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ABSTRACT

We show the design and implementation of a robotroler with

a unique locomotion system. We demonstrate thigaede-event
simulation based design provides a cost-effecfiegible ™!, open
workflow for modular robotic development. The robis

designed to translate against a vertical surfagggusables fixed
at one end that can wind on motor-controlled spatiached to
the robot. This architecture was implemented fis a
regressively tested simulation within CD++ thentpdrto Real-
time CD++. Using the NXT++ interface library, a Hesare

implementation of the robot using LéydMindstorms™ was
shown to be controllable.

Categoriesand Descriptions
B.1.2 [Control Structure Performance Analysis aresiDn Aids]
simulation, 1.2.9 [Robotics)Commercial robots and applications

General Terms
Design, Verification

1. Cable-Anchored Robot

In applications where terrain is too difficult t@aterse using legs
or wheels, other forms of robot locomotion must foeind.
Examples include disaster areas, such as buildolgpse, or
environmentally sensitive locations where no distmce can be
tolerated. One form of locomotion that could all@® and 3D
locomotion involves a cable-anchored robot. Rathan wheels,
a cable-anchored robot is designed to hang from dwanore
points fixed above and around the desired area @fement
connected by cables. The ends of the cables mée¢ abbot and
are each wrapped around motor-driven spools wiielrdbot can
rotate to let out cable or take it in. This effeety allows motion
through a space or across a plane.
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2. Implementation

A subset of this problem using two cables and aglaurface for
movement was used as a real-world design spedifitafhe

robot would translate against a vertical surfadaguifixed cables
that can wind on motor controlled spools attacteetthé¢ top of the
robot (Figure 3). The attachment points to theaagf(in this case
instantiated as a Chalk Board) can be arbitrargl,the controller
is modeled in such a way that target (x, y) Caatesioordinates
can be translated to desired cable take-up anérmamtal motor
movements. The robot model is implemented so thatpath

between the current robot position and the despesition is

calculated in steps of defined resolution. Thiswadl linear robot
movement to the target position regardless of gwrgetry of the
robot and cable attachment points.
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Figure 1: Robot path between start and target coordinates
using a path planner

This controller is designed in such a way that #n cbhe
implemented using the Lego Mindstorms™ roboticsstarction
toolkit and E-CD++3,

Using a bottom-up development and testing processlted in a
complex robot controller system that met desiredopmance
goals. The flexibility of the anchor-cable loconusti system is
offset by its geometric complexity; however, thiasashown to be
successfully addressed with a path planner thaldclwoearize
robot motions with controllable fidelity.



3. System Architecture

A hardware implementation of the robot using Legmd4torms
was shown to be controllable using event files. iBle®p motor
control was demonstrated using the fundamentaks simulated
robot in the real world.
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Figure 2: Overall Model of Robot System

Developing architecture for the robot controllevatved breaking
down the behaviour of the robot into sequentialengdriven
steps. Each step had a unique function and coulthdre easily
translated into atomic models for CD++ implemewtati

The Robot is the ‘top’ level coupled model (Figure 2). This
represents a cable-stay robot. Each robot is ceethmf a
Generator andchal k Engager and two motors. This simulates
how the hardware cable-stay robot would work. Aatowould
contain controllers, in this case a chalk engaged, two motors
that communicate with Mindstorms. Thenerator translates
input into a format understandable by each corroll The robot
can be in either passive or active state. Wheragsive the robot
is waiting for the next event from the event filaem in active the
robot is handling an event from the event file wieipreting a
response from the subsystéfh.

4. Simulation Analysis

The initial design was implemented in CD++ to siatal robot
behaviour. The simulation initially was not contplg
successful, and indicated an error in the pathnitenalgorithms
was not initially detected in the atomic model $est thepi anner
andTransl at or. Specifically, the path planner failed to generate
intermediate waypoints in the special case of eaftiand
horizontal lines. Initial model tests were donehwainly diagonal
lines, so cases where the slope was infinite ar w&re not part
of that test plan. This was easily pinpointed aondexrted. This
shows the value of full-up tests and simulatiort, just to verify
successful integration, but also to allow more apputies to test
the system in a larger data space. The greaterleed of
integration when an error is found, the more difficit is to
pinpoint its source; the lesson is that exhaustiné testing is
necessary, but not sufficient, as some test cadédikely be
missed.

This simulation also showed the value of testingoathms in

regression using two different derivation methotigouts and
outputs should match if the system is working gseeted; errors
oversights are more easily spotted. The disadvantaay be in
development time as a partial second set of rolmitrol

algorithms must themselves be derived, tested abdged. The
result, however, provides an additional level affetence on the
path to hardware implementation.

After detecting initial problems and updating thedel it behaved
as expected, planning and following a physicallgsfble set of
paths.

5. Robot Construction using Mindstorms

Lego Mindstorms was chosen for its potential asagineering
education tool that is readily globally to engiriegrstudents for
rapid prototyping of systems that allow reprodudipi and

extension. Lego kit 8527 was used to build the tobwo servo
motors were used to wind and unwind the cable spd®lthird

motor actuated the chalk writer.

Mindstorms hardware control via NXT++ and Real-tiDEVS
was successful. Motor commands were properly issuedacted
upon by the hardware. Real-time DEVS allowed adeutianing
of motor movements; with the motors properly chamaeed it
was possible to provide good accuracy.

6. Conclusion

A hardware implementation of the robot using Legmddtorms
was shown to be controllable using event files. iBlo®p motor
control was demonstrated using the fundamentals sifmulated
robot in the real world as well as using simulatteohniques to
build a more robust system by intermediary analysis

This implementation control of Mindstorms hardweie a DEVS
atomic model within a complex coupled model. Tresndnstrates
that any Mindstorms sensor or actuator can betefédg modeled
as an atomic model within DEVS++ then the assodi&eal-time
DEVS atomic model can be substituted in the E-CBamework
with little additional modification required. A wkitow was thus
successfully demonstrated from simulation to hardwa
implementation with DEVS, Real-time DEVS, and Mitaims.
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