
 i

 
 
 

IMPLEMENTING PARALLEL AND DISTRIBUTED DEVS 
AND CELL-DEVS SIMULATION IN A WINDOWS 

PLATFORM 
 
 

By 
 

Bo Feng, B.Eng 
 
 
 
 
 

A thesis submitted to 
The Faculty of Graduate Studies and Research 

 
 
 
 
 

In partial fulfillment of the requirements for the degree of 
Master of Science in Information and Systems Science 

 
 
 
 
 
 
 
 

Department of Systems and Computer Engineering 
Carleton University 

Ottawa, Ontario 
Canada 

© Copyright 2009, Bo Feng 
 
The undersigned recommend to the 
 

     Faculty of Graduate Studies and Research 
 
 



 ii

 
The undersigned hereby recommend to  

The Faculty of Graduate Studies and Research 
acceptance of the thesis 

 
 

IMPLEMENTING PARALLEL AND DISTRIBUTED DEVS 
AND CELL-DEVS SIMULATION IN A WINDOWS 

PLATFORM 
 
 

submitted by  
 

Bo Feng, B.Eng. 
 
 

in partial fulfillment of the requirements for 
 

the degree of 
 

Master of Science in Information and Systems Science 
 
 
 

______________________________ 
Professor Gabriel Wainer, Thesis Supervisor 

 
 
 

 
______________________________________________ 
Chair, Department of Systems and Computer Engineering 

 
 
 

Department of Systems and Computer Engineering 
Carleton University 

Ottawa, Ontario 
 
 

January 2009 
 

 
 



 iii

ABSTRACT 

 
 
Research advances in modeling and simulation emphasize the need for parallel and 

distributed methodologies and environments. The growing demand for executing 

complex models by general users has directed researchers to implement parallel 

simulation with commodity PC machines. This research presents an effective approach to 

executing a parallel and distributed Discrete Event System Specification (DEVS) and 

Cell-DEVS application in Windows cluster environments. 

 DEVS is a modular and hierarchical formalism for modeling and analyzing 

general systems that can be described by discrete events. Cell-DEVS is a DEVS-based 

formalism used to model complex physical systems as cell spaces. Parallel DEVS 

provides a way to handle simultaneously scheduled events, while keeping all the major 

properties of the original DEVS formalism. A logical process (LP), as a basic entity in 

parallel DEVS environments, receives and generates timestamped events to communicate 

with other LPs. The communication mechanism of the LP can be implemented with a 

distributed paradigm.     

 In this research, PCD++Win and PCD++/.NET simulation systems are presented. 

Both of them follow a conservative approach and use a set of commodity Windows PC 

machines to execute parallel DEVS and Cell-DEVS simulations.  PCD++Win is based on 

Windows MPI and allows users to setup a Windows cluster and execute parallel DEVS 

and Cell-DEVS simulations with a GUI. PCD++Win can be exposed as a Web service, 

while another application can consume PCD++Win over the Internet. PCD++/.NET is 

based on Microsoft.NET. It presents an approach to combining .NET Remoting objects 

with a simulation engine to execute parallel and distributed DEVS and Cell-DEVS 

simulations. PCD++/.NET supports several communication protocols and runs on the 

Common Language Runtime. The performance analysis shows that the speedup of 

PCD++/.NET can be achieved for the simulation, which has a modest inter-LP 

communication load. 

 

  

  



 iv

TABLE OF CONTENTS 
 
 

ABSTRACT........................................................................................................................................... iii 

TABLE OF CONTENTS....................................................................................................................... iv 

LIST OF TABLES.................................................................................................................................. x 

CHAPTER 1 INTRODUCTION....................................................................................................... 1 
1.1. Motivation and Goals ............................................................................................................ 2 
1.2. Contribution .......................................................................................................................... 3 
1.3. Thesis organization ............................................................................................................... 4 

CHAPTER 2 BACKGROUND ......................................................................................................... 9 
2.1. P-DEVS and Cell-DEVS formalism....................................................................................... 9 
2.2. The CD++ Toolkit................................................................................................................ 17 
2.3. Windows MPI...................................................................................................................... 19 
2.4. Web services ........................................................................................................................ 20 
2.5. .NET Remoting.................................................................................................................... 20 

CHAPTER 3 REVIEW DEVS-BASED SIMULATION TOOL..................................................... 22 
3.1. The overview of DEVS-based simulation tool ...................................................................... 23 

CHAPTER 4 PCD++WIN ............................................................................................................... 27 
4.1. Software architecture........................................................................................................... 27 
4.2. Parallel DEVS abstract simulator in PCD++Win ................................................................ 29 
4.3. The NoTime kernel in PCD++Win ...................................................................................... 39 
4.4. Running PCD++Win with DeinoMPI interface ................................................................... 41 
4.5. Performance Metrics ........................................................................................................... 43 
4.6. Experimental results of PCD++Win .................................................................................... 44 

CHAPTER 5 EXPOSING PCD++WIN AS WEB SERVICE......................................................... 52 
5.1. SOAP and WSDL ................................................................................................................ 52 
5.2. Building a PCD++Win Web Service .................................................................................... 53 
5.3. Consuming PCD++Win Web Service................................................................................... 58 

CHAPTER 6 PCD++/.NET ............................................................................................................. 61 
6.1. An overview of distributed paradigms .................................................................................. 61 
6.2. .NET Remoting versus Web Services ................................................................................... 63 
6.3. The benefits of .NET ........................................................................................................... 64 



 v

6.4. PCD++/.NET Remoting System........................................................................................... 65 

CHAPTER 7 PERFORMANCE ANALYSIS FOR PCD++/.NET ................................................. 76 
7.1. Remote message of PCD++Win and PCD++/.NET.............................................................. 76 
7.2. Correctness and verification ................................................................................................ 77 
7.3. Experimental results and analysis ....................................................................................... 78 

7.3.1. Watershed model ........................................................................................................... 78 
7.3.2. Life model ...................................................................................................................... 83 

CHAPTER 8 CONCLUSIONS AND FUTURE WORK ................................................................ 90 
8.1. Future work......................................................................................................................... 92 

REFERENCES..................................................................................................................................... 94 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

LIST OF FIGURES 
 
 
Figure 1.  OSI model............................................................................................................................. 27 
Figure 2.  Architecture of PCD++ and PCD++Win ............................................................................. 28 
Figure 3.  PCD++Win and OSI layer ................................................................................................... 29 
Figure 4.  PCD++Win major class diagram......................................................................................... 31 
Figure 5.  Master and Slave Coordinator function .............................................................................. 33 
Figure 6.  Simulator algorithm [Ch094b][Tro03] ................................................................................ 35 
Figure 7.  Master coordinator algorithm [Cho94b][Tro03]................................................................. 36 
Figure 8.  Slave coordinator algorithm [Cho94b][Tro03].................................................................... 37 
Figure 9.  Root coordinator algorithm [Cho94b][Tro03]..................................................................... 38 
Figure 10.  Abstract simulator in PCD++Win ..................................................................................... 39 
Figure 11.  NoTime kernel and PCD++Win......................................................................................... 40 
Figure 12.  The GUI of DeinoMPI........................................................................................................ 41 
Figure 13.  Main windows running PCD++Win .................................................................................. 42 
Figure 14.  Job verification tool............................................................................................................ 42 
Figure 15.  Fire model definition [Wai08] ............................................................................................ 45 
Figure 16.  Partition strategy................................................................................................................ 46 
Figure 17.  The experiment result of Fire model.................................................................................. 46 
Figure 18.  State of collision avoidance model...................................................................................... 47 
Figure 19.  The first part of collision avoidance model [Wai08].......................................................... 48 
Figure 20.  The second part of collision avoidance model [Wei08]...................................................... 49 
Figure 21.  One of UAV�s rules ............................................................................................................ 49 
Figure 22.  The result of the collision avoidance model ....................................................................... 50 
Figure 23.  PCD++Win JAX-RPC Web service ................................................................................... 54 
Figure 24.  PCD++Win Web service server-side runtime.................................................................... 55 
Figure 25.  WSDL service interface and implementation .................................................................... 57 
Figure 26.  WSDL file of the PCD++Win web service ......................................................................... 58 
Figure 27.  PCD++Win Web service client........................................................................................... 59 
Figure 28.  Web service client invokes a remote method ..................................................................... 59 
Figure 29.  PCD++Win Web service client GUI................................................................................... 60 
Figure 30.  PCD++/.NET architecture.................................................................................................. 65 
Figure 31.  The interaction of objects in .NET Remoting [REM08] .................................................... 66 
Figure 32.  PCD++/.NET components .................................................................................................. 68 
Figure 33.  PCD++/.NET Remoting method call.................................................................................. 70 
Figure 34.  Message passing.................................................................................................................. 71 
Figure 35.  PCD++/.NET Remoting simulators.................................................................................... 72 
Figure 36.  msgExchange component ................................................................................................... 72 
Figure 37.  Flowchart of PCD++/.NET Remoting................................................................................ 73 
Figure 38.   Sequence diagram of PCD++/.NET Remoting.................................................................. 75 
Figure 39.   Partitioning a couple model into 4 atomic models ............................................................ 76 
Figure 40.  PCD++Win passing messages ............................................................................................ 77 
Figure 41.  PCD++/.NET passing messages.......................................................................................... 77 
Figure 42.  Hydrology Model [Moo96] ................................................................................................. 78 
Figure 43.  Watershed Model[wai08] ................................................................................................... 80 
Figure 44.  Partition of watershed model ............................................................................................. 81 
Figure 45.  Execution result of watershed model in PCD++Win ......................................................... 81 
Figure 46.  Execution time of watershed with PCD++/.NET Remoting............................................... 82 
Figure 47.  The first part of Life model file [wai08]............................................................................. 84 
Figure 48.  The second part of Life model file[wai08].......................................................................... 84 
Figure 49.  Partition strategy of the Life model ................................................................................... 85 
Figure 50.  Simulation results of the Life model. ................................................................................. 85 
Figure 51.  Binary serialization in .NET [Her03]................................................................................. 88 
Figure 52.  Comparing two systems ..................................................................................................... 89 



 vii

Figure 53.  Three layers of a DEVS simulation tool ............................................................................. 90 
Figure 54.  Implementing  various parallel and distributed mechanisms for PCD++......................... 91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

LIST OF TABLES 
 

 
Table 1.  DEVS-based simulation tools ................................................................................................ 23 
Table 2.  The message of watershed model .......................................................................................... 82 
Table 3.  The message of Life model..................................................................................................... 86 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix

LIST OF ACRONYMS 
 

 

DEVS Discrete Event System Specification 

LP  Logical Process 

M&S  Modeling and Simulation 

MPI  Message Passing Interface 

P-DEVS Parallel Discrete Event System Specification 

CIL  Common Intermediate Language 

CLI  Common Language Infrastructure 

CLR  Common Language Runtime 

SOAP Simple Object Access Protocol 

SOA   Service Oriented Architecture 

WSDL Web Services Description Language 

RMI             Remote Method Invocation 

XML            Extensible Markup Language 

ECMA         European Computer Manufacturers Association 

JAX-RPC    Java API for XML-Based Remote Procedure Calls 

TCP             Transmission Control Protocol 

HTTP          Hypertext Transfer Protocol 

 

 

 



 1

CHAPTER 1 INTRODUCTION 
 

 

Modeling and simulation (M&S) is a methodology used in a wide variety of fields, 

ranging from aerospace engineering to digital circuit design, from economics to 

environment studies, from weather forecast to national defense. Scientists and engineers 

use M&S to study and analyze complex problems. The Discrete Event System 

Specification (DEVS) [Zei76][Zei00] presents a means for the construction of 

hierarchical models in a modular manner and provides a discrete-event M&S mechanism, 

which allows developers to reuse components and reduce development and testing time. 

The Timed Cell-DEVS formalism [Wai01] combines DEVS theory with cellular 

automata [Neu66], allowing n-dimensional cell spaces as a basic DEVS model and 

according to a specified timing. 

 Complex system simulation usually requires massive amounts of computing time. 

Therefore, it is difficult to obtain results through sequential simulation. The Parallel 

DEVS formalism [Cho94a], as an extension to the DEVS, provides a way to deal with 

simultaneously scheduled events: It eliminates the serialization constraints existing in the 

original DEVS definition and enables the efficient execution of models in parallel and 

distributed environments. 

 For parallel and distributed simulations, two general categories of synchronization 

algorithms have been proposed. The one is a conservative approach, which tries to 

ascertain the distribution order of the messages, processing them to avoid causality errors.  

Another is the optimistic approach, which is a synchronization mechanism that allows for 

a higher degree of parallelism by ignoring possible causality errors, and presumes that the 

messages will arrive in the correct temporal order. When a causality error does occur, the 

protocol rolls the simulation back to the state before the time of the most recently arrived 

message. 

  Based on parallel DEVS and Cell-DEVS formalisms, parallel CD++ (PCD++) 

[Tro03] was developed. PCD++ implements a conservative synchronization algorithm 

and executes parallel DEVS and Cell-DEVS simulations in a clustered Linux 

environment.   



 2

As an extension to PCD++ [Tro03], PCD++Win and PCD++/.NET are proposed 

in this research.  First, PCD++Win is developed by porting PCD++ to a Windows 

environment and taking advantage of the multi-purpose GUI of the Windows MPI 

middleware for the construction of a Windows cluster and the configuration of a 

simulation environment.  Second, PCD++Win is exposed as a Web service, which can be 

consumed by another application on the Internet.  Finally, the PCD++/.NET is created by 

combining a PCD++ simulation engine with Microsoft�s .NET [Ram05], which is an 

execution environment and provides built-in Remoting services for the .NET application. 

Therefore, the PCD++/.NET can execute parallel and distributed DEVS and Cell-DEVS 

simulations in the .NET Framework.  

 

1.1. Motivation and Goals 
 

 The motivation behind this work comes from the need to run complex simulations 

with commodity hardware. On one hand, traditional parallel discrete event simulation 

systems are typically run on dedicated hardware, such as clusters and supercomputers. 

Although theses platforms offer the highest performance for parallel discrete event 

simulation applications, the availability of these resources is highly limited, and often 

restricted. On the other hand, PCs are increasingly popular and cheap because of the 

development of new semiconductor techniques. As of June 2008, the number of personal 

computers in use worldwide hit one billion, while another billion is expected to be 

reached by 2014 [wik08]. As the dominant operating system for personal computers, 

Windows is everywhere. Therefore, using the Windows platform for the design of 

parallel and distributed simulations would allow more users to know and use these 

powerful techniques. Using a familiar Windows-based graphical user interface to setup, 

configure and execute simulations provides an easy-to-use tool for general users and 

reduces the learning curve. Finally, the Microsoft .NET framework, which includes a 

large library of pre-coded solutions to common programming problems and a virtual 

machine to manage the execution of programs, provides network communications and 

allows us to write parallel and distributed applications. Based on the above ideas, 

PCD++Win and PCD++/.NET are proposed. PCD++Win takes advantages of Windows 



 3

MPI and presents a way of executing parallel DEVS and Cell-DEVS simulations in a 

Windows environment. PCD++/.NET integrates .NET Remoting with PCD++ and runs 

parallel and distributed DEVS and Cell-DEVS simulations in Common Language 

Runtime (CLR) environments, which provides a virtual machine for memory 

management and exception handling. The goal of developing both PCD++Win and 

PCD++/.NET is to combine Windows techniques with a DEVS simulation engine to 

greatly reduce simulation costs.      

 

1.2. Contribution 
 

In this thesis, a new parallel and distributed DEVS and Cell-DEVS simulation framework 

called PCD++/.NET is proposed. PCD++/.NET is an extension of parallel CD++ in a 

windows cluster environment. It combines Microsoft.NET Remoting technology with a 

parallel CD++ conservative engine, and allows users to execute parallel and distributed 

DEVS and Cell-DEVS simulations in Windows platforms. Specifically, the following 

efforts have been made: 

• Building PCD++Win, which ports PCD++ conservative simulators [Tro03] to 

a windows environment by replacing MPICH with DeinoMPI [Dei08].  

PCD++Win is a parallel simulation engine that takes advantage of the multi-

purpose GUI of the DeinoMPI for the construction of PC clusters and the 

configuration of simulation environments. PCD++Win allows users to execute 

parallel DEVS and Cell-DEVS simulations with commodity Windows PC 

machines. With PCD++Win, it is possible for a user to execute parallel 

simulations in the lab, the office and home. This reduces the simulation cost 

and makes more users familiar with the value of parallel simulations.   

• Exposing PCD++Win as a Web service that can be consumed by another 

application on the internet. The Web service adopts JAX-RPC (Java API for 

XML-Based Remote Procedure Calls), which provides a generic mechanism 

that enables developers to create Web services by using XML-based Remote 

Procedure Calls. A web service is essentially a function or method that is 

available to other machines on a network. Because web services use 



 4

standardized interfaces such as the Web Services Description Language 

(WSDL), SOAP, XML and HTTP, it is therefore independent from 

programming language and the platform. This means that a non-Windows 

user can invoke PCD++Win to execute parallel DEVS and Cell-DEVS 

simulations with a PCD++Win Web service.   

• Designing and coding PCD++/.NET. PCD++/.NET integrates a PCD++ 

conservative simulation engine [Tro03] with .NET Remoting, which provides 

built in network services and supports various protocols such as HTTP, TCP 

and SMTP. .NET Remoting runs on Common Language Runtime, which is 

the implementation of open standard ISO 23271 and ECMA-335 (European 

Computer Manufacturers Association). With .NET Remoting, a speedup of 

parallel DEVS and Cell-DEVS simulations is achieved for some models, 

especially those that have modest inter-LP communication loads.  

• Research results for PCD++Win and PCD++/.NET were published in 

[Fen08a] and [Fen08b] respectively. 

 

1.3. Thesis organization 
 

 This thesis is organized as follows:  Chapter 2 introduces the DEVS and Cell-DEVS 

formalisms, techniques related to the work such as Windows MPI, Web service and 

.NET. Chapter 3 presents a survey of DEVS-based simulation tools. Chapter 4 presents 

PCD++Win, a parallel conservative simulation engine that takes advantage of the multi-

purpose GUI of the DeinoMPI for the construction of Windows cluster environments. 

PCD++Win has been developed using a modular approach that promotes code reuse and 

allows for easy switching to other middleware technologies. Chapter 5 presents the 

PCD++Win Web service, which allow users to invoke PCD++Win from any platform. 

Chapter 6 presents a distributed simulation framework, called PCD++/.NET, which 

integrates a Microsoft .NET Remoting mechanism with a PCD++ conservative 

simulation engine to execute a distributed DEVS and Cell-DEVS simulation. Chapter 7 

covers the experimental results for PCD++/.NET. Chapter 8 presents the main 

conclusions of the thesis and outlines possible future research and development.    



 5

CHAPTER 2 BACKGROUND  
 

 

P-DEVS (Parallel-Discrete Event System Specification) is a mathematical formalism 

with well-defined concepts of coupling of components, hierarchical, modular model 

construction for high-performance parallel discrete-event simulation.  The Timed Cell-

DEVS formalism uses DEVS to define a cell space where each cell is represented as a 

DEVS atomic model.  In this chapter, a brief introduction of P-DEVS and Cell-DEVS 

will be covered in first section.  Then, several parallel and distributed techniques such as 

Windows MPI, Web service and .NET Remoting will be discussed in the following 

sections.   

 

2.1. P-DEVS and Cell-DEVS formalism 
 

Based on dynamic systems theory, the DEVS formalism [Zei76] provides a framework 

for defining hierarchical models in a modular way.  A system is described in DEVS as a 

composition of behavioral (atomic) and structural (coupled) components.  The P-DEVS 

formalism [Cho94b] eliminates the sequential execution constraints imposed by the 

original DEVS definition, and provides a theoretical foundation for high-performance 

parallel and distributed discrete-event simulation. A P-DEVS atomic model is defined as:  

M = <X, S, Y, δint , δext , δcon, λ, ta> 

At any given time, an atomic model is in some state s ∈  S.  Without the occurrence of 

external events, it remains in state s for a period ta(s), which is referred to as the lifetime 

of state s.  When the lifetime expires, the atomic model outputs value λ(s) ∈ Y, and 

changes to a new state given by the internal transition function δint(s).  A P-DEVS model 

employs a bag of inputs (Xb) to support the execution of multiple concurrent events.  If 

one or more external events x∈ X occur before the expiration of ta(s), the model transfers 

to a state that is determined by the external transition function δext(s, e, Xb), combining 

the functionality of multiple external transitions into a single one.  A confluent transition 

function (δcon) is defined to determine the next state in the case of collisions when a 

component receives external events at the same time of its internal transition. 



 6

 The P-DEVS formalism has a well-defined concept of system modularity and 

component coupling to form composite models.  A P-DEVS coupled model is defined as: 

N = <X, Y, D, {Md | d∈ D}, EIC, EOC, IC> 

The sets of input and output events are defined by X and Y respectively.  D is a set of 

indices for the components of a coupled model and, for each d∈ D; Md is a basic P-DEVS 

model (atomic or coupled).  The external input coupling (EIC) specifies the connections 

between external and component inputs, while the external output coupling (EOC) 

describes the connections between the components themselves are defined by the internal 

coupling (IC). 

 The Timed Cell-DEVS formalism [Wai01] was proposed to define n-dimensional 

cell spaces as discrete-event DEVS coupled models, where each cell is represented as a 

DEVS atomic model.  It defines timing constructions for each cell, allowing explicit 

timing specification, asynchronous model execution, and integration with other types of 

models.  A Cell-DEVS atomic model is defined as: 

TDC = < X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D > 

A cell has a modular interface (I) that is composed of a fixed number of ports; each is 

connected to a neighboring cell.  It can input and output data (X and Y) with its neighbors 

as well as other models outside of the cell space.  The future state of a cell is computed 

by the local transition function (τ) based on the cell�s current state and input values.  State 

changes in a cell are transmitted only after a delay given by the delay function (d).  Each 

cell also has the computing apparatus (δint, δext, and λ) as defined in DEVS atomic 

models.  Cells are coupled by the neighborhood relationship to form a cell space, which 

can then be integrated with other DEVS and Cell-DEVS models.  A cell space is defined 

as a Cell-DEVS coupled model: 

GCC = <Xlist, Ylist, I, X, Y, η, {t1, �, tn}, N, C, B, Z> 

The cell space (C) consists of a fixed-sized n-dimensional array of cells, and the relative 

position between each individual cell and its surrounding neighbors is defined by the 

neighborhood set (N).  B specifies the border of the cell space, which can be wrapped or 

non-warped.  The translation function (Z) defines the input/output coupling between the 

cells. 

 



 7

2.2. The CD++ Toolkit 
 

The stand-alone CD++ [Rod99][Tro03] is a M&S toolkit that implements DEVS and 

Cell-DEVS formalisms.  Following the M&S framework [Zei76][Zei00], which separates 

the model and simulator, the abstract simulation mechanism in CD++ enables the 

modeler to focus on the definition of the models.  The only relationship between the 

models and the simulation engine is defined by the manipulation of a variable containing 

the time of the next scheduled event, called sigma.  This variable is used to implement the 

time advance function: it stores the time remaining until the next scheduled event.  The 

internal transition function is activated when sigma = 0, and sigma must be recomputed 

every time a model is activated, as each state has an associated lifetime.  Every model 

also includes a �phase� variable (whose basic states are active and passive), which can be 

used to verify the correctness of the functions defined.   For instance, a model in the 

passive phase cannot have an internally scheduled event.  Likewise, an active model 

cannot have an infinite value for sigma. 

A DEVS atomic model is created by including a new class derived from the 

CD++ built-in class called �Atomic�.  The following methods may be overloaded: 

• initFunction.   This method is invoked when the simulation starts.  It allows one to 

define initial values and to execute setup functions for the model. 

• externalFunction.  This method is invoked when an external event arrives from an 

input port. 

• internalFunction.  This method is started when an internal event occurs (that is, 

the value of sigma is zero). 

• outputFunction.  This method is executed before the internal function in order to 

generate outputs for the model. 

 

The above functions are equivalent to those defined in the formal specifications for 

atomic models.  After defining the atomic models for a given application, they can be 

combined into a multi component model.  Coupled models are defined using a 

specification language that was built following the formal definitions for DEVS coupled 



 8

models.  Therefore, each of the components defined formally for DEVS coupled models 

can be included.  Optionally, configuration values for the atomic models can be included. 

The [top] model always defines the coupled model at the top level. The following 

properties must be configured: 

• Components.  This describes the models integrating a coupled model.   

• Out.  This defines the names of output ports. 

• In.  This defines the names of input ports. 

• Link.  This describes the internal and external coupling scheme.   

 

For the definition of Cell-DEVS model, the modeler does not need to create any new 

classes since CD++ already has a set of built-in classes for it. CD++ also includes a 

specification language allowing the description of Cell-DEVS models.  These definitions 

are based on the formal specifications.  The following parameters, such as size, 

influences, neighborhood and borders, are specified.  These are used to generate the 

complete cell space.  The behavior of the local computing function is defined using a set 

of rules of the form VALUE DELAY {CONDITION}. These indicate that when the 

CONDITION is satisfied, the state of the cell changes to the designated value, and it is 

delayed for the specified time.  If the condition is false, the next rule in the list is 

evaluated until a rule is satisfied or there are no more rules.   

In parallel CD++ (PCD++) [Tro03], the model can be partitioned into several 

components.   Each component is executed by a CPU and communicates with other 

component by means of MPICH [MPI08].  The simulation is carried out by logical 

processors (LPs) that are mapped to physical processors.  The events processed by each 

LP might have been received from other LPs through time-stamped message exchange or 

were scheduled by other local events.  The PCD++ has two types of processor: a 

simulator that executes simulations of an atomic DEVS model by invoking the atomic 

model�s transition and external event functions, and a coordinator that translates its 

children�s output events. 

           

2.3. Windows MPI 
 



 9

MPI (Message Passing Interface) was first discussed at the Supercomputing 92 

conference (1992).  The attendants agreed to develop a common standard for message 

passing.  The first MPI standard (MPI-1) [MPI08] was completed in 1994.  MPICH 

[MPI08] is the implementations of MPI-1.  Currently, most Windows MPIs are 

implemented based on MPICH.  Some of them are commercial products and others are in 

the public domain.  DeinoMPI [Dei08] is an implementation of MPI-2 [MPI08] for 

Microsoft Windows, and provides the libraries for developers to write parallel 

applications and a process manager to start processes remotely on multiple machines. 

DeinoMPI is a derived work from MPICH2 [MPI08] provided by Argonne National 

Lab.  However, DeinoMPI extends MPICH2 with the following support [Dei08]: 

• UNICODE support. 

• Automatically allows for copying a directory with all data files out to the worker 

nodes and then start this job from the new directory. 

• The collective operations have been optimized to minimize network traffic when 

multiple processes reside on each node. 

• Uses public and private keys to establish secure connections between machines in 

the cluster; also all traffic between the process managers is encrypted.   

• The process manager can launch processes that have been compiled for either 

DeinoMPI or MPICH2. 

 

2.4. Web services 
 

Web services are a set of related application functions that can be programmatically 

invoked over the Internet.  Businesses can dynamically mix and match Web services to 

perform complex transactions with minimal programming.  Since communicating Web 

services can be deployed on different locations using different implementation platforms, 

agreeing on a set of standards for data transmission and service descriptions is clearly 

very important.   Web services interact with each other using XML messages.  XML is 

not only a data format, but also a formal set of information items.  By offering a standard, 

XML significantly reduces the burden of deploying the many technologies needed to 

ensure the success of Web services.  Simple Object Access Protocol (SOAP) [SOA08] 



 10

provides a standard framework for packaging and exchanging XML messages [W3C08].  

A SOAP message represents a method invocation on a remote object, and the 

serialization of in the argument list of that method that must be moved from the local to 

the remote environment.  WSDL [WSD08] describes Web services starting with the 

messages that are exchanged between the requester and provider agents.  WSDL contains 

information about ports, message types, port types, and other related information for 

binding two interactions.  Therefore, a Web service is essentially a client server 

framework, wherein the Web service is published at a specific URL and clients request 

and consume the �service�.  Both the client and the server encapsulate their message in 

SOAP for machine-to-machine interaction via HTTP in XML format. 

   

2.5. .NET Remoting 
 

Microsoft�s .NET framework is an execution environment for Windows programs.  It 

includes two main components: the common language runtime (CLR) and the base class 

library.  The common language runtime is based on the ECMA-335 (European Computer 

Manufacturers Association) and the ISO 23271 standard [Ram05].  It is the foundation of 

the .NET framework and provides core services such as memory management, thread 

management and network Remoting.  The base class library is a collection of reusable 

type that tightly integrates with the common language runtime.  In .NET, the 

programming language can be C#, VB.net, C++/CLI or J#, and the code is first compiled 

to intermediate language from which is then compiled into machine code at runtime. 

Remoting is the process of programs interacting across different processes or 

machines.  Remoting in the .NET framework consists of numerous services that  are able 

to invoke objects anywhere on the network.  These objects could be in the same machine, 

on the same network, or located on a WAN.  An application domain is a mechanism, 

used to isolate executed software applications from one another so that they do not affect 

each other.  When a CLR process is created, it creates an application domain to host the 

assembly that will be used.  The CLR enforces isolation by preventing direct calls 

between objects residing in different application domains.  In order to access these 

objects, the .NET Remoting mechanism is used. 



 11

In .NET Remoting, the client is term denoting a component that needs to 

communicate with a remote object.  The Server receives the request from the client object 

and responds.  The Proxy contains a list of all classes, as well as interface methods of the 

remote object.  It examines if the call made by the client object is valid and whether the 

remote object resides in the same application domain as the proxy [Ram05].  If this is the 

case, a simple method call is routed to the remote object.  If the object is in a different 

application domain, the call is forwarded to a RealProxy class by calling its Invoke 

method. This class is then responsible for forwarding messages to the remote object.  The 

message will pass a serialization layer:  the formatter, which then converts it into a 

specific transfer format such as SOAP or binary.  The serialized message later reaches a 

transport channel, which transfers it to a remote process via a specific protocol like HTTP 

or TCP.  The HTTP channel transports messages to and from remote objects using the 

SOAP protocol.   All messages are passed through the SOAP formatter, where the 

message is changed into XML and serialized, and the required SOAP headers are added 

to the data stream, which is then transported to the target URI using HTTP protocol.  

Conversely,  the TCP channel uses a binary formatter to serialize all messages to a binary 

stream and transports the stream to the target URI using the TCP protocol.  It is also 

possible to configure the TCP channel to the SOAP formatter.  On the server side, the 

message also passes a formatting layer, which converts the serialized format back into the 

original message and forwards it to the dispatcher.  Finally, the dispatcher calls the target 

object�s method and passes back the response values through all tiers. 

 

 

 

 

 

 

 

 

 



 12

CHAPTER 3 REVIEW DEVS-BASED SIMULATION TOOL  
 

 

3.1. The overview of DEVS-based simulation tool 
 

Based on M&S theory and DEVS formalism, various simulation tools have been 

developed by researchers.  Table 1 lists some. 
 

Table 1.  DEVS-based simulation tools 
Name and Reference Year Applied 

Technique 

Explanation 

SOADEVS [Mit07] 

 

2007 Service Oriented 

Architecture 

 Uses SOA to generate and 

simulate DEVS models   

DEVS/RMI [Zha06] 2006 JAVA 

RMI 

Uses Java RMI to achieve the 

synchronization of simulators 

DEVS/P2P [Che06] 2004 Peer to Peer 

Network 

Uses P2P paradigm to introduce  

distributed simulations 

DEVS/Grid[Seo04] 2004 Grid 

Computing 

Allows DEVS M&S over grid 

computing infrastructure 

DEVSCluster[Kim04] 2004 CORBA 

 

A CORBA-based simulator for 

DEVS models 

DEVS/HLA[Zei99] 1999 High Level  

Architecture 

A HLA-based large-scale 

distributed M&S 

DEVSJAVA [Sar98] 1998 JAVA 

 

DEVS-based simulation 

environment written in Java 

DEVS-C++ [Zei96] 1996 C++ 

 

DEVS-based M&S environment 

written in C++ 

CD++ [Rod99] 

[Wai02][Tro03] 

[Liu07][Mad07] 

1999- 

2007 

C++ 

MPICH 

Web service 

Supports parallel conservative, 

optimistic and web service 

DEVS and Cell-DEVS 

simulations 



 13

In the development of DEVS-based simulation tool, middleware systems are heavily used 

for the implementation of parallel and distributed DEVS simulation applications.  

Middleware is computer software that connects software components or applications.  

More specifically, middleware consists of a set of enabling services that allow multiple 

processes to run on one or more machine and interact across a network.  CORBA 

[COR08] is a well-known standard middleware that provides architecture for object-

based systems.  CORBA-based applications are built with distributed objects that can 

transparently interact with each other, even if they reside on different nodes in a 

distributed environment.  CORBA objects can be implemented in different programming 

languages.  Their interface has to be defined in a single, language-independent interface 

description language (IDL).  Problem-specific extensions allow additional features to be 

added to the underlying base architecture. 

 The DEVSCluster is a CORBA-based distributed DEVS simulation methodology.  

It is applied to the distributed object technologies as an underlying communication 

mechanism and transforms a hierarchical DEVS model into a non-hierarchical one, and 

then applies the simplified non-hierarchical simulation mechanism to the transformed 

model.  As we know, DEVS can consist of two types of models, coupled and atomic.  

The DEVSCluster translates the information of coupled models into a flat-structured 

model information class and removes the coupled models from the DEVS model.  By this 

translation, the hierarchical structure of the DEVS model can be flattened and a central 

scheduler then handle the events generated from all atomic models.  A CORBA servant 

can invoke threads for incoming external messages to access models and simulators. 

 Though CORBA played an important role in distributed computing history, it had 

serious technical shortcomings.   These include [Hen06]: 

• The most obvious technical problem is the complexity of CORBA�s API.  

Many of CORBA�s APIs are far larger than necessary. 

• C++ language mapping is difficult to use and contains many pitfalls that 

lead to bugs. 

• Design flaws in CORBA�s interoperability protocol make it impossible to 

build a high-performance event distribution service. 



 14

• The encoding of CORBA contains a large amount of redundancy, and the 

protocol does not support compression.  This leads to poor performance 

over wide-area networks. 

• The specification ignores threading almost completely, so threaded 

applications are inherently non-portable. 

• CORBA does not support asynchronous server-side dispatch. 

• No language mappings exist for C# and Visual Basic, and CORBA has 

completely ignored .NET. 

 

In recent years, a transformation has been occurring in the architecture of computer-based 

applications.  A new paradigm,, which is called �software as a service�, has had a 

profound impact on the design and development of software.  Envisioning software as a 

service requires a major change in the underlying platform that supports the 

interoperability of software applications.  Both Sun Microsystems and Microsoft have 

introduced frameworks to support this new component-based, service-oriented 

architecture.  These platforms provide support for software development, deployment, 

execution and management that facilitate interoperability across servers, development 

languages and applications.  Both J2EE and .NET provide the capabilities to achieve this 

goal.   

 Microsoft .NET is a collection of resources that includes development tools and 

languages, server software and protocols.  With the Common Language Runtime and the 

class library, .NET provides a standard set of data types to perform common functions.  

.NET has the following features [Ram05]: 

• .NET provides means to access other functions, which execute outside the .NET 

environment. 

• All .NET programs are executed under the CLR, which is the virtual machine 

component of the .NET framework and provides memory management, security, 

and exception handling properties. 

• The .NET framework provides a  base class library, which encapsulates a number 

of common functions, including file reading and writing, graphic rendering, 

database interaction and XML document manipulation. 



 15

• .NET provides a common security model for all applications. 

• Microsoft submits the specifications for the Common Language Infrastructure, C# 

and C++/CLI to both ECMA (European Computer Manufacturer�s Association) 

and the ISO, making them available as open standards.  This makes it possible for 

third parties to create compatible implementations of the framework and its 

languages on other platforms.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 16

CHAPTER 4 PCD++WIN  
 

 

PCD++Win is a parallel simulation engine, which takes advantage of the multi-purpose 

GUI of the Windows MPI middleware for the construction of ad-hoc PC clusters and the 

configuration of simulation environments.    

 

4.1. Software architecture 
 

Computers in a network use well-defined protocols to communicate.  A protocol is a set 

of rules and conventions between the communicating participants.  Implementing these 

protocols over a network is quite complicated.  However, this complex task could be 

solved by breaking up the task into pieces and solving each piece individually.  In the 

context of networking, this approach of breaking down the task into simpler subtasks is 

called layering.  Therefore, the communication problem is divided into pieces (layers) 

and each layer concentrates on providing well-defined interfaces.   

 

application

transport

session

presentation

network

data link

physical1

2

3

4

5

6

7

bits

frames

packets

message

message

message

message

 
Figure 1.  OSI model 

 

The starting point for describing the layers in a network is the International Standards 

Organization�s (ISO) Open Systems Interconnection (OSI) model for computer 



 17

communication.  This model, shown in Figure 1, was developed between 1977 and 1984 

and is intended to serve as a guide, not a specification.  It provides a framework in which 

standards can be developed for the services and protocols at each layer.  One advantage 

of layering is to provide well-defined interfaces between the layers, so that a change in 

one layer does not affect an adjacent layer.   

 Following ISO/OSI model, both PCD++ [Tro03] and PCD++Win have a layered 

architecture, as shown in Figure 2.  

 

Model

PCD++

NoTime

DeinoMPI

Windows OS

Model

PCD++

NoTime

MPICH

Linux OS

PCD++ architecture PCD++Win architecture  
Figure 2.  Architecture of PCD++ and PCD++Win 

 
 

For PCD++Win, which ports PCD++ into Windows cluster environments, the 

operating system is at the base, serving as the platform for high performance parallel 

computing.   Above the operating system, DeinoMPI provides the communication 

infrastructure for the workstation clusters with a standard message-passing library.   The 

NoTime kernel [War95], as the part of Time warp protocol, implements NoTime protocol 

for conservative simulators and organizes the simulation objects.  On top of the NoTime 

kernel, the PCD++ provides a hierarchy of classes that implement the simulation 

mechanisms.  Although DeinoMPI belongs to layer 5 (the session layer), 

implementations may cover most layers of the reference model with socket and TCP 

being used in the transport layer.   NoTime kernel, as middleware, is part of the 

presentation and application layer, used to manage logical processes and invoke MPI 

method call (shown in Figure 3). 

 



 18

Presentation Layer

Session Layer

Application Layer
NoTime

DeinoMPI

PCD++Win

 
Figure 3.  PCD++Win and OSI layer 

 

4.2. Parallel DEVS abstract simulator in PCD++Win 
 

PCD++Win, which ports PCD++ into a Windows platform, includes the modeling and 

simulation frameworks. The modeling framework allows users to define the behavior of 

atomic and coupled models using C++ programming language and a built-in specification 

language respectively. In creating DEVS models, modelers need to provide new C++ 

classes inherited from the abstract atomic model defined in the modeling framework of 

PCD++Win.  Next, modelers need to specify the properties of the cell space with 

specification language.  The simulation framework, creating an executive entity for each 

component in the model hierarchy, is a set of abstract simulators executed simulation 

according to the DEVS or Cell-DEVS formalism.   Figure 4 shows the PCD++Win major 

classes from PCD++. The processor class is the parent of all the classes in charge of 

executing the model including the simulator, coordinator, and root classes. The processor 

class implements the basic functionality required by all simulation classes.  Those include 

the receive methods, which are responsible for receiving and processing the different 

simulation messages.  The messages are sent among processors through a class, called 

MsgAdmin class.  The processor would send the message to the MsgAdmin through the 

send method, which queues the messages until they are sent.  Sending a message is done 

by executing the receive method on the receiving processor. In addition to the receive 

method, the processor class implements three methods for the execution of the model, as 

follows: 

• lastChange( ) reports the time of the last state change; 

• nextChange( ) reports the time of the next state change; 



 19

• absoluteNext( ) reports the absolute time of the next change ( lastChange( ) + 

nextChange( ) ); 

 

Model

Atomic Coupled

AtomicCell CoupledCell

InertialDelayCell TransportDelayCell

SimuObj

Processor

Simulator Root

Coordinator

Master Slave

Message

DoneMessage

InitMessage

OutputMessage

InternalMessage

ExternalMessage

CollectMessage

 
Figure 4.  PCD++Win major class diagram 

  

The simulator class extends the processor class and overrides the receive function in 

order to execute the function of the DEVS model corresponding to the type of the 

message received.  When a simulator receives a collect message from its parent 

coordinator, it executes the output function associated with its model in order to generate 



 20

the model output.  This is followed by the simulator sending a done message to the 

coordinator reporting the time of the next change of the model.  The simulator itself 

receives only specific types of messages, but not done or output messages. 

Processor classes have a hierarchical structure.  The coordinator class may 

manage several simulators or other coordinators.  It is responsible for forwarding 

messages among the simulators and for synchronizing the events taking place during the 

simulation.  The receive method has the same functionality as in any processor class, but 

the behavior of the method is different from that in the simulator class.  There are two 

types of processor: a simulator that executes the simulation of an atomic DEVS model by 

invoking the atomic model�s transition and external event function, and a coordinator that 

takes the responsibility of translating its children�s output events.  A coordinator 

communicates with its child processors through intra-process messages if they reside on 

the same logical process and through inter-process message if they are sitting on different 

logical processes.  To reduce the communication overhead, a master/slave coordinator 

structure is used.  As a result, when a coupled model is partitioned onto multiple nodes, a 

coordinator is created on each of them to execute the portion mapped on that specific 

node.  The coordinator on the first node is the master, while all the other coordinators are 

slaves.  The master coordinator is considered the immediate parent of the slaves residing 

on the other nodes.  

Figure 5 shows the definition of the master and slave coordinators, which are 

implemented by extending the Coordinator class and integrating them into the simulator 

class hierarchy.  Both override the receive function used to process the different messages 

received by the processors.  In addition, they implement the sortExternalMessages and 

sortOutputMessages methods.  The former method is triggered when receiving an output 

message from a child processor.  The sortExternalMessages method is triggered when the 

coordinator receives an internal message from its parent coordinator.  It causes the 

coordinator to process all the messages in its bag by forwarding them to their destinations 

either locally or remotely. 



 21

 

Coordinator

dependents
doneCount
synchronizeList

calculateImminentChild ()
receive()
sortExternalMessage()
sortOutputMessages ()

Slave Coordinator

calculateNextChange ()
receive()
sortExternalMessage ()
sortOutputMessages ()

Master Coordinator

slaves

calculateNextChange ()
receive()
sortExternalMessage ()
sortOutputMessages ()

 
Figure 5.  Master and Slave Coordinator function 

 
According to [Cho94a], the internal transition of an atomic model is executed at the next 

event time for all imminent components receiving no external events.  External events 

generated by these imminent trigger external transitions at receptive non-imminent.  

Therefore, the coordinator executes the calculateNextChange method to evaluate the 

imminent child processors.  In the case of the master coordinator, it considers the local 

child processors in addition to the remote slave coordinators; in the case of the slave 

coordinator, it only considers the local child processors. The root coordinator is the main 

processor in the simulation and it is in charge of: 

• starting the simulation through the simulate method; 

• stopping the simulation through the stop method; 

• interacting with the environment in terms of inputting external events; and 

• advancing the simulation clock 

Messages are implemented as separate classes, each representing a message type with all 

the classes inheriting the Message class. The message type includes initialization 

messages (I), collect messages (@), internal messages (*), external messages (X), done 

messages (D), and output messages (Y).  

 The simulation is carried out in a message-driven fashion.  Each message has a 

timestamp that indicates the virtual time of the event.  These messages fall into two 

categories: content messages include the external message (X, t) and output message (Y, 



 22

t) that encode the actual data transmitted between the models, while control messages 

include the initialization message (I, t), collect message (@, t), internal message (*, t) and 

done message (D, t), which are used to synchronize the simulation.   

 In [Cho94b], the abstract simulator for the parallel DEVS formalism was 

introduced.  The main additions are the message bags and the confluent transition 

function.  Message bags are used to hold multiple input messages arriving at the model 

and multiple output messages generated by the model.  The confluent function allows the 

modeler to define the behavior of the model when it receives an external message while 

being scheduled for internal transition.  In such a case, the confluent transition function is 

executed in place of the internal and external transition functions.  According to 

[Cho94b], �Both δcon and δext depend on the events in the bag, xb.   An event in the bag is 

a result from an output function and all the translations on the event path.  An output 

function depends on a state prior to a transition at the same instance.�  

 Figure 6 shows the algorithms for simulators.  When a simulator receives a (@, t) 

message from its parent coordinator, it executes the output function defined in the 

associated atomic model and sends a (Y, t) and a (D, t) to its parent.  If a (X, t) is 

received, the message is cached in the simulator�s message bag.  On the other hand, the 

arrival of  (*, t) triggers state transitions in the atomic model based on the simulation time 

and status of the message bag.   

 
Figure 6.  Simulator algorithm [Ch094b][Tro03] 



 23

 
The message-processing algorithms for master coordinators are illustrated in Figure 7.  A 

master coordinator may have three different types of child processors, including the slave 

coordinators on remote nodes, the local child simulators, and other lower-level master 

coordinators on the same node. When (@, t) arrives, the master coordinator forwards the 

message to all imminent child processors and caches the receivers for later state 

transitions. Then, it waits for (D, t) from each of these receivers. Afterwards, it sends (D, 

t) with the updated simulation time to its parent coordinator. 

 
Figure 7.  Master coordinator algorithm [Cho94b][Tro03] 



 24

 
Three different cases may occur upon the arrival of (Y, t): if the message is sent to a local 

receiver, the master coordinator translates it into (X, t) and forwards it to the destination.  

If the message targets remote receivers, the master coordinator figures out the 

corresponding slave coordinators, and relays the message to each of them. Otherwise, the 

message is forwarded to the higher-level parent coordinator.  The processing of (X, t) is 

the same as in the simulators. The master coordinator flushes all external messages in its 

message bag to their destinations upon the arrival of (*, t). It also sends (*, t) to each 

child that has a scheduled internal or external state transition. After the state transitions, 

the master coordinator calculates the next simulation time and sends the information to its 

parent coordinator in (D, t). 

 The slave coordinator handles (@, t), (X, t), and (*, t) messages in the same manner 

as the master coordinator. However, they differ in one aspect: whenever (Y, t) has to be 

sent to a remote receiver, the slave coordinator will forward it to its parent master 

coordinator. In this master/slave structure, a slave coordinator can have only two types of 

child processors, namely the local child simulators and lower-level master coordinators 

(i.e., it will not have other slave coordinators as descendants). Figure 8 shows the slave 

coordinator algorithm for (Y, t). 

 
Figure 8.  Slave coordinator algorithm [Cho94b][Tro03] 

 



 25

 
When (Y, t) arrives, the slave coordinator transforms the message into (X, t) and sends 

the resulting (X, t) to the local child receivers. If the (Y, t) targets remote receivers on 

other nodes, the slave coordinator simply forwards the message to its parent master 

coordinator, which in turn will send the message to other slave coordinators if necessary. 

Notice that only one (Y, t) is forwarded to the master coordinator, as guaranteed by the 

sendToMaster flag. 

 
Figure 9.  Root coordinator algorithm [Cho94b][Tro03] 

 
The root coordinator is a special processor that controls the whole simulation and handles 

events exchanged between the simulated model and the environment.  Figure 9 shows the 

root coordinator algorithm for controlling the simulation, where it sends (*, t) and (@, t) 

alternatively with potential external events as (X, t) messages to the top-level master 

coordinator to drive the simulation forward.  

 In PCD++Win, the above algorithms (or protocols) are implemented with 

Microsoft Visual Studio 2005.  Figure 10 illustrates the abstract simulators of a two-node 

PCD++Win cluster, which includes a master coordinator and a slave coordinator with 

connections using Windows MPI.  The coordinators and simulators obey the protocols, 

which allow them to work together in a transparent way. The protocols have to be seen as 



 26

abstract schemes without considering implementation details and performance 

requirements.    

Root
coordinator 

top 
coordinator

Master
coordinator

Slave
coordinator

simulator simulator simulator simulator simulator simulator

PC Windows Machine 1 PC Windows Machine 2

  �...     �.

 
Figure 10.  Abstract simulator in PCD++Win 

 

4.3. The NoTime kernel in PCD++Win 
 

The TimeWarp [War95] simulation kernel is a parallel synchronization protocol, which 

was developed at the University of Cincinnati.  As part of TimeWarp, the NoTime kernel 

is used for parallel and stand-alone simulations that use no synchronization at all.  In 

PCD++Win, the NoTime kernel is compiled by Microsoft Visual Studio 2005. The major 

functionalities of NoTime for PCD++Win are as follows: 

• The interface of PCD++Win.  The NoTime presents some interfaces for events, 

states and simulation objects.  Several classes of PCD++Win are derived from 

these interfaces.  PCD++Win is responsible for initializing the simulation objects 

and defining the activities of each simulation object, while NoTime provides the 



 27

basic functions for sending and receiving events between simulation objects.  

Control is passed between PCD++Win and NoTime through function calls.   

• Event Management.  PCD++Win defines different types of events by deriving 

from the BasicEvent, which is the class of NoTime.  Events are organized in the 

input and output queues in NoTime.  While an output queue is created for each 

simulation object, a single input queue is shared by all the simulation objects 

mapped on a logical process. 

• Communication Management.  There are two types of communications in the 

PCD++Win: message passing between simulation objects residing on different 

processors (remote communications), and message-passing between simulation 

objects on the same processor (local communications). Remote communications 

are controlled by a communication manager and local communications are done 

via direct function calls. 

Figure 11 illustrates the relationship between NoTime and PCD++Win. 

 

BasicEvent BasicState SimulationObj

TWMessage ParallelProcessor
State ParallelProcessor

PCD++Win
Engine

NoTime kernel class

PCD++Win class

create create create

 
Figure 11.  NoTime kernel and PCD++Win 

 

 



 28

4.4. Running PCD++Win with DeinoMPI interface 
 

By using the DeinoMPI GUI tool, users can easily configure a PC cluster to carry out 

parallel simulations with PCD++Win.  Figure 12 shows the GUI for cluster 

configuration.  The user can add computers on a network to the panel either by scanning 

the whole network or by specifying their host names. The tool can automatically check 

the machines and present their status.  For instance, Figure 12 shows that both ARS-14 

and ARS-7 do not install DeinoMPI package and hence cannot be involved in the cluster.  

Other machines are available nodes that have all necessary software to carry out parallel 

simulations. Detailed information about each node, including CPU speed, memory size, 

disk space and network connectivity, is featured in the panel. With this information, the 

user can then select the appropriate nodes to form a cluster. 

 

 
Figure 12.  The GUI of DeinoMPI 

 

The main execution window is illustrated in Figure 13. Users can specify the simulation 

parameters using the GUI tool and then dynamically change the nodes involved in the 

cluster. The simulation-related information is shown in the window underneath. 



 29

 
Figure 13.  Main windows running PCD++Win 

 
If errors happen in the simulation, users can diagnose the error condition by using the job 

verification tab. As shown in Figure 14, this tool gives a detailed description of each job 

and the possible causes of the failure. 

 
Figure 14.  Job verification tool 

 

As we can see, PCD++Win provides a user-friendly environment for conducting parallel 

simulations by leveraging the easy-to-use GUI tool of DeinoMPI.  Windows-based PCs 

interconnected via a LAN can be used to form a cluster platform for parallel simulations.  

Therefore, PCD++Win makes advanced simulation technologies available not only to 

users in a traditional office environment equipped with wired desktop PCs, but also to 

practitioners on the move working on laptops connected by wireless networks. 



 30

 

4.5. Performance Metrics  
 

The most commonly used performance metric for parallel computing is speedup, which 

signifies the performance gain of parallel processing versus sequential processing.  

However, with different emphases, speedup has been defined differently.  One definition 

focuses on how much faster a problem can be solved with N processors.  Thus, it 

compares the best sequential algorithm with the parallel algorithm under consideration.  

This definition is referred to as absolute speedup.  Another speedup, called relative 

speedup, deals with the inherent parallelism of the parallel algorithm under consideration.  

It is defined as the ratio of elapsed time of the parallel algorithm on one processor to 

elapsed time of the parallel algorithm on N processors.  The reason for using relative 

speedup is that the performance of parallel algorithms varies with the number of available 

processors.  It gives information on the variations of parallelism to compare the algorithm 

itself with different numbers of processors.  Two well-known speedup formulations have 

been proposed based on relative speedup.  One is Amdahl�s law [Amd67] and another is 

Gustafson�s scaled speedup [Gus88].  Amdahl�s law has a fixed problem size and is 

interested in how fast the response time could be.  It suggests that massively parallel 

processing may not gain high speedup.  Under the influence of Amdahl�s law, many 

parallel computers have been built with a small number of processors.  Gustafson 

approaches the problem from another point of view.  He is interested in how large a 

problem could be solved within this time.   In this work, we use the following definition 

for speedup:  

Overall Speedup = T(1)/T(N) 

T(N) represents the total execution time taken by the simulation running on N nodes, and 

T(1) represents the best possible execution time measured on one node with the same 

algorithm used in T(N).  In [Amd67], the author states that a small portion of the program 

which cannot be parallelized will limit the overall speedup, and any program will 

typically consist of several parallelizable parts and several non-parallelizable (sequential) 

parts.  This means that if a task cannot be partitioned because of sequential constraints, 

the application of more effort has no effect on the schedule, regardless of how many 



 31

processors are added.   Therefore, no program can run more quickly than the longest 

chain of dependent calculations, since calculations that depend upon prior calculations in 

the chain must be executed in order.  However, most algorithms do not consist of just a 

long chain of dependent calculations; there are usually opportunities to execute 

independent calculations in parallel.   

  

4.6. Experimental results of PCD++Win 
 

This section presents a performance analysis of PCD++Win.  PCD++Win was  executed 

on a group of desktop workstations, which are Intel Core 2 Duo Processor E6400 @ 2.13 

GHz, 2GB DDR2-Synch DRAM machines, running Microsoft Windows XP Professional 

connected through a LAN and communicate with DeinoMPI 1.1.0.  The log data 

generated during the simulation were stored to the local file system on each workstation.  

Two models were used during the performance analysis.  One of the models was  

a fire spreading in a forest, and it was implemented as a 20×20 coupled Cell-DEVS 

model [Ame01].  The other was a collision avoidance model [Wai08], consisting of 

robots encountering obstacles as they traversed a specific area.  

The fire model was composed of 20×20 cell space, with each cell representing a 

square area of the forest.  The cell was considered to be burned if its temperature 

exceeded a specific value.  The delay time was 100 ms.  Figure 15 shows the model 

definition. 
 
[top] 
components : Fire 
 
[Fire] 
type : cell 
dim : (20,20) 
delay : inertial 
defaultDelayTime  : 100 
border : nowrapped 
neighbors : Fire(-1,-1) Fire(-1,0) Fire(-1,1) 
neighbors : Fire( 0,-1) Fire( 0,0) Fire( 0,1) 
neighbors : Fire( 1,-1) Fire( 1,0) Fire( 1,1) 
initialvalue : 0 
initialCellsValue : Fire.val 
localtransition : FireBehavior 
 
[FireBehavior] 



 32

rule : {(1,-1)+(21.552615/17.967136)} {(21.552615/17.967136)*60000} 
{(0,0)=0 and (1,-1)!=? and 0<(1,-1)} 
rule : {(1,0)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and 
(1,0)!=? and 0<(1,0)} 
rule : {(0,-1)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and 
(0,-1)!=? and 0<(0,-1)} 
rule : {(-1,-1)+(21.552615/1.872060)} {(21.552615/1.872060)*60000} 
{(0,0)=0 and (-1,-1)!=? and 0<(-1,-1)} 
rule : {(1,1)+(21.552615/1.872060)} {(21.552615/1.872060)*60000} 
{(0,0)=0 and (1,1)!=? and 0<(1,1)} 
rule : {(-1,0)+(15.24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and 
(-1,0)!=? and 0<(-1,0)} 
rule : {(0,1)+(15.24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and 
(0,1)!=? and 0<(0,1)} 
rule : {(-1,1)+(21.552615/0.987474)} {(21.552615/0.987474)*60000} 
{(0,0)=0 and (-1,1)!=? and 0<(-1,1)} 
rule : {(0,0)} 0 { t } 

 
Figure 15.  Fire model definition [Wai08] 

 
The cell space uses inertial delay.  The neighborhood of the cell is defined by the 

neighbors construct; the cell is neighborhood by 8 cells from all sides.  Fire(-1,-1) 

represents the cell in the North West side, Fire(0,-1) represents the cell in the west, etc.  

The rules that define the state of the cells in each simulation cycle are defined using the 

local transition construct.  There are rules defining the time it takes for the cell to be 

burned if one of its neighbors is burned.  For example, the first rule dictates that if the cell 

in the southwest side of the cell is burned, the cell will take 

(21.552615/17.967136)×60000 milliseconds to burn.  The value of 21.552615 represents 

the diagonal distance of each cell (measured in meters), and the value of 17.967136 is the 

speed of the fire spread (measured in meters/minute) as presented in the model definition 

[Ame01].  By dividing the distance that the fire has to spread by the speed of the fire, the 

time it takes for fire to spread is evaluated in minutes and by multiplying it by 60,000; the 

time in milliseconds is obtained as the delay of the cell.  If the condition in the first rule 

holds, the cell state is updated to the value of Fire(1,-1) + (21.552615/17.967136) once 

the delay elapses. 

A simple partition strategy was used in the Fire model testing (as shown in Figure 

16).  It evenly divides the cell space into horizontal rectangles and each partition is run by 

one PC workstation. Figure 17 shows the execution time and overall speedup for the Fire 

model with PCD++Win.    



 33

1 partition 2 partitions 

3 partitions 4 partitions 

(0, 0) (0, 0)

(0, 0) (0, 0)

(19, 19) (19, 19)

(19, 19)(19, 19)

(10,  0)

(7,  0)

(14, 0)

(5, 0)

(10, 0)

(15,  0)

 
Figure 16.  Partition strategy  

 
 

PCD++Win for Fire Model

1.92

1.41
1.27 1.17

0

0.5

1

1.5

2

2.5

1 2 3 4

Number of nodes

Ex
ec

ut
io
n 
tim

e 
(s
ec

)

PCD++Win for Fire Model

1

1.36
1.51

1.64

0
0.2

0.4
0.6
0.8

1
1.2
1.4

1.6
1.8

1 2 3 4

Number of nodes

Sp
ee

du
p

 
Figure 17.  The experiment result of Fire model 

 

Figure 17 illustrates the speedups obtained by the PCD++Win simulator using 1 to 4 

processors for the fire model.  It can be seen that the execution time decreases with 

increasing computing nodes. For instance, the execution time decreases from 1.92 to 1.17 



 34

seconds when the number of nodes climbs from 1 to 4.   The shortest execution time is 

achieved on 4 nodes, which is the most we used.  This result, of cause, comes first from 

the enough parallelism of the model.  In increasing the nodes, each partition of the model 

has enough workload to compensate for the cost of increased communication incurred by 

Windows MPI calls across LAN.   

The second model describes that Unmanned Aerial Vehicles (UAV) encountering 

static and dynamic obstacles when they traverse a specific area.  It is necessary for the 

UAV to be able to avoid such obstacles and continue its mission.  Figure 18 represents 

the state of the model.  Here, state 1 represents a UAV (Robot), state 9 represents various 

static obstacles and state 5 represents dynamic obstacles. The UAV�s mission is to cross 

the area from top to bottom while avoiding all encountered obstacles. 

 
Figure 18.  State of collision avoidance model 

 

The model can be tested for multiple UAVs running at the same time, and the results 

were verified for a specific set of scenarios based on the condition that there is an 

appropriate separation between the UAV, so that they don�t interfere with one another.  

The model is initialized in the model file, as shown in Figure 19, and the starting position 

of the entities can be changed by reinitializing the model.   
 
[top] 
components : uav 
 
[uav] 
type : cell 
dim : (20, 20) 
delay : transport 
defaultDelayTime : 100 
border : wrapped 
 
neighbors : uav(-2,-2) uav(-1,-2) uav(0,-2) uav(1,-2) uav(2,-2) 



 35

neighbors : uav(-2,-1) uav(-1,-1) uav(0,-1) uav(1,-1) uav(2,-1) 
neighbors : uav(-2, 0) uav(-1, 0) uav(0, 0) uav(1, 0) uav(2, 0) 
neighbors : uav(-2, 1) uav(-1, 1) uav(0, 1) uav(1, 1) uav(2, 1) 
neighbors : uav(-2, 2) uav(-1, 2) uav(0, 2) uav(1, 2) uav(2, 2) 
neighbors : uav(3, -2) uav( 3,-1) uav(3, 0) uav(3, 1) uav(3, 2) 
 
initialvalue : 0 
initialrowvalue : 0     00000100000000000000 
initialrowvalue : 5     00000000099900000000 
initialrowvalue : 9     00009090000000090900 
initialrowvalue : 10    00099999000000099900 
initialrowvalue : 15    00000000900000000000 
initialrowvalue : 17    00999000000099900000 

 
Figure 19.  The first part of collision avoidance model [Wai08] 

 
The model execution conforms to a set of rules that specify how the model behaves under 

certain conditions.  Figure 20 shows a set of possible rules that the UAV obeys: 
 
localtransition : uav-rule 
 
[uav-rule] 
rule : 1 100 { (0,0)=0 and (0,-1)=0 and (0,1)=0 and (-1,0)=1} 
rule : 0 100 { (1,0)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (0,-1)=0 and (0,1)!=0 and (-1,0)=1} 
rule : 0 100 { (1,0)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (1,-1)!=0 and (1,-2)=0 and (1,0)=0 and  
               (0,-1)=1 and (2,-2)!=0 and (2,0)=0} 
rule : 0 100 { (0,1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (1,1)!=0 and (1,2)=0 and (1,0)=0 and  
               (0,1)=1 and (2,2)!=0 and (2,0)=0} 
rule : 0 100 { (0,1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (1,1)!=0 and (1,2)=0 and (1,0)=0 and  
               (0,1)=1 and (2,2)=0 and (2,0)=0} 
rule : 0 100 { (0,1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (1,1)!=0 and (1,2)=0 and (1,0)=0 and  
               (0,1)=1 and (2,2)!=0 and (2,0)!=0} 
rule : 0 100 { (0,1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (1,1)!=0 and (1,2)=9 and (0,1)=1 and              
               (1,0)=0} 
rule : 0 100 { (0,-1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (0,-1)!=0 and (0,1)=0 and (-1,0)=1} 
rule : 0 100 { (1,0)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (0,1)=1 and (1,1)=0 and (2,1)!=0 and   
               (1,0)!=0 and (1,2)!=0 and (2,0)=0 and (2,2)=0} 
rule : 0 100 { (0,-1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (0,1)!=0 and (0,-1)!=0 and (1,0)=0 and  
               (1,1)!=0 and (1,-1)=0 and (-1,0)=1} 
rule : 0 100 { (1,0)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (0,1)=1 and (1,1)=0 and (2,1)=9 and  
               (1,0)!=0 and (1,2)!=0 and (2,0)=0 and (2,2)!=0} 
rule : 0 100 { (0,-1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (0,1)!=0 and (0,-1)!=0 and (1,0)=0 and   
               (1,1)=0 and (1,-1)!=0 and (-1,0)=1} 
rule : 0 100 { (1,0)=1 and (0,0)=1 } 



 36

rule : 1 100 { (0,0)=0 and (0,1)=1 and (1,1)=0 and (2,1)!=0 and  
               (1,0)!=0 and (1,2)!=0 and (2,0)!=0 and (2,2)!=0} 
rule : 0 100 { (0,-1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (1,-1)!=0 and (1,-2)!=0 and (1,0)=0 and  
               (0,-1)=1} 
rule : 0 100 { (0,1)=1 and (0,0)=1 } 
rule : 1 100 { (0,0)=0 and (1,-1)!=0 and (1,-2)!=0 and (1,0)!=0 and   
               (0,-1)=1} 
rule : 0 100 { (0,1)=1 and (0,0)=1 } 

 
Figure 20.  The second part of collision avoidance model [Wei08] 

 
In Figure 20, there are a set of rules for the UAV.  For example,  Figure 21 shows the 

precondition and result for � rule : 1 100 { (0,0)=0 and (0,-1) and (0,1)=0 and (-1,0)=1} 

�, which makes the UAV move one step from left to right.   

0

0

0

1 1

Precondition Result  
Figure 21.  One of UAV�s rules 

 
The model is again 20*20 cell spaces.  Therefore, the partition strategy shown in Figure 

16 is also used for execution the simulation of collision avoidance mode. Figure 22 

shows the results. 



 37

PCD++Win for Collision avoidance model

4.93

3.1
2.76 2.52

0

1

2

3

4

5

6

1 2 3 4

Number of nodes

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

PCD++Win for Collision avoidance model

1.00

1.59
1.79

1.96

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4

Number of nodes

Sp
ee

du
p

 
Figure 22.  The result of the collision avoidance model 

 

From Figure 22, it can be seen that the speedup of the collision avoidance model is 

achieved by increasing the number computing nodes.  For example, the simulation time 

decreases by 59% when the node increased from 1 to 2.  However, when the number of 

nodes increases further, the downward trend of execution time is less steep.  This means 

that the overhead involved in inter-LP communication increases when the model is 

partitioned onto more nodes.  In fact, the downward trend of execution time is even 

reversed if a certain number nodes are used.   Therefore, choosing the appropriate number 

of nodes to execute a given model is a trade-off between the benefits of a higher degree 

of parallelism and the overhead cost.    

 Besides the speedup of execution time, the PCD++Win provides a user-friendly 

environment for conducting parallel simulations by leveraging the easy-to-use GUI tool 

of DeinoMPI. Also, several techniques are used to enhance the modularity, portability 

and capability.  The following is a summary of the major efforts: 



 38

• Modular software using dynamic link libraries (DLL): a DLL contains the 

implementation of a shared library that allows for modular software 

development and promotes code reuse. We compiled the NoTime kernel as a 

separate DLL module, which is dynamically linked to the PCD++Win at 

runtime. This approach reduces the memory footprint of PCD++Win and makes 

it possible to switch to other middleware technologies in future developments.  

• Multi-platform compilation with preprocessor macros: although PCD++Win is 

intended for Windows-based PC clusters, the code was written to be compiled 

on Linux OS with slight revision. This is achieved by defining preprocessor 

macros in the source code and using conditional compilation to generate 

appropriate versions for different platforms, increasing the portability of the 

toolkit. 

• Porting code from GCC (GUN Compiler Collection) to Microsoft Visual 

Studio: PCD++Win was developed based on a PCD++ conservative simulation 

engine [Tro03], which uses GCC on Linux systems.  The source code was 

ported to Microsoft Visual Studio, which supports the .NET framework.  As a 

result, it is more convenient for further extension. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39

CHAPTER 5 EXPOSING PCD++WIN AS WEB SERVICE 
 

 

Service Oriented Architecture (SOA) is a framework consisting of various W3C 

standards in which various computational components are available as �services�.  A 

Web service is a software system designed to support interoperable machine-to-machine 

interaction over a network.  In this chapter, we present a way of exposing PCD++Win as 

a Web service, which can be consumed by another application on the Internet.  

  

5.1. SOAP and WSDL 
 

In Chapter 2, we mentioned both Web service and SOAP (Simple Object Access 

Protocol), which forms the foundation of the Web service.  A SOAP message represents a 

method invocation on a remote object, and the serialization of in the argument list of the 

method, which must be moved from the local to the remote environment.  SOAP is a 

protocol for exchanging XML-based messages over networks, normally using 

HTTP/HTTPS and SMTP.  There are several different types of messaging patterns in 

SOAP, but by far the most common is the Remote Procedure Call (RPC) pattern, in 

which the client sends a request message to the server and the server immediately sends a 

response message to the client. SOAP is platform independent and language independent.   

Therefore, SOAP removes the requirement that two systems must run on the same 

platform or be written in the same programming language.   

 WSDL (Web Service Definition Language) is an XML-based language that 

provides a model for describing Web service.  WSDL describes Web services starting 

with messages that are exchanged between the requester and provider agents.  WSDL 

contains information about ports, message types and other relating information for 

binding two interactions.  WSDL is often used in combination with SOAP and XML to 

provide web services over the internet.  A client program connecting to a web service can 

read the WSDL to determine what functions are available on the server.  The client can 

then use SOAP to call one of the functions listed in the WSDL. 

 



 40

5.2. Building a PCD++Win Web Service 
 

We can mix Web services to perform complex function with minimal programming.  

There are many ways that a requester entity might engage and use a Web service. In this 

work, the following steps are required: 

1. The requester and provider entities of PCD++Win become known to each other; 

2. The requester and provider entities somehow agree on the service description and 

semantics that will govern the interaction between the requester and provider 

agents; 

3. The service description and semantics of PCD++Win are realized by the 

requester and provider agents;  

4. The requester and provider agent of PCD++Win exchange messages, thus 

performing some task on behalf of the requester and provider entities. 

 

We use the NetBeans tool [Net07], which is an open-source integrated development 

environment written entirely in Java, to build the PCD++Win Web service. NetBeans 

supports the development of all Java application types (J2SE, Web application, Web 

service, Enterprise JavaBean and mobile applications), and includes a Sun Java System 

Application Server that provides the underlying core functionality necessary for the 

development and deployment of application.   The Sun Java System Application Server is 

a fully featured Java platform application server providing the foundation for building 

scalable and manageable applications and allows us to develop the Web service with 

JAX-RPC (Java API for XML-Based Remote Procedure Calls).  Therefore, we use the 

JAX-RPC programming model to develop a SOAP-based PCD++Win Web service. 

 



 41

 
Figure 23.  PCD++Win JAX-RPC Web service 

 
 

Figure 23 shows the architecture of the PCD++Win Web service with JAX-RPC, 

which provides a generic mechanism that enables developers to create and access Web 

services by using XML-based Remote Procedure Calls.  The current release of the JAX-

RPC Reference Implementation uses SOAP as the application protocol and HTTP as the 

underlying transport protocol.  We published the PCD++Win Web services by providing 

the WSDL definitions for these services.  The JAX-RPC specification defines a mapping 

of Java types to WSDL definitions.  When a client locates a service in an XML registry, 

the client retrieves the WSDL definition to get the service interface definition.    

In Figure 23, the PCD++Win service side contains a JAX-RPC service runtime 

environment and a service endpoint.  The client side contains a JAX-RPC client runtime 

environment and a client application.  The JAX-RPC client and service runtime systems 

are responsible for sending and processing the remote method call and response, 

respectively.  The PCD++Win client creates a SOAP message to invoke the remote 

method and the PCD++Win service runtime transforms the SOAP message to a Java 

method call and dispatches the method call to the service endpoint.  JAX-RPC hides the 

details of SOAP from the developer because the JAX-RPC service/client runtime 

environments perform the mapping between remote method calls and SOAP messages.  



 42

STUBS and TIES are classes that enable communication between the PCD++Win 

service endpoint and the client.  The STUB class sits on the client side, between the 

service client and the JAX-RPC client runtime system.  The STUB class is responsible 

for converting a request from a JAX-RPC service client to a SOAP message and sending 

it to the service endpoint using the HTTP protocol.  It also converts the response from the 

service endpoint to the format required by the client.  Similarly, the TIES class resides on 

the server side, between the service endpoint and JAX-RPC runtime system.  The TIES 

class handles the marshalling and unmarshalling the data between the service endpoint 

class and the SOAP format.    

Using JAX-RPC, PCD++Win clients and web services have a big advantage: the 

platform independence of the Java programming language.  In addition, JAX-RPC is not 

restrictive a JAX-RPC client can access a web service that is not running on the Java 

platform, and vice versa.  This flexibility is possible because JAX-RPC uses technologies 

defined by HTTP, SOAP and WSDL.   

 

 
Figure 24.  PCD++Win Web service server-side runtime 

 
 
Processing of the remote method call on the PCD++Win Web Service server side 

includes the following steps (as shown in Figure 24): 

• Processing of the HTTP request:  PCD++Win Server-side JAX-RPC runtime 

system receives and processes the HTTP request. 



 43

• Processing of the SOAP message:  PCD++Win JAX-RPC runtime system extracts 

the SOAP message from the received HTTP request and processes the SOAP 

message to get access to the SOAP envelope, header, body and any attachments.  

The processing of the SOAP message uses streaming parser XML processing. 

• Mapping of the SOAP message to a remote method call:  the PCD++Win JAX-

RPC runtime system maps the received SOAP message to a method invocation on 

the target service endpoint.  SOAP body elements carry parameters and return a  

value for this remote call.   

• Dispatch to the target JAX-RPC service endpoint:  the PCD++Win service JAX-

RPC runtime system invokes a method on the target service endpoint based on the 

mapping of the received remote method invocation.  Return values, out 

parameters and exceptions are carried in the SOAP body and fault elements 

respectively and are processed as part of the HTTP response.   

 

In creating a PCD++Win Web service with JAX-RPC, we have to define a service 

interface which will be converted to a WSDL file later.  A service interface definition is 

an abstract or reusable service definition that may be instantiated and referenced by 

multiple service implementation definitions.   In WSDL, the service interface contains 

elements that comprise the reusable portion of the service description: binding, portType, 

message and type elements as depicted in Figure 25.  In the portType element, the 

operations of the PCD++Win web service are defined.  The operations define what XML 

messages can appear in the input and output.  The message element specifies which XML 

data types constitute various parts of a message.  The message element is used to define 

the abstract content of messages that comprise an operation.  The use of complex data 

types within the message is described in the types element.  The binding element 

describes the protocol, data format, security and other attributes for a particular service 

interface. 

 The service implementation definition describes how a PCD++Win service 

interface is implemented by the service provider.  It also describes its location so that a 

requester can interact with it.  In WSDL, a Web service is modeled as a service element.  



 44

A service element contains a collection of port elements.  A port associates an endpoint 

(URL) with a binding element from a service interface definition.  

Implementation
definition

Service
Interface
definition

service

port

binding

protType

message

type
 

Figure 25.  WSDL service interface and implementation 
 
The service interface definition together with the service implementation definition 

makes up a complete WSDL definition of the service.  This pair contains sufficient 

information to describe to the service requestor how to invoke and interact with the web 

service.  The WSDL file of the PCD++Win Web Service is shown in Figure 26. 

 
Figure 26.  WSDL file of the PCD++Win web service 



 45

 

The WSDL file defines a single network endpoint and a set of ports. In this case, we 

define a Web service, called �PCDWin�, which includes a function, namely �execSimu�. 

Whenever execSimu is invoked remotely by a client, the following java code will be 

executed in the server side: 

Runtime.getRuntime().exec( "cmd /c " + command); 

Here, �command� is a batch file, which tells PCD++Win to execute a parallel DEVS or 

Cell-DEVS simulation. 

  

5.3. Consuming PCD++Win Web Service 
 

To consume a PCD++Win Web service, we need to create a PCD++Win Web service 

client.  For this, NetBeans provides a client creation facility - a Web service client wizard 

that generates code for looking up a web service and developing a Web service client. 

 
Figure 27.  PCD++Win Web service client 

 
  

In Figure 27, the PCD++Win Web service client is shown.  The client uses a WSDL 

document to import the PCD++Win Web service.  A WSDL-to-Java mapping tool 

generates client-side artifacts (including stub class, service endpoint interface and 

additional classes) for the PCD++Win service and its ports.  Then, client lookups and 



 46

invokes the PCD++ Win Web Service.  Figure 28 shows the piece of code that illustrates 

how a Web service client invokes a remote method. 

 
Figure 28.  Web service client invokes a remote method 

  
The processing of a remote method call includes the following steps: 

• Mapping of a remote method call to the SOAP message representation: this 

includes mapping of the parameters, return values and exceptions to the 

corresponding SOAP message.  The serialization and deserialization are based on 

the mapping between Java types and XML data types. 

• Processing of the SOAP message: this includes the processing of the SOAP 

message based on the mapping of the remote method call to the SOAP 

representation; the encoding style defines how parameters, return values and types 

in a remote method call are represented in the SOAP message. 

• Processing of the HTTP request:  this includes the transmission of the SOAP 

request and response message as part of an HTTP request; a SOAP response 

message is transmitted as an HTTP response. 

 

 

 

 

 

 

 

 

 



 47

Figure 29 shows the GUI of the PCD++Win Web service client 

 

 
Figure 29.  PCD++Win Web service client GUI 

 
In Figure 29, the application includes a FTP function that can upload the model file and 

download simulation log file.  CD++ Compile and P-CD++ Compile are two functions, 

that can invoke GCC 2.7 and Microsoft Visual Studio 2005 to compile the C++ file 

respectively.  CD++ Simulate and P-CD++ Simulate can invoke CD++ and PCD++Win 

respectively.  The users can also build their own client application by using WSDL.  Such 

applications must first look up the service, and then makes a call to the service and 

process any return data. Here, SOAP provides a standard framework for packaging and 

exchanging XML messages.  The PCD++Win Web service is published at a specific 

URL; clients can then request and consume the service.  Both the client and the server 

encapsulate their message in SOAP for machine-to-machine interaction via HTTP in 

XML format. 

 

 

 

 



 48

CHAPTER 6 PCD++/.NET  
 

 

In this chapter, we present PCD++/.NET, which is a new approach to implementing 

distributed simulations based on Microsoft�s .NET Remoting technique.  We first give an 

overview of various distributed paradigms and then introduce PCD++/.NET architecture 

and its main components.  Some performance results are discussed in Chapter 7. 

  

6.1. An overview of distributed paradigms  
 

For the past twenty years, distributed paradigms have experienced rapid growth with the 

development of the Internet, the demand for high performance distributed computing and 

the boost of enterprise applications. A brief overview of distributed paradigms is as 

follows: 

 

DCE/RPC   Distributed Computing Environment (DCE) [DCE08], designed by the Open 

Software Foundation (OSF) during the early 1990s, was created to provide a collection of 

tools and services that would allow easier development and administration of distributed 

applications.  The DCE framework provides several base services such as Remote 

Procedure Calls (DCE/RPC), Security Services, Time Services, and so on.  DCE/RPC is 

the foundation for many current higher-level protocols. 

 

CORBA   This stands for Common Object Request Broker Architecture [COR08], which 

was designed by the Object Management Group (OMG).  CORBA�s aim is to be the 

middleware of choice for heterogeneous systems.  CORBA is only a collection of 

standards that enables software components written in multiple computer languages to 

run on multiple computers.  CORBA uses an interface description language (IDL) to 

specify the interfaces that objects will present to the outside world.  CORBA then 

specifies a mapping from IDL to a specific implementation language.  The benefits of 

CORBA are language and Operating System independence. 



 49

DCOM   Distributed Component Object Model (DCOM) [DCO08] is an extension that 

fits in the Component Object Model (COM) architecture.  DCOM allows for component-

oriented application development and uses a pinging process to manage the object�s 

lifetimes; all clients that use a certain object will send messages after certain intervals.  

When a server receives these messages, it knows that the client is still alive; otherwise, it 

will destroy the object. 

 

Java RMI   Java Remote Method Invocation (Java RMI) [RMI08] is a Java interface for 

performing the object equivalent of remote procedure calls.  Java RMI uses a proxy/stub 

compilation cycle.  In contrast to DCE/RPC and DCOM, the interfaces are not written in 

an abstract IDL (Interface Description Language) but in Java. 

 

Java EJB   Enterprise Java Beans (EJB) [EJB08] was developed by Sun Microsystems.  

Unlike CORBA, which is only a standard, EJB comes with a reference implementation.  

EJB is the server-side component architecture for Java Platform and enables rapid and 

simplified development of distributed, transactional, secure and portable applications 

based on Java technology.  EJB specification intends to provide a standard way to 

implement the back-end business code typically found in enterprise applications. 

 

Web Services/SOAP   Web services provided a solution to cross-platform and cross-

language interoperability.  Web services invoke a remote method via HTTP with XML 

format.  Two different XML encodings are currently in use: XML-RPC and SOAP.  

XML-RPC defines a lightweight protocol and SOAP, or Simple Object Access Protocol, 

defines a much richer set of services; the specification covers not only remote procedure 

calls, but also the Web Services Description Language (WSDL) and Universal 

Description, Discovery, and Integration (UDDI).  WSDL is SOAP�s interface definition 

language and UDDI serves as a directory service for the discovery of Web services. 

 

.NET Remoting   .NET Remoting [REM08] was designed by Microsoft and gives a 

flexible and extendible framework that allows for different transfer mechanisms, HTTP 



 50

or TCP, and encodings in SOAP or binary.  With these options, we can choose between 

HTTP-based transport for the internet and a faster TCP-based one for LAN applications. 

 

6.2. .NET Remoting versus Web Services 
 

Both .NET Remoting and Web Services are powerful technologies that provide a suitable 

framework for developing distributed application.  The following are their different 

factors: 

• Performance:   .NET Remoting can use any protocol and formatter.  Therefore, 

.NET Remoting provides faster communication between the nodes by using TCP 

protocol and binary formatter.    

• State Management:   Web service is a stateless programming model, which 

means that each incoming request is handled independently.  Each time a client 

invokes a Web service, a new object is created to service the request.  The object 

is destroyed after the method call is completed.   .NET Remoting supports a range 

of state management and can correlate multiple calls from the same client and 

support callbacks. 

• Interoperability:   Web services support interoperability across platforms and are 

good for heterogeneous environments.  .NET Remoting only support Windows 

platforms. 

 

6.3. The benefits of .NET   
 

Microsoft�s .NET Framework is an execution environment for Windows programs.  We 

can briefly sum up the benefits of .NET with following points: 

• .NET supports C++/CLI (Common Language Infrastructure) language, which can 

interoperate with native C++ language.  That allows for the reuse of the PCD++ 

code. 

• .NET Common Language Running is the implementation of the Common 

Language Infrastructure, which is an open standard published by ISO (ISO 

23271) and European Computer Manufacturers Association (ECMA-335). 



 51

• .NET provides built-in services for Remoting, proxies, marshalling, distributed 

services, and other important network programming tools. 

• .NET provides a large library of pre-coded solutions to common programming 

problems, which greatly reduces developing time. 

• .NET supports multi-server and multi-client.  This means that a client can ask one 

server to pass its call to another server. 

• .NET supports various protocols and formatting. 

• .NET supports object serialization. 

• .NET provides automatic memory management, therefore developers don�t need 

to implement freeing routines or worry about the sequence in which cleanup is 

performed or be concerned about whether or not an object is still referenced.   

 

6.4. PCD++/.NET Remoting System  
 

PCD++/.NET Remoting is a distributed simulation system based on parallel CD++.  Its 

aim is to combine the .NET Remoting technique with parallel DEVS and Cell-DEVS to 

support distributed simulations across network nodes. Compared to PCD++Win, 

PCD++/.NET swaps MPI for .NET Remoting, which allows for the execution of 

distributed computing across LANs and WANs.  Figure 30 shows the PCD++/.NET 

architecture.  

 

PCD++

NoTime

.NET Remoting

.NET Common Language 
Infrastructures

Windows Operating System

Model

 
Figure 30.  PCD++/.NET architecture 



 52

 

Here, DEVS or Cell-DEVS models are built on top of the system.  PCD++ classes 

interact with the NoTime Kernel, which manage Logical Process (LP) and messages.  

The .NET Remoting API, instead of MPI, is implemented to send and receive remote 

messages.  The Common Language Infrastructure is an open specification that describes 

the executable code and runtime environment.  All the code in PCD++/.NET is first 

compiled to the Intermediate Language (IL) at compile time, and then IL is compiled to 

the machine code at runtime and then executed on the platform. 

 
Figure 31.  The interaction of objects in .NET Remoting [REM08] 

 
 In .NET Remoting (as shown in Figure 31), the client is the component that needs to 

communicate with a remote object.  The server receives the request from the client object 

and responds.  The Proxy contains a list of all classes, as well as interface methods of the 

remote object.  It examines whether the call made by the client object is a valid method of 

the remote object and if an instance of the remote object resides in the same application 

domain as the proxy.  If true, a simple method call is routed to the remote object.  If the 

object is in a different application domain, the call is forwarded to a RealProxy class by 

calling its Invoke method. This class is then responsible for forwarding messages to the 

remote object.  The message will pass a serialization layer:  the formatter, which converts 

it into a specific transfer format such as SOAP or binary.  The serialized message later 

reaches a transport channel, which transfers it to a remote process via a specific protocol 

like HTTP or TCP, as following: 



 53

• The HTTP Channel transports messages to and from remote objects using the 

SOAP protocol.   All messages are passed through the SOAP formatter, where the 

message is changed into XML and serialized, and the required SOAP headers are 

added to the stream.  The resulting data stream is then transported to the target 

URI using the HTTP protocol.   

• The TCP Channel uses a binary formatter to serialize all messages to a binary 

stream and transport the stream to the target URI using the TCP protocol.   

On the server side, the message also passes through a formatting layer, which converts 

the serialized format back into the original message and forwards it to the dispatcher.  

Finally, the dispatcher calls the target object�s method and passes back the response values 

through all tiers. 

 There are two very different types of remote interaction between components in 

.NET Remoting.  One uses serialized objects that are passed as a copy to the remote 

process.  The second uses server-side (remote) objects that allow the client to call their 

methods.  The first object is called ByValue Object.  This ability to serialize objects is 

provided by the .NET Framework when we set the attribute [Serializable] for a class or 

implement ISerializable interface. The second object is called MarshalByRef Object and 

runs on the server and accepts method calls from the client.  Its data are stored in the 

server�s memory and its methods executed in the server�s Application Domain.  Instead 

of passing around a variable that points to an object of this type, only a pointer -- called 

ObjRef -- is passed around.   

In PCD++/.NET design, remote objects are used to implement methods, which 

can send and receive messages, while serialized objects are used to form the messages, 

which are passed between the client objects and remote objects.  To implement a 

PCD++/.NET system, the following procedures are followed: 

• Define shared interfaces:  When creating a distributed application, we can define 

the base classes or interfaces for remote objects.  This assembly is used on both 

the client and server.  The real implementation is placed only on the server and is 

a class that extends the base class or implements the interface. 

• Define a server assembly:  The server implements the method that is defined in 

the interface. 



 54

• Define a client assembly:  The client consumes the service that server provided. 

• Serialization of Data:  In .NET, the encoding/decoding of objects is natively 

supported.  We just need to mark such objects with the [Serializable] attribute and 

the rest will be taken care of by the framework.  This assembly is used to define a 

mobile message, which can be passed between nodes. 

Following the above procedure, a set of components is designed (as shown in Figure 32).  

 

switchboard

simulationController

msgRemote

msgExchange

Model

msgRemote

msgExchange

Model

msgRemote

msgExchange

Model

Method call Method call

control control

Machine 1 Machine 2 Machine 3

NoTime

PCD++/.NET

NoTime NoTime

PCD++/.NET PCD++/.NET

 
Figure 32.  PCD++/.NET components 

 



 55

These components include: 

• simulationController is used to control PCD++/.NET residing in each node.  

• switchboard is used to conduct a coming method call to the destination node.  

• msgRemote is used to send or receive a method call to or from the switchboard. 

• msgExchange is used to translate a C++/CLI message into a native C++ message 

and vice versa. 

The above components interact according to following procedure:  

1. Whenever the simulationController sends a start signal, the PCD++/.NET in each 

node will load the partition model and enter the simulation loop. 

2. If an inter-process message needs to be sent to another node, the C++ message is 

translated to C++/CLI message by msgExchange component. Then, the message 

is passed to msgRemote. 

3. The msgRemote invokes the sever object of the switchboard and sends a message 

to the destination node. 

4. The msgRemote of the destination node receives the incoming message, and 

passes it to msgExchange. 

5. The msgExchange translates the incoming C++/CLI message to a C++ message, 

and then passes it to PCD++/.NET.  
 

Figure 33 shows the detail of how the switchboard and the msgRemote interact in a 

system that has three nodes. The switchboard has one server that is Server_SB, and three 

clients that are Client1, Client2 and Client3.  Each node has one server and one client.  

Thus, node1 has server1 and Client_SB1, node2 has server2 and Client_SB2, and, node3 

has server3 and Client_SB3.  Each client in the node (such as Client_SB1, Client_SB2 

and Client_SB3) is associated with switchboard�s server Server_SB.  Client1, Client2 

and Client3 are associated with server1, server2 and server3 respectively. If Machine1 

needs to send a call to Machine3, Client_SB1 first registers a TCP channel and connects 

to Server_SB.  Then, Server_SB passes the call to Client3.  Finally, Client3 sends the call 

to server3.  The path of the method call is:  

Machine1 !  switchboard  !  Machine3. 

 



 56

Machine1 Machine3Machine2

proxy

Client_SB1

server1

Server_SB

Client3

Proxy

Client2

Proxy

Client1

Proxy

proxy

Client_SB2

server2

proxy

Client_SB3

server3

switchboard

 
Figure 33.  PCD++/.NET Remoting method call 

 
It is worthy of note that a copy of the message in one node is sent to another node 

directly, it does not pass through the switchboard. This is illustrated in Figure 33.  In 

Figure 33, we have node A, node B and the switchboard. A circle represents a client and 

a rectangle represents a server. In node B, SeverObject2 has a method sendMsg(Message 

msg), which just adds a message to the local message queue. In the switchboard, 

ClientObject2 associated with SeverObject2 and can invoke the remote method 

sendMsg(Message msg). If the node A needs to send a message to node B, ClientObject1 

will invoke its remote method sendMsgToNode(Message msg) in switchboard.  As shown 

in Figure 34, sendMsgToNode includes a method sendMsg, which sends the message to 

node B. Therefore, the path of message is A!B.  



 57

sendMsg(Message msg){
      msgQueue .add(msg);
 }

ClientObject2

sendMsgToNode(Message msg)
      ClientObject2 !sendMsg(msg);
 }

ClientObject1

SeverObject1

SeverObject2

A B

switchboard

 
Figure 34.  Message passing 

 

It can be seen that, instead of MPI, the PCD++/.NET Remoting system uses the 

switchboard component to pass messages.  The switchboard can be put in any machine.  

For example, Figure 35 shows that switchboard and PCD++/.NET Master coordinator are 

put in same machine.  In Figure 35, the wide line represents a connection with Remoting 

routine and the thin line represents the direct connection in the same Application Domain. 

Switchboard and Master coordinator are put together in machine0, but they belong to 

different Application Domains, so they connect with the Remoting routine. Whenever 

switchboard starts, it reads a text file machineList.txt, which just lists the names of the 

machines.  Then, switchboard will create a set of N client objects for sending messages 

and one sever object for receiving messages as we explained earlier.   



 58

Master

ROOT

TOP

switchboard

slave slave slave

simulator simulator simulator

simulator

machine1 machine2 machine (N-1)

machine0

 

Figure 35.  PCD++/.NET Remoting simulators 
 

Another important component in the system is msgExchange (Figure 36).  In 

PCD++/.NET, any message is derived from the BasicEvent object or EventMsg object.  

In order to pass these message objects among distributed simulators in .NET platform, a 

C++/CLI class managedBasicEvent is created and marks its serialized attribute  so that it 

can be transferred between nodes.  

msgExchangeMessage
(C++/CLI)

Message
 (C++)

 

Figure 36.  msgExchange component 



 59

The component msgExchange includes two functions:  changeToManagedMsg and 

changeToUnmanagedMsg.  The first function passes a BasicEvent or EventMsg object 

and returns a managedBasicEvent object.  The second function passes a 

managedBasicEvent object and returns a BasicEvent or EventMsg object. A flowchart 

(Figure 37) represents how these components work.  

Initialize switchboard

Initialize cluster

switchboard

Send remote msg?

     no

 stop ?

     yes

End

         no

     yes

 msgExchange

msgRemote msgExchange

PCD++/.NET

 
                                         Figure 37.  Flowchart of PCD++/.NET Remoting 

 
 
 



 60

In Figure 37, the following operation is executed as follows: 

• switchboard is initialized by starting the switchboard program and read a 

machineList.txt file and create all client and server objects for receiving and 

sending messages. 

• cluster is initialized by starting the cluster program in each PC machine.  Each 

node of cluster will create one client object and one server object.  PCD++/.NET 

is waiting for the starting signal that comes from switchboard.      

• switchboard sends the starting signal to each machine in the cluster, PCD++/.NET 

in the machine reads a partition file and loads the model to execute the simulation. 

• If PCD++/.NET needs to send a remote message, msgExchange will translate the 

message from a native C++ object to a C++/CLI object, and msgRemote sends a 

method call to switchboard. 

• If switchboard receives a method call, it will conduct the call to the right 

destination in the cluster.  At this point, msgRemote at the destination receives a 

copy of the message. 

• If a machine receives a message, it puts the message into a message queue and 

then msgExchange translates it from a C++/CLI object to a native C++ object and 

passes it to PCD++/.NET. 

• Once the cluster finishes the simulation, it exits the simulation loop and stops. 

 

From the above analysis, it can be seen that the switchboard component plays a unique 

role in the system.  A sequence diagram (Figure 38) shows how switchboard interacts 

with nodes in specified function. Here, the system has two nodes.   



 61

 
                                Figure 38.   Sequence diagram of PCD++/.NET Remoting 
 
First, switchboard uses the initCluster method to initialize all nodes, and then each node 

uses clusterSetup to create the server and client object. Once switchboard receives 

finishSetup from all nodes, it will start the simulation with a method called 

startSimulation.  Each node will execute the execSimulation method to enter the 

PCD++/.NET simulation loop, if cluster_1 needs to send a message to cluster_2, a 

sendMsg call will be forwarded to the switchboard, and the switchboard invokes a 

passMsg method to send a message copy to cluster_2.   

 

 

 

 

 

 



 62

CHAPTER 7 PERFORMANCE ANALYSIS FOR PCD++/.NET 
 

 

In this chapter, a performance analysis is presented for PCD++/.NET. The experiments 

were carried out on a group of desktop workstations (Intel Core 2 Duo Processor 

E6400@ 2.13 GHz, 2GB DDR2-Synch DRAM) running Microsoft Windows XP 

Professional connected through a local area network (LAN).  Microsoft .NET Framework 

2.0 was installed in each workstation.   

  

7.1. Remote message of PCD++Win and PCD++/.NET      
 

Since both PCD++Win and PCD++/.NET use same simulation engine, they have same 

quantity of remote messages for executing the same model with the same partition 

strategy.  We can explain this by using an example. Suppose we have a Cell-DEVS 

model that has a row of 4 atomic models, we can have 4 partitions and each includes an 

atomic cell, and each cell will send a message to its neighbor (see Figure 39 below).  

 

L P 0 L P 1 L P 2 L P 3

M 0 1 M 1 2 M 2 3

M 3 2M 2 1M 1 0

 
Figure 39.   Partitioning a couple model into 4 atomic models 

 

In PCD++Win, message M01 is the message between master coordinator (machine 0) 

and slave coordinator (machine 1).  It is directly sent from machine 0 to machine 1 and 

needs a remote message. In the same way, message M10 needs a remote message.  M12, 

M23, M32 and M21 are all messages between two slave coordinators.  Each of them 

needs two remote messages: one slave coordinator sends a message to the master 

coordinator, and then the master coordinator sends the message to another slave 

coordinator.  Figure 40 shows this case. 



 63

slave master slave

msg msg

 
Figure 40.  PCD++Win passing messages 

 
So, PCD++Win system needs 12 remote messages to complete the message sending.  

In PCD++/.NET, a message-passing component �switchboard� is added.  The 

switchboard is used to forward method call.  According to the analysis in Chapter 6 (see 

Figures 33 and 34), one message is directly sent to the destination node by means of two 

method calls (as shown in Figure 41).   

 

master slaveslave

switchboard

msgmsg

callcall

 
Figure 41.  PCD++/.NET passing messages 

                
Therefore, PCD++/.NET has the same quantity of remote messages as the PCD++Win 

system for executing the same model with same partition strategy. 

  

7.2. Correctness and verification 
 

In [Fre02], the authors present the specifications of major time-warp components along 

with verification criteria used to assure correctness.  According to [Fre02], a distributed 

simulation is correct when it produces simulation results that are the legal result for a 

traditional, single process simulator.  In the experiments, we first run a stand-alone CD++ 

toolkit, and the generated simulation results are used as reference outputs for verification 

purposes. Then, these models are executed with PCD++/.NET (or PCD++Win) on 



 64

multiple nodes.  After each run, the simulation results are compared with the reference 

outputs to ensure that the same results are generated with PCD++/.NET (or PCD++Win) 

as those produced with the standalone version. 

 

7.3. Experimental results and analysis 
 

Two models are used during the performance analysis.  The one is the watershed 

[Ame01] 15*15*2 coupled Cell-DEVS model.  The other is the Life [Gar70] 12*12 

coupled Cell-DEVS model. 

 

7.3.1. Watershed model 
 

The first model tested was the watershed model, which represents water flow and 

accumulations depending on characteristics of different vertical layers: air, vegetation, 

surface waters, soil, ground water, and bedrock [Moo96].   
 

 
Figure 42.  Hydrology Model [Moo96] 

 



 65

In [Moo96], the authors defined a hydrology model in which they identified several 

verticals layers composing a watershed.  Figure 42 shows a description of this model.  

When the rain is absorbed by the vegetation, the rest is received by the surface.  

Depending on the topology, the cells can also receive and send water from and to the 

neighbors.  Part of the water received is lost due to the filtration over the land and stones.  

The accumulated water in a period depends on: the quantity of effective water (rain), the 

quantity of water dumped from the neighboring cells (effective rain plus the water 

received from the neighbors minus water sent to the neighbors) minus the water filtered 

by stones and soil.  In [Ame01], the watershed model was created as a three-dimensional 

Cell-DEVS model to simulate the accumulation of water under the presence of constant 

rain (7.62mm/hr).  Figure 43 shows the model definition, which is a 15*15*2 three 

dimensional cell space.  The model has two surfaces, one to represent the height of the 

water retained (surface 0) and one to represent the topography of the terrain (surface 1).  

 
[top] 
components : watershed 
 
[watershed] 
type : cell 
dim : (15,15,2) 
delay : inertial 
defaultDelayTime : 1000 
border : nowrapped 
neighbors :                   watershed(-1,0,0) 
neighbors : watershed(0,-1,0) watershed(0,0,0) watershed(0,1,0) 
neighbors :                   watershed(1,0,0) 
 
neighbors :                   watershed(-1,0,1) 
neighbors : watershed(0,-1,1) watershed(0,0,1) watershed(0,1,1) 
neighbors :                   watershed(1,0,1) 
 
initialValue : 0 
initialCellsValue : init.val 
zone : grass { (0,0,0)..(14,6,0) } 
zone : stones { (0,13,0)..(14,14,0) } 
localtransition : hydrology 
 
[grass] 
rule : {0.07 + (0,0,0) - if((((-1,0,0) != ?) and (((0,0,1) + 
(0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) + (0,0,1) - (-1,0,0) - (-
1,0,1))/1000) * (0,0,0))/1000),0) - if((((1,0,0) != ?) and (((0,0,1) + 
(0,0,0))>((1,0,1)  +  (1,0,0)))),(((((0,0,0) + (0,0,1) - (1,0,0) - 
(1,0,1))/1000) * (0,0,0))/1000),0) - if((((0,-1,0) != ?) and (((0,0,1) 
+ (0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1) - (0,-1,0) - 
(0,-1,1))/1000) * (0,0,0))/1000),0) - if((((0,1,0) != ?) and (((0,0,1) 



 66

+ (0,0,0))>((0,1,1) + (0,1,0)))),(((((0,0,0) + (0,0,1) - (0,1,0) - 
(0,1,1))/1000) * (0,0,0))/1000),0) + if((((-1,0,0) != ?) and (((-1,0,1) 
+ (-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-1,0,1) - (0,0,0) - 
(0,0,1)) * (-1,0,0))/1000),0) + if((((1,0,0) != ?) and (((1,0,1) + 
(1,0,0))>((0,0,1) + (0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) - 
(0,0,1)) * (1,0,0))/1000),0) + if((((0,-1,0) != ?) and (((0,-1,1) + 
(0,-1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) + (0,-1,1) - (0,0,0) - 
(0,0,1)) * (0,-1,0))/1000),0) + if((((0,1,0) != ?) and (((0,1,1) + 
(0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) - (0,0,0) - 
(0,0,1)) * (0,1,0))/1000),0) } 1000 { cellpos(2)=0 } 
rule : { (0,0,0) } 1000 { t } 
 
[stones] 
rule : {0.09 + (0,0,0) - if((((-1,0,0) != ?) and (((0,0,1) + 
(0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) + (0,0,1) - (-1,0,0) - (-
1,0,1))/1000) * (0,0,0))/1000),0) - if((((1,0,0) != ?) and (((0,0,1) + 
(0,0,0))>((1,0,1)  +  (1,0,0)))),(((((0,0,0) + (0,0,1) - (1,0,0) - 
(1,0,1))/1000) * (0,0,0))/1000),0) - if((((0,-1,0) != ?) and (((0,0,1) 
+ (0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1) - (0,-1,0) - 
(0,-1,1))/1000) * (0,0,0))/1000),0) - if((((0,1,0) != ?) and (((0,0,1) 
+ (0,0,0))>((0,1,1) + (0,1,0)))),(((((0,0,0) + (0,0,1) - (0,1,0) - 
(0,1,1))/1000) * (0,0,0))/1000),0) + if((((-1,0,0) != ?) and (((-1,0,1) 
+ (-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-1,0,1) - (0,0,0) - 
(0,0,1)) * (-1,0,0))/1000),0) + if((((1,0,0) != ?) and (((1,0,1) + 
(1,0,0))>((0,0,1) + (0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) - 
(0,0,1)) * (1,0,0))/1000),0) + if((((0,-1,0) != ?) and (((0,-1,1) + 
(0,-1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) + (0,-1,1) - (0,0,0) - 
(0,0,1)) * (0,-1,0))/1000),0) + if((((0,1,0) != ?) and (((0,1,1) + 
(0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) - (0,0,0) - 
(0,0,1)) * (0,1,0))/1000),0) } 1000 { cellpos(2)=0 } 
rule : { (0,0,0) } 1000 { t } 
 
[hydrology] 
rule : {0.12 + (0,0,0) - if((((-1,0,0) != ?) and (((0,0,1) + 
(0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) + (0,0,1) - (-1,0,0) - (-
1,0,1))/1000) * (0,0,0))/1000),0) - if((((1,0,0) != ?) and (((0,0,1) + 
(0,0,0))>((1,0,1)  +  (1,0,0)))),(((((0,0,0) + (0,0,1) - (1,0,0) - 
(1,0,1))/1000) * (0,0,0))/1000),0) - if((((0,-1,0) != ?) and (((0,0,1) 
+ (0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1) - (0,-1,0) - 
(0,-1,1))/1000) * (0,0,0))/1000),0) - if((((0,1,0) != ?) and (((0,0,1) 
+ (0,0,0))>((0,1,1) + (0,1,0)))),(((((0,0,0) + (0,0,1) - (0,1,0) - 
(0,1,1))/1000) * (0,0,0))/1000),0) + if((((-1,0,0) != ?) and (((-1,0,1) 
+ (-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-1,0,1) - (0,0,0) - 
(0,0,1)) * (-1,0,0))/1000),0) + if((((1,0,0) != ?) and (((1,0,1) + 
(1,0,0))>((0,0,1) + (0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) - 
(0,0,1)) * (1,0,0))/1000),0) + if((((0,-1,0) != ?) and (((0,-1,1) + 
(0,-1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) + (0,-1,1) - (0,0,0) - 
(0,0,1)) * (0,-1,0))/1000),0) + if((((0,1,0) != ?) and (((0,1,1) + 
(0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) - (0,0,0) - 
(0,0,1)) * (0,1,0))/1000),0) } 1000 { cellpos(2)=0 } 
rule : { (0,0,0) } 1000 { t } 
 

Figure 43.  Watershed Model[wai08] 
 



 67

In Figure 43, the model defines areas of different soil type: grass and rocks.  Then, 

hydrology model is used to calculate the water accumulation.  A simple partition strategy 

is used in the watershed model testing (shown in Figure 44).    

1 partition  2 pa rtitions 

3 partitions 4 partitions 

(0, 0, 0) (0 , 0, 0)

(0, 0 , 0) (0, 0, 0 )

(14, 14, 1) (14, 14, 1)

(14, 14, 1)(14, 14, 1)

(7 ,  0, 0)

(5, 0,  0)

(10, 0, 0)

(4, 0, 0 )

(8 , 0, 0)

(12,  0, 0)

 
Figure 44.  Partition of watershed model 

 
In Figure 44, the cell space is evenly divides into horizontal rectangles and each partition 

is run by one PC workstation. Figure 45 shows the execution time and overall speedup 

for the model with the PCD++Win system. 

 
Figure 45.  Execution result of watershed model in PCD++Win 

 
 

The watershed model is a three-dimensional space model and each cell has nine 

neighbors.   Therefore, the watershed model has an extensive inter-LP communication 

load.  In Figure 45, it can be seen that the speedup of the watershed model for 

PCD++Win is achieved by increasing computing nodes.  The execution time of the 

model decreases from 4.89 to 2.81 seconds when the number of nodes climbs from 1 to 4.  



 68

In contrast with PCD++Win, PCD++/.NET has different situation for the watershed 

model.  In Figure 46, the upward trend of execution time is presented when the number of 

nodes increases. 

 
Figure 46.  Execution time of watershed with PCD++/.NET Remoting 

 

Table 2 shows the ratio of local message and remote message. 
Table 2.  The message of watershed model 

Watershed model 
 1 node 2 nodes 3 nodes 4 nodes 

Local Message (%) 100 78.87 72.76 64.79 
Remote Message (%) 0 21.13 27.24 35.21 

Total Messages 65876 67102 68901 71245 
 

From above experiment results, the following analysis can be done: 

• In the watershed model, PCD++/.NET took 7.32 seconds to execute the model 

with one node, while PCD++Win has only took 4.89 seconds.  This means that 

PCD++/.NET needs more time for system initialization. 

• As we mentioned early, PCD++Win has the same remote message numbers with 

the PCD++/.NET for the same model.  Therefore, the experimental results show 

that PCD++/.NET has a lower speed for inter-LP communication than does  

PCD++Win. 

• The watershed model has an amount of remote messages between nodes (for 

example, it has 35.21% remote messages when 4 nodes are used).  The bandwidth 



 69

of the PCD++/.NET system cannot offer such extensive communication loads and 

leads to performance degradation. 

From the above experiment results, it can be inferred that for the watershed model, the 

upward trend of simulation execution time is due to the increasing of communication 

workloads among the nodes.  It would be worthwhile to examine what may happen if the 

workload is increased on distributed cells without increasing the communication 

workload.  

 

7.3.2. Life model 
 

The second model tested is the �Life� Cell-DEVS model, created by John Conway, 

which uses a two-dimensional grid where cells can be either alive or dead.  The rule is: a 

new cell is born when it has exactly 3 neighbors; an existing cell survives if it has 2 or 3 

neighbors; otherwise the cell dies.   The model file is shown in Figures 47 and 48.   
[top] 
components : life 
in : in 
out : out 
link : out@life out 
link : in in@life 
[life] 
type : cell 
width : 12 
height : 12 
delay : inertial 
defaultDelayTime : 100 
border : wrapped  
neighbors : life(-1,-1) life(-1,0) life(-1,1)  
neighbors : life(0,-1)  life(0,0)  life(0,1) 
neighbors : life(1,-1)  life(1,0)  life(1,1) 
initialvalue : 0 
initialrowvalue :  0     00000001110000000000 
initialrowvalue :  1     00000100100100000000 
initialrowvalue :  2     00000101110100000000 
initialrowvalue :  3     00000100100100000000 
initialrowvalue :  4     00000001110000000000 
initialrowvalue :  5     00000001110000000000 
initialrowvalue :  6     00000100100100000000 
initialrowvalue :  7     00000101110100000000 
initialrowvalue :  8     00000100100100000000 
initialrowvalue :  9     00000001110000000000 
initialrowvalue : 10     00000001110000000000 
initialrowvalue : 11     00000100100100000000 

 
Figure 47.  The first part of Life model file [wai08] 



 70

 
As demonstrated in Figure 47, the input and output port are added to the model.  This is 

because the Root coordinator advances the clock of the simulation and the simulation 

continues until at least one of the following conditions holds: there are no more 

events/messages scheduled by any of the processors, or the simulation clock reaches the 

maximum execution time as provided by the user.  Therefore, input events (represented 

by an event file) keep the simulation running until the maximum execution time is 

reached.  As Figure 48 shows, a set of input ports are linked to the model. 
 
localtransition : conrad-rule 
in : in 
out : out 
link : in in@life(4,2)  
link : in in@life(4,3)  
link : in in@life(4,4)  
link : in in@life(3,3)  
link : in in@life(5,3)  
link : out@life(4,6) out 
link : out@life(2,6) out 
link : out@life(3,4) out 
link : out@life(5,6) out 
link : out@life(6,4) out 
link : out@life(1,7) out 
[conrad-rule] 
rule : 1 1000 { (0,0) = 1 and (truecount = 3 or truecount = 4 ) }  
rule : 1 1000 { (0,0) = 0 and truecount = 3 }  
rule : 0 1000 { t }  

Figure 48.  The second part of Life model file[wai08] 
 
An event file is used to specify the input event at a time points, such as 

 

00:00:00:100 in 1 

00:00:01:400 in 1 

� 

00:00:10:200 in 1 

 

The following partition strategy (Figure 49) is used to execute the simulation for the 

�Life� model. 



 71

1 partition 2 partitions 

3 partitions 4 partitions 

(0, 0) (0, 0)

(0, 0) (0, 0)

(11, 11) (11, 11 )

(11, 11)(11, 11 )

(6,  0)

(4,  0)

(8 , 0)

(3 , 0)

(6 , 0)

(9 ,  0)

 
Figure 49.  Partition strategy of the Life model 

 
Figure 50 shows the simulation results for both the PCD++Win and PCD++/.NET. 

 
Figure 50.  Simulation results of the Life model. 

 
Table 3.  The message of Life model 

Life model 
 1 node 2 nodes 3 nodes 4 nodes 

Local Message (%) 100 97.58 94.37 92.09 
Remote Message (%) 0 2.42 5.63 7.91 

Total Messages 8895321 8896763 8897981 8898813 



 72

Table 3 shows the ratio of local and remote messages to total messages of the Life model.  

It can be seen that the ratio of remote messages to total messages of the Life model is less 

than that of the watershed model.  For example, the Life model has 7.91% remote 

messages and the watershed model has 35.21% remote messages when 4 nodes are used 

(see Table 2).  Therefore, we have the following conclusion: 

• Remote messages have a great effect on simulation performance for 

PCD++/.NET.   

To explain the above conclusion, it is necessary to know how both PCD++Win and 

PCD++/.NET transfer a remote message.  In PCD++Win, the following MPI call is used 

to send a message: 

MPI_Bsend(&buffer, count, type, dest, tag, comm) 

The contents of the message are stored in a block of memory referenced by the argument 

buffer.  Dest refers to the destination of the message. Here, parameter count, type, tag and 

comm are attributes of the sending message.  This command sends a message to the 

destination receiver, which is located in a local network.  In PCD++/.NET, sending a 

remote message must go through a serialization and deserialization process. The message 

class is defined as follows in C++/CLI: 

 

[Serializable] 

public ref class basicMessage { 

   public: 

     int msgType;  

     int senderLP;  

     int destLP;  

     long sequence;  

     int objId;  

     int lpId; 

    int tokenNum; 

    � 

} 



 73

The key word �Serializable�, which allows for object serialization and deserialization, is 

added in the class definition.  Serialization has three important steps [Her03]: 

• Obtain the object state information. 

• Marshal the state information to a stream, where the in-memory representation 

has to be changed to the representation, used for the serialized stream. 

• Write the stream to memory, file, a database, or other location. 

 

Deserialization also consists of three steps: 

• Read the stream from memory, file, the database or other location. 

• De-marshal (parse) the state information from the stream. 

• Create the corresponding objects and set the attributes and relations. 

 

In [Her03], the authors present a research for object serialization on .NET platforms from 

the performance and size perspective.  They use three different types of objects and 

different number of objects to make a comparison, which reflects real-world 

circumstances.  These objects are: 

• TestObject                         31 bytes 

• Contract                             155 bytes 

• InsuranceInformation        4786 bytes 

 

The experimental results are shown in Figure 51 and have the following conclusions: 

• Serialization and deserialization performance depends on the size of the objects 

(larger size objects require more time).  Therefore, �InsuranceInformation� object 

(4786 bytes) takes longer time than the �TestObject� and �Contract� objects for 

serialization and deserialization. 

• Serialization and deserialization performance also depends on the number of 

objects ( with the increased number of simultaneous objects, the time required to 

create those objects by the deserialization raises and becomes the most time 

consuming factor).   



 74

 
Figure 51.  Binary serialization in .NET [Her03] 

  

With the above result, the following analysis can be made: 

1. Because PCD++Win has no serialization and deserialization process,   it should 

have better performance than PCD++/.NET for the same model.  The results are 

shown in Figure 52, which demonstrates that PCD++/.NET is slower than 

PCD++Win by 1.3% - 12.2%  in the  Life model.  

 
Figure 52.  Comparing two systems 

 



 75

2. The inter-LP communication workloads in the Life model are less than those in 

the watershed model.  This means that the Life model can be executed at a lower 

bandwidth.   

3. The watershed model has extensive inter-LP communication workloads when 

multi nodes are used for simulation.  That needs high bandwidth usage, which 

cannot be offered by PCD++/.NET.  Therefore, the simulation performance 

degrades as the nodes increase.  

 

In summarizing PCD++/.NET, the following features can be identified: 

• PCD++/.NET can achieve a speedup for the parallel DEVS and Cell-DEVS 

simulation, which has modest inter-LP communication loads. 

• PCD++/.NET is executed in Common Language Runtime, which is the 

implementation of open standard ISO 23271 and ECMA-335 (European 

Computer Manufacturers Association).   

• PCD++/.NET presents a way to implement parallel DEVS and Cell-DEVS 

simulations with Microsoft .NET Remoting, which provides built-in network 

service and supports any protocol (e.g. TCP, HTTP, SMTP).   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 76

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 
 

 

A parallel and distributed DEVS simulation deals with ways to use multiple processors in 

a single simulation.  All processors together serve to simulate an integrated set of DEVS 

models.  According to the functionality, we can represent a DEVS simulation tool with 

three layers (Figure 53). 

 

Simulation 
engine

Synchronization 
approach

Distributed 
mechanism

 
Figure 53.  Three layers of a DEVS simulation tool 

 

Here, simulation engine represents the implementation of parallel DEVS formalism. The 

synchronization approach represents a commonly used synchronization algorithm (e.g. 

conservative, optimistic and combined).  Distributed mechanism represents specified 

parallel and distributed paradigms (e.g. MPI, CORBA, RMI, Web service, and .NET).   

 In this work, the simulation engine used is PCD++ [Tro03], the synchronization 

approach is NoTime kernel and distributed mechanisms are Windows MPI (in 

PCD++Win) or .NET Remoting (in PCD++/.NET).  The methodology of approach is to 

avoid touch simulation engine layer (PCD++) and the synchronization approach layer 

(NoTime Kernel), and use a specified parallel and distributed paradigm executing a 

DEVS and Cell-DEVS simulation.  The advantages of the approach are as follows: 

• Reuse of code and a reduction of system implementation (only modifies the 

distributed mechanism layer). 

• Allows for the  use various distributed mechanisms for the same simulation 

engine and performance comparisons. 



 77

Therefore, we can use TimeWarp middleware to connect a specified distributed 

mechanism, which could be MPICH, Windows MPI, Windows .NET and Web service 

(as shown in Figure 54). 

 

PCD++

TimeWarp

Windows MPI Windows .NET Web ServiceMPICH

 
Figure 54.  Implementing  various parallel and distributed mechanisms for PCD++ 

 

In this work, we port PCD++ into the Windows environment and integrate Windows MPI 

and .NET respectively.  In doing so, the following efforts are made:        

• Building PCD++Win, which executes parallel DEVS and Cell-DEVS simulation 

by means of Windows version MPI.  MPI is a portable, flexible, vendor 

independent and platform independent standard for messaging using high 

performance computing (HPC).  It is the specification that specifies how 

communication occurs between nodes on an HPC cluster.  Therefore, MPI ties 

nodes together, providing a powerful inter-process communication mechanism.  

PCD++Win takes the advantage of MPI and ports the PCD++ engine from a 

Linux to a Windows environment.  PCD++Win allows general users to manage 

clusters with a GUI and execute a parallel DEVS and Cell-DEVS simulation. 

• Exposing PCD++Win as a Web service that allows access PCD++Win from any 

platform.  Web service is powerful technology that provides a suitable framework 

for developing distributed applications.  Since Web services enable the exposure 

of  functions and methods using HTTP, XML and SOAP, so it is independent of 

platform and programming languages.   

• PCD++/.NET integrates Microsoft .NET Remoting with PCD++ and executes 

parallel and distributed DEVS and Cell-DEVS simulations in .NET platform. 



 78

.NET Remoting is a technology that allows programs and software components to 

interact across application domains, processes, and machine boundaries. This 

enables our applications to take advantage of remote resources in a networked 

environment.  The PCD++/.NET system has the following features:  1) 

PCD++/.NET can achieve the speedup for a parallel DEVS and Cell-DEVS 

simulation, which has modest inter-LP communication loads. 2) PCD++/.NET 

runs in a Common Language Runtime environment and takes advantages of the 

.NET framework. 3) PCD++/.NET supports any protocol to execute a parallel 

DEVS and Cell-DEVS simulation across a network.   

 

8.1. Future work 
 

The following works would be worth to investigating in the future: 

• A comparison between the performance of PCD++/.NET and Web service-

based simulation tools:  DCD++ [Mad07] is a Web service-based CD++ tool.  

DCD++ provides the high level of interoperability with full support for WSDL 

and SOAP over HTTP.   PCD++/.NET is designed for .NET platform and is 

more extensible in terms of enabling communication between objects using 

different transport protocols and serialization formats.  Though both DCD++ 

and PCD++/.NET implement distributed CD++, each is designed with a 

particular level of expertise and flexibility in mind to benefit different target 

users.  A comparison between the performance of PCD++/.NET and DCD++ 

will allow us to identify and evaluate distributed CD++ performance issues.  

• Conducting further experiments to analyze the relationship between 

PCD++/.NET performance and the model�s behavior:  In this work, it is shown 

that the model, which has extensive inter-LP communication workloads, may 

degrade the performance when multi nodes are used in the simulation.  Further 

experiments should be conducted to analyze the relationship between the 

performance and the inter-LP communication.  In addition, the efficient 

algorithm should be proposed to determine the optimal partition schedule for 

reducing communication overhead.  



 79

• Improving PCD++/.NET performance: One of the performance bottlenecks is 

object serializing.  In PCD++/.NET, the remote message must be serialized into 

a byte stream and be marshaled from source to destination machine.  

Serialization and marshaling costs represent a significant proportion of 

PCD++/.NET communication overhead.  We should marshal data efficiently 

and prefer primitive types.  That means complex types should be considered 

only if these simple types are not sufficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 80

REFERENCES 
 

 

[Amd67] Amdahl, G. �The validity of the single processor approach to achieving large-

scale computing capabilities�.  In proceedings of AFIPS Spring Joint Computer 

Conference, Atlantic City, N.J., U.S.A., 1967. 

 

[Ame01] Ameghino J.; Troccoli, A.; Wainer, G. �Models of complex physical systems 

using Cell-DEVS�.  The 34th IEEE/SCS Annual Simulation Symposium. Phoenix, AZ, 

U.S.A.,  2001. 

 

[Che04] Cheon, S.; Seo, C.; Park, S.; Zeigler, B. �Design and implementation of 

distributed DEVS simulation in a peer to peer network system�. Advanced simulation 

Technologies Conference � Design, Analysis, and Simulation of Distributed Systems 

Symposium. Arlington, Virginia, U.S.A., 2004. 

 

[Cho94a] Chow, A. C.; Zeigler, B. �Parallel DEVS: A parallel, hierarchical, modular 

modeling formalism�.  Proceedings of the Winter Computer Simulation Conference.  

Orlando, Fl. U.S.A., 1994. 

 

[Cho94b] Chow, A. C.; Zeigler, B. Kim, D. �Abstract simulators for the Parallel DEVS 

formalism�.  Proceedings of the fifth Annual Conference on AI, Simulation and Planning 

in High Autonomy Systems.  Gainesville, Fl, U.S.A., 1994. 

 

[COR08] CORBA. �CORBA explained simply�. http://www.ciaranmchale.com/corba-

explained-simply (accessed in Oct, 2008). 

 

[DCE08] DCE home page. �DCE Portal�. http://www.opengroup.org/dce/ (accessed in 

Oct, 2008). 

 



 81

[DCO08] Microsoft MSDN.  �DCOM Technical Overview� 

http://msdn.microsoft.com/en-us/library/ms809340.aspx (accessed in Oct, 2008). 

 

[Dei08] DeinoMPI. �Documentation�. http://mpi.deino.net/ (accessed in Oct, 2008). 

 

[EJB08] Sun Microsystems. �Enterprise JavaBeans Technology�. 

http://java.sun.com/products/ejb/  (accessed in Oct, 2008). 

 

[Fen08a] B. Feng, Q. Liu, G. Wainer. �Parallel simulation of DEVS and Cell-DEVS 

models on Windows-based PC cluster systems�, 2008 high performance computing 

symposium (HPC�08): DEVS session 2, pages 439-446, March 2008. 

 

[Fen08b] B. Feng, G. Wainer. �A .NET Remoting-based distributed simulation approach 

for DEVS and Cell-DEVS models�, Proceedings of the 2008 12th IEEE/ACM 

International Symposium on Distributed Simulation and Real-Time Applications, pages 

292-299, Oct 2008. 

 

[Fer02] Frey P.; Radhakrishnan, R.; Carter, H.W.; Wilsey, P. A.; Alexander, P. �A formal 

specification and verification framework for Time Warp-based parallel simulation�. IEEE 

Transactions on Software Engineering, Vol. 28(1), pages 58-78, Jan 2002. 

 

[Gar70] Gardner, M. �Mathematical games: The fantastic combinations of John 

Conway�s new solitaire game life�.  Scientific American 223, pages 120-123, Oct 1970. 

 

[Gli06] Glinsky, E. Wainer, G.  �New Parallel simulation techniques of DEVS and Cell-

DEVS in CD++�. Proceedings of the 38th IEEE/SCS Annual Simulation Symposium, 

Huntsville, Al., U.S.A., 2006. 

 

[Gus88] Gustafson, J. �Reevaluating Amdahl�s law�. Communications of the ACM, 
Vol.31, pages 523-533, May 1988. 
 



 82

[Her03] Hericko, M. �Object Serialization Analysis and Comparison in Java and .NET�, 
ACM Sigplan Notices, Vol. 38(8), pages 44-54, August 2003. 
 

[Hen06] Michi Henning, �The rise and fall of CORBA�, ACM Queue, 4(5): pages 28-34, 

June 2006. 

 

[Kim04]  Kim, K.; Kang, W. �CORBA-based, Multi-threaded Distributed Simulation of 

Hierarchical DEVS Models: Transforming Model Structure into a Non-Hierarchical 

One�.  International Conference on Computational Science and Its Applications 

(ICCSA).  Assisi, Italy. 2004. 

[Liu07] Q. Liu, G. Wainer. �Parallel environment for DEVS and Cell-DEVS models�, 

Simulation, Vol. 83(6), pages 449-471, June 2007.   

 

[Mad07] Madhoun, R.; G. Wainer. �Studying the Impact of Web-Services 

Implementation of Distributed Simulation of DEVS and Cell-DEVS Models�.   

Proceedings of the 2007 spring simulation multiconference, Vol.2, pages 267-278, March 

2007.  

 

[Moo96] Moon, Y.; Zeigler, B.; Ball, G; Guertin, D., �DEVS representation of spatially 

distributed systems: validity, complexity reduction�. IEEE Transactions on Systems, Man 

and Cybernetics. Pages 288-296, May 1996. 

 

[MPI08] MPICH.  �Documentation�. http://www-unix.mcs.anl.gov/mpi/mpich1/   

(accessed in Oct, 2008). 

 

[Mit07] S. Mittal, J.L. Risco.  �DEVSML: Automating DEVS Execution over SOA 

towards Transparent Simulators.� In a Special Session on DEVS Collaborative Execution 

and Systems Modeling over SOA, DEVS integrative M&S Symposium DEVS�07, pages 

287-295, March 2007. 

 

[Net07] NetBeans, �Download NetBeans IDE� 

 http://www.netbeans.org/  (accessed in April, 2007). 



 83

 

[Neu66] John von Neumann.  Theory of Self-reproducing Automata.  University of 

Illinois Press, Edited and completed by Arthur W. Burks. 1966. 

 

[Ram05] Rammer, I. Szpuszta, M. �Advanced .NET Remoting�, Apress, March 2005 
 

[REM08] Microsoft MSDN. �.NET Remoting�. http://msdn.microsoft.com/en-

us/magazine/cc188927.aspx (accessed in April, 2008) 

[RMI08] Sun Microsystems.  �Remote Method Invocation Home�.  

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp (accessed in April, 2008) 

 

[Rod99]  Rodriguez D.; Wainer, G. �New Extensions to the CD++ Tool�.  Proceedings of 

the 32th  SCS Summer Computer Simulation Conference.  Vancouver, Canada. 1999. 

 

[Sar98] Sarjoughian, H. S.; Zeigler, B. �DEVSJAVA: Basis for a DEVS-based 

collaborative M&S environment�.  Proceedings of the International Conference on Web-

based Modeling and Simulation.  Vol.5, pages 29-36, San Diego, CA. U.S.A. 1998 

 

[Seo04]  Seo C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. �Implementation of distributed 

high-performance DEVS simulation framework in the Grid computing environment�.  

Advanced Simulation Technologies Conference (ASTC).  Arlington, VA. U.S.A., 2004. 

 

[SOA08] W3C, �SOAP Version 1.2 Part 0: Primer (Second Edition)�. 

http://www.w3.org/TR/soap12-part0/ (accessed in Oct, 2008) 

 

[Tro03]  Troccoli, A. Wainer, G. �Implementing Parallel Cell-DEVS�  

36th Annual Simulation Symposium, pages 273-280, 2003 

 

[W3C08] W3C. �Simple Object Access Protocol (SOAP) 1.1�.   

http://www.w3.org/TR/2000/NOTE-SOAP-20000508 (accessed in Oct, 2008) 

 



 84

[Wai01] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS: modeling and simulation               

of cell spaces ". Discrete event modeling and simulation technologies: a tapestry of 

systems and AI-based theories and methodologies, pages 187-214, 2001. 

 

[Wai02] WAINER, G. �CD++: a toolkit to develop DEVS models�, Software � practice               

and Experience. Vol. 32 (13), pages 1261-1306, 2002 

 

[Wai06] G. Wainer. E. Glinsky. �Advanced Parallel simulation techniques for Cell-

DEVS models�.  EUROSIM.   Special Issue on Parallel and Distributed Simulation.  Vol. 

16(2), pages 25-36, Sept. 2006 

 

[Wai08] Wainer, G. Web page. �Model Samples�. 

http://www.sce.carleton.ca/faculty/wainer/wbgraf/samplesmain_1.htm (accessed in Oct, 

2008) 

 

[War95] Dale E. Martin, Timothy J. McBrayer, Computer Architecture Design 

Laboratory, Cincinnati.  �Warped a TimeWarp Parallel Discrete Event Simulator�  

http://www.ececs.uc.edu/~paw/warped/doc/index.html (accessed in Oct, 2007) 

 

[Wik08] Wikipedia. �Personal computer�. 

http://en.wikipedia.org/wiki/Personal_computers (accessed on Nov. 2008) 

 

[Wol86] Wolfram, S. �Theory and applications of cellular automata�.  Vol.1. Advances 

Series on Complex Systems.  World Scientific. Singapore. 1986. 

 

[WSD08] W3C. �Web Services Description Language (WSDL) 1.1� 

http://www.w3.org/TR/wsdl  (accessed in Oct, 2007) 

 

[Zha06] Zhang, M.; Zeigler, B.; Hammonds, P. �DEVS/RMI � An auto-adaptive and 

reconfigurable distributed simulation environment for engineering studies�, DEVS 

Integrative M&S Symposium (DEVS�06). Huntsville, Alabama, U.S.A., 2006 



 85

 

 [Zei76] Zeigler, B.P., Theory of Modeling and Simulation, Wiley, N.Y., 1976 

 

[Zei96] Zeigler, B.; Moon, Y.; Kim, D.; Kim, J. G. �DEVS-C++: A high performance 

modeling and simulation environment�.  The 29th Hawaii International Conference on 

System Sciences. Hawaii , U.S.A., 1996 

 

[Zei99] Zeigler, B.; Sarjoughian H. S. �Support for hierarchical modular component-

based model construction in DEVS/HLA�. Simulation Interoperability Workshop.  

University of Arizona, U.S.A., 1999. 

 

[Zei00] Zeigler, B.P.; T.G. Kim, and H. Praehofer. Theory of Modeling and Simulation.              

2 ed. New York, NY: Academic Press, 2000. 

 

 

 

 

 

 

 

 

 


	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ACRONYMS
	CHAPTER 1   INTRODUCTION
	1.1. Contribution
	CHAPTER 2   DEVS AND TIMED CELL-DEVS FRAMEWORK
	2.1.   DEVS and Parallel DEVS formalism
	2.1.1. DEVS model example: an ATM machine

	2.2. Timed Cell-DEVS and Parallel Cell-DEVS formalism
	2.3. Parallel discrete event simulation mechanism
	CHAPTER 3    PARALLEL CD++ TOOL

	3.1.   A survey on DEVS based simulation tool
	3.2. Standalone CD++ simulation tool
	3.3. Parallel CD++ Tool
	3.3.1. PCD++ architecture
	3.3.2. WARPED kernel
	3.3.3. Parallel DEVS abstract simulator

	3.4. An example of parallel Cell-DEVS
	CHEAPER 4   PARALLEL CD++ WITH WINDOWS MPI

	4.1. MPI overview
	4.2. Several Windows MPI products
	4.2.1. Microsoft Windows MPI
	4.2.2   Hewlett-Packard Windows MPI
	4.2.3 DeinoMPI

	4.3   Implement PCD++ with Windows MPI
	4.4   Exposing PCD++ Win with Web Service
	4.4.1. How Web service works
	4.4.2.    Web Service standard stack
	4.4.3   Building PCD++ Win Web Service
	4.4.4   Consuming PCD++ Win Web Service
	CHAPTER 5    PCD++/.NET REMOTING

	5.1. An overview of distributed object paradigms
	5.2.    NET Remoting versus Web Services
	5.3. .NET Framework
	5.4 C++/CLI (Common Language Infrastructure) language
	5.5. .NET Remoting
	5.6. PCD++/.NET Remoting System
	CHAPTER 6  EXPERIMENTS AND PERFORMANCE ANALYSIS

	6.1.   Remote message of PCD++Win and PCD++/.NET Remoting
	6.2.   Experimental Models and results
	6.3. Result analysis for PCD++/.NET Remoting
	CHAPTER 7   CONCLUSIONS AND FUTURE WORK

	7.1. Future work
	REFERENCES

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ACRONYMS
	CHAPTER 1   INTRODUCTION
	1.1. Contribution
	CHAPTER 2   DEVS AND TIMED CELL-DEVS FRAMEWORK
	2.1.   DEVS and Parallel DEVS formalism
	2.1.1. DEVS model example: an ATM machine

	2.2. Timed Cell-DEVS and Parallel Cell-DEVS formalism
	2.3. Parallel discrete event simulation mechanism
	CHAPTER 3    PARALLEL CD++ TOOL

	3.1.   A survey on DEVS based simulation tool
	3.2. Standalone CD++ simulation tool
	3.3. Parallel CD++ Tool
	3.3.1. PCD++ architecture
	3.3.2. WARPED kernel
	3.3.3. Parallel DEVS abstract simulator

	3.4. An example of parallel Cell-DEVS
	CHEAPER 4   PARALLEL CD++ WITH WINDOWS MPI

	4.1. MPI overview
	4.2. Several Windows MPI products
	4.2.1. Microsoft Windows MPI
	4.2.2   Hewlett-Packard Windows MPI
	4.2.3 DeinoMPI

	4.3   Implement PCD++ with Windows MPI
	4.4   Exposing PCD++ Win with Web Service
	4.4.1. How Web service works
	4.4.2.    Web Service standard stack
	4.4.3   Building PCD++ Win Web Service
	4.4.4   Consuming PCD++ Win Web Service
	CHAPTER 5    PCD++/.NET REMOTING

	5.1. An overview of distributed object paradigms
	5.2.    NET Remoting versus Web Services
	5.3. .NET Framework
	5.4 C++/CLI (Common Language Infrastructure) language
	5.5. .NET Remoting
	5.6. PCD++/.NET Remoting System
	CHAPTER 6  EXPERIMENTS AND PERFORMANCE ANALYSIS

	6.1.   Remote message of PCD++Win and PCD++/.NET Remoting
	6.2.   Experimental Models and results
	6.3. Result analysis for PCD++/.NET Remoting
	CHAPTER 7   CONCLUSIONS AND FUTURE WORK

	7.1. Future work
	REFERENCES


