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ABSTRACT

A  new  model  is  proposed  for  the  simulation  of 
deformable  biological  structures  such  as  proteins, 
membranes,  tissues,  and  organs.  The idea  involves 
the use of discrete-event simulation to track the motion 
of  large  numbers  of  colliding  particles.  If  two 
approaching particles reach an inner limiting distance, 
they  collide,  rebound  outwards,  and  may  become 
"tethered".  When  two  separating  tethered  particles 
reach  an outer  limiting  distance,  then  provided  they 
remain tethered, they retract inwards. By constraining 
the  distances  between  pairs  of  particles  in  this 
manner,  a  variety  of  deformable  structures  may  be 
represented.  A model  of  a presynaptic  terminal  of  a 
nerve cell is presented as an example.

We expect the proposed tethered particle system 
to offer a considerably simpler alternative to existing 
deformable structure modeling techniques such as the 
finite  element  method (FEM).  Many have noted that 
impulse-based  simulations  similar  to  ours  are 
hopelessly  inefficient  at  resolving  simultaneous  or 
nearly-simultaneous  collisions  of  three  or  more 
particles. We therefore introduce a condition whereby 
multiple small colliding particles may act, temporarily, 
as a single body. With this approximation we hope to 
rectify  the  inefficiency  of  impulse-based  methods 
without sacrificing simplicity or validity.

INTRODUCTION

The simulation of deformable structures is used for 
a wide range of  applications in the biomedical  field, 
including the study of physiology, the analysis of joint 
replacements, and the planning of surgeries [1].  The 
finite element method (FEM), described in [2], is likely 
the most  popular  method for  such applications.  The 
possibility of obtaining a new method, one that may be 
simpler  or  more  computationally  efficient,  merits  the 
investigation of alternatives.

One  relatively  simple  alternative  to  the  FEM  is 
impulse-based simulation [3].  We regard an impulse 
as an instantaneous change in the momentum of an 
object.  It  is  counterintuitive  to  model  deformable 
structures  with  impulses,  as  the  deformation  of  an 

object  is  a  continuous  process  that  may  require  a 
significant length of time. That said, if one represents a 
deformable structure as a network of a large number 
of  particles,  then  numerous  collisions  and  impulses 
between those particles may produce the effect of a 
gradual deformation of the overall structure. In order to 
construct stable networks of particles, it is necessary 
to  include  not  only  collisions  that  redirect  two 
approaching particles away from one another, but also 
collisions that steer separating particles back towards 
one another.

This paper introduces the tethered particle system 
(TPS), a particle collision model in which certain pairs 
of particles are “tethered” to one another and may not 
separate beyond some fixed distance. The TPS allows 
one to apply relatively simple impulse-based dynamic 
simulation  techniques  to  models  of  deformable 
objects.  Early  results  suggest  that  the  TPS  holds 
potential  at  least  for  the  simulation  of  microscopic 
biological structures such as proteins and membranes, 
and possibly for larger tissues and even organs.

Presented in the paper  are the key formulas for 
collision detection and collision response in a TPS, an 
approximation  that  addresses  the  inefficiency  of 
resolving  large  numbers  of  nearly-simultaneous 
collisions,  and  a  model  of  deformable  biological 
structures in presynaptic terminals of nerve cells.

COLLISION DETECTION

Unlike  FEM-based  simulations  in  which  time  is 
advanced  at  regular  intervals,  the  TPS  uses  a 
discrete-event approach in which time is advanced to 
the moment when the next collision occurs. Collision 
detection is the task of identifying the next collision.

Suppose that particle A is centered at the position 
u A  and has the velocity v A , and particle B is at u B  

with  velocity  v B .  At  time   t  in  the  future,  the 
distance  u  between the  two  particles  is  then  as 
follows.

u = ∑uBvB⋅ t −u AvA⋅ t  
2 1



We  use  the  notational  convention  that  vector 
multiplication  is  performed  element  by  element.  We 
also use the summation symbol  as an operator  that 
adds all vector elements, as demonstrated below.

[2,3, 4 ]2 = [2,3,4 ]⋅[2,3,4 ] = [4,9,16 ]

∑ [2,3, 4 ]2 = ∑ [4,9,16 ] = 29

Solving (1) for  t , we obtain the following.

 t = −b±b2−4⋅a⋅c
2⋅a

Where: a =∑  v B−v A2
b = 2⋅∑ uB−uA⋅v B−v A 
c =∑ uB−uA2− u2

2

To find the time at which the next collision occurs 
between  two  specific  particles,  we  first  evaluate  (2) 
with u  set to the distance at which the two particles 
must collide. If dealing with non-penetrating spherical 
particles,  u  would be the sum of their radii. After 
evaluating (2), our collision time is the smaller finite, 
real,  and  non-negative  result.  With  more  than  two 
particles,  we  must  find  the  smallest   t  for  any 
particle  pair.  Performing  a  simulation,  we  would 
advance time by this minimum  t , then resolve the 
collision  by  calculating  the  new  velocities  of  the 
colliding particles, then repeat the process.

One generally thinks of a collision as a situation in 
which  two  approaching  particles  rebound  off  one 
another. We refer to this type of collision as a “blocking 
collision”.  In  a  TPS  simulation,  a  blocking  collision 
occurs  if  two  approaching  particles  reach  an  inner 
limiting  distance  ublocking .  At  that  point  the  two 
particles may become “tethered”. A “tethering collision” 
occurs when two separating tethered particles reach 
an outer limiting distance u tethering . At that point the 
connection between the particles may break, in which 
case  the  particles  continue  to  separate.  Should  the 
particles  remain  tethered,  however,  they  reflect 
inwards. The distance between two tethered particles 
is thus constrained; ignoring computational errors, the 
distance is at least ublocking  and at most u tethering . 

The distances  ublocking  and u tethering  replace 
u  in (2), yielding future times for both blocking and 

tethering collisions.

COLLISION RESPONSE

Given  the  positions  u A  and  uB ,  and  the 
velocities  v A  and  v B ,  of  two particles  at  the  time 
when they collide, collision response is the calculation 
of the new particle velocities v A '  and v B ' . We now 
also need the masses of the particles, mA  and mB . 
Derived from the law of  conservation of  momentum, 
(3) yields the new velocities given the impulse p .

[v A ' ,vB ' ] = [v Ap
mA

, v B−
p
mB ] (3)

In order to determine the impulse, it  is  useful  to 
obtain the following:  u , a unit vector along the axis 
between  the  particles;  v AB ,  the  relative  particle 
velocity;  v u ,  the relative velocity projected onto  u ; 
and v w  the relative velocity projected onto the plane 
perpendicular to u .

u =
uB−u A

∑  uB−u A2
v AB = vB−v A

v u = ∑ v AB⋅u 
v w = v AB−v u

In most  cases the impulse can be calculated by 
the well  known equation in (4), where  cresitute  is the 
“coefficient  of  restitution”  that  expresses  the  ratio  of 
the new projected relative speed to the magnitude of 
the old v u . The maximum value of this coefficient is 1, 
in which case no energy is lost in the collision, and the 
minimum value is 0, in which case the energy loss is 
maximized.

p = 1crestitute ⋅ 1mA 1
mB 

−1

⋅v u (4)

The  TPS  requires  a  distinction  between  the 
“rebounding”  of  two  approaching  particles,  the 
“retraction”  of  two  separating  but  tethered  particles, 
and  the  “revolution”  of  two  tethered  particles.  Each 
case  has  its  own  coefficient  that  determines  the 
energy lost.  In the case of two rebounding particles, 
the traditional type of collision, we obtain the impulse 
by  substituting  crebound  into  (4).  In  the  case  of  two 



retracting  tethered  particles,  we  evaluate  (4)  with 
cretract  instead.  The  remainder  of  this  section  will 

focus on revolution. 

If  two  tethered  particles  are  at  their  tethering 
distance and their relative velocity is perpendicular to 
u ,  then  the  use  of  (4)  will  lead  to  an  infinite 

succession  of  infinitesimal  retraction  impulses.  To 
prevent this, we check whether a retraction impulse is 
sufficient to draw the two particles together at an angle 
of at least revolve  from perpendicular. 

∑ cretract⋅v u 
2  tan revolve⋅∑ v w

2
If the condition above is satisfied, then a retraction 

impulse  is  sufficient  and we use  (4).  Otherwise,  we 
abandon (4) and calculate an impulse that will  draw 
the tethered particles together at an angle of  revolve . 
We refer to this as “revolution” because, if left alone, 
the particles will circle one another in a series of these 
collisions.

To calculate the revolution impulse, we first obtain 
the  relative  direction  urevolve  corresponding  to  the 
angle revolve .

urevolve =
vr evolve

∑ vr evolve2
Where: v revolve=v w− tan revolve⋅∑v w2⋅u

Given  the  previously-calculated  relative  velocity 
v AB , the revolution impulse given by (5) results in a 

new relative velocity v AB '  with direction urevolve . The 
magnitude of the new relative velocity is chosen based 
on the coefficient  crevolve .  This coefficient expresses 
the ratio of the new relative speed to the old one; not 
after  a  single  collision,  but  rather  after  one  entire 
revolution of the two particles. Suppose revolve  is 45 
degrees and  crevolve=0.5 .  Because it  will  take four 
collisions  to  achieve  a  full  revolution,  the  relative 
speed will drop by a factor of 0.51 /4 , or approximately 
0.84, on each collision.

p =  1mA 1
mB 

−1

⋅v AB−v AB ' 

Where: v AB ' = crevolve
revolve
 ⋅∑ v AB2 ⋅urevolve

(5)

NEARLY-SIMULTANEOUS COLLISIONS

The following simple scenario reveals a problem 
with the model presented thus far. Particle X is about 
to  collide  with  stationary  particle  Y,  which  will  then 
collide with stationary particle Z.

First we assume crebound=1 . If all particles have 
equal mass, particle X will transfer all of its momentum 
to Y, which will in turn transfer all of its momentum to 
Z.  There  will  be  only  two  collisions.  If  the  mass  of 
particle  Y is  much  less  than  that  of  the  other  two, 
however,  X will  lose only a fraction of its momentum 
when it first collides with Y. In this case many nearly-
simultaneous  collisions  will  occur,  with  Y bouncing 
back and forth between the two larger particles. In a 
simulation where the mass of Y was a thousandth that 
of the other two, 70 collisions occurred in total.

The processing  of  these 70 collisions  is  a  large 
computational  effort  for  such  a  simple  scenario,  but 
when  the  simulation  described  above  was  repeated 
with  crebound0.9 ,  the  momentum  transferred  on 
each  collision  converged  to  zero  and the  simulation 
stalled.  This  well  known  problem  with  simultaneous 
and nearly-simultaneous collisions is described in [4], 
along with a constraint-based solution that requires the 
minimization  of  a  linear  function  constrained  by  a 
system  of  linear  inequalities.  We  stick  to  impulse-
based  modeling,  and  propose  a  much  simpler 
approximation for the TPS.

Our approximation groups colliding particles for a 
duration  of  at  least   t restitute ,  which is  an  arbitrary 
value.  During  this  time,  the  grouped  particles  move 
together with the velocity  v l oad ,  and interact as a 
single body with a mass equivalent to the sum of the 
masses of each grouped particle.

v l oad = 1mBmA 
−1

⋅v A 1mA

mB 
−1

⋅v B (6)

For a collision between two particles A and B, we 
record an impulse  p AB  to apply via (3)  after  the 
time   t restitute  elapses.  This  impulse  is  calculated 
from the impulse p , as given by (4) or (5), but we 
subtract the momentum that we effectively introduced 
by changing the velocities to v l oad .



p AB = p −  1mA
 1
mB 

−1

⋅vAB (7)

Returning to the scenario, suppose that particles X 
and  Y collide at time  t XY . We temporarily give both 
particles  the  velocity  of  (6),  and record  the  impulse 
p XY  from  (7)  to  apply  after  the  time  reaches 
t XY t restitute . But suppose that the second collision 

occurs  at  t YZ  before  t XY t restitute .  We  then 
evaluate (6) and (7) for particles Y and Z. Because Y 
is  grouped with  X,  we use the combined mass of  X 
and  Y for the mass of  Y.  From (6)  we get the new 
temporary velocity of all three particles, while (7) gives 
us  pY Z .  We  now  wait  until  time  reaches 
tYZ t restitute , then apply  pY Z  between particles 

Y and  Z using (3), still  treating  X and  Y as a single 
body.  Finally,  without  advancing  time,  we  apply 
p XY  between particles X and Y.

By temporarily combining the masses of grouped 
particles,  which increases the  magnitude of  collision 
impulses, our approximation dramatically reduces the 
number of collisions in a TPS simulation. Even if this 
approximation is found to introduce inaccuracy on an 
individual-particle  level,  it  may  not  invalidate  the 
modeled behavior  of  a system that  includes a large 
number  of  particles.  The  approximation  obeys 
conservation  of  momentum,  and  it  should  be  noted 
that only a very small value of  t restitute  is needed to 
address the problem of nearly-simultaneous collisions.

DEFORMABLE BIOLOGICAL STRUCTURES

Using  the  Python  programming  language,  we 
implemented  discrete  event  simulation  code  to 
investigate TPS models of various types of deformable 
biological  structures.  Figure  1 shows  a  model  of  a 
presynaptic  terminal,  a  part  of  a  nerve  cell.  The 
deformable structures in this case are clusters of sacs 
called “vesicles” tethered to proteins called synapsins. 
These clusters formed during simulation from initially-
isolated vesicle particles and synapsin particle pairs, 
and  reacted  realistically  to  impacts  within  a  rigid 
spherical cell membrane.

The  TPS  can  be  applied  to  various  types  of 
deformable  structures.  We  intend  to  model  long 
proteins by chaining tethered particles  together,  and 
have begun representing  deformable membranes as 
planar networks of particles tethered to their nearest 
neighbors. A TPS membrane can model microscopic 
structures, like nerve cell membranes, or macroscopic 
tissues, like the walls of veins and arteries.

Figure 1: A simulation snapshot of a TPS model of a 
presynaptic terminal of a nerve cell. The membrane is 
modeled as a single large particle of infinite mass. It 

contains smaller particles representing vesicles, which 
are tethered to pairs of still smaller synapsin particles.

CONCLUSION

A new model,  the  tethered  particle  system,  has 
been proposed and demonstrated for the simulation of 
deformable  structures.  The  key  formulas  needed  to 
implement the model have been presented. Simulation 
results to date suggest that the TPS has the potential 
to  represent  microscopic  biological  structures  like 
those found in the modeled presynaptic terminal, and 
further research may demonstrate its utility for larger 
tissues and even organs. The TPS could be enhanced 
with friction, the rotation of particles, the representation 
of gravity as a sequence of impulses, and the inclusion 
of  fluid  dynamics  using  freely-moving  particles  or  a 
superimposed differential equation model.
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