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Abstract 
 Explored here is the ability of Cell B.E. to 
efficiently reveal viable solutions of nonlinear 
function approximation with multilayer perceptron 
(MLP) employing gradient descent algorithm.  The 
capacity of Cell BE to asynchronously trace several 
trajectories of implemented gradient descent 
algorithm from random set of starting points offers 
advantage of revealing statistical trends and 
classifying viable optimal approximations delivered 
by simulated function generator.  Approximation 
conditions of surfaces of 2nd and 3rd order with 
saddle points, such as hyperbolic paraboloid z=x2-y2, 
and Monkey saddle z=x3-3xy2, are determined via 
implementation of gradient descent algorithm (its 
back propagation version) for 3 layers MPL.  
Demonstrated are conditions of generating function 
approximations with (1)highly irregular error 
distribution, (2)close to uniform error distribution as 
well as (3)enhanced approximation.   In the last case 
the overall error is significantly smaller than that 
programmed in the algorithm to be attained via 
training patterns.  Such enhanced solutions offer 
advantage of attaining highly accurate function 
representation within minimized resources of MLP 
(i.e. with minimized number of hidden neurons in 
the MLP).    
 
 
1. INTRODUCTION 
Efficient function generators are needed in the areas 
of signal processing systems, such as those speech 
recognition [1], text-to-speech synthesizers [2], 
Optical Character Recognition (OCR), data mining, 
image compression, medical diagnosis, Automatic 
Speech Recognition (ASR).  Artificial Neural 

Networks are recognized to be able of delivering 
efficient technical solutions, which gain recent 
advancements with ability to adapt neuron’s 
activation function [3-5].  Implementing algorithms 
for generating specific nonlinear functions to 
optimize the respective MLP design has importance 
in view of further implementation of it in the 
hardware.  Recent advancement in Cell B.E. 
development offers efficient tool for algorithms 
implementation in parallel architecture, which 
significantly accelerates the simulation process, as 
well as allows for simultaneous tracing of multiple 
trajectories of such algorithms from randomly 
selected starting points, thus efficiently observing 
the diversity of possible solutions and allowing for 
efficient selection of the better ones.   
 
  
2. PROBLEM FORMULATION AND 

IMPLEMENTATION 
2.1 Nonlinear functions selection  
For this study nonlinear functions were selected of 
2nd and 3rd order with saddle points, which offers 
sufficient challenge for achieving approximation via 
3-in-1-out MLP geometry.  Specifically, the first 
function was the standard saddle surface or 
hyperbolic paraboloid z=x2-y2, shown in Fig. 1 in 
it’s analytical representation.  Second selected 
function was "monkey saddle" defined by the 
equation z = x3 – 3*x*y

2 as shown in Fig.2.  MLP 
consisted of three layers with 3 inputs (x, y, 1), one 
hidden layer with tanh(.) activation function for the 
neurons and linear output neuron, thus allowing 3-D 
function generation.  
 
2.2 Simulation environment   
As a simulation environment a multithreaded 
sinergistic mode on Cell B.E. was implemented by 
allowing PPU to initiate asynchronous threads of  



 

 
Figure 1. Analytical representation of hyperbolic 

paraboloid z=x2-y2 for the area under simulation.  
.   

 

 
Figure 2. Analytical representation of “monkey 

saddle” z = x3 – 3*x*y
2 for the simulated area.   

 
gradient descent algorithm on available SPU's 
concurrently.  Solutions were attained via subjecting 
MLP to training for selected training points until the 
convergence lead to attaining the desired level of 
mean squared error ε.  The output parameters of 
each SPU run are weights of the MLP's neurons, 
which compose the neural function generator/ 
approximator.  The algorithm solutions, which are 
above mentioned sets of the input weights for MLP's 
neurons, are classified according to the statistical 
characteristics of the function approximation they 
provide, such as under-fitting, over-fitting, minimal 
mean squared error fitting.  The starting points (i.e. 
weights of the neurons) for the gradient descent 

algorithm deterministically define the convergence 
route to the solution, which satisfies the conditions 
of optimality in that the average mean square error 
for a predetermined set of training points falls below 
chosen limit ε..Evaluation of the quality of the 
achieved solution was conducted by employing two 
more error parameters: (i) mean squared error for the 
most remote from training coordinate points Et, and 
(ii) overall mean squared error Ed for combined 
coordinates including joint set of X and Y, both 
including all of training and testing (used in (i)) 
coordinates.   
 
 
2.2 Solutions attained  
2.2.1 Hyperbolic paraboloid z=x2-y2 case 
For hyperbolic paraboloid, the algorithm 
convergence is achieved at minimum 7 hidden 
neurons and the training points sets of X=Y=[3.5 2.5 
1.5 0.5 -0.5 -1.5 -2.5 -3.5].  The solution attained for 
this set of training points and involving 10 hidden 
neurons is shown in Fig.3.  

 
Figure 3. The function generated to approximate 

hyperbolic paraboloid with 10 hidden neurons and 
training points sets of X=Y=[3.5 2.5 1.5 0.5 -0.5 -
1.5 -2.5 -3.5]. ε.= 0.000998, Et=0.352983 and 
Ed=0.681416.   

 
Error parameters for the function in Fig.3 are ε.= 
0.000998, Et=0.352983 and Ed=0.681416, while sets 
of testing points were Xt=Yt=[4.0 3.0 2.0 1.0  0.0  
-1.0  -2.0 -3.0 -4.0] and sets of overall evaluation 
points were Xd=Yd=[4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5  
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0].  It is seen 
that because ε.<< Et< Ed, the errors are minimal near 



the training points while grow significantly for any 
other points, to which the MLP was subjected to.  
The tests reveal that significant enhancement of the 
quality of the approximation can be achieved by 
scaling down by factor of 2 the distance between 
training points, i.e. for X=Y=[1.75 1.25 0.75 0.25  
-0.25 -0.75 -1.25 -1.75].  Under these circumstances 
the instances took place when the overall attained 
error was much smaller than the preprogrammed 
error for the training points, i.e.. Ed<< ε.  This case is 
illustrated in Fig.4.  
 

 
Figure 4. Enhanced approximation of the hyperbolic 

paraboloid with 10 hidden neurons and training 
points sets of X=Y=[1.75 1.25 0.75 0.25 -0.25 -
0.75 -1.25 -1.75]; ε.= 0.000999, Et=0.007481 and 
Ed=0.000007.   

 
For the case of Fig.4 the Et value was measured for 
sets Xt=Yt=[2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0] , 
while Ed was attributed to the sets of points Xd = Yd 

= [2.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25 0.0 -0.25 -0.5 -
0.75 -1.0 -1.25 -1.5 -1.75 -2.0].  It is seen that 
distribution of errors for various sets of points 
changes drastically, overall being in favor of points 
to which MLP had no exposure (because Ed<< ε).  It 
is worth to note that ratio ε /Ed = 0.000999 /0.000007 
= 142.7, i.e. overall enhancement attained in mean 
squared error is more than 2 orders of magnitude, 
which suggests that high quality of approximation is 
achievable at moderate expense (same 10 hidden 
nodes as in Fig.3) when enhanced mode is attainable 
for the gradient descent.   
 
 
 

2.2.2 “Monkey saddle” z = x3 – 3*x*y
2 case 

For the case of “monkey saddle”, the  convergence 
of the gradient descent algorithm become attainable 
with the least number of hidden nodes being 10 and 
under training sets of points  X=Y= [1.75 1.25 0.75 
0.25 -0.25 -0.75 -1.25 -1.75].  Worth while range of 
errors is attainable is number of hidden nodes is 
increased to 12, th result of which is shown in Fig.5.  
 

 
Figure 5. The function generated to approximate 

“monkey saddle” with 12 hidden neurons and 
training points sets of X=Y=[1.75 1.25 0.75 0.25 -
0.25 -0.75 -1.25 -1.75]. ε.= 0.050009, Et=0.136521 
and Ed=0.181012.    

 
The quality of the approximation is still low, 
particularly because of the relation ε.< Et< Ed, which 
means that best approximation is attained at training 
points only and errors increase for the rest of the 
points.  Coordinates were Xt=Yt=[2.0 1.5 1.0 0.5 0.0  
-0.5 -1.0 -1.5 -2.0] and Xd = Yd = [2.0 1.75 1.5 1.25 
1.0 0.75 0.5 0.25 0.0 -0.25 -0.5 -0.75 -1.0 -1.25 -1.5 
-1.75 -2.0].   
 
Scaling down the distance between training points 
by factor of 2, which was very much successful for 
the hyperbolic paraboloid, brings a success, which is 
worth mentioning by illustrating it in Fig.6, even 
though enhancement attained is not as dramatic as 
before.  Coordinates in question become Xt = Yt = 
[1.0 0.75 0.5 0.25 0.0 -0.25 -0.5 -0.75 -1.0] and Xd = 
Yd = [1.0 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0.0 -
0.125 -0.25 -0.375 -0.5 -0.625 -0.75 -0.875 -1.0].   
 
 
 



 
Figure 6. The function generated to approximate 

“monkey saddle” with 12 hidden neurons and 
training points sets of X = Y = [0.875 0.625 0.375 
0.125 -0.125 -0.375 -0.625 -0.875]; ε.= 0.050001, 
Et=0.023518 and Ed=0.030031.    

 
The attained error parameters become ε.= 0.050001, 
Et=0.023518 and Ed=0.030031, i.e. enhanced mode 
is attained for points most remotely located from the 
training points (which was not the case in hyperbolic 
paraboloid), and this brings overall enhancement by 
the factor of ε /Ed = 0.050001 /0.030031 = 1.66 with 
the best enhancement for points most remote from 
training ones: ε./Et= 0.050001/ 0.023518 = 2.1. 
Distribution of errors for the “monkey saddle” case 
is much more uniform than that for the hyperbolic 
paraboloid for either mode of approximation – 
enhanced or not.  
 
 
3.   CONCLUSIONS 
The following conclusions can be drawn with regard 
to suitability of Cell B.E. for gradient descent 
algorithm implementation for  nonlinear function 
approximation of second and third order with saddle 
points.  
1. Cell B.E. is allowing for efficient tracing of 

multiple trajectories of the gradient descent 
algorithm, revealing best approximation 
conditions.  

2. For the hyperbolic paraboloid z=x2-y2 the 
enhanced mode of function approximation is 
attained gaining  overall mean squared error 
reduction of more than two orders of magnitude 
(ε./Ed= 142).  

3. For “monkey saddle” z = x3 – 3*x*y
2 the 

enhanced mode of function approximation is 
also attainable and strongest demonstrated 
enhancement is attained for points most remote 
from the training ones ( ε. / Et = 2.1 ), gaining  
overall mean squared error reduction by factor 
of ε./Ed= 1.66.  
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