
CD++ Repository: An Internet Based Searchable Database of DEVS Models and Their Experi-
mental Frames

Rachid Chreyh, Gabriel Wainer
Department of Systems and Computer Engineering

Carleton University
Ottawa, ON K1S-5B6 Canada

rchreyh@connect.carleton.ca, gwainer@sce.carleton.ca

Keywords: DEVS, CD++, Model Libraries, Model Re-use,
Experimental Frames

Abstract
 The development of simulation models for complex
systems can be difficult and time consuming. This makes
the ability to re-use modelling components of high value. To
be able to re-use modeling components it is important to
know the context within which a given component was de-
veloped. Experimental Frames are useful for capturing this
context. We present the CD++ Repository – an internet
based searchable database of re-usable CD++ DEVS models
and their Experimental Frames. CD++ Repository facilitates
the re-use of models and allows users in different geo-
graphical locations to collaborate in building complex mod-
els. The database is built as a hierarchy of the stored atomic
and coupled models, thus eliminating repetition. One of the
key features is that along with the storage of the atomic and
coupled models, it stores Experimental Frames for each
model, which allows users to easily determine the context
for which a given model applies.

1. INTRODUCTION
Modeling of complex systems is a difficult and time- con-
suming endeavor. Applying the concept of component re-
use to the modeling process greatly reduces the time and ef-
fort required to create new and more complex models.
DEVS’s hierarchical and modular approach to model crea-
tion allows for models to be independently tested and re-
used thus enhancing reliability, maintainability and reducing
the time and effort required for model development and test-
ing [1]. The creation of DEVS models, however, involves
examining the source system through an “Experimental
Frame” (EF) which defines the conditions under which a
system is observed or experimented with [1]. A DEVS
model thus aims to approximate the behaviour of the source
system within the parameters set by the EF.
 Similarly, the experiments used to verify the validity of
a given DEVS model can be difficult and time consuming to
develop. The ability to re-use the experiments developed for
one DEVS model during the testing of other similar DEVS
models would be of great benefit to the modellers. For ex-
ample, if a model of a traditional keyboard exists and there

is a number of experiments to test all of the different combi-
nations of button presses, these experiments could be re-
used to test a new model of a touch-screen keyboard.
 For modellers to make use of the re-usable DEVS com-
ponents we propose a method to access and search a reposi-
tory of components. For it to be useful, such a repository of
DEVS modeling components must contain, for each com-
ponent, a description of its EF so that users are able to de-
termine the context within which a given component is
valid. In addition, storing the experiments for each stored
model would be of great benefit to the modellers. Finally,
the increasing need for teams of modellers located at differ-
ent geographical locations to work with the same modelling
components means that such a repository would benefit
from being accessible over the internet.
 This work introduces such a models library: the CD++
Repository which is based on the CD++ Builder Toolkit [2].
CD++ Repository is composed of a web-based database
server and a client application built as an addition to the
CD++ Builder toolkit. The CD++ Repository’s database is
capable of storing Atomic and Coupled CD++ DEVS mod-
els in addition to CD++ Cell-DEVS models [3]. The data-
base is built as a hierarchy of the stored atomic and coupled
models, thus eliminating any needless repetition. In addi-
tion, for each stored model, the database stores EF informa-
tion, which helps users determine the validity of a model
within different contexts, and any number of experiments
associated with the model. The CD++ Repository’s client
application is embedded within the CD++ Builder Toolkit
[2] and it enables the user to search for, store, and retrieve
DEVS and Cell-DEVS models and their EFs directly from
the CD++ modelling and simulation environment. Finally
the CD++ Repository Client connects to the CD++ Reposi-
tory Database over an internet connection, thus allowing the
access of the library of models and EFs from any geo-
graphical location.

2. EXPERIMENTAL FRAMEWORKS
The Experimental Frame (EF) concept has been introduced
to capture the set of circumstances under which a real sys-
tem is to be observed, or is to be subjected to experimenta-
tion [1, 5]. This makes the meaning of EF ambiguous in that
it could mean different things within the M&S process (ex-

perimentation, data collection, modelling, simulation). In [6]
the idea of a framework that takes into account the different
meanings of an EF was introduced. These ideas were for-
malized by the Context-Frame-Experimentor framework in-
troduced by Traore and Muzy [7]. This framework presents
a clear distinction between the three levels of abstraction,
namely: the context through which a real system is being
studied, the specification of this context as an EF, and the
implementation of this EF to execute on a simulator.

Figure 1. Experimental Frame Definition [7]

 Using this framework of the EF, presented in Figure 1,
one can formally describe the context by the EF. One can
think of the EF as a circuit board with input and output ports
into which a source system or a model can be ‘pluged-in’.
The EF itself can be a complex combination of components
with their own interconnections and inputs and outputs.
Then an EF can be described as [7]:

EF =<T , IM , IE , OM , OE , ΩM , ΩE , ΩC , D ,
{Cd , d ε D}, CPIC, EICC, POCC, CEOC, CCC>

T is a time base, IM is the set of Frame-to-Model input vari-
ables, the plug-in input set, IE is the set of Frame input vari-
ables, the control input set, OM is the set of Model -to-
Frame output variables, the plug-in output set. OE is a set of
Frame output variables, the summary set, ΩM is the set of
admissible input segments for the plug-in component, the
plug-in input constraints set, ΩE is the set of admissible in-
put segments for the experimentation control, the control in-
put constraints set, ΩC is the set of admissible output seg-
ments expected from the plug-in component, the plug-in
output constraints set. D is a set of component names, the
control components set, Cd is a model for each d ε D, CPIC
is the Control-to-Plugin-Input coupling. Finally, EICC is
the External-Input-to-Control coupling, POCC is the
Plugin-Output-to-Control coupling, CEOC is the Control-
to-External-Output coupling, CCC is the Control-to-Control
coupling.

3. CD++ REPOSITORY ARCHITECTURE
The CD++ Repository is comprised a server and a client
component. The server contains the Central Database of

Models and their EFs, hosted on a computer connected to
the Internet. The client component is the CD++ Repository
application accessible from inside CD++ Builder (an
Eclipse plug-in).

Figure 2. Architecture Diagram

 CD++ Repository uses a MySQL Database and an FTP
server to access files related to the stored entities. The
CD++ Repository software residing on a client machine can
connect to these servers in order to upload/download infor-
mation: Atomic and Coupled Models, EFs (including EF
Inputs and Outputs, and Ranges), Experiments, and Experi-
mental Results. The following sections will address the fol-
lowing questions:
1. For a given model, EF, Experiment, or Experiment Re-

sult, what kind of information is stored in the database?
2. How are the relationships between the models (Atomic

and Coupled) handled?
3. How is the relationship between the Models, EFs, the

Experiments, and Experimental Results handled?

3.1. Atomic and Coupled DEVS Models
CD++ Builder uses three files to describe any Atomic
Model. The first two are the C++ class files (.cpp and..h) de-
rived from the abstract C++ class “Atomic”; they describe
the behaviour of the Atomic model being developed. Cou-
pled and Cell-DEVS Models are described on a model defi-
nition file (.ma) using a built-in specification language.
 The following information (referred from now on as the
Model Data) has been identified and collected:
1. Model Name: a unique name generated by the CD++

repository software.
2. Domain: the domain under which the model can be

categorized. (i.e. Telecommunications Equipment, Ur-
ban Traffic, etc.)

3. Title: a title for the model.
4. Acronym: an acronym for the model.

CD++ Client #1
CD++ Client #2

CD++ Client #3

CD++ Client #4

FTP MySQL

CD++ Server Machine

Internet

Fr
Frame Components

CCC

IE

IM

CPIC

EICC

OM

POCC

CEOC

OE

5. Brief Description: a short paragraph describing the
model’s general characteristics.

6. Key Words: They are associated with the model, and
can be useful when doing a search of the repository.

7. Developer Name.
8. Creation Date.

When Coupled DEVS models are stored their ‘relation-
ships’ with other models have to also be stored in the data-
base. To this end, the CD++ Repository maintains the hier-
archical construction of the Coupled models even while they
are stored. This is done by storing the Coupled model as a
separate entity (with its own Model Data and (.ma) file) and
linking it to its tree of child models in the repository. For
example, for the model in Figure 3, each of these models are
stored separately in the repository, with Model A linked to
Models X and Y, and model B linked to models A and Z.

Figure 3. Stored Coupled Models

3.2. Experimental Frames
An EF for a given model contains some Experimental
Frame Data (analogous to the Model Data), a set of Ex-
periments that can be run on the Model, and other informa-
tion. The Experimental Frame Data is comprised of textual
descriptions that can be used to specify the context within
which a given model is valid including:

1. Objectives for which the model was built.
2. Assumptions made by the model designer when de-

signing this model.
3. Constraints within which the model was designed

to operate.
 More detailed EF information is included to deal with
the formal definition of the EF. This information captures
all of the inputs and outputs of the EF and the valid range of
values for each input or output. This information is stored in
such a way as to eliminate any repetition.

3.3. Experiments
Experiments are stored separately and linked to the EF of
the model to which they apply. A given experiment may ap-
ply to more than one model and thus may be linked to more
than one EF. Like the Models and EFs, each experiment
also has descriptive data stored with it which will be re-
ferred to as the Experiment Data. The Experiment Data is
comprised of the following pieces of information:

1. Experiment Name: a unique name generated by the
CD++ repository software.

2. Title.
3. Brief Description: a short paragraph describing the ex-

periment in general.
4. Objectives for which the experiment was created.
5. Assumptions made by the designer of the experiment.
6. Constraints within which the experiment was designed

to operate.
7. Developer Name.
8. Creation Date.
 It is important here to explain the difference between
the objectives, assumptions and constrains of the experiment
as opposed to the EF. For the EF these pieces of information
refer to the model and the characteristics of the model itself,
however for the experiment they refer to the experiment it-
self and thus are usually a sub-set of those in the EF.

3.4. Experimental Results
CD++ Repository also keeps Experimental Results for a
given Experiment on a given Model. Since Experiments
may apply to more than one Model, the information is not
directly linked to the Experiment. Instead, it is linked to the
Model on which it was performed. The Experimental Re-
sults information is comprised of the following:
1. Success: A Boolean value to indicate success or failure

of the experiment
2. Description Document: A document containing any

comments related to the performance or the results.
3. Log file: The (.log) file generated by CD++ for this run

of the experiment. This file contains many details of the
CD++ simulator’s actions during simulation.

4. Output file: The (.out) file generated by CD++ for this
run of the experiment, containing the values presented
at the outputs of the model under test and the time the
outputs took that value.

4. THE CD++ REPOSITORY CLIENT
The CD++ Repository Client was built as part of the CD++
Builder plug-in in Eclipse. When the user activates the
CD++ Repository application within Eclipse they are pre-
sented with one of the following options:

a) Uploading Models and Experiments
When uploading models to the database the Repository
Software will automatically:
1. Detect what kind of Model this is (Atomic, Coupled,

Cell-DEVS).
2. For Coupled models, detect all the sub-models and con-

struct the full hierarchy under the parent model.
3. Establish a name for this model and all sub-models.
4. Detect conflicts with models that already exist in the

repository (and handle the conflict appropriately).

Coupled Model
‘B’

Coupled Model
‘A’

Atomic Model
‘Z’

Atomic Model
‘Y’

Atomic Model
‘X’

5. For Coupled models: detect whether any of the child
models already exists in the Repository, and if they do
handle the conflicts appropriately.

6. For Coupled models: construct a list of all the models
that do not already exist and for which data needs to be
collected from the user.

7. Finally, collect the required Model Data, EF Data, and
the files for the model and child models (if applicable)
and upload all of this information to the Repository.

b) Search and Download of Models and Experiments
When the searches for a model or experiment they are pre-
sented with a simple search dialogue window which allows
the user to search for a model based on some of the Model
Data (or Experiment Data). After performing the search, the
CD++ Repository presents the search results to the user.
Figure 4 shows a screenshot of the model search results
screen (the experiment search is similar except that it con-
tains experiments and experiment related information).

Figure 4. Search Results Screen Shot

 The Search Results window is divided into three main
areas. The top area contains a drop down list (to select one
of the search results) and a refine search button. The bottom
left area is the Search Results Pane, which contains a list of
entries representing a model that matched the search criteria.
Each of these entry contains some general information about
the model that it represents. Finally, the bottom right area is
the Details Pane, containing all of the information concern-
ing the selected model. It includes an area in which all of the
Model Data and Experimental Frame Data for the selected
model is displayed, including a listing all of the experiments

for the selected model and the experimental results for each
experiment (here, some of the information for the model
SimCard). The View Details button enables the user to view
the detailed description document for the selected model.
Finally, a drop down list and a text box enables the user to
view the text contained in any of the selected model’s files.
The user can select to display the text contained in the files
by selecting the appropriate file type from the drop down
list. When the user has found a model that they want to
download, they can proceed.

c) Modifying Models and Experiments
A user can choose to modify a model or experiment that al-
ready exists in the database. This feature allows the user to
add/remove experiments to/from the EF of a given model. It
also allows the use to modify any of the following informa-
tion: Model Data, Experimental Frame Data, or Experiment
Data. However this feature cannot allow a user to modify
the actual model files stored in the repository.

5. CD++ REPOSITORY ARCHITECTURE
CD++ Repository uses a client-server architecture with the
client application being the CD++ Repository portion of the
CD++ Builder plug-in, and the server being the database
server running on a remote machine where all of the data
objects are stored. CD++ Repository is a “thick client” ap-
plication (all of the logic is carried out on the client machine
while the interaction with the server is solely to send and re-
trieve data to and from the database).
 CD++ Repository’s client application is made up of two
layers, the presentation and the persistence layer. Presenta-
tion is concerned with interactions with the user through
displaying data retrieved from the database and collecting
data to send to the database. It uses the persistence layer to
search the database, retrieve data from the database, make
decisions about what to display, send data to the database,
and detect conflicts. One final important part of the architec-
ture are the Business Objects, which encapsulate the busi-
ness data and their behaviours. They are used to exchange
data between the presentation and persistence layers and
their behaviours are used by the presentation layer to per-
form some processing on the data in the objects.

Figure 5. Software Architecture

 Figure 5 gives a high-level view of the CD++ Reposi-
tory’s client application. As can be seen in the diagram, a

major part of the persistence layer is the Hibernate Java
Package. This is the object relational mapping tool used by
the CD++ repository to map the Business Objects to their
corresponding Relational Tables in the database [8]. The
presentation layer makes use of the BIRT [9] (Business In-
telligence reporting Tools) package, an Eclipse plug-in that
enables the design and the runtime generation of reports and
it is used in the display of search results to the user.

5.1. The Business Objects
The class diagram Figure 6 shows the most important Busi-
ness Object (BO) Classes of the CD++ Repository software.
The central class is the Model class, which represents all of
the information that relate to Atomic/Coupled models. In
addition, it contains a set of ExperimentalResults objects
and a single ExperimentalFrame object. This reflects the
fact that each model can have many Experimental Results
and only one EF. The ExperimentalFrame class contains a
set of Experiment objects representing the experiments that
can belong to a given model. AtomicModel and Coupled-
Model classes extend the base Model class. Finally the Ex-
periment class has two AtomicModel class objects and two
CoupledModel class Objects. These represent the possibility
that an Experiment can be model based (as opposed to event
based) in which case it would have a model as a ‘generator’
and another model as a ‘transducer’.
 The class diagram in Figure 6 does not show the meth-
ods for each class. In general each class attribute has getter
and setter methods, and other methods common to all of the
Business Objects (i.e., equals and hashCode, defined by the
Java language for all Java objects). These methods are over-
ridden to provide proper object identity for the BO’s. Some
classes have other methods that perform simple operations
related to each class:

a) Model:
• getExpFilename: given the name of a particular ex-

periment, it finds the matching experiment in the set of
experiments for the current model.

• getMatchingExperiment: finds a matching experiment
in the set of experiments for the current model, and re-
turns the experiment object.

• createZipFile as in Model before creates a (.zip) file
containing all of the files related to the current model
and returns the name and path of the created (.zip) file.

b) CoupledModel:
• findCoupledSubModelByName: finds the coupled

model in the tree of models.
• findParentofCoupledSubModelByName: finds the cou-

pled model in the tree, and returns the parent model of
the coupled model found.

• retrieveAllAtomicSubModels: returns a set of all of the
Atomic model objects for this coupled model.

Persistence Layer

Presentation Layer

MySQL Da-
tabase

FTP
Server

Hibernate Package

DatabaseAccessObjects Package

DatabaseServices Package

Utility
Classes

Business
Objects

Hibernate
Utility Classes

Repository.Gui Package

BIRT Tools

Figure 6. CD++ Repository Business Objects

• retrieveAllCoupledSubModels: returns a set of all of the

Coupled model objects for this coupled model.
• sameStructure: checkes if two coupled models have the

same structure.
• findChildCoupledModelByName: finds the immediate

child of this model that is a coupled model.
• getAllFileNames: returns a list of the names of all of the

(.zip) files for all of the models in tree under this model.
• updateModelInfo: it updates selected attributes of the

current coupled model.
c) Experiment:
• genNextExpName: it creates a unique name to be used

for the next Experiment object to be created.
• createZipFile: creates a (.zip) file containing all of the

files related to the current experiment.

d) ExperimentalResults:
• createZipFile: creates a (.zip) file containing all of the

files related to the current ExperimentalResults

5.2. Hibernate and Object-Relational Mapping
An important question to a database application like the
CD++ Repository is how to manage the application’s persis-
tent data. The Business Objects described in the previous
section are used to hold this persistent data during the life of
the application using MySQL (a Relational Database. While
the java application uses an object-oriented representation of
the business entities (the Business Objects), the relational
database uses a tabular representation of the same business
entities (the database tables). The relational model and ob-
ject–oriented model are two fundamentally different models

of data representation [8]. This problem has been re-
searched thoroughly and there are numerous attempts at so-
lutions. We used Hibernate, which uses Object/Relational
Mapping (ORM) techniques to solve the mismatch [8].
 Hibernate uses XML (Hibernate mapping files) to map
Java business objects into SQL tables. Each class that needs
to be persistent must have a Hibernate mapping file that de-
fines the database table that the class maps to and that maps
the properties of the class to the appropriate columns or ta-
bles in the database. The tables generated for the CD++ re-
pository are shown in Figure 7.

Figure 7. CD++ Repository Relational Tables

 For the most part the database tables have similar
names to the business objects to which they map. The rest of
the database tables in Figure 7 are join tables that represent
the interconnections between the objects. Coupled_
Atomic_Map and Coupled_Coupled_Map tables represent
the fact that a Coupled model can have Atomic and Coupled
models as children. Coupled_ExpResults_Map and
Atomic_ExpResults_Map tables represent the fact that each
atomic and coupled model can be associated to multiple ex-
perimental results. EF_Experiments_Map represents the fact
that an EF can be associated with multiple experiments.

5.3. Persistence Layer Java Packages
Hibernate sits at the interface with the database; as such any
of the CD++ Repository code that needs to interact with the
database is required to interface through Hibernate. There
are, however, many details that one should keep in mind to
be able to use Hibernate correctly in a Java application: the
management of Hibernate Sessions, Hibernate Transactions,
Transient, Persistent and Detached Objects. CD++ Reposi-
tory’s software architecture hides most of the details that

deal with the use of Hibernate inside the Persistence Layer.
Therefore a few packages and utilities have been built to en-
capsulate the database services required by the Presentation
layer such that Presentation layer code is not bogged down
with Hibernate programming details.
 The HibernateUtil Class is the utility used to start Hi-
bernate. It contains a static SessionFactory attribute and a
static getter function for it. An initialization method (Initial-
izeSessionFactory) instantiates and configures the Hibernate
SessionFactory by loading configuration information from
the Hibernate configuration file as well as using the CD++
Repository preferences page to get information required to
connect to the appropriate SQL server and database. Other
utility methods that are made available to the Presentation
Layer by this class are:
• attachToSession: attaches an object to a session. This is

useful in situations where the object contains a graph of
other objects whose values need to be accessed from
the database.

• commitSessionTx: Used to end the transaction and close
the session started by attachToSession.

• mergeObject: opens a session, and updates the database
with the detached object’s information.

 RepositorySearchUtil provides the following methods
to inspect the repository with respect to a given Model or
Model name:
• isInConflictWithRepo: determines whether a passed in

Coupled model has the same structure as the matching
(by name) coupled model in the repository.

• modelNameInRepository: determines if the passed in
model name already exists in the repository.

• getAtomicModelFromRep & getCoupledModelFrom-
Rep: search the repository for a model matching the
passed in model name.

 The databaseServices Package also contains a class for
each business object. Each class provides database services
for the related business object. The majority of the methods
in these classes are similar to the methods of the DAO
classes. In addition some of the DatabaseService classes
contain methods that are used to perform more complicated
functions such as more advanced searches of the database:
• findModels is used by the Presentation layer to find the

models, both coupled and atomic, that match certain
search criteria (name, description, title, etc.). In addition
it takes in an indicator to whether an OR or an AND
operation should be used between these search criteria.

• refineModels is used to do a “refine search” operation
on a set of Model search results.

• findExperiments is used to find the Experiments that
match certain search criteria.

• refineExperiments is used to do a “refine search” opera-
tion on a set of Experiment search results.

• createExpFrameWithInputsOutputs is used when stor-
ing the EF’s input and output port information. This

method creates a new EF object and assigns to it the
values for the inputs and outputs that were entered by
the user. It needs to check the database for existing in-
put/output elements. If an element of an input or output
is found in the database, then that element is itself used
in the current EF object without having to create a new
one, preventing redundancy.

5.4. Presentation Layer Java Packages
CD++ Repository is a component of the CD++ Builder,
which in itself is an Eclipse plug-in. Therefore the interface
to the CD++ Repository has to be integrated with the rest of
the CD++ Builder Toolkit plug-in and should have a similar
look and feel as the Eclipse environment. To that end the
Presentation layer of the CD++ Repository is mostly built
using the Eclipse Standard Widget Toolkit (SWT) package.
Also, to complete the integration, the user preferences for
the CD++ Repository application are integrated in the
Eclipse preferences menu under the CD++ Builder Prefer-
ences section. Finally, launching CD++ Repository is done
through a button in CD++ Builder toolbar in Eclipse.

5.5. Utility Classes
There are a number of utility classes that are used through-
out the CD++ Repository application, collected in the Re-
pository.Util package. The following is a list of the more
important of these utility classes:
• BirtUtil: it contains a number of static methods that are

used to generate the information displayed on the
search results page for Experiments and Models. The
class makes use of the BIRT engine and the appropriate
BIRT report design files to generate HTML formatted
reports that are displayed in the search results page.

• CdxxSftpClient: it implements a secure FTP client ca-
pable of uploading and downloading files to the FTP
server specified by the IP address in the configuration.

• FileSystemUtilities: it class contains a number of file
system related methods that are used in various places
in the application.

• MaFileParser: it is used to parse the model definition
(.ma) files for each model. By parsing the (.ma) file this
class is able to build the tree of models that exist under
a coupled model and to determine the input output ports
for any model. It has a number of other methods that
query the tree of models built by the parser.

• ZipUtil: it contains methods that are capable of com-
pressing and uncompressing files using the java.util.zip
utility.

6. CONCLUSION
We presented the design and implementation of a new
CD++ Builder application as part of the CD++ Builder
Toolkit, namely the CD++ Repository. This application is
intended to make the task of re-using DEVS models easier.

The difficulties that need to be overcome to enable efficient
model re-use include the following:
• The availability of the re-usable components from

which the modellers can easily locate the models of in-
terest to them.

• For each model, the availability of information about
the context within which a given model is valid.

• For each model, the availability of any experiments that
were used to verify the validity of the given model.

• The ability to access all of this information from differ-
ent geographical locations to allow teams of modellers
at different locations to work together.
CD++ Repository stores all information on a server ac-

cessible over the internet from any location with internet ac-
cess. It efficiently stores CD++ DEVS model information in
a hierarchical structure that parallels the natural structure of
DEVS models. It also stores an EF for each stored model.
The EF includes information about the context of use for the
stored model, as well as any number of experiments that
were used to test different aspects of that model.

References
[1] Zeigler, B.; H. Praehofer; T.G. Kim. 2000. Theory of

Modeling and Simulation, 2nd Edition. Academic Press,
San Diego, CA.

[2] Chidisiuc K. and G. Wainer. 2008. “CD++Modeler: A
Graphical Toolkit to Develop DEVS Models.” Poster
Paper. In Proc. of SpringSim’08. Ottawa, ON. 2008.

[3] Wainer G.; N. Giambiasi. 2001. “Timed Cell-DEVS:
Modeling and Simulation of Cell Spaces.” In Discrete
Event Modeling & Simulation: Enabling Future Tech-
nologies. Springer-Verlag.

[4] Zeigler, B. 1984. Multifaceted Modeling and Discrete
Event Simulation. Academic Press, London.

[5] Barros F. J.; A. Lehmann; P. Liggesmeyer; A. Ver-
braeck; B. P. Zeigler. 2006. “04041 Abstracts Collec-
tion -- Component-Based Modeling and Simulation.” In
Proceedings of Dagstuhl Seminar 04041 Component-
Based Modeling and Simulation.

[6] Traore M.K., and A. Muzy. 2006. “Capturing the Dual
Relationship Between Simulation Models and Their
Context.” Simulation Modelling Practice and Theory,
Vol. 14, No.2, (February): 126-142.

[7] Bauer C.; G. King. 2005. Hibernate In Action. Manning
Publications Co., Greenwich, CT.

[8] Weathersby J.; D. French; T. Bondur; J. Tatchell; I.
Chatalbasheva. 2006. Integrating and Extending BIRT.
Addison-Wesley.

[9] Wainer G., 2002, "CD++: A Toolkit to Define Discrete-
Event Models". Software - Practice and Experience,
Vol. 32, No.13, (November): 1261-1306.

