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ABSTRACT 
We show the design and implementation of a robot controller with 
a unique locomotion system. We demonstrate that a discrete-event 
simulation based design provides a cost-effective, flexible [1], open 
workflow for modular robotic development.  The robot is 
designed to translate against a vertical surface using cables fixed 
at one end that can wind on motor-controlled spools attached to 
the robot. This architecture was implemented first as a 
regressively tested simulation within CD++ then ported to Real-
time CD++. Using the NXT++ interface library, a hardware 
implementation of the robot using Lego® Mindstorms™ was 
shown to be controllable. 

Categories and Descriptions 
B.1.2 [Control Structure Performance Analysis and Design Aids] 
simulation, I.2.9 [Robotics] Commercial robots and applications 

General Terms 
Design, Verification 

1. Cable-Anchored Robot 

In applications where terrain is too difficult to traverse using legs 
or wheels, other forms of robot locomotion must be found. 
Examples include disaster areas, such as building collapse, or 
environmentally sensitive locations where no disturbance can be 
tolerated. One form of locomotion that could allow 2D and 3D 
locomotion involves a cable-anchored robot. Rather than wheels, 
a cable-anchored robot is designed to hang from two or more 
points fixed above and around the desired area of movement 
connected by cables. The ends of the cables meet at the robot and 
are each wrapped around motor-driven spools which the robot can 
rotate to let out cable or take it in. This effectively allows motion 
through a space or across a plane.  

 

 

2. Implementation 

A subset of this problem using two cables and a planar surface for 
movement was used as a real-world design specification. The 
robot would translate against a vertical surface using fixed cables 
that can wind on motor controlled spools attached to the top of the 
robot (Figure 3). The attachment points to the surface (in this case 
instantiated as a Chalk Board) can be arbitrary, and the controller 
is modeled in such a way that target (x, y) Cartesian coordinates 
can be translated to desired cable take-up and incremental motor 
movements. The robot model is implemented so that the path 
between the current robot position and the desired position is 
calculated in steps of defined resolution. This allows linear robot 
movement to the target position regardless of the geometry of the 
robot and cable attachment points. 

 

Figure 1: Robot path between start and target coordinates 
using a path planner 

This controller is designed in such a way that it can be 
implemented using the Lego Mindstorms™ robotics construction 
toolkit and E-CD++ [3].  

Using a bottom-up development and testing process resulted in a 
complex robot controller system that met desired performance 
goals. The flexibility of the anchor-cable locomotion system is 
offset by its geometric complexity; however, this was shown to be 
successfully addressed with a path planner that could linearize 
robot motions with controllable fidelity.  
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3. System Architecture  

A hardware implementation of the robot using Lego Mindstorms 
was shown to be controllable using event files. Open-loop motor 
control was demonstrated using the fundamentals of a simulated 
robot in the real world. 

 

Figure 2: Overall Model of Robot System 

Developing architecture for the robot controller involved breaking 
down the behaviour of the robot into sequential, event-driven 
steps. Each step had a unique function and could be more easily 
translated into atomic models for CD++ implementation.  

The Robot is the ‘top’ level coupled model (Figure 2).  This 
represents a cable-stay robot.  Each robot is composed of a 
Generator and Chalk Engager and two motors.  This simulates 
how the hardware cable-stay robot would work.  A robot would 
contain controllers, in this case a chalk engager, and two motors 
that communicate with Mindstorms. The Generator translates 
input into a format understandable by each controller.   The robot 
can be in either passive or active state.  When in passive the robot 
is waiting for the next event from the event file when in active the 
robot is handling an event from the event file or interpreting a 
response from the subsystem. [4] 

4. Simulation Analysis 

The initial design was implemented in CD++ to simulate robot 
behaviour.  The simulation initially was not completely 
successful, and indicated an error in the path planning algorithms 
was not initially detected in the atomic model tests of the Planner 
and Translator. Specifically, the path planner failed to generate 
intermediate waypoints in the special case of vertical and 
horizontal lines. Initial model tests were done with only diagonal 
lines, so cases where the slope was infinite or zero were not part 
of that test plan. This was easily pinpointed and corrected. This 
shows the value of full-up tests and simulation, not just to verify 
successful integration, but also to allow more opportunities to test 
the system in a larger data space. The greater the level of 
integration when an error is found, the more difficult it is to 
pinpoint its source; the lesson is that exhaustive unit testing is 
necessary, but not sufficient, as some test cases will likely be 
missed. 

This simulation also showed the value of testing algorithms in 
regression using two different derivation methods. Inputs and 
outputs should match if the system is working as expected; errors 
oversights are more easily spotted. The disadvantage may be in 
development time as a partial second set of robot control 
algorithms must themselves be derived, tested and debugged. The 
result, however, provides an additional level of confidence on the 
path to hardware implementation. 

After detecting initial problems and updating the model it behaved 
as expected, planning and following a physically feasible set of 
paths.  

5. Robot Construction using Mindstorms  

Lego Mindstorms was chosen for its potential as an engineering 
education tool that is readily globally to engineering students for 
rapid prototyping of systems that allow reproducibility and 
extension. Lego kit 8527 was used to build the robot. Two servo 
motors were used to wind and unwind the cable spools. A third 
motor actuated the chalk writer.  

Mindstorms hardware control via NXT++ and Real-time DEVS 
was successful. Motor commands were properly issued and acted 
upon by the hardware. Real-time DEVS allowed accurate timing 
of motor movements; with the motors properly characterized it 
was possible to provide good accuracy.  

6. Conclusion 

A hardware implementation of the robot using Lego Mindstorms 
was shown to be controllable using event files. Open-loop motor 
control was demonstrated using the fundamentals of a simulated 
robot in the real world as well as using simulation techniques to 
build a more robust system by intermediary analysis. 

This implementation control of Mindstorms hardware via a DEVS 
atomic model within a complex coupled model. This demonstrates 
that any Mindstorms sensor or actuator can be effectively modeled 
as an atomic model within DEVS++ then the associated Real-time 
DEVS atomic model can be substituted in the E-CD++ framework 
with little additional modification required. A workflow was thus 
successfully demonstrated from simulation to hardware 
implementation with DEVS, Real-time DEVS, and Mindstorms. 
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