
Design of Persian Tapestry in CD++

Mohammad Moallemi, Gabriel Wainer

Dept. of Systems and Computer Engineering

Carleton University Centre of Visualization and Simulation (V-Sim)

 1125 Colonel By Dr. Ottawa, ON, Canada.

moallemi@sce.carleton.ca, gwainer@sce.carleton.ca

Keywords: Cellular Automata, DEVS, Persian Tapestry

Abstract

 DEVS is a formal modeling and simulation (M&S)

framework based on generic dynamic system concepts.

Cell-DEVS is a formalism for cell-divided models based on

DEVS. Cellular automata can be used to model tapestries by

implementing them as a 3-D cell space. In this work we

simulate some models of Persian tapestry by Cell-DEVS

formalism, considering each cell as a knot in tapestry. There

are three planes (tapestry plane, front plane and rear plane)

each containing n by n cells. The final shape of tapestry is

represented in the tapestry plane. We simulate variety of

design patterns with different sizes of tapestries to illustrate

simple to complex designs. The simulator used in this work

is CD++, an M&S toolkit that implements DEVS and Cell-

DEVS theories. The results of the simulation are presented

in 2D environment with CD++ modeler.

1. INTRODUCTION

 Today simulation is becoming very important because

of its useful application in design of complex systems.

Modeling and simulation (M&S) methodologies have

become crucial for implementing, designing, and analyzing

a broad verity of systems. Among the existing simulation

techniques, DEVS (Discrete Event System Specification)

formalism[1] provides a discrete-event M&S approach

which allows construction of hierarchical models in a

modular manner. A cellular automaton is a discrete model

which is composed of a network of cells that each cell has a

finite number of states[2]. Time is also discrete. The state of

each of the cells in time t is a function of states of its

predefined neighbor cells in time t-1. Cellular automata has

been used to simulate design of Persian tapestry[3]. The

long term goal of this simulation is to design different

models of tapestry by computer and use it in the business to

make real tapestries. In this simulation each cell in the

cellular automata can be considered as a knot in the real

tapestry.

DEVS is an increasingly accepted framework for

understanding and supporting the activities of modeling and

simulation. DEVS is a sound formal framework based on

generic dynamic systems, including well-defined coupling

of components, hierarchical, modular construction, support

for discrete event approximation of continuous systems and

support for repository reuse. DEVS theory provides a

rigorous methodology for representing models, and it does

present an abstract way of thinking about the world with

independence of the simulation mechanisms, underlying

hardware and middleware. A real system modeled with

DEVS is described as a composite of submodels, each of

them being behavioral (atomic) or structural (coupled).

 Cell-DEVS[4] has extended the DEVS formalism,

allowing the implementation of cellular models with timing

delays. A Cell-DEVS model is a lattice of cells holding state

variables and a computing apparatus, which is in charge of

update the cell state according to a local rule. This is done

using the present cell state and those of a finite set of nearby

cells (called its neighborhood). Cell-DEVS improves

execution performance of cellular models by using a

discrete-event approach. It also enhances the cell’s timing

definition by making it more expressive. Each cell is

defined as a DEVS atomic model, and it can be later

integrated to a coupled model representing the cell space.

Cell-DEVS atomic models are informally defined as in

Figure 1.

Figure 1- Description of a Cell-DEVS atomic model.

 Each cell uses N inputs to compute its next state. These

inputs, which are received through the model's interface,

activate a local computing function (ττττ). A delay (d) can be

associated with each cell. The state (s) changes can be

transmitted to other models, but only after the consumption

of this delay. Once the cell behavior is defined, a

coupled Cell-DEVS can be created by putting together a

number of cells interconnected by a neighborhood

relationship. A Cell-DEVS coupled model is informally

presented in Figure 2.

 A coupled Cell-DEVS is composed of an array of

atomic cells, with given size and dimensions. Each cell is

connected to its neighborhood through standard DEVS

input/output ports. Border cells have a different behavior

due to their particular locations, which result in a non-

mailto:moallemi@sce.carleton.ca
mailto:gwainer@sce.carleton.ca
mailto:mail@myuni.edu
mailto:moallemi@sce.carleton.ca
mailto:gwainer@sce.carleton.ca

uniform neighborhood. Finally, the model’s couplings can

be defined.

Figure 2- Description of a Cell-DEVS coupled model.

 CD++ [5], [6] is a modeling tool that was defined using

the DEVS and Cell-DEVS specifications. The toolkit

includes facilities to build DEVS and Cell-DEVS models.

DEVS Atomic models can be programmed and incorporated

onto a class hierarchy programmed in C++. Coupled models

can be defined using a built-in specification language. Cell-

DEVS models are built following the formal specifications

for DEVS models (informally presented in the previous

section), and a built-in language is provided to describe

them. CD++ makes use of the independence between

modeling and simulation provided by DEVS, and different

simulation engines have been defined for the platform.

 CD++ is built as a class hierarchy of models related

with simulation processing entities. DEVS Atomic models

can be programmed and incorporated onto the Model basic

class hierarchy using C++. Once an atomic model is

defined, it can be combined with others into a

multicomponent model using a specification language

specially defined with this purpose. CD++ also includes an

interpreter for Cell-DEVS models. The language is based on

the formal specifications of Cell-DEVS. The model

specification includes the definition of the size and

dimension of the cell space, the shape of the neighborhood

and borders. The cell’s local computing function is defined

using a set of rules with the form POSTCONDITION

DELAY {PRECONDITION}. These indicate that when the

PRECONDITION is satisfied, the state of the cell will

change to the designated POSTCONDITION, whose

computed value will be transmitted to other components

after consuming the DELAY. If the precondition is false, the

next rule in the list is evaluated until a rule is satisfied or

there are no more rules.

2. CONCEPTUAL MODEL

 Cellular automata can be used to model tapestries by

implementing them as a 3-D cell space. The tapestry is

represented by three planes (tapestry plane, front plane and

rear plane) each containing n by n cells. Initially all cells of

front plane are set to zero except for m central cells, where

m<n. Figure 3. Tapestry architecture- initial state represents

the initial scenario of both front and rear planes.

Figure 3- Tapestry architecture- initial state

 Each cell in front plane has four neighbors: N, E, S, and

W (Von Neumann neighbors) and also two corresponding

cells from rear and tapestry plane. After initialization phase,

each cell in front plane counts the number of cells in its

neighborhood whose value is 1. If the cell is surrounded by

even number of alive (one) cells, the cell is set to 1,

otherwise it is set to zero. On the other hand, the second

plane (rear plane) works as a mentor and updates its cells

accordingly by watching the state changes of the cells in

front plane. Thus, rear plane takes on the old values form

front plane right before changes occur to front plane’s cells.

Meanwhile the third plane (tapestry plane) which represents

the design of tapestry is made by getting four values 0, 1, 2

and three representing colors white, green, blue and red

respectively. As simulations goes forwards deferent shapes

of tapestry are made.

Different scenarios can be modeled by changing the

dimensions and number of central cells which are first

initialized to one. This will lead to different patterns of

tapestry e.g. 8 or 16 ones in the center, in the initial phase.

3. CELL-DEVS MODEL

 The Cell-DEVS model will be based on three, two-

dimensional square grids. The grid dimensions are at first

64x64. As mentioned before the first plane (front plane) is

responsible for changes in Von Neumann neighborhood

with the rules that says if the cell has odd number of true

neighbors changes its value to zero, and if it has even

number of true neighbors in the same plane changes its

value to one.

 The second plane (rear plane) always copies the old

values of on step behind the first plane. The third plane

which is the tapestry plane makes the final shape of tapestry

by taking four values corresponding to four states that might

happen in two corresponding cells of first and second

planes. This way, four colors are shown on the tapestry.

Figure 4 shows neighbor cell definition for the model.

Figure 4- neighborhood Definition

The formal specification of a Cell-DEVS model for the

following neighbor cells is given by:

M=<I, X, Y, Xlist, Ylist, η, N, {n1,n2,n3}, C, B, Z,

select> Where:

Xlist=Φ

Ylist=Φ

η=7

I=<PX,Py>,with PX={Φ},Py={Φ};

N={(-1,0,0),(0,-1,0),(0,0,0),(0,1,0),(1,0,0),(0,0,1),(0,0,2)}

X=Y= {0, 1, 2, 3};

{n1, n2, n3}={64, 64, 3}

B= {Cij / (i=1v i=64) N (j=1v i=64)} nowrapped;

C={Cijz / iε[1,64], jε[1,64], z ε[1,3]}
Z:

Pijz Y1 → Pi,j-1z X1

Pijz Y2 → Pi+1,jz X2

Pijz Y3 → Pi,j+1z X3

Pijz Y4 → Pi-1,jz X4

Pijz Y5 → Pijz X5

Pi,j+1z Y1 → Pijz X1

Pi-1,jz Y2 → Pijz X2

Pi,j-1z Y3 → Pijz X3

Pi+1,jz Y4 → Pijz X4

Pijz Y5 → Pijz X5

Select ={(-1,0,0),(0,-

1,0),(0,0,0),(0,1,0),(1,0,0),(0,0,1),(0,0,2)}

Important Values in third plane:

0 (white): a zero in a cell of the first plane and a zero in the

corresponding cell of the second plane.

1 (green): a one in a cell of the first plane and a zero in the

corresponding cell of the second plane.

2 (blue): a zero in a cell of the first plane and a one in the

corresponding cell of the second plane.

3 (red): a one in a cell of the first plane and a one in the

corresponding cell of the second plane.

This model has been implemented in CD++ with

dimensions of 3 planes each 64x64 cells. In two cases

borders have been set to nowrapped and one case to

wrapped, with default delay time of 100 milliseconds. Plane

1 is considered as front plane and four central cells (31, 31),

(31, 32), (32, 31) and (32, 32) have been set to 1, others set

to zero. In one case there are 16 ones in the center. Plane 0

is considered as tapestry plane and plane 2 is considered as

rear plane.

Rules with CD++ code for each plane are as follows:
%[rearplane]

rule : {(0,0,-1)} 100 { cellpos(2)=2 }

%[tapestryplane]

rule : 0 100 { cellpos(2)= 0 and (0,0,1)=0 and

(0,0,2)=0 } %white

rule : 1 100 { cellpos(2)=0 and (0,0,1)=1 and

(0,0,2)=0 } %Green

rule : 2 100 { cellpos(2)=0 and (0,0,1)=0 and

(0,0,2)=1 } %Blue

rule : 3 100 { cellpos(2)=0 and (0,0,1)=1 and

(0,0,2)=1 } %Red

%[frontplane]

rule : 1 100 { cellpos(2)=1 and even(truecount-

(0,0,0)-(0,0,1)-(0,0,-1))}

rule : 0 100 { cellpos(2)=1 and odd(truecount-

(0,0,0)-(0,0,1)-(0,0,-1))}

4. SIMULATION RESULTS

 In this project a DEVS model has been defined for the

CD++ Modeler is a 2D visualization tool in CD++ toolkit

that plots each plane separately. The color of each value or a

range of values of cells can be defined using a pallet file.

Each step of the simulation can be viewed using this

application. After running different scenarios of the

simulation (that takes almost four hours for the largest one),

as time advances many nice tapestry designs are made. With

larger dimensions we could have nicer and more detailed

shapes but because of memory and processing time

limitations we couldn't get results more than 64x64.

 Figure 5 shows order of steps in which some models of

tapestry with 64x64 dimensions and four ones in the center

with no wrapped borders are made:

Figure 5- three Steps of tapestry with 64x64 dimensions and 4 ones in the center;

 Figure 6 shows order of steps in which some models of tapestry with 64x64 dimensions and 16 ones in the center with

no wrapped borders are made:

Figure 6- three Steps of tapestry with 64x64 dimensions and 16 ones in the center;

5. CONCLUSION

 In this paper we simulated a kind of Persian tapestry

using cellular automata. Each knot in the tapestry is

considered a cell in the respective cellular automata. The

simulation works with three planes of cells in which the first

plane has an initial pattern and with a specified and simple

rule changes the states of cells. The second plane follows

the states of first plane after a constant delay time. The third

plane which shows the shape of the tapestry uses some rules

to obtain the color of each cell from respective cells of first

and second plane.

 CD++ simulator toolkit has been used to simulate the

tapestry. Simulation has been run for dimension of 64x64

cells with initial pattern of 4 and 16 ones in the middle of

the first plane. CD++ Modeler toolkit has been used to

render the results in a 2D space. Because of memory and

execution time limitations results with larger sizes could not

be obtained as a real tapestry dimension are 500x500 or

1000x1000.

References

[1] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of

Modeling and Simulation". Academic Press. 2000.

[2] Wolfram, S. "Theory and applications of cellular

automata". Vol. 1. Advances Series on Complex

Systems. World Scientific. Singapore. 1986.

[3] The Use of Cellular Automata in the Classroom, Lilly,

H.A.; Supercomputing, 1995. Proceedings of the

IEEE/ACM SC95 Conference.

[4] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS:

modeling and simulation of cell spaces ". In "Discrete

Event Modeling & Simulation: Enabling Future

Technologies", Springer-Verlag. 2001.

[5] WAINER G., “CD++: a toolkit to define discrete-event

models”. Software, Practice and Experience. Vol. 32,

No.3. pp. 1261-1306. November 2002.

[6] Wainer, G. et al. "CD++ A tool for DEVS and Cell-

DEVS Modeling and Simulation. User's Guide". Draft.

August 2004.

[7] Wilson Venhola. “Visualization of Complex

Simulations: A DEVS Visualization Tool”. B.A Report.

Department of Systems and Computer Engineering –

Carleton University.

http://www.myuni.edu/~Me/My_paper.pdf

	1. INTRODUCTION
	DEVS is an increasingly accepted framework for understanding and supporting the activities of modeling and simulation. DEVS is
	2. CONCEPTUAL MODEL
	3. CELL-DEVS MODEL
	4. SIMULATION RESULTS
	5. CONCLUSION

