum, and
do so only when absolutely necessary.

2. One potential performance hazard in large-scale
optimistic simulation is that the cost of rollbacks
increases dramatically simply because a massive
number of LPs are involved in the rollback operation
on each node. Prolonged rollbacks not only result in
poor system performance, but also increase the
probability of rollback echoes [2]. Therefore, it is
imperative to fashion a new approach that can
dramatically reduce the rollback cost without
introducing much additional runtime overhead.

3. Different implementations of the event sets have
been the focus of research for several years [19]. A
primary motivation behind these efforts is to improve
the efficiency of queue operations as the number of
stored events increases in large-scale and fine-grained
simulations. In addition to using advanced data
structures, the simulation performance would also be
improved if we could keep the event queues relatively
short throughout the simulation, an alternative
approach that warrants close examination.

4. Dynamic load balancing has been recognized as a
critical factor in achieving optimal performance in
large-scale PADS systems where the workload and
communication patterns are in constant fluctuation [22].
Algorithms for dynamic load balancing usually rely on
metrics whose values are valid only for a short period.
Further, the impact of load migration should be
minimized so that it does not severely interfere with the

normal execution of the simulation system. This
problem is especially severe in optimistic simulations
since a potentially unbounded number of events and
states associated with an LP must be transferred
between processors. Only a few studies address
specifically the issue of facilitating load migration in
Time Warp systems. For example, Reiher and Jefferson
proposed a mechanism to split an LP into phases to
reduce the amount of data that must be migrated [24].
More recently, Li and Tropper devised a method that
allows for reconstructing events from the differences
between adjacent states so that only the state queue
needs to be transferred [25]. However, this approach
only works for systems with fine event granularity and
small state size such as VLSI circuits. An agile load
migration scheme is needed to reduce the overhead of
dynamic load balancing in Time Warp systems.

In this paper, we address these issues by proposing a
novel protocol, referred to as Lightweight Time Warp
(LTW), for high-performance optimistic simulation of
DEVS and Cell-DEVS models. The LTW protocol can
effectively improve system performance in a variety of
ways, including reduced memory consumption,
lowered operational overhead for both local and global
control mechanisms, more efficient queue operations,
and facilitated load migration. We should stress that the
LTW protocol can well be integrated with other widely
accepted Time Warp optimizations to further improve
the performance. Although our discussion is centered
on parallel simulation in PCD++, the basic concepts of
the LTW protocol could also apply to a broad range of
Time Warp based PADS systems under certain
conditions and with appropriate control over the LPs.

The remainder of the paper is organized as follows.
Section 2 introduces the background on parallel
simulation in PCD++. It also highlights the
assumptions that underlie the LTW protocol. Section 3
proposes a rule-based event-scheduling scheme that
utilizes two types of input queues to reduce memory
consumption and to speed up the simulation. Section 4
describes an aggregated state-saving technique and an
optimal risk-free state-saving strategy for efficient state
management. Section 5 covers the rollback mechanism
in the LTW protocol. The impact on the global control
mechanisms is discussed in Section 6. Conclusion and
future work are reported in Section 7.

2. Optimistic simulation in PCD++

A system is described in P-DEVS as a composition

of behavioral (atomic) and structural (coupled) model
components. The LPs are specialized into two
categories: simulators and coordinators. A simulator is
created for each atomic model to trigger the output and

state transition functions, while a coordinator is
associated with a coupled model to keep track of the
simulation time and to relay messages between its child
simulators and the parent coordinator. To reduce
communication overhead, PCD++ adopts a flattened
structure consisting of four types of LPs: Simulator,
Flat Coordinator (FC), Node Coordinator (NC), and
Root Coordinator. Parallelism is achieved by
partitioning the LPs onto multiple nodes. Figure 1
shows the PCD++ structure of the LPs on two nodes.

Figure 1. LP structure on two nodes

A single Root coordinator is created on node0 to
start the simulation and to interact with the surrounding
environment. Since the Root coordinator does not play
a crucial role in the parallel simulation, we will not
discuss it further for the sake of clarity. The simulation
is governed by a set of NCs running asynchronously on
different nodes in a decentralized manner. The NC acts
as the local central controller on its hosting node and
the endpoint of inter-node communication. It is the
only LP responsible for determining the next
simulation time on a node based on events from other
remote NCs and the current states of the local LPs. The
FC is in charge of routing messages between its child
Simulators and the parent NC using the model coupling
information. A Simulator executes DEVS functions
defined in its associated atomic model upon the request
of the FC. Note that on each node only one NC and FC
are created, whereas many Simulators coexist in a
typical large-scale simulation. Hence, a substantial
reduction in the operational overhead at the Simulators
would lead to a significant improvement in the overall
system performance. Even though the LPs are grouped
together, their LVT values may differ.

Messages exchanged between the LPs fall into two
categories: content messages and control messages.
The former includes external message (x, t) and output
message (y, t) that encode the actual data transmitted
between the model components, and the latter includes
initialization message (I, t), collect message (@, t),
internal message (*, t), and done message (D, t) that are
used to implement a high-level control flow in line with
the P-DEVS formalism.

The message-passing organization has been
analyzed in [15] using a high-level abstraction called

Wall Clock Time Slice (WCTS). A WCTS at virtual
time t, denoted as WCTS-t, stands for the execution of
simultaneous events with time stamp t at all the LPs on
a given node. As shown in Figure 2, the simulation
process on each node is viewed as a sequence of
WCTS’s, each has a mandatory transition phase (T)
and an optional collect phase (C). Only WCTS-0 has
an additional initialization phase (I). Furthermore, a
transition phase may contain multiple rounds of
computation, denoted as [R0…Rn]. During each round,
state transitions are performed incrementally at the
Simulators, incorporating additional (x, t)’s from the
other model components. At the end of each WCTS,
the NC calculates the next simulation time and sends
out messages that will be executed by the local LPs at
this new virtual time, initiating the next WCTS on the
node. That is, the linking messages between two
adjacent WCTS’s have send time equal to the virtual
time of the previous WCTS and receive time equal to
that of the next. All other messages executed within a
WCTS have the same send and receive time that is
equal to the virtual time of the WCTS.

Figure 2. Simulation process represented in WCTS

Based on the LP structure and division of
functionalities in PCD++, we summarize as follows the
key characteristics of the simulation process, which
also highlights the assumptions that underlie the LTW
protocol.

1. The Simulators only communicate with their
parent FC (i.e. no direct communication between the
Simulators). Hence, the FC has the full knowledge of
the timing of state changes at its child Simulators.

2. Rollbacks happened on a node begin either at the
NC as a result of straggler or anti-messages arrived
from other remote NCs, or at the FC in the case of
messaging anomalies [15]. In both cases, rollbacks
always propagate from the FC to its child Simulators.
Hence, the FC has the information of when rollbacks
will occur at the Simulators. Besides, a WCTS is an
atomic computation unit for the FC and the Simulators
during rollback operations [15].

3. The advance of simulation time on each node is
controlled entirely by the NC. The FC and the
Simulators do not send messages across WCTS
boundaries.

These assumptions might seem a bit restrictive, but
in practice many Time Warp based PADS systems can
be converted, at least partially, into this model through

carefully choosing the level of event granularity and
imposing an appropriate control over the LPs.

3. Rule-based dual-queue event scheduling

3.1. Introducing a volatile input queue

Under the Time Warp protocol, the input queue is
persistent, in the sense that the events remain in the
queue until being fossil collected when the GVT
advances beyond their time stamps. However, keeping
past events in the queue not only consumes lots of
memory, but also increases the cost of queue
operations. The LTW protocol solves this problem by
introducing an additional volatile input queue that does
not preserve processed events at all. Specifically, it is
used to hold temporarily the simultaneous events
exchanged between the FC and its child Simulators
within each phase of a WCTS. On the contrary, the
persistent input queue is used only by the NC and FC to
contain the events sent between them. This
arrangement is possible due to the simulation
characteristics as we presented in the previous section.
A key observation is that, during a rollback, the
incorrect events previously exchanged between the FC
and its child Simulators are essentially annihilated with

each other. Therefore, it is safe to exclude these events
from the persistent queue.

Figure 3 shows the message flow between four LPs:
a NC, a FC, and two Simulators (S1 and S2). As we
can see, events scheduled for the NC are still inserted
into the persistent queue. However, events received by
the FC are put into the persistent queue only if they are
coming from the parent NC. In addition, all events
exchanged between the FC and the Simulators are
inserted into the volatile queue. Thus, these events are
no longer controlled by the Time Warp mechanism.
From the Time Warp perspective, the simulation
process on a node only involves a small fraction of the
total events executed by the LPs, as shown in Figure 4.

Comparing Figure 3 to Figure 4, we can see that the
events executed by the FC and the Simulators within
each phase of a WCTS can be considered as being
collapsed into a single aggregated event. Note that the
linking messages between adjacent WCTS’s (e.g., @1,
x23, *24, and @29) are still kept in the persistent input
queue, which ensures that the simulation can resume
forward execution successfully after rollbacks. In
Figure 3, for instance, if a rollback with time t2 occurs,
then events x25, *26, D27, D28, and @29 are cancelled
and the simulation restarts with the unprocessed linking
messages x23 and *24 after the rollback.

Figure 3. An example of message flow between the LPs on a node

Figure 4. Message flow between the LPs from a Time Warp perspective

The volatile input queue has two appealing
properties that allow us to reduce memory consumption
and cost of queue operations significantly:

1. Events in the volatile queue are discarded and
their memory reclaimed immediately after execution,
greatly reducing the memory footprint of the system.

2. Events in the volatile queue always have the same
time stamp. They are inserted into the queue as the
simulation moves into each phase of a WCTS, and
removed as the execution proceeds. At the end of each
phase (i.e., when the FC sends a (D, t) to the NC), the
queue becomes empty. This means that a simple FIFO

queue suffices, and queue operations can be performed
efficiently in O(1) time. Events are simply removed
from the head of the queue and added to the end. To
enhance repeatability, the simultaneous events must be
ordered in a repeatable fashion, such as by sorting on
the ID of the receiving LP [2]. Thus, events may still
need to be inserted in the middle of the volatile queue.
However, the insertion operation is also accelerated in
this case since the queue length remains relatively short
throughout the simulation.

Consequently, the persistent input queue also
becomes much shorter than under the original Time
Warp protocol, allowing for more efficient queue
operations as well. Moreover, for those events in the
volatile queue, their counterpart anti-messages are no
longer saved in the output queues of the sending LPs,
further reducing the memory consumption and
speeding up the forward execution of the simulation.
Similarly, message annihilations are not required to
cancel these events during rollbacks any more,
minimizing the rollback overhead and enhancing the
stability and performance of the system. The new
rollback algorithm for the LTW protocol will be
presented in Section 5. In addition, this approach also
facilitates fossil collection due to the significant
reduction in the number of past events and anti-
messages stored in the persistent input and output
queues, which, in turn, allows us to perform GVT
computation and fossil collection more frequently
without incurring an overwhelming computational
expense, leading to even shorter queues. Impact of the
LTW protocol on the global control mechanism will be
analyzed in Section 6.

3.2. Rule-based event scheduling scheme

Although logically each LP has its own input queue,
it is more convenient and efficient to create a single
persistent input queue and a single volatile input queue
that are shared by all the LPs mapped on a given node.
With both queues at hand, we need to provide a proper
scheduling policy that not only enforces a Least-Time-
Stamp-First (LTSF) event execution on each node, but
also helps improve execution efficiency and lower the
possibility of performance degradation. The following
discussion assumes that a scheduler is located on each
node to determine the next event to be executed during
each simulation cycle. Figure 5 illustrates the dual-
queue event-scheduling scheme.

Figure 5. Dual-queue event scheduling

The persistent queue contains events sorted in LTSF
order, including those unprocessed events and those
have already been processed but not yet been fossil
collected. On the other hand, the volatile queue only
holds simultaneous events that have not yet been
processed in the current phase of a WCTS. The
scheduler maintains two pointers (p-ptr and v-ptr)
to reference the next available events in the queues
respectively. While p-ptr may need to be updated
when the persistent queue is modified (event insertion
and/or annihilation) to ensure that it always points to
the first unprocessed event with the minimum time
stamp, v-ptr is always pointing to the event at the
front of the volatile queue. At each event selection
point, the scheduler compares the two events
referenced by the pointers based on a set of predefined
rules and chooses one of them as the next event to be
executed in the current simulation cycle. Different
policies can be encoded in the scheduling rules, which
essentially allow the scheduler to adjust the priorities of
the input queues dynamically on an event-by-event
basis.

During the execution of a WCTS, (x, t) from remote
nodes may arrive and need to be processed by the NC
(e.g., x12 arrives in R0 of WCTS-t1 in Figure 3). These
messages will be flushed to the FC in the next round of
the transition phase to be included in the state
transitions at the Simulators (e.g., x17 is flushed to the
FC in R1 of WCTS-t1). To avoid unnecessary rounds in
the transition phase, the NC needs to execute the
remote (x, t) immediately upon arrival. Likewise, the
Simulators may send messages to receivers on remote
nodes during the execution of a WCTS (e.g., y3, y6, and
x7). As these are potentially straggler messages at the
receiving end, a delay in their delivery could postpone
rollbacks at the destination, resulting in performance
degradation. Bearing these factors in mind, we set the
following scheduling rules, which grant a higher
priority to the events in the persistent queue than those
in the volatile queue if they have the same time stamp.

Figure 6. Rule-based event scheduling algorithm

As shown in Figure 6, the next event is set to NULL
if the volatile queue is empty and the next available
event in the persistent queue has a time stamp greater
than the simulation stop time (line 4). In this case, the
simulation on this node is idle and the NC will
reactivate the process later upon the arrival of (x, t)
from the other nodes. When the volatile queue becomes
empty at the end of each WCTS phase, the event
pointed by p-ptr is selected (line 6), ensuring the NC
can execute the (D, t) sent from the FC to initiate the
next phase. If the volatile queue is not empty (i.e., the
simulation is in the middle of a WCTS phase) and the
next available event in the persistent queue has a time
stamp that is equal to (during forward execution) or
less than (after rollbacks) the time stamp of the events
in the volatile queue, then the event pointed by p-ptr
will be chosen (line 12). This guarantees that inter-
node messages can be executed without being delayed
and the simulation can resume forward execution
immediately from the unprocessed linking messages
after rollbacks. Otherwise, the scheduler selects the
event pointed by v-ptr to execute in the current cycle
(line 16), effectively enforcing an LSFT event
execution. Note that an event selected from the volatile
queue is removed (it will be deleted by the receiving
LP after execution), whereas an event chosen from the
persistent queue is simply marked as processed and the
p-ptr is moved to the next available event afterward.

4. Aggregated state saving scheme

4.1. Introducing an aggregated state manager

In a Time Warp system, each LP has its own state
manager that maintains a history of the LP’s recent
states in order to undo modifications to state variables
during rollbacks. This approach allows for wide
generality and straightforward implementation.
However, it also suffers from several disadvantages.

Firstly, the historical states are scattered among the
individual LPs, prohibiting efficient batch operations
from being applied to the state queues. For example, all
the state queues must be queried individually during
fossil collection, a costly operation that could otherwise
be performed more efficiently in a more concentrated
fashion. Secondly, state restorations at the LPs are
triggered entirely by straggler and/or anti-messages,
putting a tremendous burden on the underlying
communication infrastructure. By exploiting the
particularity of the simulation process, we introduce a
new state-saving scheme that allows the Simulators to
delegate the responsibility of state management to the
FC. As a result, the Simulators are turned into truly
lightweight LPs, totally isolated from the complex data
structures required by the Time Warp mechanism.

At the heart of this state-saving scheme is an
aggregated state manager created specifically for the
FC. It not only takes care of the state queue for the FC
itself, but also those used by the child Simulators.
Conceptually, each Simulator still has its own state
queue under the control of the aggregated state
manager at the FC. It is perfectly possible, however, to
employ other advanced data structures to achieve more
efficient state queue operations. In addition, a Boolean
“dirty bit” is associated with the state queue for each
Simulator, as shown in Figure 7.

Figure 7. Aggregated state manager for the FC

As we mentioned in Section 2, a Simulator can
change its state only if it executes an event coming
from the FC. Hence, the FC knows the exact timing of
when to save the state for a child Simulator.
Nonetheless, the state should be saved after the
processing of the event since the state variables in the
destination Simulator will be modified during the event
execution. Moreover, not all Simulators will be
involved in the computation of a WCTS. Some of them
may stay idle for an indefinite period. This is where the
dirty bits have a role to play. After sending an event to
a child Simulator, the FC simply instructs the
aggregated state manager to set the corresponding dirty
bit. The actual state-saving operation is carried out
when the FC somehow detects that the events
previously sent to the Simulators have already been
processed, and is performed only for those Simulators
with dirty bits set to true. Note that no dirty bit is
associated with the state queue for the FC itself since

the FC is always involved in the computation of each
WCTS.

4.2. Optimal risk-free state saving in PCD++

In [15], we proposed a Message Type-based State-
Saving (MTSS) strategy that enables the LPs to save
states only after executing certain types of events.
Specifically, the NC and FC save state only after
processing a (D, t), while the Simulators save state only
after executing a (*, t). For instance, Simulator S1 will
save two states in WCTS-t1 after processing event *11
and *20 in Figure 3. Although the number of states
saved in the simulation can be reduced significantly
with the MTSS strategy, it is nevertheless suboptimal.
Since a transition phase may have multiple rounds of
computation, an LP could still save many states in each
WCTS. For the purpose of state restoration, an optimal
state-saving strategy should save only a single state for
an active LP at the end of each distinct WCTS. The
state-saving strategy we present here satisfies this
condition of optimality. It is also risk-free in the sense
that, unlike other infrequent state-saving techniques, no
penalty is incurred as the result of saving fewer states.

Figure 8. State-saving phase for each WCTS

As shown in Figure 8, the proposed strategy adds an
extra state-saving phase to the end of each WCTS,
where the NC determines the next simulation time
during the execution of a (D, t) returned from the FC. If
the simulation time advances to a new value, the NC
will send linking messages to the FC to initiate the next
WCTS on the node. However, instead of sending the
messages immediately, the NC first instructs the FC to
save states for the current WCTS. Note that at this
moment all events belonging to the current WCTS have
been processed by the FC and Simulators. Thus, the
saved states will reflect the updated values of the state
variables defined in the LPs. Only when the state-
saving phase completes, can the NC send the linking
messages to the FC to start the next WCTS for the new
simulation time. The state of the NC itself is saved after
processing the (D, t) from the FC, just like in a normal
Time Warp execution.

Figure 9. State-saving algorithm

Figure 9 gives the state-saving algorithm for the
aggregated state manager. The algorithm consists of
two parts. When the simulation executes within a
WCTS, the state manager simply sets the dirty bit for a
child Simulator if the FC sends out a (*, t) (line 1 to 5).
This is consistent with the MTSS strategy as a
Simulator only needs to save states after executing
internal messages. However, no state is actually saved
until the simulation proceeds to the end of a WCTS and
the NC is about to advance the local simulation time.
At this point, the state manager first saves the FC’s
state in its state queue (line 7), and then saves states for
all Simulators whose dirty bits have been set (line 10).
After saving the states, the state manager resets the
dirty bits back to false (line 11), ready to be used in the
next WCTS.

Compared to the MTSS strategy, this new state-
saving algorithm has two advantages. Firstly, the state
manager only sets a Boolean flag for all but the last (*,
t) sent to a Simulator within a WCTS, which can be
performed much quicker than actually saving the states
in the state queues, resulting in better system
performance. Secondly, only one state is saved for each
active Simulator in a WCTS regardless of how many
rounds the transition phase may have, reducing
memory consumption and the length of the state queues
with accelerated queue operations.

5. Lightweight rollback mechanism

Up to now, our discussion has been centered on the
forward execution of the simulation. However, one key
issue remains to be addressed before the LTW protocol
can be regarded as a viable mechanism. In the original
Time Warp protocol, rollbacks are triggered by the
arrival of straggler or anti-messages. With the events
reclaimed immediately after execution in the volatile
queue and the states delegated entirely to the FC, the
Simulators cannot rely on this rollback triggering
mechanism any more. Hence, we have to devise a new
rollback algorithm for the LTW protocol.

Before delving into the details of the proposed
rollback algorithm, let us summarize the LTW protocol
presented so far.

1. The NC is the only full-fledged Time Warp LP
on each node. All input events scheduled for the NC
are stored in the persistent queue, and copies of
messages sent to other LPs saved in the output queue.
It has its own state manager in charge of state-saving
operations with the NC’s state queue. In other words,
the NC executes as usual based on the standard Time
Warp mechanism. Hence, the NC can be left out in our
discussion of the new rollback algorithm.

2. The FC, however, becomes a mixed-mode LP
serving as an interface between full-fledged and
lightweight LPs. The input events of the FC are split
between the persistent and volatile queues, and the anti-
messages are saved in the output queue only for those
events sent to the NC. While the FC needs to keep only
a small fraction of the historical events in the LTW
protocol, it assumes greater responsibility for state
management on behalf of the child Simulators using the
aggregated state manager. Since no anti-messages will
be sent to the Simulators during rollbacks (these anti-
messages are no longer saved in the FC’s output
queue), the challenge we are facing now is how to roll
back the Simulators properly without using anti-
messages.

3. The Simulators are turned into truly lightweight
LPs, free from the burdens of maintaining historical
data in their input, output, and state queues. They are
neither expected nor allowed to carry out rollbacks on
their own in LTW protocol, and thus can be excluded
from the proposed rollback mechanism as well.

As we outlined in Section 2, rollbacks happened on
a node always propagate from the FC to the child
Simulators. Thus, the FC has the knowledge of when
the rollbacks should occur at the child Simulators.
Moreover, the incorrect input events previously
executed by the Simulators do not need to be undone
during rollbacks because they have already been
deleted from the volatile queue during forward
execution. This is one of the most elegant features of
the LTW protocol since it can save a great amount of
CPU time that would otherwise be wasted on matching
the message and anti-message pairs in the input queues
and annihilating a potentially large number of incorrect
events. The result is an accelerated rollback process
that could lead to a significant improvement in the
overall system performance. The rollback of the FC
itself is still triggered by straggler and/or anti-messages
from the NC based on the standard Time Warp
mechanism. The crux of the rollback algorithm thus
lies in restoring the states of the Simulators to those

that have been saved at the end of the last WCTS with
virtual time strictly less than the current rollback time.

One difficulty is that the Simulators execute
asynchronously and thus may not have the same LVT.
During rollbacks, only the states of the Simulators that
have been involved in the incorrect computation need
to be restored. For example, if the current rollback time
is 100, the state of a Simulator that has stayed idle
since virtual time 80 should not be restored. As the
state of the Simulator is not modified at or after the
rollback time, it remains valid after the current
rollback. To solve this problem, we introduce a simple
bookkeeping procedure to the FC in order to keep track
of the latest state change time (LCT) for each child
Simulator. An array is created at the FC to record the
latest virtual times when the states of the child
Simulators are modified.

Figure 10. Rollback algorithm for the FC

The rollback algorithm in Figure 10 focuses on the
activities of the FC. The LCT array is created at the
beginning of the simulation during the initialization
phase. Initially, each LCT value is set to virtual time
zero (line 4). Whenever the FC sends a (*, t) to a
Simulator, the entry is updated to reflect the current
LCT value for that Simulator (line 9). When a rollback
occurs at virtual time T, the FC first takes all the
necessary actions required by the Time Warp protocol
to roll back its own speculative interactions with the
NC (line 13). Then, the FC instructs the scheduler to
roll back the events in the volatile input queue (line 14),
which will be presented shortly. Finally, the FC
restores the states for the child Simulators if necessary.

State restoration for a Simulator is performed only if
the corresponding LCT value is greater than or equal to
the rollback time (line 16), which means that the
Simulator has participated in the incorrect computation
and thus its state must be restored. The state restoration
actions are carried out by the aggregated state manager
in a similar fashion as the standard Time Warp
mechanism (line 17 to 19). After the restoration,

however, an additional step is performed to update the
LCT value to the LVT of the restored state (line 20). In
this way, the FC can restore the states of the Simulators
accurately during future rollbacks.

Figure 11. Rollback algorithm for the scheduler

As shown in Figure 11, the rollback algorithm for
the scheduler is rather simple. The scheduler checks the
status of the volatile input queue. If the queue contains
events with a time stamp greater than or equal to the
rollback time (i.e., these events have been scheduled
but have not yet been executed in an incorrect WCTS),
then the scheduler performs a batch operation to empty
the volatile queue and reclaims the memory resources.

As we can see, rollbacks can be performed more
efficiently in the LTW protocol than in the standard
Time Warp mechanism due to, for the most part, the
significant reduction of message annihilations in the
persistent input queue. Moreover, all the Simulators
can be rolled back without sending even a single anti-
message no matter how many of them coexist on a
node in large-scale simulations, dramatically reducing
the communication overhead. The accelerated rollback
process, in turn, decreases the likelihood of rollback
echoes, enhancing the system performance and stability.

6. Impact on global control mechanisms

Although the LTW protocol can significantly reduce
memory consumption and thus the frequency of GVT
computation and fossil collection, these global control
mechanisms still play a vital role in the parallel
simulation. In this section, we briefly analyze the
impact of the LTW protocol on the global control
mechanisms.

Various GVT computation algorithms have been
proposed in the PADS literature (e.g., [26]). In general,
these algorithms require the GVT manager on each
node to calculate its own local GVT estimation, based
on which a new GVT value is computed and then
broadcast to all the nodes in the system. Hence, the cost
of GVT computation consists of two parts: the
computational overhead for calculating local GVT
estimations, and the communication overhead for
collecting and broadcasting new GVT updates. The
LTW protocol can mitigate the former overhead
because it reduces the number of LPs that must be
queried during the local GVT estimation on each node.
However, it does not help reduce the communication

between the GVT managers. Given that the
communication overhead constitutes the major cost of
GVT computation, the LTW protocol only has a minor
effect on the operational efficiency.

On the other hand, the LTW protocol greatly
improves the fossil collection process. Firstly, the
persistent input queue has been shortened significantly
after the introduction of the volatile input queue, and
most of the anti-messages are eliminated from the
output queues under the protocol, resulting in
decreased overhead for reclamation of past events and
anti-messages during fossil collection. Secondly, the
aggregated state manager now controls most of the
historical states in a more centralized manner, making
it possible to perform batch operations with improved
efficiency.

Dynamic load balancing is another type of global
control that is crucial to achieving optimal simulation
performance. In PCD++, model partitioning occurs at
the atomic model level. Hence, it is the lightweight
Simulators that will be moved around to achieve
dynamic load balancing at runtime. Algorithms for
dynamic load balancing usually rely on sensitive metric
values that are valid only for a short period. Once a
decision has been made, one or more LPs need to be
migrated to a different node swiftly before the metric
values become stale. Furthermore, the impact of load
migration on the underlying communication
infrastructure should be minimized so that it does not
severely interfere with the normal execution of the
simulation system. Under the LTW protocol, the
appropriate decision points for load migration would
be at the end of each WCTS when all the events in the
volatile queue have been executed and the states of the
LPs have been saved. Therefore, the only data that
need to be transferred during load migration are the
state queues of the chosen Simulators, lowering the
cost of load migration considerably and allowing for
more efficient dynamic load balancing to be realized in
large-scale DEVS-based simulations.

7. Conclusion and future work

By taking advantage of the specific characteristics
of the simulation process in PCD++, we proposed a
novel protocol called as Lightweight Time Warp that is
able to release most LPs from the Time Warp
mechanism, while the overall simulation still executes
optimistically, driven by only a few full-fledged Time
Warp LPs. The LTW protocol can improve the system
performance in various ways, including reduced
memory footprint, lowered operational overhead for
both local and global control mechanisms, more

efficient queue operations, and facilitated load
migration. In addition, the LTW protocol can also be
integrated with other widely accepted Time Warp
optimizations to further improve system performance.
Although our discussion is centered on parallel
optimistic simulation of DEVS and Cell-DEVS models,
the basic concepts could also apply to a wide range of
Time Warp based PADS systems under certain
conditions and with appropriate control over the LPs.
We are currently implementing the LTW protocol and
testing the performance quantitatively in PCD++.

10. References

[1] D. R. Jefferson, “Virtual time”. ACM Trans. Program.
Lang. Syst. 7(3), 1985, pp. 404-425.

[2] R. M. Fujimoto, Parallel and Distributed Simulation
Systems, Wiley-Interscience, 2000.

[3] J. Fleischmann, P. A. Wilsey, “Comparative analysis of
periodic state saving techniques in time warp simulators”. In
Proceedings of PADS'95, Washington DC, 1995, pp. 50-58.

[4] J. S. Steinman, “Breathing time warp”. SIGSIM Simul.
Dig. 23(1), 1993, pp. 109-118.

[5] Y. B. Lin, E. D. Lazowska, “A study of time warp
rollback mechanisms”. ACM Trans. Model. Comput.
Simul. 1(1), 1991, pp. 51-72.

[6] C. D. Carothers, K. S. Perumalla, R. M. Fujimoto,
“Efficient optimistic parallel simulations using reverse
computation”. ACM Trans. Model. Comput. Simul. 9(3),
1999, pp. 224-253.

[7] R. Radhakrishnan, et al. “An object-oriented Time Warp
simulation kernel”. In Proceedings of ISCOPE’98, Vol. 1505,
LNCS, Santa Fe, NM, 1998, pp. 13-23.

[8] B. P. Zeigler, H. Praehofer, T. G. Kim, Theory of
Modeling and Simulation. Academic Press, London, 2000.

[9] A. C. Chow, B. P. Zeigler, “Parallel DEVS: A parallel,
hierarchical, modular, modeling formalism”. In Proceedings
of WSC'94, San Diego, CA, 1994, pp. 716-722.

[10] G. Wainer, N. Giambiasi, “N-dimensional Cell-DEVS
models ”. Discrete Event Dynamic Systems 12(2), 2002, pp.
135-157.

[11] S. Wolfram, A New Kind of Science. Wolfram Media
Inc., Champaign, 2002.

[12] G. Wainer, “CD++: A toolkit to develop DEVS models”.
Software: Practice and Experience 32(13), 2002, pp. 1261-
1306.

[13] J. Nutaro, “Risk-free optimistic simulation of DEVS
models”. In Proceedings of the Advanced Simulation
Technologies Conference, Arlington, VA, 2004.

[14] E. Glinsky, G. Wainer, “New parallel simulation
techniques of DEVS and Cell-DEVS in CD++”. In
Proceedings of IEEE ANSS'06, Washington, DC, 2006,
pp. 244-251.

[15] Q. Liu, G. Wainer, “Parallel environment for DEVS and

Cell-DEVS models”. SIMULATION 83(6), 2007, pp.449-
471.

[16] B. R. Preiss, W. M. Loucks, “Memory management
techniques for Time Warp on a distributed memory machine”.
SIGSIM Simul. Dig. 25(1), 1995, pp. 30-39.

[17] D. Jefferson, “Virtual Time II: Storage management in
conservative and optimistic systems”. In Proceedings of
PODC'90, New York, NY, 1990, pp. 75-89.

[18] Y. B. Lin, B. R. Preiss, “Optimal memory management
for Time Warp parallel simulation”. ACM Trans. Model.
Comput. Simul. 1(4), 1991, pp. 283-307.

[19] R. Brown, “Calendar queues: A fast O(1) priority queue
implementation for the simulation event set problem”.
Commun. ACM 31(10), 1988, pp. 1220-1227.

[20] R. Rönngren, R. Ayani, R. M. Fujimoto, S. R. Das
“Efficient implementation of event sets in Time Warp”.
SIGSIM Simul. Dig. 23(1), 1993, pp. 101-108.

[21] S. Schof, “Efficient data structures for Time Warp
simulation queues”. Journal of Systems Architecture 44(6),
1998, pp. 497-517.

[22] P. Peschlow, T. Honecker, P. Martini, “A flexible
dynamic partitioning algorithm for optimistic distributed
simulation”. In Proceedings of PADS’07, Washington, DC,
2007, pp. 219-228.

[23] M. Zhang, B. P. Zeigler, A. Boukerche, “Exploiting the
concept of activity for dynamic reconfiguration of distributed
simulation”. In Proceedings of IEEE DS-RT’07, Chania,
Crete Island, Greece, 2007, pp. 87-94.

[24] P. L. Reiher, D. Jefferson, “Dynamic load management
in the Time Warp operating system”. Trans. Soc. Comput.
Simul. Int. 7(2), 1990, pp. 91-120.

[25] L. Li, C. Tropper, “Event reconstruction in Time Warp”.
In Proceedings of PADS’04, 2004, pp. 37-44.

[26] F. Mattern, “Efficient algorithms for distributed
snapshots and global virtual time approximation”. Journal of
Parallel and Distributed Computing 18(4), 1993, pp. 423-
434.

[27] B. Kannikeswaran, et al. “Formal specification and
verification of the pGVT algorithm”. In FME'96, Vol. 1051,
LNCS, 1996, pp. 405-424.

