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ABSTRACT

Distributed simulations are mainly used to interoperate heterogeneous simulators or geographically distributed models. We 
present here RESTful-CD++, the first distributed simulation middleware based on REST (Representational State Transfer) 
Web-services. RESTful-CD++ middleware enables heterogeneous independent-developed simulation components to intero-
perate with much flexibility and simplicity. REST has the potential to advance distributed simulation state-of-the-art towards 
plug-and-play or automatic/semi-automatic interoperability. This because of its lightweight approach hides internal software 
implementation by using universal uniform interface and describing connectivity semantics in form of messages, usually 
XML. In contrast, other approaches expose functionalities in heterogeneous RPCs that often reflect internal implementation 
and describe semantics in form of procedure parameters. Further, REST enables simulations to mashup with Web 2.0 appli-
cations, which makes simulation in link with any device attached to the Web dynamically at runtime. The CD++ tool is now 
the first simulation engine to use RESTful middleware to perform distributed simulation in large-scale.

1 INTRODUCTION

Distributed simulation technologies were created to execute simulations on distributed computer systems (i.e., on multiple 
processors connected via communication networks)  (Fujimoto 2000). A focus of distributed simulation software has been on 
how to achieve model reuse via interoperation of heterogeneous simulation components. Other benefits include reducing ex-
ecution time, connecting geographically distributed simulation components (without relocating people/equipment), interope-
rating different vendor simulation toolkits, providing fault tolerance and information hiding – including the protection of in-
tellectual property rights  (Boer et al. 2009, Fujimoto 2000).

The defense sector is currently one of the largest users of distributed simulation technology, mainly to provide virtual 
distributed training environment between remote parties, relying on the High Level Architecture (HLA) (Khul et al. 1999) 
middleware to provide a general architecture for simulation interoperability and reuse. On the other hand, the current adop-
tion of distributed simulation in the industry is still limited. In recent years, there have been some studies (conducted in the 
form of surveys) to analyze these type of issues  (Boer et al. 2009, Strassburger et al. 2008). Clearly, technology adoption in 
the industry is based on return-of-investment policies. For example, the authors in  (Boer et al. 2009) suggested that, in order 
to make distributed simulation more attractive to the industrial community, we need a lightweight commercial-off-the-shelf 
(COTS) based architecture with higher cost/benefit ratio. This means that COTS components must be assembled and intero-
perated with each other efficiently, effortlessly and quickly. This brings the business environment mentality of “Try-before-
buy” (Strassburger et al. 2008) to reduce cost when selecting between different vendors sub-components options to be inte-
grated in the final product. Nevertheless, it has been predicted that in the coming years, the sectors that will drive future ad-
vancement in distributed simulation is not only the defense sector, but also gaming industry, the high-tech industry (e.g. auto, 
manufacturing and working training), emergency and security management (Strassburger et al. 2008). Further, the study illu-
strated in (Strassburger et al. 2008) found out that the highest rated applications in future distributed simulation efforts in-
clude the integration of heterogeneous resources, joining computer resources for complex simulations and training sessions. 
Therefore, simulation middleware plays a vital role with future advancements, since it is main goal is interoperating different 
vendor heterogeneous simulations together. Consequently, this study (Strassburger et al. 2008) identifies some research chal-
lenges: (1) Plug-and-Play capability: the middleware should be able to support coupling simulation models in such a way that 
the technical approach and standards gain acceptance in industry. In other words, interoperability should be achieved effor-
tlessly. (2) Automated or semi-automatic semantic interoperability between domains: to achieve the plug-and-play challenge, 
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interoperability must be achieved at the semantic level. Our presented methodology here is taking distributed simulation in 
the path toward these goals comparing to other existing approaches. It uses RESTful Web-services to interoperate remote si-
mulation components to perform distributed simulation in large-scale networks.

The non-military distributed simulation community has reached out to other technologies to widen distributed simulation 
use and to overcome HLA shortcomings such as standards complexity, programming languages dependency and poor scala-
bility. CORBA (Henning et al. 1999) was used during the 1990s and early 2000s to provide interoperability between hetero-
geneous simulations. CORBA exposes different distributed objects whereas each object exposes various procedures. In this 
case, those procedures glue different objects operations together, giving the impression of a local procedure call when in fact 
it is an operation invoked remotely. CORBA operations are described using CORBA IDL, with syntax similar to regular pro-
gramming languages, which can be compiled into actual programming language code such as Java or C++. The distributed 
simulation community has also turned to SOAP-based Web-services since its appearance in year 2000 to provide interopera-
bility between different simulation processors. The SOAP-based Web-services (Papazoglou 2007) provides interoperability 
in a similar way to CORBA Remote Procedure Calls (RPC)-style. It exposes ports (analogous to CORBA objects) where 
each port is addressed using a URI (analogous to CORBA object references), and it exposes a number of various procedures, 
usually called services. Those services are described in XML WSDL documents (analogous to CORBA IDL), allowing client 
programmers to compile WSDL into actual programming language procedures stubs. At runtime, when a client program in-
vokes a service stub: (1) the client converts the RPC into a SOAP message (encoded using XML), (2) wraps the SOAP mes-
sage within an HTTP message, and (3) sends this HTTP message to the server using the HTTP POST method. Upon the mes-
sage receipt, the server converts the SOAP message into the appropriate procedure call and responds to the client in the same 
way. To interoperate two independently developed simulations, the RPCs exposed need to be integrated. For example, when 
a simulation wants to send an event to another remote simulation, it needs to act as a client and invoke the appropriate proce-
dure of the suitable port of that remote simulation, as shown in Figure 1.

Figure 1: SOAP-based Web-services RPC-based Programming Model

On the other hand, RPCs are heterogeneous (because they were invented by different programmers) and distributed si-
mulation connectivity semantics are described on those RPCs parameters. RPCs directly influence the interoperability inte-
gration effort, since they are actually the Application Programming Interface (API) of a simulation component. Further, 
RPCs often reflect the software internal implementation since they glue distributed software together. WSDL only helps pro-
grammers construct service stubs so they can compile them correctly with their software, but programmers still need to inte-
grate the diverse software functionalities. Indeed, interoperating independent-developed simulations where each exposes he-
terogeneous API (that is tied to internal implementation) and describing semantics in programming procedure parameters is 
not a trivial task. In reality, coordination among simulations in a distributed environment is much more complex than passing
events. They need to implement synchronization algorithms to ensure simulation correctness and efficient execution. They 
may also need to select a synchronization algorithm over another from different available options. Further, standardizing 
APIs in form of RPCs can cause inflexibility of possible future improvements like synchronization algorithms, since we need 
to define new procedures and parameters (that may not be friendly to some simulation components internal implementation). 
In practice, these interoperability challenges also apply to independent-developed software packages that were based on the 
same simulation formalism. This is because programmers implement the same functional requirements with different soft-
ware design and implementation style. We are currently facing these challenges in the DEVS standardization process, which 
aims on interoperating different DEVS-based simulation packages using SOAP-based Web-services. Our presented proposal 
described in (Al-Zoubi et al. 2008) attempts to solve some of these issues by minimizing the number of exposed RPCs and 
transferring simulation messages as XML attachments, allowing simulations to hide (as much as possible) their internal im-
plementation. However, integration is still proven its difficulty because it is uneasy for some simulation packages to hide 
their internal software implementation when they expose too many ports and RPCs. Clearly, this is not the path to achieve 
plug-and-play capability or automated/semi-automatic semantic interoperability. A project management in a business has to 
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question if this task worth the cost, particularly if we need to add several independent-developed simulators and models 
where each exposes many ports and RPCs.

The Representational State Transfer (REST), instead, provides interoperability by imitating the World Wide Web 
(WWW) style and principles   (Fielding 2000). RESTful Web Services are gaining increased attention with the advent of Web 
2.0  (O’Reilly 2005) and the concept of mashups because of its simplicity. Mashups group various services from different 
providers and present them as a bundle. For example, IBM Mashup Center <http://www-01.ibm.com/software/info/mashup-
center/> provides different enterprise mashup solutions, allowing businesses to assemble new applications dynamically from 
various consumable assets. For instance, WebSphere sMash provides RESTful Web 2.0-based mashup applications, allowing 
enterprise reuse assets with more flexibility and cost-effectiveness. The main motivation behind mashups is reusing existing 
assets through the Web (and other benefits are driven from this principle). RESTful Mashups can benefit distributed simula-
tion in a number of ways such as introducing real systems (e.g. sensors, devices, weather data, maps, etc.) in the simulation 
loop: any device connected to the Internet can be part of the simulation environment, as Web 2.0 extends the concept of de-
vices beyond regular computing machines.

REST separates the software interface from the internal implementation; hence, services can be exposed while the im-
plementation is hidden form consumers. Providers just need to conform to the service agreement, which comes in the form of 
messages (e.g. XML). This is provided by exposing services as “resources” (instead of RPCs) and manipulated through a uni-
form interface, usually four HTTP methods: GET (to read a resource), PUT (to create/update a resource), POST (to append to 
a resource), and DELETE (to remove a resource). These methods are literally the only entrances to those resources (or ser-
vices). Resources are named (addressed) with unique URIs similar to Web sites. Therefore, a simulation, for example, may 
search, locate and connect to a Web 2.0 application at runtime, since there is no need to construct services RPC stubs at com-
pile time. REST describes connectivity semantics in form of messages (usually in XML messages, instead of using RPCs pa-
rameters). Therefore, REST can separate internal implementation and interface semantics. Obviously, it is extremely flexible 
to apply possible future changes to XML messages comparing to procedure parameters. Further, it is much easier to integrate 
two independent-developed simulators when both communicate with XML messages using the same standardized universal 
uniform interface. However, to achieve full plug-and-play capability, connectivity semantics (messages) must be standar-
dized, at least within the same domain such as the DEVS domain. Of course, standardizing XML messages is very flexible 
for future changes or synchronization algorithms improvements (moreover when compared to procedure parameter passing).
REST also brings simplicity to distributed simulation, which reduces cost and risk against return benefits in business envi-
ronment. To show this simplicity affect, for example, Amazon.com services are provided using both REST-based and SOAP-
based Web-services. On the other hand, Amazon reports that 95% of the usage is of the REST Web-service in spite of larger 
retail business partners like ToysRUs that uses SOAP WS (O'Reilly 2005). REST clear-cut interface can enlarge the distri-
buted simulation users instead of only being used by high skilled programmers at this time. REST has been used in many ap-
plications such as Yahoo <http://developer.yahoo.com/>, Flicker <http://www.flickr.com/services/ap/>, and Amazon S3 
<http://s3.amazonaws.com>. It also used in distributed systems such as NASA SensorWeb  (Cappelaere et al. 2009), which 
uses REST to support interoperability across Sensor Web systems that can be used for disaster management. Another exam-
ple of using REST to achieve plug-and-play interoperability heterogeneous sensor and actuator Networks is described in  
(Stirbu 2008). Example of REST usage in Business Process Management (BPM) is described in  (Kumaran et al. 2008), 
which focuses on different methods and tools to automate, manage and optimize business processes. REST has also been 
used for modeling and managing mobile commerce spaces  (McFaddin et al. 2008). A final point that critics sometimes use
against REST uniform interface is that what if an RPC operation does not fit within uniform interface (in this case HTTP me-
thods). To summarize the answer is that methods PUT, DELETE, GET and POST are actually the resources gates rather than 
semantics themselves. Thus, that RPC operation becomes, for example, an XML message that is applied to a resource using a 
uniform method; hence, the XML message is the service operation. It is suffice to say that all XML SOAP messages (that de-
scribe RPCs in SOAP-based Web-services) are sent to a server port (URI) using the POST HTTP method. In this case, the 
SOAP message itself is the semantic that describes the RPC operation using POST method entry. However, overloading 
HTTP POST converts HTTP uniform interface into heterogeneous one, hence defeating the uniform interface property of the 
WWW. See (Richardson et al. 2007) for RESTful Web-services design guidelines and techniques.

To summarize, RESTful Web-services is a lightweight approach that hides internal software implementation by using 
universal standardized uniform interface and describing connectivity semantics in form of XML messages. The uniform-
interface property serves as “resources” gates, hence simpler to design, reuse and control. Resources are viewed as uniform 
blocks that are viewed as black boxes with unique universal addresses (URIs) and can be integrated into the distributed envi-
ronment seamlessly even at runtime. Describing semantics in XML messages leads to simpler connectivity standards and 
flexibility to future changes such as synchronization algorithms enhancement, standards updates and interoperability provi-
sion between different standards. Further, REST employs the “hypertext” concept, which means resources (services) can be 
creatively linked to each other (e.g. similar to browsing a Web site). This has the potential to empower simulation with more 
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intelligence when searching and locating new services, real-systems or data at runtime. Linking information together can 
benefit simulation. For example, LPs may be structured in a hierarchy tree (parent-child relationship); in this case, an LP may 
look up another LP address (URI) from the latter LP parent. Furthermore, RESTful distributed simulation is literally accessed 
by any device attached to the Internet, as advocated by the Web 2.0 mashup principles. This type of design is a recipe for a 
plug-and-play (or at least automatic/semi-automatic) distributed simulation interoperability. In contrast, exposing simulation 
functionality in RPCs (called services), which describe semantics in terms of programming procedure parameters and often 
reflect internal implementation, is clearly not the path toward plug-and-play interoperability. Further, services stubs are con-
structed at compile time, which deprive them of the ability to use new services at runtime (static-thinking type of design ap-
proach). Furthermore, services are not linked with each other. For example, a SOAP-based port does not return links to other 
service ports, making them isolated from each other.

Based on these ideas, we designed RESTful-CD++ (Figure 2) the first existing distributed simulation middleware based 
on REST. The RESTful-CD++ middleware design is discussed in Section 3. The middleware main purpose is to expose ser-
vices as URIs. Therefore, RESTful-CD++ routes a received request to its appropriate destination resource and apply the re-
quired HTTP method on that resource. This makes the RESTful-CD++ independent of a simulation formalism or a simulation 
engine. CD++ (Wainer 2009), which is based on  Discrete Event System Specification (DEVS) formalism (Zeigler et al. 
2000), is selected to be the first simulation engine to be supported by the RESTful-CD++ middleware. The simulation man-
ager, shown in Figure 2, manages the distributed CD++ (DCD++) simulation such as the geographic existence of model par-
titions, XML simulation messages and synchronization algorithms. DCD++ simulation manager design is discussed in Sec-
tion 4. The simulation manager is seen externally as a URI (e.g. similar to web site URIs). Thus, it can be accessed similar to 
any other URI from any device attached to the Internet (e.g. Web-browsers, laptops, cell phones, etc.). On the other hand, is a 
component that manages a distributed simulation logical processor (LP) instance, in our case an LP is a CD++ simulation en-
gine (Figure 2). Therefore, LPs exchange XML simulation messages among each other according to their wrapped URIs (in 
this case using the HTTP POST method as discussed in Section 3).

Figure 2: RESTful-CD++ Middleware Distributed Simulation Session

LPs cooperate among each other to simulate the same DEVS model structure in the same simulation run where each LP 
is responsible for simulating a segment of the overall model hierarchy. The model is partitioned among different LPs using an 
XML configuration document, hence allowing seamless modeling reconfiguration and repartitioning in the network. There-
fore, the RESTful-CD++ exposes its APIs as a regular Web-site URIs that can be mashed up with other Web 2.0 applications 
to introduce, for example, real systems or data in the simulation loop. In addition, it is still capable of consuming services 
from SOAP-based Web Services. In this case, it needs to build the required RPC stubs for that service at compile time and 
then communicates with it using SOAP messages.

2 BACKGROUND

Discrete Event System Specification (DEVS) (Zeigler et al. 2000) is M&S specification aims to study discrete event systems. 
The model consists of components connected together through external port(s), where events are exchanged among models 
via those ports. The models being simulated changes state only at discrete points in time (upon the occurrence of an event). 
The P-DEVS formalism (Chow et al. 1994) expresses a system as a number of connected behavioral (atomic) and structural 
(coupled) components. The basic building component of DEVS models is the atomic DEVS model. Coupled models contain 
one or more coupled/atomic models. 

CD++ (Wainer 2009) is modeling and simulation toolkit capable of executing DEVS and Cell-DEVS models. CD++ 
uses “simulators” to simulate atomic models and “coordinators” to simulate coupled models in a parent-child relationship. 
For each DEVS atomic model, users need to implement the various functions in C++ as required by the DEVS formalism. On 
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the other hand, for DEVS coupled models and Cell-DEVS models are defined using CD++ scripts. In addition, CD++ has 
been successfully providing distributed simulation using the SOAP-based WS (Wainer et al. 2008). Using Web-services have 
paved the way toward interfacing CD++ with other applications for providing a mash-up approach. For example, the DEVS 
community is in the progress of interfacing various DEVS-based simulation tools (e.g. CD++) using Web-service technology 
toward DEVS standardization interoperability protocol. On the other hand, we believe (as we show here) that REST re-
source-oriented Web-services can achieve mash-up and interoperability at the Web level with much simplicity, flexibility and 
scalability than the RPC-style approaches.

Figure 3: REST-based WS Programming Model

The Representational State Transfer (REST) provides interoperability (mash-up) by imitating the World Wide Web 
(WWW) style and principles (it was coined in chapter five of (Fielding R. T. 2000)). It exposes services as “resources” 
(which are named with unique URIs similar to Web sites) and manipulated with uniform interface (usually HTTP methods). 
For example (as shown in Figure 3), a client apply HTTP GET method to a resource’s URI to retrieve that resource represen-
tation (e.g. as HTML). This is what happens when you browse a Web site. Further, a client can transfer data (e.g. as XML) by 
applying HTTP methods PUT or POST to a URI. Therefore, URI templates (Gregorio 2008) are the RESTful WS APIs whe-
reas RPCs are the SOAP-based WS APIs. The Web Mash-up approach is appropriate for open communities where each party 
can evolve independently as soon as they follow the Web standards. Therefore, RESTful WS provide promising mash-up 
systems with simplicity and scalability. To name few of the REST principles: (1) Stateless (message-oriented): every request 
should have all of the necessary information to be processed. (2) Uniform interface (are usually HTTP methods). (3) Every 
“thing” is exposed as a “resource” (and named with URIs). (4) Representation (resources state): captures a resource data, 
which is transferable to other resources.

3 RESTFUL-CD++ MIDDLEWARE

The RESTful-CD++ is general middleware (shown in Figure 2) to expose services as URIs to the external world. This makes 
it independent of simulation formalism or a specific simulation engine. The RESTful-CD++ strictly follow HTTP universal 
standards.

The RESTful-CD++ is a URI-oriented architecture where service URIs are structured in hierarchal tree (parent-child re-
lationship) similar to a regular Web site, as shown in Figure 4. Figure 4 shows the server URI template (APIs) that is used to 
construct every possible URI. URI Templates  (Gregorio 2008) are URIs with variables (placed between braces ‘{}’). The 
variables are substituted with appropriate values to get the actual URI instances at runtime. URI Templates simplify both 
clients and server sides. Clients can easily know what part of the URI is under their control, hence enabling them to name 
their resources. This comes handy when, for example, clients want to name different simulation frameworks for different 
scenarios. Further, makes URIs (resources names) easier to remember by clients. URI Templates also benefit the server side, 
since it becomes easier to verify all possible paths that clients can use to manipulate exposed resources (since clients can only 
get to those resources through those URIs).

The root URI (/cdpp) is split into three subordinate resources (Figure 4): (1) URI (…/admin) branch (Line #1 of Figure 
4) is used for administrative services such as create/delete/update accounts, general server configuration and retrieving server 
logs. (2) URI (…/util) branch (Line #1 of Figure 4) is used for utilities purposes that might be helpful for client programs. (3) 
URI (…/sim) branch (Lines 1-9 of Figure 4) is used to structure simulation resources. Simulation contains a number of work-
spaces where a specific workspace (i.e. resource {user workspace} to hold a workspace name) may contain a number of sup-
ported services (i.e. resource {servicetype} to define a service type such as DCD++). A simulation service (e.g. DCD++) may 
contain a number of simulation frameworks (i.e. resource {framework}). For example, simulation framework 
/cdpp/sim/workspaces/Bob/DCDpp/FireModel belongs to workspace “Bob”, service “DCDpp” and “Fire-Model” is the name 
of the framework. The server APIs (Figure 4) can easily be extended to hold more service types such as other simulation en-
gines in addition to DCD++.
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Figure 4: RESTful-CD++ Middleware URIs Template (APIs)

The server stores users’ resources in database, which is divided into user sections where each section belongs to a user. 
This allows multiple requests from different users to modify the database without blocking each other, since each request 
lives in its own thread. Each user’s section (as shown in Figure 5) contains an account object (i.e. username, password, etc.) 
and a workspace object. The workspace contains a list of simulation services (e.g. DCD++). Each service contains a list of 
simulation framework. The framework keeps track of the necessary information to find simulation results or active simula-
tion managers (discussed in next section). Therefore, looking up a user data becomes straightforward from the URI variables, 
shown in Figure 4. 

Figure 5: User Section in the Database

The RESTful resource-oriented approach has not only simplified URI APIs (from both client and server side) and data-
base, but also routing and implementation. Each URI template in Figure 4 has a java class to handle its requests and to gener-
ate an HTTP response. There are three steps carried out upon receiving a request (as shown in Figure 6). Step 1: the Router 
checks if the URI matches one of the URI templates shown in Figure 4. If so, it creates a java thread and initializes it with the 
HTTP request along with an instance of the Java class resource that is associated with the subject URI. Note that the request 
thread owns the HTTP message and the Java class resource. However, the database is shared among all threads. Step 2: The 
proper operation (of the Java class resource) is invoked based on the HTTP method in the request. Step 3: The HTTP re-
sponse is generated and the request thread is terminated. The server spawns a java thread for each request to reduce response 
time; hence, requests are handled simultaneously. This prevents short-time requests (e.g. checking simulation status) of being 
blocked by long-time requests (e.g. downloading large files). This design choice comes naturally since the server divides ser-
vices among number of resources so it is better and more efficient to spawn a thread per request.

Resources (URIs) are manipulated via HTTP uniform interface methods (according to RFC 2616): GET, PUT, DELETE, 
and POST. GET is used to retrieve resources representations (states). The server returns the resource representation in the 
body of the HTTP response message. Therefore, users who can perform GET operation on a resource have read privileges 
from that resource. PUT creates a resource (URI) when it does not exist or updates the resource if it already exists. This 
enables clients to name their URIs with meaningful names. POST appends data to a resource (e.g. XML simulation message). 
DELETE removes a resource. These methods serve as the gates of a resource (as shown in Figure 7), providing uniform de-
sign pattern. Therefore, resources can be viewed as blocks, which construct the whole system structure (analogy with object-
oriented design). On the other hand, semantics are described in form of messages that transfer resources states (representa-
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tion) fully or partially among each other; hence, REST stands for Representational State Transfer. For example, XML simula-
tion messages, discussed in next section, are example of such semantics.  Having standardized uniform interface that every-
one knows not only makes interoperability simpler on the client side, but easier and safer implementation on the server side.
For example, we know GET does not change a resource, but PUT method does change a resource state. However, it can be 
tedious to identify read-only methods when having many different methods spread over the programming code.

Figure 6: Processing Incoming Request Example

The request is authenticated (at Step #1 in Figure 6) according to the HTTP Basic authentication (Franks et al. 1999) to 
verify a user identity (i.e. username and password). Basic authentication is widely supported by Web browsers and Web pro-
gramming languages (e.g. Java and JavaScript). Further, it does not influence performance because only one HTTP message 
is transmitted from client to server, instead of communicating back and forth to authenticate a message as in the case of Di-
gest Access Authentication method (Franks et al. 1999). Once a message is validated, the server checks if the user is allowed
to perform a certain task (authorization process). Thanks to REST uniform interface, this process is straightforward, as 
shown in Figure 7. All modifier methods must be performed by the owner of the resource (i.e. the one who created them). On 
the other hand, GET is performed by anyone by default, unless a resource is restricted by its owner. 

Figure 7: Resources Authorization Process

Each resource (Figure 4) has specification that defines the supported HTTP methods (and their responses), possible 
HTTP errors (e.g. code 401), incoming/outgoing representations media type. For example, the framework resource (Line #6 
of Figure 4) supports the following four operations: (1) GET method. It returns XML or HTML document, describing the si-
mulation framework configuration. (2) DELETE method to delete a framework. (3) PUT method. It creates/updates a simula-
tion framework configuration. (4) POST method. It submits zipped or text model files used for CD++ simulation. Resource 
simulation (Line #7 of Figure 4) manipulates active simulation LP according to the following operations: (1) PUT method: It 
creates (starts) the simulation. (2) DELETE method: It aborts the simulation. (3) POST method: It sends messages to active 
simulation LP. (4) GET method: It is used to read values from simulation in progress. The active simulation resource is au-
tomatically deleted upon simulation normal completion. In addition, the {framework}/results resource (Line #8 of Figure 4) 
is created, enabling modelers to retrieve simulation results.

The RESTful-CD++ middleware server always responds to clients (even if a request causes a software failure in the 
server). In case of software failure, the RESTful-CD++ returns to the client (who sent the request) HTTP status 500 (Internal 
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Server Error) and keeps running. This increases system robustness since a user request cannot bring the server down prevent-
ing all users of using deployed services.

4 DISTRIBUTED CD++ (DCD++) SIMULATION

We plugged CD++ into the RESTful-CD++ middleware, enabling it to perform distributed simulation using RESTful WS 
(we call this extension DCD++). To do so, we needed to add the simulation manager component, shown in Figure 2, to man-
age distributed simulation semantics at runtime such as such as the geographic existence of model partitions, XML simula-
tion messages and synchronization algorithms. In our design, each CD++ engine instance is a separate logical processor (LP) 
with its private simulation queue events. The overall model is partitioned among different LPs using an XML configuration 
document, hence allowing seamless modeling reconfiguration and repartitioning in the network. LPs synchronize simulation 
session between each other using XML simulation messages. These messages are wrapped in HTTP envelopes and sent to an
LP’s URI (see Line #7 of Figure 4) using HTTP POST method, as shown in Figure 8.

Suppose, for example, a modeler created simulation framework and submitted all necessary simulation files to its URI 
(see Line #6 of Figure 4). After that, the modeler can start a DCD++ simulation via creating resource 
“…/{framework}/simulation” (see Line #7 of Figure 4) on the main server (which is the RESTful-CD++ server that is the 
modeler interfacing with). As a result, the main server (acting as client) creates the necessary resources on supportive servers 
and starts the simulation everywhere. Figure 8 shows a DCD++ simulation example between two LPs. As shown in the fig-
ure, the modeler manipulates entire active simulation via main LP’s URI that he created to start the simulation on the main 
server. The figure further shows the message path when an LP desires to send an event to a remote LP, as the following. (1) It 
passes the simulation event to its dedicated simulation manager through the operating system Inter Process Communication 
(IPC) queues. This is because LPs (CD++ engines) run as separate processes. (2) The simulation manager then figures out the 
subject remote LP URI based on the overall model partitions, packs the event as XML message, and sends it to the remote 
URI. At destination, the RESTful-CD++ server passes the message to the proper simulation manager, which in turn passes it 
to the LP via IPC queues. Note that all HTTP messages are authenticated via HTTP Basic scheme (Franks et al. 1999), hence 
each RESTful-CD++ server should have a user account on all other servers (similar to any other client).

Figure 8: DCD++ Session between Two LPs Example

To improve performance, simulation managers spawn a thread for each transmitted message, allowing concurrent mes-
sage transmission. This is because HTTP calls are synchronous; hence, the process is blocked until a response is received 
back. Figure 9 shows an example of two simulation managers. The top manager is sending two concurrent messages (each 
message is actually an HTTP client thread) where the bottom manager is receiving two messages concurrently (via the same 
URI). Therefore, receiving messages by a simulation manager must be thread-safe to avoid message contention.

Figure 9: Sending/Receiving DCD++ Simulation Messages
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To put what discussed so far in an example: A modeler can perform DCD++ simulation in four steps as shown in Figure 
10. The modeler can create a simulation framework and submits all of the CD++ model files in Step #1 and #2 (see Line #6 
of Figure 4). These two steps are only needed once. The modeler can then start the simulation in step #3 (see Line #7 of Fig-
ure 4) and retrieve simulation results in Step #4 (see Line #8 of Figure 4). 

Figure 10: DCD++ Steps by a Client Example

Suppose, as shown in Figure 11-A, a DEVS coupled model that consists of three atomic models. An atomic model forms 
an indivisible block. A coupled model is a model that consists of one or more coupled/atomic models. The atomic Atomic-3 
has two input and two output ports. Each of the input ports is connected to an output port of Atomic-1 and Atomic-2. Addi-
tionally, each of Atomic-3 output ports is connected to an input port of Atomic-1 and Atomic-2. Suppose that this model hie-
rarchy is partitioned between two LPs where LP-1 contains Atomic-1 and LP-2 contains Atomic-2 and Atomic-3. DCD++ 
simulates this model hierarchy as shown in Figure 11-B. Simulator processor simulates an atomic model and Coordinator 
processor simulates a coupled model. DCD++ uses head/proxy structure to reduce the number of exchanged remote messages 
when coordinating a distributed coupled model simulation. In this case, for example, messages exchanged between Simulator 
#2 and Simulator #3 (in Figure 11-B) can be handled locally by the proxy coordinator (on behalf of head coordinator), hence 
converting a remote message into a local one. The head/proxy approach also group remote exchanged messages between 
models at different LPs to reduce the number of costly remote messages. For example, all messages from Simulator #1 head-
ing Simulator #2 (within a simulation phase) are grouped in one XML messages (see Figure 12 example). This solution not 
only cuts the number of remote messages between two coordinators (in a simulation phase) to only one message, but also en-
sures the correct message order arrival to a coordinator, since simulation events (within the same phase) are transmitted si-
multaneously, as shown in Figure 9.

Figure 11: Head/Proxy Modeling Structure
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safe timestamp-ordered processing of simulation events within each LP. The simulation is performed in phases where LPs are 
synchronized at beginning of each phase. Each LP (which is a CD++ engine) has its own unprocessed event queue and the 
simulation is cycling between phases. In this case, the Root Coordinator starts a phase by passing a simulation message to the 
topmost Coordinator in the hierarchy, as shown in Figure 11-B. This message is propagated downward in the hierarchy. In 
return, a DONE message is propagated upward in the hierarchy until it reaches the Root Coordinator. Each model processor 
uses this DONE message to insert the time of its next change (i.e. an output message to another model, or an internal event 
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message) before passing it to its parent coordinator. A coordinator always passes to its parent the least time change received 
from its children. Once the Root coordinator receives a DONE message, it advances the clock and starts a new phase safely 
without worrying about any lingering transit messages in the network. Further, each coordinator in the hierarchy knows 
which child will participate in the next simulation phase. Furthermore, each LP can safely process any event exchanged with-
in a phase since an event is generated at the time it suppose to be executed by the receiver model. In this approach, the Root 
coordinator does not need to contact any of the LPs because they are already synchronized.

Figure 12: Grouping Simulation Messages Example

Finally, the main simulation manager starts a watchdog thread that periodically (2 minutes in our case) sends a message 
to check on the supportive simulation health (hence abort simulation, if a supportive fails). Supportive simulations also watch 
the main simulation manager health, enabling them to release system resources quickly such as processes, threads and any 
other operating system resources, if the main server fails.

5 PERFORMANCE ANALYSIS

We discuss here two test cases to study the RESTful-CD++ server (middleware) and DCD++ behavior when pressure in-
creases. The idea of both cases is to increase the number of clients handled simultaneously. All results are the average of 50 
different runs. The clients were run by one computer (i.e. each client is a separate thread) and are asked to send requests to 
the server at the same time. The “Near” clients sent their requests to the server from the same room through a local wireless 
network where the “Remote” clients use the Internet. The response time is measured (by clients) from the time a request is 
sent until the response is received back. First case studies the response time of the server when load increases, since the serv-
er handles each client request in a separate thread. Figure 13 shows the first test case response-time for concurrent remote and 
near clients. The results clearly show that the server holds its ground under pressure, since response time increases slowly. 
The results show that the more clients, the less of the jump of the response times.
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Figure 13: Server Concurrent Clients Response Time

The second case aims on studying the DCD++ simulation engines response time to clients under pressure. Messages are 
exchanged between simulation engines and RESTful server via IPC queues (i.e. they can be potential bottleneck when load 
increases), as shown in Figure 8. Note that simulation managers in the DCD++ grid do not actually wait for HTTP responses, 

<Messages>
<MessagesCount>3</MessagesCount>
<Message>
   <MessageType>X</MessageType>
   ………
</Message>
<Message>
   <MessageType>X</MessageType>
    ………
</Message>
<Message>
   <MessageType>D</MessageType>
   ………
</Message>
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since those messages are sent in completely separate threads. Simulation managers only know the bad news when failure oc-
curs during message transmission. We repeated the local-clients requests, but with requests (that across via IPC queues) to 
the DCD++ engines, as shown in Figure 14. The results show that the queues load start to show at 70 concurrent clients. On 
the other hand, the queues showed non-bottleneck and held their ground (at least up to 200 simultaneous clients), as shown in 
Figure 14.

0

10

20

30

40

50

60

70

80

1 10 20 30 40 50 60 70 80 90 100 150 200

Concurrent Clients

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

)

Local Clients Requests to RESTful Server Local Clients Requests to DCD++

Figure 14: DCD++ Concurrent Clients Response Time

6 CONCLUSIONS 

We presented here RESTful-CD++  middleware which is the first existing distributed simulation middleware based on REST 
WS, enabling heterogeneous independent developed simulation components to interoperate with much flexibility and sim-
plicity. RESTful-CD++ exposes services as well-connected resources (URIs) and manipulated via HTTP methods (uniform 
interface). RESTful-CD++ is a service container, therefore it is independent of any simulation formalism or simulation en-
gines. We plugged CD++ simulation engine into the RESTful-CD++ middleware to provide distributed simulation in a large 
scale using the Internet. In this case, simulation semantics is defined in form of XML messages. We showed that RESTful 
WS approach has the potential to advance distributed simulation state-of-the-art toward plug-and-play or automatic/semi-
automatic interoperability because it hides internal implementation (via its uniform interface and describing connectivity se-
mantics in form of messages). In contrast, other approaches expose functionalities using heterogeneous RPCs that often re-
flect internal implementation and describe semantics in form of programming parameters. This makes integrating indepen-
dent-developed simulation components difficult and costly to do, since integration may spread into internal implementation.
It is not easy to convince involved parties to do any internal implementation changes that could jeopardize their simulation 
integrity. Therefore, standardizing simulation semantics in form of messages like XML is the commonsense path to pursue. 
Further, those standardized XML messages can reach remote simulation using universal standardized entrances (REST uni-
form interface). Finally, REST approach is not a new hypothesis that we need to experience, but it has already been proven 
on the WWW. Further, it makes simulation accessible from any device attached to the Internet as advocated by Web 2.0 
RESTful mashup concept. It is hard to imagine nowadays that any advanced device does not have access to the Internet. 
REST can bring these devices effortlessly into the simulation loop at runtime. On the other hand, other approaches need to 
compile RPC service stubs before being able to use them.
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