CD++ Repository: An Internet Based Sear chable Database of DEVS Models and Their Experi-
mental Frames

Rachid Chreyh, Gabrie Wainer
Department of Systemsand Computer Engineering
Carleton University
Ottawa, ON K1S-5B6 Canada
rchreyh@connect.carleton.ca, gwainer @sce.carleton.ca

Keywords. DEVS, CD++, Model Libraries, Model Re-use,
Experimental Frames

Abstract

is a number of experiments to test all of the défe combi-
nations of button presses, these experiments doelde-
used to test a new model of a touch-screen keyboard

For modellers to make use of the re-usable DEMS-co

The development of simulation models for complexponents we propose a method to access and seegpbs-

systems can be difficult and time consuming. Thiakes
the ability to re-use modelling components of higtue. To
be able to re-use modeling components it is importa
know the context within which a given component was
veloped. Experimental Frames are useful for capguthis

context. We present the CD++ Repository — an imern

based searchable database of re-usable CD++ DE\SIso
and their Experimental Frames. CD++ Repositorylifatés
the re-use of models and allows users in differgeb-
graphical locations to collaborate in building cdexomod-
els. The database is built as a hierarchy of theedtatomic
and coupled models, thus eliminating repetitione @h the
key features is that along with the storage ofatwenic and
coupled models, it stores Experimental Frames fmhe
model, which allows users to easily determine tbetext
for which a given model applies.

1. INTRODUCTION

Modeling of complex systems is a difficult and tinmmn-
suming endeavor. Applying the concept of compoment
use to the modeling process greatly reduces the dimal ef-

tory of components. For it to be useful, such asépry of
DEVS modeling components must contain, for each-com
ponent, a description of its EF so that users hle t de-
termine the context within which a given componént
valid. In addition, storing the experiments for leatored
model would be of great benefit to the modelleligalfy,

the increasing need for teams of modellers locatetiffer-

ent geographical locations to work with the samealefiing
components means that such a repository would ienef
from being accessible over the internet.

This work introduces such a models library: the+@D
Repository which is based on the CD++ Builder Tad].
CD++ Repository is composed of a web-based database
server and a client application built as an additio the
CD++ Builder toolkit. The CD++ Repository’s databas
capable of storing Atomic and Coupled CD++ DEVS mod
els in addition to CD++ Cell-DEVS models [3]. Thatd-
base is built as a hierarchy of the stored atomét @upled
models, thus eliminating any needless repetitionaddi-
tion, for each stored model, the database storesfBfma-
tion, which helps users determine the validity omadel

fort required to create new and more complex modelswithin different contexts, and any number of expemts

DEVS'’s hierarchical and modular approach to modeh¢
tion allows for models to be independently tested ee-
used thus enhancing reliability, maintainabilitydaeducing
the time and effort required for model developnem test-
ing [1]. The creation of DEVS models, however, iives

associated with the model. The CD++ Repositoryisntl
application is embedded within the CD++ Builder Tkito
[2] and it enables the user to search for, stand, ratrieve
DEVS and Cell-DEVS models and their EFs directiynir
the CD++ modelling and simulation environment. Hina

examining the source system through an “Experimhentahe CD++ Repository Client connects to the CD++ d&&p

Frame” (EF) which defines the conditions under \uhi

tory Database over an internet connection, thusvallg the

system is observed or experimented with [1]. A DEVSaccess of the library of models and EFs from ang- ge

model thus aims to approximate the behaviour ofsthece
system within the parameters set by the EF.

Similarly, the experiments used to verify the dli of
a given DEVS model can be difficult and time consgrto
develop. The ability to re-use the experiments bipes for
one DEVS model during the testing of other simi&VS
models would be of great benefit to the modelléxs. ex-
ample, if a model of a traditional keyboard exisigl there

graphical location.

2. EXPERIMENTAL FRAMEWORKS

The Experimental Frame (EF) concept has been intexdi
to capture the set of circumstances under whiobah sys-
tem is to be observed, or is to be subjected termxgnta-
tion [1, 5]. This makes the meaning of EF ambiguiouhat
it could mean different things within the M&S prase(ex-



perimentation, data collection, modelling, simwaji. In [6]

the idea of a framework that takes into accountdifferent

meanings of an EF was introduced. These ideas foere
malized by the Context-Frame-Experimentor framewnork
troduced by Traore and Muzy [7]. This frameworkganets
a clear distinction between the three levels oftrab&on,

namely: the context through which a real systerbeamg

studied, the specification of this context as an &fd the
implementation of this EF to execute on a simulator

3 R . _[_ =3
P v Ou 1 D
! > - V!
P Lo N | feTelc
v, CPIg o (I .
1 1
P! N [y !
! e
— —» Frame Components —p!
P P L
- L e e e e e e e e e e e e e e e a -
EICC CCC CEOC

Figure 1. Experimental Frame Definition [7]

Using this framework of the EF, presented in Fégly
one can formally describe the context by the EFe ©@an
think of the EF as a circuit board with input andput ports
into which a source system or a model can be ‘mltige
The EF itself can be a complex combination of congmbs
with their own interconnections and inputs and atgp
Then an EF can be described as [7]:

EF:<T,|M,|E,OM ,OE,QM ,QE,Q(;,D,
{C4,d €D}, CPIC, EICC, POCC, CEOC, CCC>

T is a time basd,, is the set of Frame-to-Model input vari-
ables, the plug-in input sét is the set of Frame input vari-
ables, the control input seQy is the set of Model -to-
Frame output variables, the plug-in output €gtis a set of
Frame output variables, the summary $&, is the set of
admissible input segments for the plug-in componére
plug-in input constraints se®¢ is the set of admissible in-
put segments for the experimentation control, th&rol in-

put constraints sef)c is the set of admissible output seg-

ments expected from the plug-in component, the -piug

Models and their EFs, hosted on a computer conddote
the Internet. The client component is the CD++ Répoy
application accessible from inside CD++ Builder (an
Eclipse plug-in).

CD++ Client #.
8 g
% CD++ Client #
_, Bl g

T

\ 4 A

CD++ Server Machine

CD++ Client #1 CD++ Client #

=—
A

Figure 2. Architecture Diagram

CD++ Repository uses a MySQL Database and an FTP
server to access files related to the stored estitlThe
CD++ Repository software residing on a client maehtan
connect to these servers in order to upload/dowaninfor-
mation: Atomic and Coupled Models, EFs (including E
Inputs and Outputs, and Ranges), Experiments, apérk
mental Results. The following sections will addréss fol-
lowing questions:

1. For a given model, EF, Experiment, or Experiment Re
sult, what kind of information is stored in the alahse?
How are the relationships between the models (Atomi
and Coupled) handled?

3. How is the relationship between the Models, EFs, th
Experiments, and Experimental Results handled?

3.1. Atomicand Coupled DEVSModels

CD++ Builder uses three files to describe any Atmi
Model. The first two are the C++ class filegpp and.h) de-
rived from the abstract C++ clasgtbmic”; they describe
the behaviour of the Atomic model being developedu-
pled and Cell-DEVS Models are described on a mddét

output constraints seD is a set of component names, thepition file (ma) using a built-in specification language.

control components sefyis a model for each €D, CPIC

is the Control-to-Plugin-Input coupling. Finall§gICC is

the External-Input-to-Control couplingPOCC is the
Plugin-Output-to-Control couplingCEOC is the Control-
to-External-Output coupling;CC is the Control-to-Control
coupling.

3. CD++REPOSITORY ARCHITECTURE
The CD++ Repository is comprised a server and entli
component. The server contains the Central Databése

The following information (referred from now on the
Model Data) has been identified and collected:
Model Name: a unique name generated by the CD++
repository software.
2. Domain: the domain under which the model can be
categorized. (i.e. Telecommunications Equipment, Ur
ban Traffic, etc.)
Title: a title for the model.

3.
4. Acronym: an acronym for the model.



5. Brief Description: a short paragraph describing the 1.
model’s general characteristics.

6. Key Words. They are associated with the model, and2.
can be useful when doing a search of the repository 3.

7. Developer Name.

8. Creation Date. 4.

When Coupled DEVS models are stored their ‘relation 5.

Experiment Name: a unique name generated by the
CD++ repository software.

Title.

Brief Description: a short paragraph describing the ex-
periment in general.

Objectives for which the experiment was created.
Assumptions made by the designer of the experiment.

ships’ with other models have to also be storethéndata- 6. Constraints within which the experiment was designed
base. To this end, the CD++ Repository maintaieshiler- to operate.

archical construction of the Coupled models eveilenthey 7. Developer Name.

are stored. This is done by storing the Coupledehad a 8. Creation Date.

separate entity (with its owdModel Data and (.ma) file) and
linking it to its tree of child models in the reftosy. For

example, for the model in Figure 3, each of thesdets are
stored separately in the repository, with Modelidkéd to

Models X and Y, and model B linked to models A @d

Coupled Mode
B

Coupled Mode‘ | Atomic Model

A 7

| Atomic Model

| | Atomic Model
v

oy

Figure 3. Stored Coupled M odels

3.2. Experimental Frames

An EF for a given model contains sonteperimental
Frame Data (analogous to théodel Data), a set of Ex-
periments that can be run on the Model, and otiferma-
tion. TheExperimental Frame Data is comprised of textual
descriptions that can be used to specify the comdkin
which a given model is valid including:

1. Objectives for which the model was built.

2. Assumptions made by the model designer when de-

signing this model.

3. Constraints within which the model was designed

to operate.

More detailed EF information is included to deathw
the formal definition of the EF. This informatiompmtures
all of the inputs and outputs of the EF and thédvalnge of
values for each input or output. This informatiersiored in
such a way as to eliminate any repetition.

3.3. Experiments

Experiments are stored separately and linked toEtheof
the model to which they apply. A given experimertynap-
ply to more than one model and thus may be linkeahdre
than one EF. Like the Models and EFs, each expetime
also has descriptive data stored with it which vl re-
ferred to as the Experiment Data. The Experimerta D&
comprised of the following pieces of information:

It is important here to explain the differencevistn
the objectives, assumptions and constrains of;therement
as opposed to the EF. For the EF these piecesoofriation
refer to the model and the characteristics of theehitself,
however for the experiment they refer to the expent it-
self and thus are usually a sub-set of those ifcEhe

3.4. Experimental Results

CD++ Repository also keeps Experimental Results afor
given Experiment on a given Model. Since Experiment
may apply to more than one Model, the informatismot
directly linked to the Experiment. Instead, itiisked to the
Model on which it was performed. The Experimenta- R
sults information is comprised of the following:

1. Success: A Boolean value to indicate success or failure
of the experiment

2. Description Document: A document containing any
comments related to the performance or the results.

3. Logfile The (.log) file generated by CD++ for this run
of the experiment. This file contains many detaflthe
CD++ simulator’s actions during simulation.

4. Output file: The (.out) file generated by CD++ for this

run of the experiment, containing the values priesken
at the outputs of the model under test and the thee
outputs took that value.

4, THE CD++ REPOSITORY CLIENT
The CD++ Repository Client was built as part of @B++
Builder plug-in in Eclipse. When the user activatbeg
CD++ Repository application within Eclipse they qnee-
sented with one of the following options:

a) Uploading M odels and Experiments
When uploading models to the database the Repwsitor
Software will automatically:

1. Detect what kind of Model this is (Atomic, Coupled,
Cell-DEVS).
2. For Coupled models, detect all the sub-models and c

struct the full hierarchy under the parent model.
Establish a name for this model and all sub-models.
Detect conflicts with models that already existtlire
repository (and handle the conflict appropriately).

3.
4.



5. For Coupled models: detect whether any of the chilch) Search and Download of Models and Experiments

models already exists in the Repository, and if/ the
handle the conflicts appropriately.

6. For Coupled models: construct a list of all the eled
that do not already exist and for which data needse
collected from the user.

7. Finally, collect the required Model Data, EF Daad
the files for the model and child models (if apabte)
and upload all of this information to the Repositor

When the searches for a model or experiment theypee-
sented with a simple search dialogue window whitiwe
the user to search for a model based on some d¥ltue|
Data (or Experiment Data). After performing thersbathe
CD++ Repository presents the search results toutes.
Figure 4 shows a screenshot of the model searalitges
screen (the experiment search is similar exceptith@n-
tains experiments and experiment related informatio

Models Matching Search Criteria
Select a model from the results list to see its details: | 2] =5
Search Results Selected Model's Details
1 |Kind: Atomic Model Title: GSM SIM CARD Model ;Af
Name: AccessControl Name: SIMCard Kind Atomic Model
Title: : GSM Access Control Model Acronym: = Domain: GSM
Boain: G3M o Brief Description: This is a short desription of the SIM CARD Model. The SIM CARD| =|
Description: pescisarhot ettt is a componenet in the GSM authentication Process
Access Control Model. The Access ;
Control is a componenet in the GS.._ Developer Name: Rachid Chreyh Date Developed: 3800861[;6100
2 |Kind: Atomic Model o - Shrsirie.
Name: SIMCard Key Words: GSM, Cell. Authentication, Wireless, Telecommunications
Title: GSM SIM CARD Model Experimental Frame Information :
Domain: GSM Objectives: These are the Objectives of this model (% |
Drescription: This is a short desription of the SIM
CARD Model The SIM CARD s a Yiew Description Document:
componenet in the GSM authentica... 2 1 = 7 1
Select a Model File to Yiew below: *.maFile ||
3 |Kind: Atomic Model
Name: MobileSwitchinzCenter :
Title: GSM Mobile Switching Centre %CDPlusPlus_Builder_Version_1.0.0 :_A_:
Model E
Domain: GSM Lo
main: e components | SIMCard@SIMCard
Deescription: This is a short desription of the MSC out : Id
Model. The MSC is a componenet in _DLIt 1 SRES_2
the GSM authentication Proce... in: On [ae]
Download Selected Model and/for its Experiments:

Figure 4. Search Results Screen Shot

The Search Results window is divided into threenma for the selected model and the experimental resoiteach

areas. The top area contains a drop down listeliecs one
of the search results) andeine search button. The bottom
left area is theéSearch Results Pane, which contains a list of
entries representing a model that matched thelsesiteria.
Each of these entry contains some general infoomatbout
the model that it represents. Finally, the bottoghtrarea is
the Details Pane, containing all of the information concern-
ing the selected model. It includes an area in vhiltof the
Model Data and Experimental Frame Data for thecsete
model is displayed, including a listing all of terperiments

experiment (here, some of the information for thedsi
SmCard). TheView Details button enables the user to view
the detailed description document for the selectextiel.
Finally, a drop down list and a text box enables tiser to
view the text contained in any of the selected risdies.
The user can select to display the text containgtie files
by selecting the appropriate file type from the dilown
list. When the user has found a model that theytwan
download, they can proceed.



¢) Modifying M odels and Experiments

A user can choose to modify a model or experimieat &l-
ready exists in the database. This feature alltvwsuser to
add/remove experiments to/from the EF of a givedehdt

also allows the use to modify any of the followinfprma-

tion: Model Data, Experimental Frame Data, or Expent

Data. However this feature cannot allow a user taify

the actual model files stored in the repository.

5. CD++ REPOSITORY ARCHITECTURE

CD++ Repository uses a client-server architectuite e

client application being the CD++ Repository pantaf the

CD++ Builder plug-in, and the server being the Hate
server running on a remote machine where all ofdaia

objects are stored. CD++ Repository is a “thiclerd? ap-

plication (all of the logic is carried out on thigeat machine
while the interaction with the server is solelysend and re-
trieve data to and from the database).

CD++ Repository’s client application is made ugwed
layers, thepresentation and thepersistence layer. Presenta-
tion is concerned with interactions with the userotigh
displaying data retrieved from the database anbkatolg
data to send to the database. It uses the persisiayer to
search the database, retrieve data from the da&abeske
decisions about what to display, send data to Htabdse,
and detect conflicts. One final important partteg tarchitec-
ture are the Business Objects, which encapsulatdtisi-
ness data and their behaviours. They are usedctaege
data between the presentation and persistences layet
their behaviours are used by the presentation leyqrer-
form some processing on the data in the objects.

Presentation Layer
Repository.GuiPackagd

BIRT Tools

A

Utility
Classeq

Busines|
Object

Persistence Layer
DatabaseServices Package

A

Hibernate | :
Utility Classes

DatabaseAccessObjects Packa

Hibernate Package

FTP
Server

i
MySQL Da:
tabase

Figure 5. Software Ar chitecture

Figure 5 gives a high-level view of the CD++ Rdpos .

tory’'s client application. As can be seen in thagdam, a

major part of the persistence layer is the Hiberniva
Package. This is the object relational mapping teeld by
the CD++ repository to map the Business Objectthéir
corresponding Relational Tables in the database TBg
presentation layer makes use of the BIRT [9] (Bes#nIn-
telligence reporting Tools) package, an Eclipsapiuthat
enables the design and the runtime generationpofiteand
it is used in the display of search results touber.

5.1. TheBusiness Objects

The class diagram Figure 6 shows the most impoBast-
ness Object (BO) Classes of the CD++ Repositorynsoé.
The central class is thdodd class, which represents all of
the information that relate to Atomic/Coupled madein
addition, it contains a set dixperimental Results objects
and a singleExperimentalFrame object. This reflects the
fact that each model can have many Experimentalli®es
and only one EF. ThExperimentalFrame class contains a
set of Experiment objects representing the experiments that
can belong to a given modektomicMode and Coupled-
Model classes extend the baskdel class. Finally thdex-
periment class has twatomicModel class objects and two
CoupledModel class Objects. These represent the possibility
that an Experiment can be model based (as opposaght
based) in which case it would have a model as aeiggor’
and another model as a ‘transducer’.

The class diagram in Figure 6 does not show ththme
ods for each class. In general each class attritagegetter
and setter methods, and other methods common td ik
Business Objects (i.eequals andhashCode, defined by the
Java language for all Java objects). These methiedever-
ridden to provide proper object identity for the BCSome
classes have other methods that perform simpleatipes
related to each class:

a) Model:

e getExpFilename: given the name of a particular ex-
periment, it finds the matching experiment in tleé af
experiments for the current model.

e getMatchingExperiment: finds a matching experiment
in the set of experiments for the current modeti est
turns the experiment object.

« createZipFile as in Model before creates a (.zip) file
containing all of the files related to the currembdel
and returns the name and path of the created {ilgp)

b) CoupledM oddl:

«  findCoupledSubModel ByName:
model in the tree of models.

« findParentofCoupledSubModel ByName: finds the cou-

pled model in the tree, and returns the parent inoide

the coupled model found.

retrieveAll AtomicSubModels: returns a set of all of the

Atomic model objects for this coupled model.

finds the coupled



Model atormicModelExplnput
serialversionUiD j——————| AtomicModel
id serialversionD
version atomicModelExpCutput
filerame atomichiodels
name “<Sete=
modelversion
date_Developed CoupledModel | | couplediodelExplnput
developer_Mame serialversionUID
title izCelDEVS couplediodelExpCutput
ACromym
purpose || couple%ModelS
doma!n. ceSetes
description
keywords
isAtomic
filesList
“=Spte
expFrame
experimentResults ExperimentalFrame
ExperimentalResult serialVersionUlo
seralversionUID id
id versian
modelMame madellame
experimentMName chjectives
SUCCESS assumptions
experimentResultsZipFile constraints
filesList
fileListChanged
“sSetzz
experiments
Experiment
serialversionUID
id
vErsion
isEventFileBased
narme
title
ohjectives
assumptions
constraints

dateDeveloped
developertame
briefCescription
experimentZipFile
filesList
fileListChanged

Figure 6. CD++ Repository Business Objects

» retrieveAllCoupledSubModels: returns a set of all of the d) ExperimentalResults:
Coupled model objects for this coupled model. e createZipFile: creates a (.zip) file containing all of the
« sameSructure: checkes if two coupled models have the  files related to the current ExperimentalResults
same structure.
+  findChildCoupledModelByName: finds the immediate 5.2. Hibernate and Object-Relational Mapping
child of this model that is a coupled model. An important question to a database applicatioe like
« getAllFileNames: returns a list of the names of all of the CD++ Repository is how to manage the applicatiqressis-
(.zip) files for all of the models in tree undeistmodel. ~ tent data. The Business Objects described in tkeiqurs

«  updateModelInfo: it updates selected attributes of the Section are used to hold this persistent data guia life of
current coupled model. the application using MySQL (a Relational Databa¥hile

c) Experiment: the java_ applicatit_)r_l uses an obj_ect-orien'ged remtad;i_on of
«  genNextExpName: it creates a unique name to be usedhe business entities (the Business _Objects), ehsﬁl_cmal
for the next Experiment object to be created. datgpase uses a tabular representation _of the lsasneess
» createZipFile: creates a (.zip) file containing all of the entities (the database tables). The reIatlonaI_ inade ob-
files related to the current experiment. ject—oriented model are two fundamentally differamddels



of data representation [8]. This problem has been
searched thoroughly and there are numerous atteahgts
lutions. We used Hibernate, which uses Object/Relat
Mapping (ORM) techniques to solve the mismatch [8].

Hibernate uses XMLHibernate mapping files) to map
Java business objects into SQL tables. Each diasseeds
to be persistent must have a Hibernate mappingHée de-
fines the database table that the class maps tthahdhaps
the properties of the class to the appropriatercobkior ta-
bles in the database. The tables generated foCEhe+ re-
pository are shown in Figure 7.

Coupled_Coupled_Map

Coupled_Atomic_Map

Coupled_ExpResults_Iap

» ‘Exp erimental Frame < Coupled_Models I_‘

[EF_Ezpenments_IMap 5
= = [Experiments

k. k.
atomic_models

Atomic_ExpResults 1Map

k.,
»|ExpermentalResults

Figure 7. CD++ Repository Relational Tables

For the most part the database tables have similar

names to the business objects to which they mag rdst of
the database tables in Figure 7 jaie tables that represent
the interconnections between the objectSoupled
Atomic_Map and Coupled_Coupled_Map tables represent
the fact that a Coupled model can have Atomic aodpt&d
models as children. Coupled ExpResults Map and

r deal with the use of Hibernate inside the Persitstdrayer.

Therefore a few packages and utilities have bedhtbien-
capsulate the database services required by tlsermeation
layer such that Presentation layer code is not édgpwn
with Hibernate programming details.

The HibernateUtil Class is the utility used to start Hi-
bernate. It contains a static SessionFactory atwiland a
static getter function for it. An initialization reod (nitial-
izeSessionFactory) instantiates and configures the Hibernate
SessionFactory by loading configuration informatfoom
the Hibernate configuration file as well as usihg CD++
Repository preferences page to get information ireduo
connect to the appropriate SQL server and dataltatber
utility methods that are made available to the &rtgtion
Layer by this class are:

e attachToSession: attaches an object to a session. This is
useful in situations where the object containsaplgrof
other objects whose values need to be accessed from
the database.

« commitSessionTx: Used to end the transaction and close
the session started by attachToSession.

« mergeObject: opens a session, and updates the database
with the detached object’s information.
RepositorySearchUtil provides the following methods

to inspect the repository with respect to a givead®l or

Model name:

e isInConflictWithRepo: determines whether a passed in
Coupled model has the same structure as the mgtchin
(by name) coupled model in the repository.

« modelNamelnRepository: determines if the passed in
model name already exists in the repository.

e getAtomicModelFromRep & getCoupledMode From-

Rep: search the repository for a model matching the

passed in model name.

The databaseServices Package also contains a class for

each business object. Each class provides datskagees

for the related business object. The majority @f thethods

in these classes are similar to the methods ofDA®

classes. In addition some of the DatabaseServiasses

contain methods that are used to perform more doatptl

Atomic_BExpResults Map tables represent the fact that eachy ,tions such as more advanced searches of thbatat:

atomic and coupled model can be associated to preukix-

perimental resultsEF _Experiments Map represents the fact )

that an EF can be associated with multiple experime

5.3. Persistence Layer Java Packages

Hibernate sits at the interface with the databasesuch any
of the CD++ Repository code that needs to intenattt the

database is required to interface through Hibernbhere

are, however, many details that one should keepiim to

be able to use Hibernate correctly in a Java agiic: the

management of Hibernate Sessions, Hibernate Traossc
Transient, Persistent and Detached Objects. CD+goste
tory’s software architecture hides most of the itettnat

findModels is used by the Presentation layer to find the

models, both coupled and atomic, that match certain

search criteria (name, description, title, etm)adldition

it takes in an indicator to whether an OR or an AND

operation should be used between these searchiarite

refineModels is used to do a “refine search” operation

on a set of Model search results.

« findExperiments is used to find the Experiments that
match certain search criteria.

« refineExperiments is used to do a “refine search” opera-
tion on a set of Experiment search results.

e createExpFrameWithlinputsOutputs is used when stor-

ing the EF’s input and output port information. §hi



method creates a new EF object and assigns teeit thThe difficulties that need to be overcome to enafiieient

values for the inputs and outputs that were entesed
the user. It needs to check the database for egigtk
put/output elements. If an element of an input wtpat
is found in the database, then that element iff itsed
in the current EF object without having to createeav
one, preventing redundancy.

5.4. Presentation Layer Java Packages

CD++ Repository is a component of the CD++ Builder,.

which in itself is an Eclipse plug-in. Thereforestimterface
to the CD++ Repository has to be integrated withrést of
the CD++ Builder Toolkit plug-in and should havsimilar
look and feel as the Eclipse environment. To that the
Presentation layer of the CD++ Repository is mobilyit
using the Eclipse Standard Widget Toolkit (SWT) kzeye.
Also, to complete the integration, the user prefees for
the CD++ Repository application are integrated e t
Eclipse preferences menu under the CD++ BuildefeRre
ences section. Finally, launching CD++ Repositeryglone

model re-use include the following:

e The availability of the re-usable components from
which the modellers can easily locate the models-of
terest to them.

¢ For each model, the availability of information abo
the context within which a given model is valid.

« For each model, the availability of any experimehtt

were used to verify the validity of the given madel

The ability to access all of this information fradiffer-

ent geographical locations to allow teams of medell

at different locations to work together.

CD++ Repository stores all information on a serer

cessible over the internet from any location witteinet ac-

cess. It efficiently stores CD++ DEVS model infotioa in

a hierarchical structure that parallels the natshalcture of

DEVS models. It also stores an EF for each storedeain

The EF includes information about the context & fos the

stored model, as well as any number of experiméras

through a button in CD++ Builder toolbar in Eclipse

5.5. Utility Classes

were used to test different aspects of that model.

References

(1]

There are a number of utility classes that are tisemligh-

out the CD++ Repository application, collected e Re-
pository.Util package. The following is a list of the more 2]
important of these utility classes:

6

BirtUtil: it contains a number of static methods that are
used to generate the information displayed on th
search results page for Experiments and Models. The
class makes use of the BIRT engine and the appatepri
BIRT report design files to generate HTML formatted
reports that are displayed in the search resulie.pa [4]
CdxxSttpClient: it implements a secure FTP client ca-
pable of uploading and downloading files to the FTP[5]
server specified by the IP address in the configura
FileSystemUtilities: it class contains a number of file
system related methods that are used in variouepla
in the application.
MaFileParser: it is used to parse the model definition [6]
(.ma) files for each model. By parsing the (.mkg tis
class is able to build the tree of models thattaxisler
a coupled model and to determine the input outpttsp
for any model. It has a number of other methods$ thg7]
query the tree of models built by the parser.
ZipUtil: it contains methods that are capable of com{8]
pressing and uncompressing files using the javaigpti
utility.

(9]
CONCLUSION

We presented the design and implementation of a new

Zeigler, B.; H. Praehofer; T.G. Kim. 2000heory of
Modeling and Smulation, 2" Edition. Academic Press,
San Diego, CA.

Chidisiuc K. and G. Wainer. 2008. “CD++Modeler: A
Graphical Toolkit to Develop DEVS Models.” Poster
Paper. In Proc. of SpringSim’08. Ottawa, ON. 2008.

] Wainer G.; N. Giambiasi. 2001. “Timed Cell-DEVS:

Modeling and Simulation of Cell Spaces.” In Diseret
Event Modeling & Simulation: Enabling Future Tech-
nologies. Springer-Verlag.

Zeigler, B. 1984 Multifaceted Modeling and Discrete
Event Smulation. Academic Press, London.

Barros F. J.; A. Lehmann; P. Liggesmeyer; A. Ver-
braeck; B. P. Zeigler. 2006. “04041 Abstracts QGulle
tion -- Component-Based Modeling and Simulation.” |
Proceedings of Dagstuhl Seminar 04041 Component-
Based Modeling and Simulation.

Traore M.K., and A. Muzy. 2006. “Capturing the Dual
Relationship Between Simulation Models and Their
Context.” Simulation Modelling Practice and Theory,
Vol. 14, No.2, (February): 126-142.

Bauer C.; G. King. 2005ibernate In Action. Manning
Publications Co., Greenwich, CT.

Weathersby J.; D. French; T. Bondur; J. Tatchell; |
Chatalbasheva. 200éntegrating and Extending BIRT.
Addison-Wesley.

Wainer G., 2002, "CD++: A Toolkit to Define Disceet
Event Models". Software - Practice and Experience,
Vol. 32, No.13, (November): 1261-1306.

CD++ Builder application as part of the CD++ Builde
Toolkit, namely the CD++ Repository. This applicatiis
intended to make the task of re-using DEVS modatsee.



