

Cable-Anchor Robot Implementation using Embedded CD++
[Poster Abstract]

ABSTRACT
We show the design and implementation of a robot controller with
a unique locomotion system. We demonstrate that a discrete-event
simulation based design provides a cost-effective, flexible [1], open
workflow for modular robotic development. The robot is
designed to translate against a vertical surface using cables fixed
at one end that can wind on motor-controlled spools attached to
the robot. This architecture was implemented first as a
regressively tested simulation within CD++ then ported to Real-
time CD++. Using the NXT++ interface library, a hardware
implementation of the robot using Lego® Mindstorms™ was
shown to be controllable.

Categories and Descriptions
B.1.2 [Control Structure Performance Analysis and Design Aids]
simulation, I.2.9 [Robotics] Commercial robots and applications

General Terms
Design, Verification

1. Cable-Anchored Robot

In applications where terrain is too difficult to traverse using legs
or wheels, other forms of robot locomotion must be found.
Examples include disaster areas, such as building collapse, or
environmentally sensitive locations where no disturbance can be
tolerated. One form of locomotion that could allow 2D and 3D
locomotion involves a cable-anchored robot. Rather than wheels,
a cable-anchored robot is designed to hang from two or more
points fixed above and around the desired area of movement
connected by cables. The ends of the cables meet at the robot and
are each wrapped around motor-driven spools which the robot can
rotate to let out cable or take it in. This effectively allows motion
through a space or across a plane.

2. Implementation

A subset of this problem using two cables and a planar surface for
movement was used as a real-world design specification. The
robot would translate against a vertical surface using fixed cables
that can wind on motor controlled spools attached to the top of the
robot (Figure 3). The attachment points to the surface (in this case
instantiated as a Chalk Board) can be arbitrary, and the controller
is modeled in such a way that target (x, y) Cartesian coordinates
can be translated to desired cable take-up and incremental motor
movements. The robot model is implemented so that the path
between the current robot position and the desired position is
calculated in steps of defined resolution. This allows linear robot
movement to the target position regardless of the geometry of the
robot and cable attachment points.

Figure 1: Robot path between start and target coordinates
using a path planner

This controller is designed in such a way that it can be
implemented using the Lego Mindstorms™ robotics construction
toolkit and E-CD++ [3].

Using a bottom-up development and testing process resulted in a
complex robot controller system that met desired performance
goals. The flexibility of the anchor-cable locomotion system is
offset by its geometric complexity; however, this was shown to be
successfully addressed with a path planner that could linearize
robot motions with controllable fidelity.

Gabriel Wainer
Carleton University Dept. of

Systems and Computer
Engineering

1125 Colonel By Drive, Ottawa,
Canada, K1S 5B6

gwainer@sce.carleton.ca

Mohammad Moallemi
Carleton University Dept. of

Systems and Computer
Engineering

1125 Colonel By Drive, Ottawa,
Canada, K1S 5B6

mohammad@sce.carleton.ca

Jeremy Kuzub
Carleton University Dept. of

Systems and Computer
Engineering

1125 Colonel By Drive, Ottawa,
Canada, K1S 5B6

jkuzub@sce.carleton.ca

Keith Holman
Carleton University Dept. of

Systems and Computer
Engineering

1125 Colonel By Drive, Ottawa,
Canada, K1S 5B6

keith@sce.carleton.ca

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
SIMUTools 2009, Rome, Italy
Copyright 2009 ICST, ISBN 978-963-9799-45-5

3. System Architecture

A hardware implementation of the robot using Lego Mindstorms
was shown to be controllable using event files. Open-loop motor
control was demonstrated using the fundamentals of a simulated
robot in the real world.

Figure 2: Overall Model of Robot System

Developing architecture for the robot controller involved breaking
down the behaviour of the robot into sequential, event-driven
steps. Each step had a unique function and could be more easily
translated into atomic models for CD++ implementation.

The Robot is the ‘top’ level coupled model (Figure 2). This
represents a cable-stay robot. Each robot is composed of a
Generator and Chalk Engager and two motors. This simulates
how the hardware cable-stay robot would work. A robot would
contain controllers, in this case a chalk engager, and two motors
that communicate with Mindstorms. The Generator translates
input into a format understandable by each controller. The robot
can be in either passive or active state. When in passive the robot
is waiting for the next event from the event file when in active the
robot is handling an event from the event file or interpreting a
response from the subsystem. [4]

4. Simulation Analysis

The initial design was implemented in CD++ to simulate robot
behaviour. The simulation initially was not completely
successful, and indicated an error in the path planning algorithms
was not initially detected in the atomic model tests of the Planner
and Translator. Specifically, the path planner failed to generate
intermediate waypoints in the special case of vertical and
horizontal lines. Initial model tests were done with only diagonal
lines, so cases where the slope was infinite or zero were not part
of that test plan. This was easily pinpointed and corrected. This
shows the value of full-up tests and simulation, not just to verify
successful integration, but also to allow more opportunities to test
the system in a larger data space. The greater the level of
integration when an error is found, the more difficult it is to
pinpoint its source; the lesson is that exhaustive unit testing is
necessary, but not sufficient, as some test cases will likely be
missed.

This simulation also showed the value of testing algorithms in
regression using two different derivation methods. Inputs and
outputs should match if the system is working as expected; errors
oversights are more easily spotted. The disadvantage may be in
development time as a partial second set of robot control
algorithms must themselves be derived, tested and debugged. The
result, however, provides an additional level of confidence on the
path to hardware implementation.

After detecting initial problems and updating the model it behaved
as expected, planning and following a physically feasible set of
paths.

5. Robot Construction using Mindstorms

Lego Mindstorms was chosen for its potential as an engineering
education tool that is readily globally to engineering students for
rapid prototyping of systems that allow reproducibility and
extension. Lego kit 8527 was used to build the robot. Two servo
motors were used to wind and unwind the cable spools. A third
motor actuated the chalk writer.

Mindstorms hardware control via NXT++ and Real-time DEVS
was successful. Motor commands were properly issued and acted
upon by the hardware. Real-time DEVS allowed accurate timing
of motor movements; with the motors properly characterized it
was possible to provide good accuracy.

6. Conclusion

A hardware implementation of the robot using Lego Mindstorms
was shown to be controllable using event files. Open-loop motor
control was demonstrated using the fundamentals of a simulated
robot in the real world as well as using simulation techniques to
build a more robust system by intermediary analysis.

This implementation control of Mindstorms hardware via a DEVS
atomic model within a complex coupled model. This demonstrates
that any Mindstorms sensor or actuator can be effectively modeled
as an atomic model within DEVS++ then the associated Real-time
DEVS atomic model can be substituted in the E-CD++ framework
with little additional modification required. A workflow was thus
successfully demonstrated from simulation to hardware
implementation with DEVS, Real-time DEVS, and Mindstorms.

7. REFERENCES
[1] [Wainer, G., "CD++: a toolkit to define discreteevent

models". Software, Practice and Experience. Vol. 32,
No.3. pp. 1261-1306. November 2002.

[2] Wainer, G. et al. "CD++ A tool for DEVS and
Cell-DEVS Modeling and Simulation. User's
Guide". Draft. August 2004.

[3] Moallemi, Mohammad. “Embedded CD++ on a
Robot”. Department of Systems and Computer
Engineering, Carleton University Centre of
Visualization and Simulation (V-Sim)

[4] “CD++ Wiki” http://celldevs.sce.carleton.ca/mediawiki/
index.php/Main_Page

out

Event
File

Motor 2

out

Motor 1

out

Generator

in:
{X, Y, D}

done

out

Path Generator

in

done

out

Translator

in:
next(∆X, ∆Y)

done

motorOut1

out

Robot

nextPosition

Chalk Engager

in
engaged

in
motorOut2

in

Queue Planner
out

in

ready
done

in

engaged

motorOut1

motorOut2

out

