
Performance Analysis of Web-based Distributed Simulation in DCD++:
A Case Study across the Atlantic Ocean

Gabriel Wainer, Qi Liu

Department of Systems and Computer Engineering
Carleton University Centre on Visualization and

Simulation (V-Sim)
Carleton University, Ottawa, ON, Canada K1S 5B6

http://www.sce.carleton.ca/faculty/wainer

Julien Chazal, Loïc Quinet, Mamadou K. Traoré

LIMOS CNRS UMR 6158 UFR ST,
Université Blaise Pascal, Clermont-Ferrand 2 Campus

des Cézeaux, 63177 Aubière Cedex, France
http://www.isima.fr/~traore

Keywords: DEVS, Cell-DEVS, CD++, Web Services

Abstract

This paper presents a case study of Web-based
distributed simulation across the Atlantic Ocean between
Canada and France. The distributed simulation engine,
known as DCD++, extends the CD++ environment to
expose the simulation functionalities as machine-
consumable services based on the DEVS and Cell-DEVS
formalisms and commonly-used Web Service technologies.
DCD++ provides a platform that represents a step further
towards transparent sharing of computing power, data,
models, and experiments in heterogeneous environment on a
global scale. Also, the simulation service can be easily
integrated with other services such as visualization, network
management, and geographic information services in a
larger system. Experiments have been carried out to
investigate simulation performance over commodity Internet
connections, and major bottlenecks in the system have been
identified. Based on the experimental results, we put
forward several areas that warrant further research.

1. INTRODUCTION

With the computing power and advanced software tools
available today, Modeling and Simulation (M&S) becomes
a powerful tool for analyzing and designing a broad array of
complex systems where a mathematical analysis is
intractable. The Discrete Event System Specification
(DEVS) [1] is a general modeling framework that has
gained growing popularity in recent years, in part due to its
clear separation between the model and simulation concepts,
natural support for hierarchical and modular construction of
models, and the ability to verify models and simulators
independently and reuse them in later combinations with
minimal re-verification. Since its first formalization, DEVS
has been extended into various directions. The P-DEVS
formalism [2] eliminates the serialization constraints in the
original DEVS definition, allowing increased parallelism to
be exploited in the simulation. The Cell-DEVS formalism [3]
combines Cellular Automata (CA) [4] with DEVS theory to
describe n-dimensional cell spaces as discrete-event models,
where each cell is represented as a DEVS basic model that
can be explicitly delayed using built-in timing constructions.

CD++ [5] is an open-source M&S environment that
implements P-DEVS and Cell-DEVS formalisms and has
been used to successfully solve a variety of sophisticated
problems. Over the years, CD++ has been ported to
different platforms, including several parallel versions,
referred to as PCD++, that employ both conservative and
optimistic synchronization protocols to achieve high-
performance simulations on distributed-memory cluster
systems [6][7]. Nevertheless, as the system under study
becomes more and more complicated, the complexity of the
model grows significantly. As a result, the simulation tends
to be increasingly time-consuming and requires resources
that cannot be satisfied by any single site alone.
Constructing a common framework to hook together
geographically distributed resources in collaborative
simulation of large-scale and highly complex models starts
to gain momentum in the research society.

Grid computing offers a new paradigm for resource
sharing and coordinated problem solving in dynamic, multi-
institutional virtual organizations. In a Grid environment,
functionalities of various applications are exposed as web
services that can be accessed and consumed by other web
services without human intervention in a platform-
independent manner. In order to integrate DEVS-based
simulation services with other services such as visualization
and GIS (Geographical Information Systems) services in a
Grid environment, the CD++ toolkit was redesigned to
support Web-based simulation using standard Web Service
(WS) technologies. The resulting distributed simulator,
known as DCD++, allows for multi-user concurrent
simulation over both commodity Internet connection and
dedicated point-to-point fiber links [8][9]. Preliminary
experimentations have been conducted to evaluate the
capability of DCD++ between two cities in Canada. In this
paper, we perform further performance analysis that
involves distributed simulation of different models across
the Atlantic Ocean between Canada and France. The
objective of our study is two fold. First, we want to test the
concept of transparent sharing of computing power, data,
models, and experiments in DEVS-based simulations on a
global scale. Secondly, we want to gain insight into the
potential bottlenecks, particularly the communication
overhead due to limited bandwidth and high latency of the

Internet connection, and the effect they may have on the
system performance.

The rest of the paper is organized as follows. Section 2
introduces the P-DEVS and Cell-DEVS formalisms and
provides the necessary background knowledge on CD++
and commonly used WS technologies. It also gives a brief
survey on the existing DEVS-based toolkits intended for
parallel and distributed simulation (PADS). Section 3
discusses the architecture and main features of the DCD++
simulator. Section 4 describes the experimental environment
and the metrics we used to investigate the simulation system.
Section 5 presents a detailed performance analysis. And
Section 6 closes the paper with conclusion and future work.

2. BACKGROUND

In a discrete-event simulation, the system being
simulated changes state only at discrete points in time, upon
the occurrence of events. Based on dynamic systems theory,
the P-DEVS formalism [2] describes a system as a
composition of behavioral (atomic) and structural (coupled)
components. A P-DEVS atomic model is defined as:

M = <X, Y, S, δint, δext, δcon, λ, ta>.
At any given time, an atomic model is in some state s

∈S. Without the occurrence of external events, it remains in
state s for a period of time of ta(s), known as the lifetime of
state s. When the lifetime expires, the atomic model outputs
value λ(s)∈Y, and changes to a new state given by the
internal transition function δint(s). A P-DEVS model uses a
bag of inputs (Xb) to support the execution of multiple
concurrent events. If one or more external events x ∈X
occur before the expiration of ta(s), the model transfers to a
state determined by the external transition function
δext(s,e,Xb), combining multiple transitions into a single one.
A confluent transition function δcon is defined to determine
the next state in the case of collisions when a model receives
external events at the same time of its internal transition.

P-DEVS has a well-defined concept of system
modularity and component coupling to form composite
models. A P-DEVS coupled model is formally defined as:

N = <X, Y, D, {Md | d∈D}, EIC, EOC, IC>.
The sets of input and output events are defined by X

and Y respectively. D is a set of indices for the components
of a coupled model and, for each d ∈ D, Md is a basic P-
DEVS model (atomic or coupled). The external input
coupling (EIC) specifies the connections between external
and component inputs, while the external output coupling
(EOC) describes the connections between component and
external outputs. The connections between the components
themselves are defined by the internal coupling (IC).

Cell-DEVS formalism [3] is an extension of the
traditional CA theory to improve execution efficiency and
precision of the simulated model. It describes n-dimensional
cell spaces as discrete-event DEVS coupled models, where
each cell is represented as a DEVS atomic model. Further, it

defines timing constructions for each cell, allowing explicit
timing specification, asynchronous model execution, and
seamless integration with other types of models. A Cell-
DEVS atomic model is formally defined as:

C = <X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D>.
Each cell has a modular interface (I) consisting of a

fixed number of ports connected to its neighboring cells.
The future state of a cell is computed by the local transition
function (τ) based on the cell’s current state and input values.
State changes are propagated only after a delay given by the
delay function (d). Each cell also has the computing
apparatus (δint, δext, and λ) as defined in P-DEVS atomic
models. Cells are coupled by the neighborhood relationship
to form a cell space, which can then be integrated with other
DEVS and Cell-DEVS models. A cell space is formally
defined as a Cell-DEVS coupled model:

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z>.
The cell space (C) comprises a fixed-sized n-

dimensional array of cells, and the relative position between
a cell and its neighbors is defined by the neighborhood set
(N). B specifies the border of the cell space, which can be
wrapped (i.e., all cells have exactly the same behavior) or
non-warped (i.e., the border cells have a different behavior
from others in the cell space). The translation function (Z)
defines the input/output coupling between the cells.

The CD++ environment [5] provides a set of simulation
engines to execute DEVS and Cell-DEVS models on
different platforms. It decouples the modeling and
simulation concepts by providing two separate frameworks.
A modeling framework is defined as a hierarchy of classes
that allow users to specify the behavior of atomic and
coupled models. For each DEVS atomic model, users need
to implement the various functions as required by the P-
DEVS formalism in a C++ class, which is then incorporated
into the modeling hierarchy during compilation. For DEVS
coupled models and Cell-DEVS models, users can specify
the coupling information and other attributes of cell spaces
in a text-based configuration file using a built-in
specification language. In addition, CD++ provides a
simulation framework that creates an executive entity for
each component in the modeling hierarchy to implement the
abstract simulator that is responsible for executing the
simulation in line with the formalisms [10]. These executive
entities are specialized into two categories, namely
simulators and coordinators. Simulators are associated with
atomic models to trigger the output and state transition
functions, while coordinators are attached to coupled
models to keep track of the simulation time and to relay
messages between their child simulators and parent
coordinators. In parallel conservative simulations, a special
root coordinator is employed as a central controller to
handle the advance of simulation time and to communicate
between the simulated model and the surrounding
environment. In order to run parallel and distributed

simulations, the model is decomposed into several partitions
(as specified in a user-supplied partition file), each executed
by a separated process running on a distinct processor.
Traditionally, users submit the model definition and
partition files to the CD++ simulator via command-line
arguments. At the end of a simulation, the execution results
are recorded in output and log files that can be used for
visualization and debugging purposes.

The simulation is carried out in a message-driven
fashion. CD++ messages fall into two classes: content
messages include the external message (X, t) and output
message (Y, t) that encode the actual data transmitted
between the models, while control messages include the
initialization message (I, t), collect message (@, t), internal
message (*, t), and done message (D, t) that are used
internally by the simulator to control the simulation. Each
message represents an event with an associated timestamp
that indicates the simulated virtual time of the event.

The emergence of WS technologies has triggered a
major paradigm shift in distributed computing. Various
standards and techniques have been proposed to facilitate
the construction of a new platform on which a set of
network-accessible operations and their associated resources
are abstracted as platform-independent machine-consumable
services based on the Service Oriented Architecture (SOA)
principles. To provide DEVS-based simulation services in
Grid environment, a distributed simulator called DCD++
has been developed that uses a flexible wrapper to expose
CD++ functionalities as web services based on standard WS
technologies [8]. The backbone of the DCD++ simulator is
the XML [11] and XML-Schema [12] techniques that
encapsulate customized simulation data in a machine-
processable format. The public interface of the simulation
service is specified in WSDL [13], a general purpose XML-
based language for describing web services, protocol
bindings and other deployment details. The various
partitions involved in the simulation communicate with each
other by exchanging SOAP messages [14] that can be
transmitted over different transport protocols.

Many DEVS-based toolkits have been developed for
PADS based on different middleware technologies.
However, few of them can achieve large-scale distributed
simulation on a global scale in a platform-independent
manner. A non-comprehensive list of existing toolkits is
given below.
• DEVS/CORBA [15] is a runtime infrastructure based on

CORBA middleware that supports distributed simulation
of DEVS models. It can be embedded in a larger network-
centric environment to provide a combination of graphical
process modeling, discrete-event simulation, animation,
activity-based costing, and optimization functions.

• DEVS/HLA [16] is an HLA-compliant M&S environment
implemented in C++ that supports high-level model
construction. It simplifies the programming effort

required to establish and participate in an HLA federation.
• DEVSCluster [17] is a CORBA-based, multi-threaded

distributed simulator implemented in Visual C++. It
transforms a hierarchical DEVS model into a non-
hierarchical one to ease the synchronization of the
distributed simulation.

• DEVS/Grid [18] is an M&S framework implemented
using Java and Globus for the Grid environment. It
includes a set of fully automated simulation facilities,
including cost-based hierarchical model partitioning,
dynamic coupling restructuring, automatic model
deployment, and M&S naming and directory service.

• DEVS/P2P [19] is a P-DEVS based M&S framework
implemented on top of Peer-to-Peer communication
infrastructure. It uses a customized DEVS simulation
protocol to achieve decentralized inter-node
communication. Simulators are synchronized by
themselves without involving a coordinator.

• DEVS/RMI [20] is a DEVS-based system that provides a
dynamic and re-configurable runtime infrastructure for
handling load balancing and fault tolerance in distributed
simulations. It reduces the overhead associated with
common middleware solutions by using the native
support of Java RMI to synchronize local and remote
simulators.

3. WEB-BASED SIMULATION IN DCD++

The DCD++ simulator relies on the proper functioning
of a web service wrapper that interacts with the CD++
simulation engine and exposes its functionality to remote
web service clients. The wrapper consists of two main
components, namely a web service component implemented
in Java and a simulation component realized in C++. The
former component deals with web service related activities
such as user authentication, session management, and
parsing simulation requests from the clients. It is deployed
in an Axis SOAP engine [21], which in turn runs in an
Apache Tomcat application server [22]. On the other hand,
the latter component is responsible for accessing and
manipulating the internal objects and data structures in the
simulation engine. A separate workspace is created for each
user session in the simulation component, reducing potential
resource contention and allowing for multiple user sessions
running independently with increased parallelism. Both
components communicate with each other through message
queues maintained in the Linux kernel. The communication
is handled by a proxy object that is implemented as a shared
C++ library plugged into the Java Virtual Machine (JVM)
through the Java Native Interface (JNI) [23].

A skeleton of the DCD++ software architecture is
shown in Figure 1. The proxy object creates two message
queues in the Linux kernel for each user session to
implement a bidirectional communication channel between
the web service component and the corresponding

simulation component. Figure 2 gives a close look at the
message queues maintained by the proxy.

Figure 1．DCD++ software architecture [8]

Figure 2. Message queues created for each user session [9]

Furthermore, the wrapper is multi-threaded to improve
system performance. For each user session, the wrapper
creates two Java threads as well as two Linux POSIX
threads. On the web service component side, one Java
thread responds to runtime client requests such as
simulation monitoring operations, while the other thread
records the client operations into a session log file. On the
simulation component side, a POSIX thread executes the
simulation engine, whereas the other listens on the message
queue for events coming from the proxy object.

In this paper, we will not elaborate on the
implementation of the simulation service. Interested readers
can refer to [8] and [9] for more detailed discussion. Instead,
we give a brief summary of the major functionalities
provided by the DCD++ simulation service, which can be
classified into four categories as follows.
1. Session management
• User authentication: verify user credentials against a

password file stored locally on the server, and initialize a
new session for each successful login.

• Session logoff: terminate the user session and reclaim the
resources.

2. Configuration
• setMAFile: allow users to submit the model definition file

for DEVS coupled models and Cell-DEVS models.
• setDEVSModel: allow users to submit the C++ header (.h)

and implementation (.cpp) files for each DEVS atomic
model.

• setEventFile: allow users to specify the external input

events to be executed during the simulation.
• setSupportFile: allow users to configure other supporting

files (e.g., the initial cell values in a Cell-DEVS model)
that are required by the simulation engine.

• setExecutionTime: allow users to specify the end time of
the simulation.

• enableParingInfo: turn on the simulator parameter to
generate information for debugging purpose.

3. Monitoring and control
• startSimulationService: allow users to start the simulation

process.
• isSimRunning: allow users to probe the current status of

the simulation.
• getCurrentSimulationTime: allow users to monitor the

progress of the simulation at runtime.
• insertExternalEvent: allow users to dynamically add

additional external events to the simulation during
runtime.

• killSimulation: allow users to terminate the simulation
prematurely.

4. Logging and data retrieving
• retrieveLogFile: allow users to retrieve the log file

generated during the simulation.
• retrieveOutputFile: allow users to retrieve the output file

that contains the events sent from the simulated model to
the surrounding environment.

• retrieveParsingInfoFile: allow users to retrieve the files
that contain debugging information.

• retrieveSessionLogFile: allow users to retrieve the log file
that contains information about the operations performed
during the current session.

Figure 3 depicts a typical interaction between a WS
client and the DCD++ simulation service via SOAP
messages across the Internet.

Figure 3. Invocation of DCD++ web service

First, the client retrieves the WSDL document that
defines the interface of the simulation service in terms of
execution parameters and return values. It can then invoke
the web service methods through dynamically generated
SOAP messages transmitted over HTTP protocol, which is
one of the most widely used protocols on the Internet. The
model definition and configuration files (e.g., the C++
header and implementation files, external event file,
partition file, etc.) are transmitted to the simulation service
as SOAP attachments. When the simulation finishes, the

client retrieves the simulation results (e.g., the output, log
and debugging files) again as SOAP attachments. Since the
SOAP attachments contain potentially very large documents,
especially for the log files that record all the events executed
during the simulation, the communication overhead
constitutes a major bottleneck in the system, as we will see
later in the performance analysis.

To reduce the communication overhead, DCD++ adopts
a master/slave structure of coordinators [6]. As a result,
when a coupled model is partitioned onto multiple nodes, a
coordinator is created on each of them to execute the portion
mapped on that specific node. The coordinator on the first
node involved in the partition is the master, while all the
other coordinators are slaves. The master coordinator is
deemed as the immediate parent of the slaves residing on
remote nodes. Figure 4 illustrates the master/slave structure
on two nodes.

Figure 4. Master/slave coordinator structure in DCD++

Suppose the coupled model C1 is partitioned onto two
nodes and each portion has two atomic models. Two
coordinators are created for C1: a master (MasterC1) on
node0 and a slave (SlaveC1) on node1. One major
advantage of this arrangement is that it can reduce the
number of inter-node SOAP messages exchanged in the
simulation. For example, if simulator A3 sends a message to
A4, then the slave coordinator SlaveC1 can directly route
the message to the local destination without incurring SOAP
messages transmitted between the two nodes. Due to the
high cost of SOAP messaging, this structure can
significantly reduce the communication overhead and
improve the simulation performance.

4. EXPERIMENTAL ENVIRONMENT

Along with the tremendous benefits WS technologies
bring to the DCD++ distributed simulator, however, this
approach also comes with extra overhead. As mentioned
earlier, a major part of the overhead is devoted to the
prohibitive communication cost associated with SOAP
messaging between different compute nodes. Besides, the
communication between the two components of the WS
wrapper through Linux message queues contributes to this
overhead as well. Figure 5 illustrates the composition of a
communication path linking two remote compute nodes.
The SOAP messages can be transmitted over both
commodity Internet connections and high-speed point-to-

point fiber links such as UCLP (User Controlled Light Path)
[24].

Figure 5. Communication path in DCD++ [8]

In order to test the performance of DCD++ simulation
service on a global scale, we conducted experiments using
different models executed on two machines across the
Atlantic Ocean. One machine is located in the Advanced
Real-Time Simulation (ARS) Laboratory at Carleton
University, Ottawa, Canada; while the other located in the
Laboratoire d’Informatique, de Modélisation et
d’Optimisation des Systèmes (LIMOS) at Blaise Pascal
University, Clermont-Ferrand, France. The machines were
connected over commodity Internet connections involving
19 hops in the route with an average round-trip time (RRT)
of 136 ms. Furthermore, the machines used in the
experiments are not identical (Intel PIV CPU @ 3.2 GHz
with 512 MB DRAM, and Intel PIV CPU @ 1.8 GHz with
256 MB DRAM respectively).

The communication infrastructure used in our
experiments was provided by:
• CANARIE1: a Canadian non-profit collaboration between

business and government to coordinate improved Internet
access and network connectivity throughout Canada.

• RENATER2: the French educational and research network.
DANTE3 plans, builds and operates advanced networks

for research and education. It is owned by European NRENs
(National Research and Education Networks), and works in
partnership with them and in cooperation with the European
Commission. DANTE provides the data communications
infrastructure essential to the development of the global
research community. DANTE ensures the connectivity
between the Canadian and the French research networks.

Two models were tested in the experiments, including a
30×30 Cell-DEVS model that simulates propagation of
wildfire in forest [25], and a mix sand-pile model consisting
of a DEVS particle generator and a 10×10 Cell-DEVS
model representing the sand-pile formation [26]. Figure 6
and Figure 7 illustrate the model definition and partition
scheme applied on two machines for these models
respectively. Notice that we employed very simple partition
schemes for the sake of convenience. Using different

1 CANARIE: http://www.canarie.ca
2 RENATER: “REseau NAtional de télécommunications pour la

Technologie l'Enseignement et la Recherche”. http://www.renater.fr/
3 DANTE: “Delivery of Advanced Network Technology to Europe”.

http://www.dante.net/

partition schemes may have a considerable impact on the
communication pattern and thus simulation performance,
which is an open topic for research in itself and is beyond
the scope of this paper.

[top]
components : fire
[fire]
type : cell
dim : (30,30)
delay : inertial
defaultDelayTime : 0
border : nowrapped
neighbors : fire(-1,-1) fire(-1,0) fire(-1,1)
neighbors : fire(0,-1) fire(0,0) fire(0,1)
neighbors : fire(1,-1) fire(1,0) fire(1,1)
localtransition : FireBehavior

a) An excerpt of the fire model definition

b) Partition of the fire model on two machines

Figure 6. The fire model and the partition scheme
 [top]
components : sandpile particleGenerator@Generator
link : out@particleGenerator in@sandpile
out : out
link : out@particleGenerator out
[sandpile]
type : cell
dim : (10, 10)
delay : inertial
defaultDelayTime : 100
border : nowrapped
neighbors : sand(0,1) sand(1,0) sand(0,-1)
neighbors : sand(-1,0) sand(0,0)
in : in
link : in in@sandpile(5,5)
localtransition : sandpile-rule
portInTransition : in@sandpile(5,5) NewParticle-rule

a) An excerpt of the sand-pile model definition

b) Partition of the sand-pile model on two machines

Figure 7. The sand-pile model and the partition scheme
Each model was executed multiple times to achieve a

confidence interval of 95%, and the standard deviations of
the various metrics were calculated. We collected the
following metrics during the experiments:
• The initialization time to start the web service;
• The simulation time to execute the model;

• The total execution time that is the sum of both
initialization and simulation time;

• The average time to transmit a SOAP message between
the two machines;

• The average time to pass a message through the Linux
kernel message queues.

5. PERFORMANCE ANALYSIS

Two types of experiments were carried out in our study.
First, the models were executed using a single machine,
which allows us to examine the pure computation overhead
without considering the communication cost. Then, the
models were divided into two partitions as described in the
previous section and the metrics were collected for the
distributed simulation. Combining the date from these
experiments allows us to gain more insight into the
communication overhead. Table 1 shows the execution
results for the fire model on one machine.

Table 1. Execution of the fire model on one machine
Ottawa
Canada Avg. Std. Dev. C. I. 95%

Init. Time (ms) 101.602 3.197 [100.200, 103.003]
Simulation Time (s) 2.891 0.011 [2.886, 2.896]
Total Exec. Time (s) 2.993 0.012 [2.987, 2.998]

Clermont-Ferrand
France Avg. Std. Dev. C. I. 95%

Init. Time (ms) 189.049 8.064 [185.515, 192.583]
Simulation Time (s) 4.177 0.528 [3.945, 4.408]
Total Exec. Time (s) 4.366 0.529 [4.134, 4.598]

As expected, the simulation is more than 200 times
slower when the fire model is executed using the simulation
services across the Atlantic Ocean, as shown in Table 2.
This is primarily due to the communication overhead of
SOAP messaging. A single transmission of SOAP message
takes an average of 8.24 second, which is equivalent to
about 60 times of the RRT. As we mentioned in Section 3,
the SOAP attachments contain potentially large documents
such as model definition and simulation log files with sizes
far greater than the TCP window, resulting in multiple
rounds of transmission for each SOAP message. When
compared with the overhead of SOAP messaging, the
communication cost of Linux kernel messaging is relatively
minor. Furthermore, kernel messaging has a much smaller
variance than SOAP messaging because the transmission
time of SOAP messages depends on the current status of the
ever-fluctuating Internet traffic.

Table 2. Execution of the fire model over Internet
Fire model Avg. Std. Dev. C. I. 95%

Kernel Msg. (ms) 1.015 0.673 [0.720, 1.310]
SOAP Msg. (ms) 8240.111 1244.400 [7694.738, 785.484]
Init. Time (ms) 99.801 1.138 [99.303, 100.300]

Simulation Time (s) 895.274 84.420 [858.276, 932.272]
Total Exec. Time (s) 895.374 84.420 [858.376, 932.372]

The initialization time is also longer in the distributed
simulation. Notice that even though only half of the model
is initialized on each machine, the initialization still takes a
comparable time as in the single-machine case, mainly
because extra components need to be initialized in the
simulation web service (e.g., the wrapper and proxy objects).
However, this does not yet constitute a bottleneck in the
simulation.

The sand-pile model was tested in the same way. The
execution results on one machine are shown in Table 3.
Table 3. Execution of the sand-pile model on one machine

Ottawa
Canada Avg. Std. Dev. C. I. 95%

Init. Time (ms) 22.625 2.445 [21.553, 23.696]
Simulation Time (s) 0.066 0.002 [0.065, 0.067]
Total Exec. Time (s) 0.089 0.001 [0.088, 0.089]

Clermont-Ferrand
France Avg. Std. Dev. C. I. 95%

Init. Time (ms) 36.211 4.913 [34.058, 38.364]
Simulation Time (s) 0.119 0.003 [0.118, 0.121]
Total Exec. Time (s) 0.156 0.004 [0.154, 0.157]

As shown in Table 4, the simulation performance is
now more than 1000 times worse when the model is
executed over the Internet. Since the model is partitioned in
a way that the DEVS particle generator and the Cell-DEVS
model are located on remote machines, more SOAP
messages are transmitted during the simulation to send the
constantly generated events to the other side of the Atlantic
Ocean. This illustrates the significant impact a partition
scheme can have on the system performance. Again, it
demonstrates that long-distance SOAP messaging is the
primary bottleneck in the simulation system.

Table 4. Execution of the sand-pile model over Internet
Sand-pile model Avg. Std. Dev. C. I. 95%
Kernel Msg. (ms) 1.522 3.023 [0.198, 2.847]
SOAP Msg. (ms) 7653.817 148.520 [7588.726, 718.907]
Init. Time (ms) 21.720 1.732 [20.961, 22.479]

Simulation Time (s) 132.714 0.956 [132.295, 133.133]
Total Exec. Time (s) 132.735 0.956 [132.316, 133.155]

The initialization time is smaller in this case since a
much smaller cell space is used in the send-pile model.
While it is trivial when compared with the long execution
time in the distributed simulation, the initialization time is
non-negligible in the single-machine simulation and
constitutes a 23.21% of the total execution time.

6. CONCLUSION

This paper addresses the issue of distributed DEVS-
based simulation using standard WS technologies in the
Grid environment. The CD++ toolkit has been redesigned to
expose the simulation functionalities as machine-
consumable web services, allowing for transparent sharing
of computing power, data, models, and experiments in
heterogeneous environment on a global scale. Also, the

simulation services can be easily integrated with other
services such as visualization, network management, and
geographic information services in a larger system.

We have conducted experiments to investigate the
simulation performance across the Atlantic Ocean over
commodity Internet connections. The execution results
show that SOAP messaging constitutes a major bottleneck
in the distributed simulation system. Based on the results of
this case study, we identify the following areas as the focus
of our future research:
• XML compression techniques for SOAP messages. The

verbose textual format for structured simulation data and
the bulky SOAP attachments results in excessive
communication and processing overhead, degrading
system performance to a certain extent. Various XML-
aware compression algorithms have been proposed in the
literature (e.g., [27], [28], and [29]), which will be
investigated in the context of DEVS-based distribution
simulation web services in our future research.

• New message aggregation mechanisms. Although using
the master/slave coordinator structure reduces the number
of inter-node SOAP messaging, we will consider
employing additional aggregation mechanisms to transmit
the content of multiple messages within one batch
transmission to further reducing the communication
overhead.

• Proxy replication techniques. In the DCD++ simulator,
the proxy object is implemented as a shared library for
handling all client requests. This architecture may lead to
a software bottleneck when the load of the system surges.
Although multi-threading has been used to improve
responsiveness of the system, replication techniques
might need to be used in order to share load among
multiple proxy entities if the simulation service is to be
used by many users on the global scale [30].

• CD++ middleware. One objective of our research is to
allow the simulation service to be easily integrated with
other services in larger systems. In this case, the
simulation service also acts as a client that requests other
services such as GIS, resulting in a layered architecture
where the CD++ toolkit is utilized as a middleware
software package.

References
[1] Zeigler, B.P.; H. Praehofer, and T. G. Kim. 2000.
Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems.
Academic Press, San Diego, CA.
[2] Chow, A.C., and B.P. Zeigler. 1994. “Parallel DEVS: A
Parallel, Hierarchical, Modular Modeling Formalism”. In
Proceedings of the 26th Winter Simulation Conference,
Orlando, FL, 716-722.

[3] Wainer, G., and N. Giambiasi. 2002. “N-dimensional
Cell-DEVS Models”. Discrete Event Dynamic Systems, 12,
no. 2, (April): 135-157.
[4] Wolfram, S. 2002. A New Kind of Science. Wolfram
Media Inc., Champaign, IL.
[5] Wainer, G. 2002. “CD++: A Toolkit to Develop DEVS
Models”. Software: Practice and Experience, 32, no. 13,
(September): 1261-1306.
[6] Troccoli, A. and G. Wainer. 2003. “Implementing
parallel Cell-DEVS”. In Proceedings of the 36th IEEE
Annual Simulation Symposium (ANSS’03), Orlando, FL,
273-280.
[7] Liu, Q. and G. Wainer. 2007. “Parallel Environment for
DEVS and Cell-DEVS Models”. SIMULATION:
Transactions of the Society for Modeling and Simulation
International, 83, no. 6, (June): 449-471.
[8] Madhoun, R. and G. Wainer. 2007. “Studying the
Impact of Web-Services Implementation of Distributed
Simulation of DEVS and Cell-DEVS Models”. In
Proceedings of the 2007 DEVS Integrative M&S
Symposium (DEVS’07), Norfolk, VA.
[9] Madhoun, R., B. Feng, and G. Wainer. 2007. “On the
Creation of Distributed Simulation Web-Services in CD++”.
In Proceedings of the 14th AI, Simulation and Planning in
High Autonomy Systems (AIS 2007), Buenos Aires,
Argentina.
[10] Chow, A.C., B.P. Zeigler, and D.H. Kim. 1994.
“Abstract Simulator for the Parallel DEVS Formalism”. In
Proceedings of the 5th IEEE Annual Conference on AI,
Simulation and Planning in High Autonomy Systems, 157-
163.
[11] Bray, T., et al. 2004. Extensible Markup Language,
XML 1.0 Third Edition. http://www.w3.org/TR/2004/REC-
xml-20040204/.
[12] Fallside, D.C. and P. Walmsley. 2004. XML Schema:
Primer 2nd Edition. http://www.w3.org/TR/ xmlschema-0/.
[13] Christensen, E., et al. 2001. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.
[14] Mitra, N. and Y. Lafon. 2007. SOAP Version 1.2:
Primer 2nd Edition. http://www.w3.org/TR/2007/REC-
soap12-part0-20070427/.
[15] Zeigler, B.P., D. Kim, and S. Buckley. 1999.
“Distributed Supply Chain Simulation in a DEVS/CORBA
Execution Environment”. In Proceedings of the 31st Winter
Simulation Conference, Phoenix, AZ, 1333-1340.
[16] Zeigler, B.P., and H.S. Sarjoughian. 1999. “Support for
Hierarchical Modular Component-based Model
Construction in DEVS/HLA”. In Proceedings of the 1999
Spring Simulation Interoperability Workshop, Orlando, FL.
[17] Kim, K. and W. Kang. 2004. “CORBA-based, Multi-
threaded Distributed Simulation of Hierarchical DEVS
Models: Transforming Model Structure into a Non-
hierarchical One”. In Proceedings of the International

Conference on Computational Science and Its Applications
(ICCSA 2004), Assisi, Italy, LNCS 3046: 167-176.
[18] Seo, C., S. Park, B. Kim, S. Cheon, and B.P. Zeigler.
2004. “Implementation of Distributed High-performance
DEVS Simulation Framework in the Grid Computing
Environment”. In Proceedings of the 2004 Advanced
Simulation Technologies Conference – High-Performance
Computing Symposium (ASTC’04), Arlington, VA.
[19] Cheon, S., C. Seo, S. Park, and B.P. Zeigler. 2004.
“Design and Implementation of Distributed DEVS
Simulation in a Peer to Peer Network System”. In
Proceedings of the 2004 Advanced Simulation Technologies
Conference – Design, Analysis, and Simulation of
Distributed Systems (ASTC’04), Arlington, VA.
[20] Zhang, M., B.P. Zeigler, and P. Hammonds. 2006.
“DEVS/RMI – An Auto-adaptive and Reconfigurable
Distributed Simulation Environment for Engineering
Studies”. In Proceedings of the 2006 DEVS Integrative
M&S Symposium (DEVS’06), Huntsville, AL.
[21] Axis Development Team. 2007. Axis User’s Guide,
Version 1.2. http://ws.apache.org/axis/java/user-guide.html.
[22] Apache Software Foundation. 2007. Apache Tomcat.
http://tomcat.apache.org/tomcat-6.0-doc/introduction.html.
[23] Liang, S. 1999. The Java Native Interface –
Programmer’s Guide and Specification. Addison-Wesley,
Boston, MA.
[24] St Arnaud, B., J. Wu, and B. Kalali. 2003. “Customer
Controlled and Managed Optical Networks”. Journal of
Lightwave Technology, 21, no. 11, (November): 2804-
2810.
[25] Ameghino, J., A. Troccoli, and G. Wainer. 2001.
“Models of Complex Physical Systems Using Cell-DEVS”.
In Proceedings of the 34th IEEE/SCS Annual Simulation
Symposium (ANSS’01), Seattle, WA, 266-273.
[26] Saadawi, H. and G. Wainer. 2003. “Modeling a Sand
Pile Application Using Cell-DEVS”. In Proceedings of the
2003 Summer Computer Simulation Conference, Montreal,
QC, Canada.
[27] Ericsson, M. 2007. “The Effects of XML Compression
on SOAP”. Journal World Wide Web, 10, no. 3,
(September): 279-307.
[28] Lifke, H. and D. Suciu. 2000. “XMill: An Efficient
Compressor for XML Data”. In Proceedings of the 2000
ACM International Conference on Management of Data
(SIGMOD), Dallas, TX, 153-164.
[29] Tolani, P. and J. R. Haritsa. 2002. “Xgrind: A Query-
friendly XML Compressor”. In Proceedings of the 18th
International Conference on Data Engineering (ICDE),
Washington, DC, 225-234.
[30] Lazowska, E. D. et al. 1984. Quantitative System
Performance – Computer System Analysis Using Queueing
Network Models. Prentice Hall, Upper Saddle River, NJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

