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Abstract 

This paper presents a case study of Web-based 
distributed simulation across the Atlantic Ocean between 
Canada and France. The distributed simulation engine, 
known as DCD++, extends the CD++ environment to 
expose the simulation functionalities as machine-
consumable services based on the DEVS and Cell-DEVS 
formalisms and commonly-used Web Service technologies. 
DCD++ provides a platform that represents a step further 
towards transparent sharing of computing power, data, 
models, and experiments in heterogeneous environment on a 
global scale. Also, the simulation service can be easily 
integrated with other services such as visualization, network 
management, and geographic information services in a 
larger system. Experiments have been carried out to 
investigate simulation performance over commodity Internet 
connections, and major bottlenecks in the system have been 
identified. Based on the experimental results, we put 
forward several areas that warrant further research. 
 
1. INTRODUCTION 

With the computing power and advanced software tools 
available today, Modeling and Simulation (M&S) becomes 
a powerful tool for analyzing and designing a broad array of 
complex systems where a mathematical analysis is 
intractable. The Discrete Event System Specification 
(DEVS) [1] is a general modeling framework that has 
gained growing popularity in recent years, in part due to its 
clear separation between the model and simulation concepts, 
natural support for hierarchical and modular construction of 
models, and the ability to verify models and simulators 
independently and reuse them in later combinations with 
minimal re-verification. Since its first formalization, DEVS 
has been extended into various directions. The P-DEVS 
formalism [2] eliminates the serialization constraints in the 
original DEVS definition, allowing increased parallelism to 
be exploited in the simulation. The Cell-DEVS formalism [3] 
combines Cellular Automata (CA) [4] with DEVS theory to 
describe n-dimensional cell spaces as discrete-event models, 
where each cell is represented as a DEVS basic model that 
can be explicitly delayed using built-in timing constructions. 

CD++ [5] is an open-source M&S environment that 
implements P-DEVS and Cell-DEVS formalisms and has 
been used to successfully solve a variety of sophisticated 
problems. Over the years, CD++ has been ported to 
different platforms, including several parallel versions, 
referred to as PCD++, that employ both conservative and 
optimistic synchronization protocols to achieve high-
performance simulations on distributed-memory cluster 
systems [6][7]. Nevertheless, as the system under study 
becomes more and more complicated, the complexity of the 
model grows significantly. As a result, the simulation tends 
to be increasingly time-consuming and requires resources 
that cannot be satisfied by any single site alone. 
Constructing a common framework to hook together 
geographically distributed resources in collaborative 
simulation of large-scale and highly complex models starts 
to gain momentum in the research society.  

Grid computing offers a new paradigm for resource 
sharing and coordinated problem solving in dynamic, multi-
institutional virtual organizations. In a Grid environment, 
functionalities of various applications are exposed as web 
services that can be accessed and consumed by other web 
services without human intervention in a platform-
independent manner. In order to integrate DEVS-based 
simulation services with other services such as visualization 
and GIS (Geographical Information Systems) services in a 
Grid environment, the CD++ toolkit was redesigned to 
support Web-based simulation using standard Web Service 
(WS) technologies. The resulting distributed simulator, 
known as DCD++, allows for multi-user concurrent 
simulation over both commodity Internet connection and 
dedicated point-to-point fiber links [8][9]. Preliminary 
experimentations have been conducted to evaluate the 
capability of DCD++ between two cities in Canada. In this 
paper, we perform further performance analysis that 
involves distributed simulation of different models across 
the Atlantic Ocean between Canada and France. The 
objective of our study is two fold. First, we want to test the 
concept of transparent sharing of computing power, data, 
models, and experiments in DEVS-based simulations on a 
global scale. Secondly, we want to gain insight into the 
potential bottlenecks, particularly the communication 
overhead due to limited bandwidth and high latency of the 



Internet connection, and the effect they may have on the 
system performance.  

The rest of the paper is organized as follows. Section 2 
introduces the P-DEVS and Cell-DEVS formalisms and 
provides the necessary background knowledge on CD++ 
and commonly used WS technologies. It also gives a brief 
survey on the existing DEVS-based toolkits intended for 
parallel and distributed simulation (PADS). Section 3 
discusses the architecture and main features of the DCD++ 
simulator. Section 4 describes the experimental environment 
and the metrics we used to investigate the simulation system. 
Section 5 presents a detailed performance analysis. And 
Section 6 closes the paper with conclusion and future work. 

 
2. BACKGROUND 

In a discrete-event simulation, the system being 
simulated changes state only at discrete points in time, upon 
the occurrence of events. Based on dynamic systems theory, 
the P-DEVS formalism [2] describes a system as a 
composition of behavioral (atomic) and structural (coupled) 
components. A P-DEVS atomic model is defined as: 

M = <X, Y, S, δint, δext, δcon, λ, ta>. 
At any given time, an atomic model is in some state s 

∈S. Without the occurrence of external events, it remains in 
state s for a period of time of ta(s), known as the lifetime of 
state s. When the lifetime expires, the atomic model outputs 
value λ(s)∈Y, and changes to a new state given by the 
internal transition function δint(s). A P-DEVS model uses a 
bag of inputs (Xb) to support the execution of multiple 
concurrent events. If one or more external events x ∈X 
occur before the expiration of ta(s), the model transfers to a 
state determined by the external transition function 
δext(s,e,Xb), combining multiple transitions into a single one. 
A confluent transition function δcon is defined to determine 
the next state in the case of collisions when a model receives 
external events at the same time of its internal transition.  

P-DEVS has a well-defined concept of system 
modularity and component coupling to form composite 
models. A P-DEVS coupled model is formally defined as: 

N = <X, Y, D, {Md | d∈D}, EIC, EOC, IC>. 
The sets of input and output events are defined by X 

and Y respectively. D is a set of indices for the components 
of a coupled model and, for each d ∈  D, Md is a basic P-
DEVS model (atomic or coupled). The external input 
coupling (EIC) specifies the connections between external 
and component inputs, while the external output coupling 
(EOC) describes the connections between component and 
external outputs. The connections between the components 
themselves are defined by the internal coupling (IC).  

Cell-DEVS formalism [3] is an extension of the 
traditional CA theory to improve execution efficiency and 
precision of the simulated model. It describes n-dimensional 
cell spaces as discrete-event DEVS coupled models, where 
each cell is represented as a DEVS atomic model. Further, it 

defines timing constructions for each cell, allowing explicit 
timing specification, asynchronous model execution, and 
seamless integration with other types of models. A Cell-
DEVS atomic model is formally defined as: 

C = <X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D>. 
Each cell has a modular interface (I) consisting of a 

fixed number of ports connected to its neighboring cells. 
The future state of a cell is computed by the local transition 
function (τ) based on the cell’s current state and input values. 
State changes are propagated only after a delay given by the 
delay function (d). Each cell also has the computing 
apparatus (δint, δext, and λ) as defined in P-DEVS atomic 
models. Cells are coupled by the neighborhood relationship 
to form a cell space, which can then be integrated with other 
DEVS and Cell-DEVS models. A cell space is formally 
defined as a Cell-DEVS coupled model: 

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z>. 
The cell space (C) comprises a fixed-sized n-

dimensional array of cells, and the relative position between 
a cell and its neighbors is defined by the neighborhood set 
(N). B specifies the border of the cell space, which can be 
wrapped (i.e., all cells have exactly the same behavior) or 
non-warped (i.e., the border cells have a different behavior 
from others in the cell space). The translation function (Z) 
defines the input/output coupling between the cells. 

The CD++ environment [5] provides a set of simulation 
engines to execute DEVS and Cell-DEVS models on 
different platforms. It decouples the modeling and 
simulation concepts by providing two separate frameworks. 
A modeling framework is defined as a hierarchy of classes 
that allow users to specify the behavior of atomic and 
coupled models. For each DEVS atomic model, users need 
to implement the various functions as required by the P-
DEVS formalism in a C++ class, which is then incorporated 
into the modeling hierarchy during compilation. For DEVS 
coupled models and Cell-DEVS models, users can specify 
the coupling information and other attributes of cell spaces 
in a text-based configuration file using a built-in 
specification language. In addition, CD++ provides a 
simulation framework that creates an executive entity for 
each component in the modeling hierarchy to implement the 
abstract simulator that is responsible for executing the 
simulation in line with the formalisms [10]. These executive 
entities are specialized into two categories, namely 
simulators and coordinators. Simulators are associated with 
atomic models to trigger the output and state transition 
functions, while coordinators are attached to coupled 
models to keep track of the simulation time and to relay 
messages between their child simulators and parent 
coordinators. In parallel conservative simulations, a special 
root coordinator is employed as a central controller to 
handle the advance of simulation time and to communicate 
between the simulated model and the surrounding 
environment. In order to run parallel and distributed 



simulations, the model is decomposed into several partitions 
(as specified in a user-supplied partition file), each executed 
by a separated process running on a distinct processor. 
Traditionally, users submit the model definition and 
partition files to the CD++ simulator via command-line 
arguments. At the end of a simulation, the execution results 
are recorded in output and log files that can be used for 
visualization and debugging purposes. 

The simulation is carried out in a message-driven 
fashion. CD++ messages fall into two classes: content 
messages include the external message (X, t) and output 
message (Y, t) that encode the actual data transmitted 
between the models, while control messages include the 
initialization message (I, t), collect message (@, t), internal 
message (*, t), and done message (D, t) that are used 
internally by the simulator to control the simulation. Each 
message represents an event with an associated timestamp 
that indicates the simulated virtual time of the event. 

The emergence of WS technologies has triggered a 
major paradigm shift in distributed computing. Various 
standards and techniques have been proposed to facilitate 
the construction of a new platform on which a set of 
network-accessible operations and their associated resources 
are abstracted as platform-independent machine-consumable 
services based on the Service Oriented Architecture (SOA) 
principles. To provide DEVS-based simulation services in 
Grid environment, a distributed simulator called DCD++ 
has been developed that uses a flexible wrapper to expose 
CD++ functionalities as web services based on standard WS 
technologies [8]. The backbone of the DCD++ simulator is 
the XML [11] and XML-Schema [12] techniques that 
encapsulate customized simulation data in a machine-
processable format. The public interface of the simulation 
service is specified in WSDL [13], a general purpose XML-
based language for describing web services, protocol 
bindings and other deployment details. The various 
partitions involved in the simulation communicate with each 
other by exchanging SOAP messages [14] that can be 
transmitted over different transport protocols. 

Many DEVS-based toolkits have been developed for 
PADS based on different middleware technologies. 
However, few of them can achieve large-scale distributed 
simulation on a global scale in a platform-independent 
manner. A non-comprehensive list of existing toolkits is 
given below. 
• DEVS/CORBA [15] is a runtime infrastructure based on 

CORBA middleware that supports distributed simulation 
of DEVS models. It can be embedded in a larger network-
centric environment to provide a combination of graphical 
process modeling, discrete-event simulation, animation, 
activity-based costing, and optimization functions. 

• DEVS/HLA [16] is an HLA-compliant M&S environment 
implemented in C++ that supports high-level model 
construction. It simplifies the programming effort 

required to establish and participate in an HLA federation. 
• DEVSCluster [17] is a CORBA-based, multi-threaded 

distributed simulator implemented in Visual C++. It 
transforms a hierarchical DEVS model into a non-
hierarchical one to ease the synchronization of the 
distributed simulation. 

• DEVS/Grid [18] is an M&S framework implemented 
using Java and Globus for the Grid environment. It 
includes a set of fully automated simulation facilities, 
including cost-based hierarchical model partitioning, 
dynamic coupling restructuring, automatic model 
deployment, and M&S naming and directory service.  

• DEVS/P2P [19] is a P-DEVS based M&S framework 
implemented on top of Peer-to-Peer communication 
infrastructure. It uses a customized DEVS simulation 
protocol to achieve decentralized inter-node 
communication. Simulators are synchronized by 
themselves without involving a coordinator.   

• DEVS/RMI [20] is a DEVS-based system that provides a 
dynamic and re-configurable runtime infrastructure for 
handling load balancing and fault tolerance in distributed 
simulations. It reduces the overhead associated with 
common middleware solutions by using the native 
support of Java RMI to synchronize local and remote 
simulators. 

 
3. WEB-BASED SIMULATION IN DCD++ 

The DCD++ simulator relies on the proper functioning 
of a web service wrapper that interacts with the CD++ 
simulation engine and exposes its functionality to remote 
web service clients. The wrapper consists of two main 
components, namely a web service component implemented 
in Java and a simulation component realized in C++. The 
former component deals with web service related activities 
such as user authentication, session management, and 
parsing simulation requests from the clients. It is deployed 
in an Axis SOAP engine [21], which in turn runs in an 
Apache Tomcat application server [22]. On the other hand, 
the latter component is responsible for accessing and 
manipulating the internal objects and data structures in the 
simulation engine. A separate workspace is created for each 
user session in the simulation component, reducing potential 
resource contention and allowing for multiple user sessions 
running independently with increased parallelism. Both 
components communicate with each other through message 
queues maintained in the Linux kernel. The communication 
is handled by a proxy object that is implemented as a shared 
C++ library plugged into the Java Virtual Machine (JVM) 
through the Java Native Interface (JNI) [23].  

A skeleton of the DCD++ software architecture is 
shown in Figure 1. The proxy object creates two message 
queues in the Linux kernel for each user session to 
implement a bidirectional communication channel between 
the web service component and the corresponding 



simulation component. Figure 2 gives a close look at the 
message queues maintained by the proxy. 

 
Figure 1．DCD++ software architecture [8] 

 
Figure 2. Message queues created for each user session [9] 

Furthermore, the wrapper is multi-threaded to improve 
system performance. For each user session, the wrapper 
creates two Java threads as well as two Linux POSIX 
threads. On the web service component side, one Java 
thread responds to runtime client requests such as 
simulation monitoring operations, while the other thread 
records the client operations into a session log file. On the 
simulation component side, a POSIX thread executes the 
simulation engine, whereas the other listens on the message 
queue for events coming from the proxy object. 

In this paper, we will not elaborate on the 
implementation of the simulation service. Interested readers 
can refer to [8] and [9] for more detailed discussion. Instead, 
we give a brief summary of the major functionalities 
provided by the DCD++ simulation service, which can be 
classified into four categories as follows. 
1. Session management 
• User authentication: verify user credentials against a 

password file stored locally on the server, and initialize a 
new session for each successful login. 

• Session logoff: terminate the user session and reclaim the 
resources. 

2. Configuration 
• setMAFile: allow users to submit the model definition file 

for DEVS coupled models and Cell-DEVS models. 
• setDEVSModel: allow users to submit the C++ header (.h) 

and implementation (.cpp) files for each DEVS atomic 
model. 

• setEventFile: allow users to specify the external input 

events to be executed during the simulation. 
• setSupportFile: allow users to configure other supporting 

files (e.g., the initial cell values in a Cell-DEVS model) 
that are required by the simulation engine. 

• setExecutionTime: allow users to specify the end time of 
the simulation. 

• enableParingInfo: turn on the simulator parameter to 
generate information for debugging purpose. 

3. Monitoring and control 
• startSimulationService: allow users to start the simulation 

process. 
• isSimRunning: allow users to probe the current status of 

the simulation. 
• getCurrentSimulationTime: allow users to monitor the 

progress of the simulation at runtime. 
• insertExternalEvent: allow users to dynamically add 

additional external events to the simulation during 
runtime. 

• killSimulation: allow users to terminate the simulation 
prematurely. 

4. Logging and data retrieving 
• retrieveLogFile: allow users to retrieve the log file 

generated during the simulation. 
• retrieveOutputFile: allow users to retrieve the output file 

that contains the events sent from the simulated model to 
the surrounding environment. 

• retrieveParsingInfoFile: allow users to retrieve the files 
that contain debugging information. 

• retrieveSessionLogFile: allow users to retrieve the log file 
that contains information about the operations performed 
during the current session. 

Figure 3 depicts a typical interaction between a WS 
client and the DCD++ simulation service via SOAP 
messages across the Internet. 

 
Figure 3. Invocation of DCD++ web service 

First, the client retrieves the WSDL document that 
defines the interface of the simulation service in terms of 
execution parameters and return values. It can then invoke 
the web service methods through dynamically generated 
SOAP messages transmitted over HTTP protocol, which is 
one of the most widely used protocols on the Internet. The 
model definition and configuration files (e.g., the C++ 
header and implementation files, external event file, 
partition file, etc.) are transmitted to the simulation service 
as SOAP attachments. When the simulation finishes, the 



client retrieves the simulation results (e.g., the output, log 
and debugging files) again as SOAP attachments. Since the 
SOAP attachments contain potentially very large documents, 
especially for the log files that record all the events executed 
during the simulation, the communication overhead 
constitutes a major bottleneck in the system, as we will see 
later in the performance analysis. 

To reduce the communication overhead, DCD++ adopts 
a master/slave structure of coordinators [6]. As a result, 
when a coupled model is partitioned onto multiple nodes, a 
coordinator is created on each of them to execute the portion 
mapped on that specific node. The coordinator on the first 
node involved in the partition is the master, while all the 
other coordinators are slaves. The master coordinator is 
deemed as the immediate parent of the slaves residing on 
remote nodes. Figure 4 illustrates the master/slave structure 
on two nodes. 

 
Figure 4. Master/slave coordinator structure in DCD++ 

Suppose the coupled model C1 is partitioned onto two 
nodes and each portion has two atomic models. Two 
coordinators are created for C1: a master (MasterC1) on 
node0 and a slave (SlaveC1) on node1. One major 
advantage of this arrangement is that it can reduce the 
number of inter-node SOAP messages exchanged in the 
simulation. For example, if simulator A3 sends a message to 
A4, then the slave coordinator SlaveC1 can directly route 
the message to the local destination without incurring SOAP 
messages transmitted between the two nodes. Due to the 
high cost of SOAP messaging, this structure can 
significantly reduce the communication overhead and 
improve the simulation performance. 
 
4. EXPERIMENTAL ENVIRONMENT 

Along with the tremendous benefits WS technologies 
bring to the DCD++ distributed simulator, however, this 
approach also comes with extra overhead. As mentioned 
earlier, a major part of the overhead is devoted to the 
prohibitive communication cost associated with SOAP 
messaging between different compute nodes. Besides, the 
communication between the two components of the WS 
wrapper through Linux message queues contributes to this 
overhead as well. Figure 5 illustrates the composition of a 
communication path linking two remote compute nodes. 
The SOAP messages can be transmitted over both 
commodity Internet connections and high-speed point-to-

point fiber links such as UCLP (User Controlled Light Path) 
[24]. 

 
Figure 5. Communication path in DCD++ [8] 

In order to test the performance of DCD++ simulation 
service on a global scale, we conducted experiments using 
different models executed on two machines across the 
Atlantic Ocean. One machine is located in the Advanced 
Real-Time Simulation (ARS) Laboratory at Carleton 
University, Ottawa, Canada; while the other located in the 
Laboratoire d’Informatique, de Modélisation et 
d’Optimisation des Systèmes (LIMOS) at Blaise Pascal 
University, Clermont-Ferrand, France. The machines were 
connected over commodity Internet connections involving 
19 hops in the route with an average round-trip time (RRT) 
of 136 ms. Furthermore, the machines used in the 
experiments are not identical (Intel PIV CPU @ 3.2 GHz 
with 512 MB DRAM, and Intel PIV CPU @ 1.8 GHz with 
256 MB DRAM respectively). 

The communication infrastructure used in our 
experiments was provided by: 
• CANARIE1: a Canadian non-profit collaboration between 

business and government to coordinate improved Internet 
access and network connectivity throughout Canada. 

• RENATER2: the French educational and research network. 
DANTE3 plans, builds and operates advanced networks 

for research and education. It is owned by European NRENs 
(National Research and Education Networks), and works in 
partnership with them and in cooperation with the European 
Commission. DANTE provides the data communications 
infrastructure essential to the development of the global 
research community. DANTE ensures the connectivity 
between the Canadian and the French research networks. 

Two models were tested in the experiments, including a 
30×30 Cell-DEVS model that simulates propagation of 
wildfire in forest [25], and a mix sand-pile model consisting 
of a DEVS particle generator and a 10×10 Cell-DEVS 
model representing the sand-pile formation [26]. Figure 6 
and Figure 7 illustrate the model definition and partition 
scheme applied on two machines for these models 
respectively. Notice that we employed very simple partition 
schemes for the sake of convenience. Using different 
                                                           

1 CANARIE: http://www.canarie.ca  
2  RENATER: “REseau NAtional de télécommunications pour la 

Technologie l'Enseignement et la Recherche”. http://www.renater.fr/  
3 DANTE: “Delivery of Advanced Network Technology to Europe”. 

http://www.dante.net/  



partition schemes may have a considerable impact on the 
communication pattern and thus simulation performance, 
which is an open topic for research in itself and is beyond 
the scope of this paper. 

[top] 
components : fire 
[fire] 
type : cell 
dim : (30,30) 
delay : inertial 
defaultDelayTime  : 0 
border : nowrapped 
neighbors : fire(-1,-1) fire(-1,0) fire(-1,1) 
neighbors : fire(0,-1)  fire(0,0)  fire(0,1) 
neighbors : fire(1,-1)  fire(1,0)  fire(1,1) 
localtransition : FireBehavior  

a) An excerpt of the fire model definition 

 
b) Partition of the fire model on two machines 

Figure 6. The fire model and the partition scheme 
 [top] 
components : sandpile particleGenerator@Generator 
link : out@particleGenerator in@sandpile 
out :  out 
link : out@particleGenerator out 
[sandpile] 
type : cell 
dim : (10, 10) 
delay : inertial 
defaultDelayTime  : 100 
border : nowrapped  
neighbors : sand(0,1)   sand(1,0)  sand(0,-1)  
neighbors : sand(-1,0)  sand(0,0)   
in : in  
link : in in@sandpile(5,5) 
localtransition : sandpile-rule 
portInTransition : in@sandpile(5,5) NewParticle-rule 

 
 

 

a) An excerpt of the sand-pile model definition 

 
b) Partition of the sand-pile model on two machines 

Figure 7. The sand-pile model and the partition scheme 
Each model was executed multiple times to achieve a 

confidence interval of 95%, and the standard deviations of 
the various metrics were calculated. We collected the 
following metrics during the experiments: 
• The initialization time to start the web service; 
• The simulation time to execute the model; 

• The total execution time that is the sum of both 
initialization and simulation time; 

• The average time to transmit a SOAP message between 
the two machines; 

• The average time to pass a message through the Linux 
kernel message queues. 

 
5. PERFORMANCE ANALYSIS 

Two types of experiments were carried out in our study. 
First, the models were executed using a single machine, 
which allows us to examine the pure computation overhead 
without considering the communication cost. Then, the 
models were divided into two partitions as described in the 
previous section and the metrics were collected for the 
distributed simulation. Combining the date from these 
experiments allows us to gain more insight into the 
communication overhead. Table 1 shows the execution 
results for the fire model on one machine. 

Table 1. Execution of the fire model on one machine 
Ottawa 
Canada Avg. Std. Dev. C. I. 95% 

Init. Time (ms) 101.602 3.197 [100.200, 103.003] 
Simulation Time (s) 2.891 0.011 [2.886, 2.896] 
Total Exec. Time (s) 2.993 0.012 [2.987, 2.998] 

Clermont-Ferrand 
France Avg. Std. Dev. C. I. 95% 

Init. Time (ms) 189.049 8.064 [185.515, 192.583] 
Simulation Time (s) 4.177 0.528 [3.945, 4.408] 
Total Exec. Time (s) 4.366 0.529 [4.134, 4.598] 

As expected, the simulation is more than 200 times 
slower when the fire model is executed using the simulation 
services across the Atlantic Ocean, as shown in Table 2. 
This is primarily due to the communication overhead of 
SOAP messaging. A single transmission of SOAP message 
takes an average of 8.24 second, which is equivalent to 
about 60 times of the RRT. As we mentioned in Section 3, 
the SOAP attachments contain potentially large documents 
such as model definition and simulation log files with sizes 
far greater than the TCP window, resulting in multiple 
rounds of transmission for each SOAP message. When 
compared with the overhead of SOAP messaging, the 
communication cost of Linux kernel messaging is relatively 
minor. Furthermore, kernel messaging has a much smaller 
variance than SOAP messaging because the transmission 
time of SOAP messages depends on the current status of the 
ever-fluctuating Internet traffic. 

Table 2. Execution of the fire model over Internet 
Fire model Avg. Std. Dev. C. I. 95% 

Kernel Msg. (ms) 1.015 0.673 [0.720, 1.310] 
SOAP Msg. (ms) 8240.111 1244.400 [7694.738, 785.484] 
Init. Time (ms) 99.801 1.138 [99.303, 100.300] 

Simulation Time (s) 895.274 84.420 [858.276, 932.272] 
Total Exec. Time (s) 895.374 84.420 [858.376, 932.372] 



The initialization time is also longer in the distributed 
simulation. Notice that even though only half of the model 
is initialized on each machine, the initialization still takes a 
comparable time as in the single-machine case, mainly 
because extra components need to be initialized in the 
simulation web service (e.g., the wrapper and proxy objects). 
However, this does not yet constitute a bottleneck in the 
simulation.  

The sand-pile model was tested in the same way. The 
execution results on one machine are shown in Table 3.  
Table 3. Execution of the sand-pile model on one machine 

Ottawa 
Canada Avg. Std. Dev. C. I. 95% 

Init. Time (ms) 22.625 2.445 [21.553, 23.696] 
Simulation Time (s) 0.066 0.002 [0.065, 0.067] 
Total Exec. Time (s) 0.089 0.001 [0.088, 0.089] 

Clermont-Ferrand 
France Avg. Std. Dev. C. I. 95% 

Init. Time (ms) 36.211 4.913 [34.058, 38.364] 
Simulation Time (s) 0.119 0.003 [0.118, 0.121] 
Total Exec. Time (s) 0.156 0.004 [0.154, 0.157] 

As shown in Table 4, the simulation performance is 
now more than 1000 times worse when the model is 
executed over the Internet. Since the model is partitioned in 
a way that the DEVS particle generator and the Cell-DEVS 
model are located on remote machines, more SOAP 
messages are transmitted during the simulation to send the 
constantly generated events to the other side of the Atlantic 
Ocean. This illustrates the significant impact a partition 
scheme can have on the system performance. Again, it 
demonstrates that long-distance SOAP messaging is the 
primary bottleneck in the simulation system. 

Table 4. Execution of the sand-pile model over Internet 
Sand-pile model Avg. Std. Dev. C. I. 95% 
Kernel Msg. (ms) 1.522 3.023 [0.198, 2.847] 
SOAP Msg. (ms) 7653.817 148.520 [7588.726, 718.907] 
Init. Time (ms) 21.720 1.732 [20.961, 22.479] 

Simulation Time (s) 132.714 0.956 [132.295, 133.133] 
Total Exec. Time (s) 132.735 0.956 [132.316, 133.155] 

The initialization time is smaller in this case since a 
much smaller cell space is used in the send-pile model. 
While it is trivial when compared with the long execution 
time in the distributed simulation, the initialization time is 
non-negligible in the single-machine simulation and 
constitutes a 23.21% of the total execution time. 
 
6. CONCLUSION 

This paper addresses the issue of distributed DEVS-
based simulation using standard WS technologies in the 
Grid environment. The CD++ toolkit has been redesigned to 
expose the simulation functionalities as machine-
consumable web services, allowing for transparent sharing 
of computing power, data, models, and experiments in 
heterogeneous environment on a global scale. Also, the 

simulation services can be easily integrated with other 
services such as visualization, network management, and 
geographic information services in a larger system.  

We have conducted experiments to investigate the 
simulation performance across the Atlantic Ocean over 
commodity Internet connections. The execution results 
show that SOAP messaging constitutes a major bottleneck 
in the distributed simulation system. Based on the results of 
this case study, we identify the following areas as the focus 
of our future research: 
• XML compression techniques for SOAP messages. The 

verbose textual format for structured simulation data and 
the bulky SOAP attachments results in excessive 
communication and processing overhead, degrading 
system performance to a certain extent. Various XML-
aware compression algorithms have been proposed in the 
literature (e.g., [27], [28], and [29]), which will be 
investigated in the context of DEVS-based distribution 
simulation web services in our future research. 

• New message aggregation mechanisms. Although using 
the master/slave coordinator structure reduces the number 
of inter-node SOAP messaging, we will consider 
employing additional aggregation mechanisms to transmit 
the content of multiple messages within one batch 
transmission to further reducing the communication 
overhead. 

• Proxy replication techniques. In the DCD++ simulator, 
the proxy object is implemented as a shared library for 
handling all client requests. This architecture may lead to 
a software bottleneck when the load of the system surges. 
Although multi-threading has been used to improve 
responsiveness of the system, replication techniques 
might need to be used in order to share load among 
multiple proxy entities if the simulation service is to be 
used by many users on the global scale [30]. 

• CD++ middleware. One objective of our research is to 
allow the simulation service to be easily integrated with 
other services in larger systems. In this case, the 
simulation service also acts as a client that requests other 
services such as GIS, resulting in a layered architecture 
where the CD++ toolkit is utilized as a middleware 
software package. 
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