Implementing the SCIDDICA Landslide Model in Cell-DEVS

Brian Webb
Dept. of Systems and Computer Engineering
Carleton University
1125 Colonel By Drive
Ottawa, ON. K1S 5B6, Canada
Email: bwebb @ connect.carleton.ca
Phone: 613-520-2600 ext 3018

Keywords: Discrete event simulation, DEVS, Cell-DEVS,
cellular automata, landslide modelling

Abstract

The SCIDDICA model is a custom cellular automata used to
simulate and analyse landslides and debris flows. It models
landslides by tracking the amounts of kinetic energy and de-
bris in the slide and using a set of simple rules to determine
the movement of the kinetic energy and debris from cell to
cell.

CD++ is a toolkit for implementing DEVS and Cell-DEVS
models. We present an attempt to implement SCIDDICA us-
ing DEVS and CD++. A DEVS based definition of the SCID-
DICA model introduces the advantages of the DEVS formal-
ism to the model, and would allow formal verification of the
DEVS definition of the model. This also permits us to inte-
grate a SCIDDICA based landslide with other DEVS models,
allowing larger and more complex simulations to be devel-
oped.

1. INTRODUCTION

SCIDDICA, the Simulation through Computational Inno-
vative methods for the Detection of Debris flow path using In-
teractive Cellular Automata is a custom cellular automata that
is being developed by the University of Calabria in Italy.[1]

This paper deals with the SCIDDICA S3-Hex version of
the model[1] as the most detailed explanation of the SCID-
DICA transition rules were available for it.

CD++ is a programming toolkit designed to implement
models and cellular automata as described by the DEVS mod-
eling formalism. CD++ has a library of built in functions to
handle mathematical, logical and neighborhood operations. It
is also possible to define custom functions for use in CD++
code by adding those functions to specific C++ source files
for the CD++ simulator. The modified C++ source files are
kept separate from the original source files, and stored along
with the CD++ source files so that other projects on the same
system still have access to the original simulator.

The three goals of this project were:

Gabriel A. Wainer
Dept. of Systems and Computer Engineering
Carleton University
1125 Colonel By Drive.
Ottawa, ON. K1S 5B6. Canada
Email: gwainer @sce.carleton.ca
Phone: 1-613-520-2600 ext 1957

e To implement a working version of the SCIDDICA
model in Cell-DEVS.

e To more accurately implement the SCIDDICA debris
outflow rules by creating custom C++ functions for
them.

o To simplify the Cell-DEVS implementation to make it
easier to understand.

2. SCIDDICA DEFINITIONS

Landslides appear to be a good fit for cellular automata be-
cause the Navier-Stokes equations that describe debris flows
cannot easily be solved without simplifications. Much of the
complexity comes from irregular topography and changes in
the nearly Newtonian fluids of the flows as water is lost[2].

SCIDDICA is one attempt to model landslides as cellu-
lar automata and has been successfully used to simulate the
1992 Tessina[3] and 1984 Ontake[4] slides. It is a determin-
istic model, and the S3-Hex version uses six parameters and
eleven state variables to describe the terrain the slide will be
travelling over and the slide itself.

The six parameters are constant for a given simulation but
will vary depending on the location being simulated and the
conditions at that location. These parameters are[1-2]:

e Ptime - The discrete time step taken by the cellular au-
tomata.

e Padhesion - The immovable amount of debris.

e Pf - Hieght threshold of the outflows, related to the fric-
tion angle.

e Prunuploss - Frictional energy loss factor.
e Pmt - Mobilisation threshold for the soil cover.
e Perosion - Progressive erosion of the soil cover.

There are eleven state variables using an hexagonal topol-
ogy[1]. These variables are:

e Altitude: The combined height of the erodible and non-
erodible material in a cell.

e Erodible Soil Depth: The thickness of the erodible ma-
terial in a cell.

e Energy: The kinetic energy (KE) of the debris in the cell.
e Debris Thickness: How deep the debris is in the cell.

e Outflows: How much debris goes to each cell in the
neighborhood, eight values.

e Kinetic Runup: Used to calculate the energy and out-
flows.

The rules and expressions used by SCIDDICA S3-Hex
are[1]:

e Ad: The amount of soil eroded from a cell by the debris.
0 if there is no soil.

e Ar: The change in runup energy. Equals the
runup loss parameter (Prunuploss) if (k* en-
ergy/debris - Prunuploss) > debris otherwise equals
(k*energy/debris) - debris.

e k: 2/ (rho * g * A) : rho = debris density, g = gravita-
tional acceleration, A = cell area

Altitude: The altitude changes if soil was eroded from the
cell.
newaltitude = oldaltitude — Ad

Erodible Soil Depth: The soil depth changes if there is both
debris and energy in the cell, as the moving debris will erode
more and more soil over time.

newdepth = olddepth — Ad

Energy: The energy changes as the debris picks up more
mass from eroding soil, gaining momentum and lost due to
friction. There are three rules for calculating the energy of a
cell in SCIDDICA.

Energy lost to debris outflow, plus energy gained from in-
flow:

E

Eyew = (Debris — ZOutflow,-) * (%

)

i Flow: i
+Z(mf ow; Debrisi)

Energy gained from new mass of soil eroded:

Epew = k* (Debris + Ad) x (KineticRunup + Ad)
Energy lost to friction:

E,e., = k*x Arx Debris

Debris Thickness: Debris thickness changes as the debris
flows into and out of a cell, and as the soil in the cell is eroded.

Debrisyey = Debris+ Y Inflow; — Y Out flow;+ Ad

Kinetic Runup: The runup is a function of the energy of the
cell, the debris thickness and the constant k.

runup = k

Debris

Debris Outflow to cell i: The amount of debris that flows
from the central cell to cell i in the neighborhood. The SCID-
DICA rules for calculating outflow:

1. If the tangent of the angle between the current cell and
cell i is greater than pf add cell i to set A.

2. Calculate the average outflow of all cells in A
Avg = (k* Energy * Debris — Padhesion)

+Y (Altitudelj) + Debris| j))
/NumberofcellsinA

3. For all cells in A if (Altitude[i] — Debris[i]) > Avg re-
move cell i from A

4. If A has changed go back to step 2.

5. If cell i is in A Outflow; = Avg — (Altitudeli] —
Debrisli])

6. Otherwise Out flow; =0

3. CD++

The SCIDDICA parameters were defined in CD++ as
macros, allowing them to be easily changed between simu-
lations if necessary.

The current version of CD++ only allows for a single state
variable per cell, and the cell space must be a square topology.
To store the 11 variables for SCIDDICA’s hexagonal topol-
ogy a 3D CD++ cells space was defined, using the cells in the
vertical dimension as the SCIDDICA variables.

The rules were modified to assume a square topology,
which is the only topology 3D CD++ cell spaces support.
This increased the number of state variables from eleven to
thirteen. The neighborhood size was increased by two cells at
each level so two more outflow variables were needed.

The cell neighborhood is, therefore, very large, consisting
of 25 layers of 9 cells each, or 225 individual cells. The large
neighborhood is necessary because CD++ defines the neigh-
borhood relative to the current cell of interest. Cells in layer O
need to access cells in layer 12, therefore, the neighborhood
must reach up +12 cells. And cells in layer 12 need to access

cells in layer 0, which requires that the neighborhood must
reach down -12 cells.

For the same reason the neighborhood must also be a
square of nine cells over all 25 of its layers. Even though
some variables, such as kinetic runup, depend only on cells
in their own column.

All the SCIDDICA rules, except for the outflow calcula-
tions were implemented fully in CD++. These rules were sim-
ple translations of the algebraic SCIDDICA rules with some
additional functionality to handle cells located on map edges.
These repeated checks to see if the neighboring cells exist
account for much of the bulk and complexity of the imple-
mented rules.

The outflow rules were not fully implemented because they
require iteration and temporary variables, neither of which
the CD++ grammar permits. It was determined that custom
functions would be needed to properly implement the outflow
rules.

For testing purposes a simplified version of the SCID-
DICA rules was created by removing the iteration and us-
ing the initial unrefined average outflow value. If the tangent
of the angle between the current cell and the outflow cell
was greater than pf, the initial average outflow was calcu-
lated and the outflow amount determined from the equation,
Out flowli]| = Average — (Altitudeli] — Debris|i]).

This allowed us to simulate slides, but under this rule it is
possible to outflow more debris from a cell than is present.

Results for adding custom functions to the simulator were
mixed. Simple, two argument functions were added success-
fully to the simulator and could run properly. Those functions
were: Ad, altitude change, and soil erosion.

However, algorithms which require more than two argu-
ments could not be implemented. The CD++ parser and gram-
mar support generic functions of up to two arguments only
and most of the SCIDDICA functions take four or more ar-
guments.

4. IMPLEMENTATION

The Cell-DEVS implementation of SCIDDICA was done
over the course of a month and a half. Starting with translating
the SCIDDICA variables, parameters and equations into the
DEVS formalism.

Once the formalism was completed the transition rules
of the formalism were implemented as rules in CD++. The
greatest challenge in converting the transition rules was in
adding the boundary condition checks. It was necessary to
decide what would happen to a slide if it reached one of the
edges of a map as this was not covered in the SCIDDICA
papers [1-2].

In CD++ there are two ways to treat cell space edges.
They can be treated as solid, impassible walls, or they can
be treated as if the cell space were a cylinder. With this sec-

ond method the cell space wraps around, so that moving past
one edge places you on the opposite edge.

We decided it was better to treat the edges of a cell space
as walls, rather then allow them to wrap around. Real world
locations do not wrap around and we believed that simu-
lated slides would be more accurate and usefull with wall-like
edges than esges which allowed a slide to go off one edge of
the cell space and reappeare elsewhere.

S. EXPERIMENTAL RESULTS

The values for the SCIDDICA parameters were taken from
a simulation of the 1992 landslide in Tessina, Italy[2].

e Ptime = 0.1 seconds

e Padhesion = 1 dm.

Pf =25 deg.

Prunuploss = 2.

Pmt=0.3
e Perosion = 0.6

Four maps ten by ten were defined for testing the model.
Tests were run five times each for increasing initial values of
KE and debris thickness.

The first two maps were a map with a shallow slope run-
ning from top to bottom, a map with a steep slope running
from top to bottom. The shallow slope was at 1 meter inter-
vals per cell, the steep 5 meter intervals. The purpose of these
maps is to provide a simple test environment.

bt ch dhs cha s obn dhe o4n dino
36.036.036.036.036.036.036.0%.036.0%6.0
31,031.091,031.031.031.031.031,031.031.0
26.026.026.026.026.026.026.026.026.026.0
21.021.021.021.021.021.021.021.021.021.0

16.016.016.016.016.016.016.016.016.016.0

11.011.011.011.011.011.011.011.011.011.0)

Figure 1. A simple slope

Starting a slide at the top of the slope for the shallow sloped
map with KEs under four did not produce a slide. Slides pro-
duced by KEs of four and over went down the slope, but
tended to slide to the left. An initial KE of two was enough to
start a slide on the steep sloped map. The slides were faster,
but behaved in the same way as the shallow sloped map.

IR 555 1 026 o6 050 0 R IR
| | bR
a1

26.026.0

26.026.0 ...
26.026.0 -..
26 026. o..
l. 51.026.026.031.0

IR 0000050080
....26 026. o..
[ST

511026.026.031.0 3008

36.0
....26 26,0510 180

Figure 2. A valley

The third map was a valley whose slopes were at 5 meter
intervals. The purpose of this was to test the actions of the
model when a slide encountered a reverse slope.

Starting two slides on either side of the valley in the valley
map produced two fan shaped slides that collided in the valley
and then spread out to fill the valley. However, slides going
right to left moved slightly faster than slides going from left
to right.

The fourth map a complex one with several peaks and a U
shaped valley. There are peaks in the upper and lower left cor-
ners, a peak midway along the upper edge and a peak midway
along the right edge, which defines the U. The lowest areas of
the map are in the upper and lower right corners. The slopes
are in intervals of 10 meters. Its purpose was to see if the
model could produce realistic results on complex terrain.

Figure 3. A more complex map

Slides on the more complex map behaved as expected,
flowing down slope to the U valley and spreading out along
the low areas. Slides on this map tended to move faster to-
wards the top of the map.

On all maps the higher the initial KE and the steeper the
slope the faster the slide travelled. The biases in the slide di-
rections are incorrect but without being able to use the full
outflow rules we could not determine if it was caused by the
incomplete outflow rules, the shift from hexagonal to square
topology or another factor.

6. CONCLUSIONS

The Cell-DEVS formalism and CD++ allowed us to build
a working implementation of a complex cellular automata in
a short time period, with limited resources. The SCIDDICA
rules and variables translated easily into the Cell-DEVS for-
malism. And with the exception of the outflow rules, were
easy to implement in CD++ once this had been done.

The working implementation with the partial outflow rules
does allow us to simulate landslides. These landslides behave
in a predictable and realistic manner. This gives us a useable,
if imperfect, model that can be connected to other DEVS and
Cell-DEVS models, allowing us to simulate larger and more
complex systems.

7. REFRENCES

[1] D’ Ambrosio, D. et al,“Simulating debris flows through
a hexagonal cellular automata: SCIDDICA S3-hex”, Natu-
ral Hazards and Earth System Sciences, vol. 3, pp. 545-559,
2003.

[2] Calidonna, C. R. et al, “A Network of Cellular Au-
tomata for a Landslide Simulation”, Proceedings of the 15th
international conference on Supercomputing ICS 01, 2001.

[3] Avoliol, M. V. et al, “Simulation of the 1992 Tessina
landslide by a cellular automata model and future hazard sce-
narios”, International Journal of Applied Earth Observation
and Geoinformation, vol. 2, no. 1, pp. 41-50, 2000.

[4] Di Gregorio, S. et al, “Mount Ontake Landslide Simula-
tion by the Cellular Automata Model SCIDDICA-3”, Physics
and Chemistry of the Earth, Part A: Solid Earth and Geodesy,
vol. 24, no. 2, pp. 131-137, 1999.

