
A Performance Evaluation of the Lightweight Time Warp Protocol in
Optimistic Parallel Simulation of DEVS-based Environmental Models

Qi Liu and Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University Centre on Visualization and Simulation (V-Sim)

Carleton University, Ottawa, Canada
{liuqi, gwainer}@sce.carleton.ca

Abstract

The Lightweight Time Warp (LTW) protocol offers

a novel approach to high-performance optimistic
parallel discrete-event simulation, especially when a
large number of simultaneous events need to be
executed at each virtual time. With LTW, the local
simulation space on each node is partitioned into two
sub-domains, allowing purely optimistic simulation to
be driven by only a few full-fledged logical processes
(LPs), while most processes are turned into lightweight
LPs, free from the burden associated with Time Warp
(TW) execution. This paper presents a comparative
performance evaluation of the TW and LTW protocols
for simulating several DEVS-based environmental
models. The experiments indicate that the LTW
protocol improves performance in terms of shortened
execution time, reduced memory usage, lowered
operational cost, and enhanced system stability.

1. Introduction

The Time Warp (TW) mechanism [1] has been
widely used to speed up parallel discrete-event
simulation (PDES) systems (e.g., [2-3]). A TW
simulation is executed by several asynchronous logical
processes (LPs). Each LP has its own Local Virtual
Time (LVT) and interacts with other LPs via time-
stamped event messages. Potential causality errors are
detected and recovered by rollbacks that are triggered
by straggler or anti-messages. To this end, each LP
also maintains persistent input, output, and state
queues to store historical events and states, which can
only be discarded when the Global Virtual Time
(GVT) has advanced beyond their time stamps. A
survey of PDES techniques is provided in [4].

The increasing scale and complexity of PDES
systems poses new demands on the TW mechanism.
With many LPs loaded on each available node, saving

historical data in the persistent queues not only
consumes enormous memory, but also increases the
cost of queue operation, fossil collection, and dynamic
process migration. Further, the conventional rollback
mechanism relies solely on propagation of anti-
messages to cancel incorrect computation at the LPs,
putting a tremendous burden on the communication
infrastructure and, as the number of LPs involved in
the rollback increases, impairing the performance and
scalability of the entire system. To address these
problems, the Lightweight Time Warp (LTW) protocol
has been proposed in [5] to improve simulation
performance in a variety of ways, including shortened
execution time, reduced memory footprint, lowered
operational cost, and enhanced system stability.

The Discrete Event System Specification (DEVS)
[6] is a general methodology for describing discrete-
event systems. P-DEVS [7] extends DEVS to handle
simultaneous events, increasing the parallelism in the
simulation. Cell-DEVS [8] defines n-dimensional cell
spaces as discrete-event models. TW simulation of
DEVS models is still uncommon in the literature [9-
12]. The PCD++ environment [13] is one of the recent
efforts to support TW simulation of DEVS and Cell-
DEVS models based on the WARPED kernel [14]. In
this research, we have extended PCD++ to include the
LTW concepts. This paper compares the performance
of LTW and standard TW protocols for simulating
DEVS-based environmental systems in PCD++.

The rest of the paper is organized as follows.
Section 2 introduces the motivation and related work.
Section 3 recaps LTW protocol in the context of
PCD++. Section 4 gives the performance analysis.
Conclusion and future work are presented in Section 5.

2. Motivation and Related Work

Although a number of studies have been devoted to

improving the efficiency of the TW protocol, several
issues remain to be resolved.

2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/09 $25.00 © 2009 IEEE

DOI 10.1109/PADS.2009.15

27

2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/09 $25.00 © 2009 IEEE

DOI 10.1109/PADS.2009.15

27

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

One issue is to maintain high-performance
execution even when system memory is tight.
Techniques such as pruneback, cancelback, and
artificial rollback allow the system to recover from a
memory stall [4], but only at the expense of increased
computation and communication cost. Various fossil
collection schemes have been used to reclaim past
events and states (e.g., [15-16]). However, fossil
collection still constitutes a major overhead simply
because the number of LPs and fossil data increase
dramatically in large-scale simulations. Further, it
might be unable to reclaim fossil data before memory
exhaustion if the GVT does not advance sufficiently
fast, especially when a massive number of
simultaneous events are executed at each virtual time.

The pitfalls of rollback echoes, chasing hazards
and cascading rollbacks have been discussed in
numerous studies [4]. Optimism control is one way to
improve rollback efficiency (e.g., [17-18]), sacrificing
the degree of parallelism to a certain extent. Rollback
cost can also be reduced by different cancellation
algorithms (e.g., [19-20]), which inevitably increase
computational complexity of the system.

Various data structures have been investigated to
facilitate event queue operations (e.g., [21-22]). While
these approaches can certainly be used to improve
performance, an attractive alternative solution is to
keep the event queues short throughout the simulation.

Agile process migration is needed in parallel
systems to reduce the communication cost and to
minimize the interference with normal system
execution. Even more so in large-scale TW systems
where a potentially unbounded number of events and
states associated with an LP must be transferred. An
early work proposed in [23] employed a phase-based
computation model to reduce LP migration cost. Yet
this scheme suffers from increased message routing
overhead as any LP can be divided into small chunks
spread all over the system. More recently, an event
reconstruction algorithm was presented in [24] so that
only the state queue needs to be transferred.
Nevertheless, this approach only works for systems
with fine event granularity and small state size.

The way how simultaneous events are handled has
serious implication on both simulation correctness and
performance [25]. To ensure correct simulation results,
P-DEVS introduces (partial) causal dependency among
simultaneous events, requiring a control flow to
enforce an orderly event execution at each virtual time.
From a performance perspective, however, this
expanded execution of simultaneous events could
increase the overhead for state-saving, rollback, and
fossil collection, an issue that has not yet been
addressed by existing TW-based DEVS systems [9-12].

To address these challenges in a systematic way, the
LTW protocol [5] takes a novel approach that isolates
most LPs from the TW mechanism, while the purely
optimistic simulation is driven by only a few full-
fledged TW LPs. In this paper, we analyze the
effectiveness of the LTW protocol quantitatively.

3. The Lightweight Time Warp Protocol

This section briefly recaps the LTW protocol in the
context of PCD++, while detailed LTW algorithms
with pseudo-code can be found in [5].

3.1. Concepts and Assumptions

P-DEVS supports hierarchical model construction
in a modular way. A system is described as a hierarchy
of behavioral (atomic) and structural (coupled) model
components. The LPs are specialized into simulators
and coordinators, forming a hierarchy that mimics the
model structure [7]. A simulator executes the DEVS
functions defined in its associated atomic model, while
a coordinator is attached to a coupled model to control
the simulation in line with the P-DEVS formalism.

PCD++ adopts a flat LP structure that creates a
Node Coordinator (NC), a Flat Coordinator (FC), and
a set of Simulators on each node [13]. Doing so
eliminates intermediary coordinators in the LP
hierarchy, with reduced communication cost. The NC
is the local central controller and the endpoint of inter-
node communication, whereas the FC routes messages
between its child Simulators and the parent NC. The
event-processing algorithms can be found in [13].

Six types of events are defined to execute the
simulation in a message-driven fashion: External (x, t)
and output (y, t) messages encode the actual model
data, while initialization (I, t), collect (@, t), internal
(*, t), and done (D, t) messages control the execution
of simultaneous events at each virtual time.

Figure 1. Simulation process on a node

Figure 1 gives a high-level overview of the
simulation process on a node. At any virtual time, the
message flow among the LPs is organized into a multi-
phased structure that includes an optional collect phase
(C) and a mandatory transition phase (T), which in
turn may involve multiple rounds of computation
([R0…Rn]) to execute state transitions incrementally.
The LPs are initialized with an initialization phase (I)
at virtual time 0. At the end of each transition phase,

2828

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

the NC sends link messages to the local LPs,
advancing the virtual time on the node. A closer look
at the message-passing organization is presented in [5].

Figure 2. Division of domains in LTW

As illustrated in Figure 2, the novelty of the LTW
protocol concerns the division of the local simulation
space into two sub-domains, namely a TW domain and
a LTW domain. The former contains full-fledged LPs
that execute based on the standard TW protocol. In
PCD++, the NC is the only full-fledged LP on each
node. On the other hand, the latter contains lightweight
LPs that are released from the burden of TW
execution. The LTW domain is where all the PCD++
Simulators reside. LPs from different domains interact
via a mixed-mode interface LP that serves as a
gatekeeper for the lightweight LPs. The interface LP is
realized by the FC in PCD++. Note that all the LPs
still execute asynchronously and optimistically with
potentially different LVT values. However, by virtue
of the LTW protocol, the lightweight LPs no longer
rely on the persistent queues to recover from causality
errors, with much lower operational overhead.

The LTW protocol is based on the following
assumptions regarding the control of the LPs [5].

1. All communication of the Simulators goes
through the FC (i.e. no direct communication between
the Simulators). Hence, the FC has the full knowledge
of the timing of state changes at the Simulators.

2. The virtual time on each node is advanced only
by the LPs in the TW domain. That is, the FC and
Simulators do not advance their LVTs voluntarily, nor
do they send messages across virtual time boundaries.

3. Rollbacks always propagate from the TW
domain to the LTW domain via the FC. This is actually
implied by the other two assumptions since any
speculative computation on a node is always initiated
by full-fledged LPs in the TW domain and then spread
to the LTW domain through the FC. Hence, the FC
knows when rollbacks will occur at the Simulators.

3.2. Rule-based dual-queue event scheduling

As discussed earlier, keeping past events in the
persistent input queue is one of the major sources of

operational overhead in the TW mechanism. To solve
this problem, the LTW protocol introduces an extra
volatile input queue that does not preserve processed
events at all. Specifically, it is used to hold temporarily
the simultaneous events exchanged between the FC
and the Simulators at each virtual time. These volatile
events are deleted immediately after execution,
reducing memory usage for saving past input events.
Moreover, the volatile input queue only contains
simultaneous events, allowing for efficient queue
operation in O(1) time. At any virtual time, events are
inserted into the volatile queue as the simulation
moves into a collect or transition phase, and removed
as the execution proceeds. By the end of the phase, the
volatile queue becomes empty, making the queue
relatively short throughout the simulation.

Consequently, the persistent input queue only
stores events sent between the NC and FC, making the
queue far shorter than it would be in the TW protocol
with more efficient queue operations. Since the
simultaneous events executed by the FC and
Simulators at any virtual time are either committed or
cancelled together in the optimistic simulation, it is
safe to exclude them from the persistent queue.

In addition, anti-messages need not to be saved for
the volatile events, further reducing memory usage.
Since potentially incorrect volatile events have already
been deleted during forward execution, no event
cancellations are required to roll back the Simulators.
Hence, rollback propagation is effectively restricted to
the TW domain only between the NC and FC on each
node, with much lower overhead.

To schedule events in both queues properly, a
scheduler is created on each node to determine the next
event to be executed during each simulation cycle by
evaluating the following rules.

Rule 1. Idle condition. The simulation becomes
idle on the host node if the volatile queue is empty and
the persistent queue does not contain events with time
stamps before or at the simulation stop time. The
simulation may be reactivated later upon the arrival of
messages from the other nodes.

Rule 2. Simulation progress. The scheduler
selects the next persistent event with a time stamp
earlier than the simulation stop time if the volatile
queue becomes empty so that the NC can 1) advance
simulation time on the node, or 2) resume forward
execution from the unprocessed persistent events after
a rollback, or 3) reactivate the simulation from the idle
state upon the arrival of remote messages, which are
inserted into the persistent queue.

Rule 3. Aggressive inter-node communication.
During a collect phase, the NC may send messages to
remote nodes. As these are potentially straggler

2929

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

messages at the receiving end, a delay in their delivery
could postpone rollbacks at the destination, resulting in
degraded performance. Thus, the scheduler grants a
higher priority to the persistent events than those
volatile events with the same time stamp in order to
process inter-node messages immediately.

Rule 4. LTSF execution. The next volatile event
is selected to execute in all other cases, enforcing a
Least-Time-Stamp-First execution on the node.

3.3. Aggregated state management

LTW provides a new scheme that allows the
Simulators to delegate the responsibility of state
management to the FC. To this end, the FC uses an
aggregated state manager that maintains not only the
state queue for the FC itself, but also those used by the
Simulators. In order to identify the active Simulators
whose states have been modified at the current virtual
time, a Simulator’s state queue is associated with a
dirty bit, which is set whenever the FC sends an event
to the corresponding Simulator. The actual state saving
is carried out only when the FC detects that the events
previously sent to the Simulators have already been
processed, and is performed only for those Simulators
with dirty bits set to true. No dirty bit is used for the
FC’s own state queue because the FC is always
involved in the computation at each virtual time. The
dirty bit is reset after saving the state of a Simulator.

With this state management scheme, an optimal
risk-free state-saving strategy was proposed so that
only a single state is saved for, and only for, an active
LP at each virtual time [5]. It is risk-free as no
performance penalty is incurred as a result of saving
fewer states. To implement this strategy in PCD++, a
new state-saving phase is added after each transition
phase. Before the NC advances simulation time, it first
instructs the FC to save states for the current virtual
time. As all simultaneous events at the current virtual
time have been processed at this moment, the saved
states contain the latest values of the state variables.
Only after the state-saving phase, can the NC send link
messages to the FC to advance the simulation time on
the node. The NC saves its own state using whatever
strategy implemented in the TW domain.

3.4. Lightweight rollback mechanism

In LTW, the Simulators are turned into truly
lightweight LPs whose input events become volatile,
whose output queues are removed altogether, and
whose state queues are delegated to the FC. The only
operation required for the Simulators to recover from
causality errors is state restoration, which is performed

by the FC on behalf of the Simulators.
To this end, the FC uses an array of latest state

change time (LCT) to keep track of the latest times
when state transitions are triggered by (*, t) messages
at the Simulators. The LCT value is updated whenever
the FC sends a (*, t) message to a Simulator. During
rollbacks, the FC first cancels its speculative
interactions with the NC based on standard TW. It then
invokes the scheduler to delete all volatile events
scheduled at or after the rollback time. Finally, the FC
instructs its aggregated state manager to recover the
state for each Simulator whose LCT is greater than or
equal to the rollback time. After the state restoration,
the LCT is reset to the LVT of the recovered state.
Thus, rollbacks can be performed efficiently due to the
elimination of secondary rollbacks at the Simulators.

3.5. LTW implications

Though largely a local control protocol, LTW also
has an impact on several aspects of the TW global
control mechanism. First, fossil collection on each
node is accelerated, not only because the fossil data in
the persistent queues are minimized, but also because
most of the states are managed in a centralized manner,
allowing for efficient batch operations. Secondly, agile
process migration is possible since only the state
queues need to be transferred to move the lightweight
LPs around in dynamic load balancing. The
appropriate decision points for process migration
would be at the end of each state-saving phase when
all the volatile events have been executed (and deleted)
and the states of the LPs have been saved.

Additionally, LTW can be seamlessly integrated
with other TW optimizations to further improve
performance. For instance, various state-saving and
cancellation strategies can be applied to the TW
domain directly. In a way, LTW can be considered as
complimentary to the Local Time Warp [17] in the
sense that the former is a purely optimistic approach to
reducing operational cost within each local simulation
space, while the latter is a locally optimistic approach
to mitigating cascaded rollbacks in the global space. It
is easy to combine both approaches in a consistent way.

On the applicability of the LTW protocol, we stress
that, though only a single LTW domain is considered
in this paper, the protocol can be readily extended to
support hybrid systems that require multiple LTW
domains coexisting on each node to implement
domain-specific formalisms. Besides, the basic
concepts derived from the LTW protocol could also
apply to a wide range of TW systems through carefully
choosing the level of event granularity and imposing
an appropriate control over the LPs.

3030

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

4. Performance Evaluation

4.1. Experiment platform and metrics

Both TW and LTW protocols have been
implemented in PCD++. A stress test was carried out
on a cluster of 28 HP Proliant DL140 servers (dual
3.2GHz Intel Xeon processors, 1GB 266MHz RAM
with 2GB disk swap space) running on Linux WS
2.4.21 and communicating over Gigabit Ethernet using
MPICH 1.2.7. Note that severe memory swapping may
occur if the memory usage approaches to the upper
limit of 1GB on a node.

Table 1. Performance metrics
Metrics Description

T Total execution time of the simulation (sec)
MEM Maximum memory consumption (MB)
PEE Number of events executed in persistent queue
VEE Number of events executed in volatile queue

PQLen Average length of the persistent input queue
VQLen Average length of the volatile input queue

SS Total number of states saved
OPT-SK Number of states reduced by the optimal strategy

FCT Average time spent on a single fossil collection (ms)
PriRB Number of primary rollbacks
SecRB Number of secondary rollbacks

RB Total number of rollbacks (i.e., PriRB + SecRB)
EI Number of events imploded in persistent queue
ER Number of events unprocessed in persistent queue

Table 1 lists the metrics collected in the
experiments through extensive instrumentation and
measurement. The experimental results for each test
case were averaged over 10 independent runs to strike
a balance between data reliability and testing effort1.
For those test cases executed on multiple nodes, the
results were also averaged over the participating nodes
to obtain a per-node evaluation. The queue lengths (i.e.,
PQLen and VQLen) were averaged over samples
collected every 20 event insertions in the queues.

4.2. Environmental models

Three Cell-DEVS models with varied
characteristics were validated and tested. Two of them
simulate stationary wildfire propagation over 50 hours
in a 2D cell space based on the Rothermel model [26].
However, they differ in the way the spread rates are
calculated. The first fire model, referred to as Fire1,
uses predetermined rates at reduced runtime
computation cost (see [27] for the model definition).
The second fire model, referred to as Fire2, invokes
the fireLib library [28] to calculate spread rates

1 An expanded experiment is being conducted to attain a 95% confidence
interval for all the test cases.

dynamically, with higher runtime computation density,
based on a set of parameters such as fuel type,
moisture, wind direction and speed. The time for
executing a (*, t) message at the Simulators, which
reflects the computation intensity of the state
transitions, was calibrated at 112 and 748 µs for Fire1
and Fire2 respectively.

The other model, called as Watershed, simulates
environmental influence on hydrological dynamics of
water accumulation over 30 minutes in a 3D cell space
[27]. Though it is not as compute-intensive as Fire2
(577 µs state transition time), a larger neighborhood of
10 cells on different layers of the cell space is defined
with increased communication intensity.

Unlike cellular automata models, which evaluate all
the cells synchronously at discrete time steps, these
Cell-DEVS models define the cell spaces as discrete-
event models where each cell is an independent DEVS
atomic model executed by a Simulator in an event-
driven fashion, allowing for efficient asynchronous
execution without losing simulation accuracy.

As in many other DEVS systems, these Cell-DEVS
models execute a great number of simultaneous events
at each virtual time, increasing the operational cost of
TW simulation considerably. In the next section, we
will show that the LTW protocol is well-suited for
improving simulation performance in such situations.

4.3. Test results and analysis

The comparative evaluation was conducted under
the same configurations. Both protocols used
aggressive cancellation, copy state-saving optimized
with Message Type-based State Saving (MTSS) [13],
and pGVT algorithm [14]. In addition, the optimal
risk-free state-saving strategy introduced in Section 3
was enabled for the LTW protocol. In all test cases,
message logging activities were turned off to minimize
the impact of file I/O operations on system
performance. Also, the corresponding test cases used
the same partition scheme that divides the cell spaces
into horizontal rectangles (or rows) as evenly as
possible among the compute nodes.

In the following tables, a “×” mark indicates a
failed test case due to memory exhaustion, while a
shaded entry attributes the poor performance to severe
memory swapping activities. A “−” mark stands for a
case that was not tested because either the performance
trend is already clear in the series, or the model cannot
be divided further with the given partition scheme. The
best execution time is highlighted in each series. The
results (T and MEM) of a sequential simulator are also
provided as a reference for evaluating the absolute
performance of both protocols.

3131

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

Table 2. Total execution time and maximum memory usage for Fire1
Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

T × 9.08 5.87 5.26 5.01 5.39 5.49 5.55 5.95 − − − − − − TW
MEM × 813.57 220.42 109.94 61.79 43.73 34.84 26.37 22.22 − − − − − −

T 5.78 3.61 3.02 2.98 2.78 3.01 3.23 3.25 3.54 − − − − − − 50
×5

0 5.54 (T)
 29.11 (MEM)

LTW
MEM 63.53 65.83 27.42 20.58 14.25 13.24 11.98 9.95 9.31 − − − − − −

T × × 2749.13 484.91 40.09 35.66 34.46 32.35 33.51 32.53 32.44 33.4 35.0 35.19 35.96 TW
MEM × × 2279.42 1492.31 882.82 576.61 410.19 307.79 244.6 197.97 162.92 137.77 121.47 103.03 91.75

T 78.21 43.84 31.62 24.35 23.58 22.61 22.26 21.62 21.86 21.88 22.03 22.2 22.0 22.46 21.76

10
0×

10
0 56.07 (T)

110.59 (MEM)
LTW

MEM 405.5 373.25 271.62 160.26 110.94 82.65 66.75 55.65 48.18 43.55 38.92 36.22 34.05 32.3 29.94
T × × × × × 1516.48 893.43 572.83 314.03 202.71 141.46 140.98 142.63 142.01 143.18TW

MEM × × × × × 2309.12 1935.02 1449.83 1131.65 906.07 744.91 623.9 527.05 460.76 404.44
T 1489.77 517.92 394.56 122.44 112.93 110.63 111.7 109.67 107.02 107.23 105.27 107.1 106.75 104.88 104.74

15
0×

15
0 260.65 (T)

242.69 (MEM)
LTW

MEM 1418.85 1294.08 986.62 660.31 415.01 296.96 230.4 186.68 161.7 137.22 123.85 105.07 96.8 90.88 85.09
T × × × × × × × × × × 4324.31 1236.26 1065.79 881.61 737.14TW

MEM × × × × × × × × × × 1848.93 1560.7 1528.73 1188.06 1058.7
T 12571.7 6894.36 1425.16 920.86 646.56 350.58 334.77 331.2 333.12 326.7 327.56 327.46 322.93 330.03 327.24

20
0×

20
0 815.43 (T)

432.13 (MEM)
LTW

MEM 1679.36 1644.54 1393.66 1229.82 1145.6 805.17 582.49 431.18 393.15 291.49 244.01 209.52 235.47 186.1 188.68

Table 2 gives the resulting total execution time
and maximum memory usage (T and MEM) for
Fire1 of varied sizes on different number of nodes. It
is clearly shown that the LTW protocol outperforms
its TW counterpart in all successful cases. First, the
maximum memory usage on each node is reduced by
45% up to 92%, making it possible to execute the
model using a smaller number of nodes, with
significantly lower simulation cost. Secondly, the
total execution time is decreased by 24% up to 60%
among those test cases with sufficient memory, and
this outstanding improvement in execution time is
achieved with a much smaller memory footprint at
the same time.

To find out the reason that causes the differences,
the other metric values are compared. As an example,
we present a comparison of the 100×100 Fire1 on 14
nodes using the collected metrics, shown in Table 3.

Table 3. 100×100 Fire1 on 14 nodes
Metrics TW LTW LTW vs. TW

PEE 96685.07 10597.71
VEE 0 67214.07

PQLen 24798.12 2636.95 ↓ 89.37%
VQLen 0 121.89

SS 52819.64 22675.14 ↓ 57.07%
OPT-SK 0 18445.36

FCT 488.14 84.15 ↓ 82.76%
PriRB 613.14 604.00 ↓ 1.49%
SecRB 11922.07 981.14 ↓ 91.77%

RB 12535.21 1585.14 ↓ 87.35%
EI 61751.93 5826.36 ↓ 90.56%
ER 48118.79 5790.93 ↓ 87.97%

Thanks to the introduction of the volatile input
queue, the average length of the persistent input
queue is shortened significantly by 89.37%, reducing
the overhead of queue operations and memory
consumption considerably. On the other hand, the
volatile queue is kept short throughout the simulation
with an average length of just 121.89 events, despite

the fact that a majority of 86.38% input events
executed on each node have been turned into volatile
under the LTW protocol.

Owning to the optimal risk-free state-saving
strategy, which reduces the number of state-saving
by 44.86% on top of the MTSS strategy, the total
number of states saved in the LTW case is 57.07%
fewer than in the TW case, resulting in less memory
usage as well.

As expected, the time for each fossil collection is
decreased from 488.14 ms to just 84.15 ms, a
dramatic reduction of 82.76%.

When comparing the rollback performance, the
LTW protocol again shows a big advantage over the
TW counterpart. The number of secondary rollbacks
is reduced by 91.77%, showing that rollback
propagation is effectively contained within the TW
domain on each node. Moreover, the number of
primary rollbacks is reduced slightly by 1.49%,
which, combined with the fact that the total number
of events executed on each node (i.e., PPE + VEE) is
decreased by 19.52%, suggests a more stable system
with less speculative computation. Consequently, the
numbers of events imploded and unprocessed in the
persistent queue are also declined by around 90%,
further accelerating the rollback operations.

The experimental results for the Fire2 and
Watershed models are shown in Table 4 and Table 5
respectively. Again, LTW reduces maximum
memory consumption by approximately 34% up to
92% for Fire2 and by 73% up to 93% for Watershed.
The reduction in memory usage is more prominent
for Watershed largely because, with a higher number
of simultaneous events exchanged between the LPs at
each virtual time, a larger percentage of states are
reduced with the optimal state-saving strategy.

3232

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

Table 4. Total execution time and maximum memory usage for Fire2
Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

T × 20.89 13.93 12.19 10.91 10.41 10.8 10.64 10.84 10.55 11.31 12.51 12.76 13.39 13.44 TW
MEM × 800.26 226.82 108.41 65.37 46.29 34.54 28.13 23.23 20.19 18.19 16.31 14.81 13.72 12.85

T 20.26 14.23 10.38 9.69 9.46 8.84 9.01 8.51 8.64 8.4 8.32 9.28 9.34 9.51 10.27 50
×5

0 19.29 (T)
29.52 (MEM)

LTW
MEM 81.24 66.92 34.99 22.6 17.77 14.65 13.02 11.76 10.83 10.17 9.63 9.29 8.99 8.73 8.49

T × × 3284.37 460.32 68.67 54.63 52.03 48.92 48.58 46.96 46.37 47.53 48.69 49.39 49.97 TW
MEM × × 2159.1 1319.08 658.14 576.72 411.14 310.95 240.42 198.4 163.47 149.65 112.23 99.94 83.78

T 206.16 114.98 60.09 54.37 51.22 44.11 41.61 40.37 38.87 37.55 35.54 36.83 36.23 36.46 36.48

10
0×

10
0 119.95 (T)

109.57 (MEM)
LTW

MEM 314.37 285.18 248.32 137.73 102.24 81.63 65.57 54.35 48.91 45.62 42.6 38.42 35.75 33.84 32.03
T × × × × × 4448.08 2487.95 651.06 394.92 244.97 167.25 164.79 167.42 165.64 168.88TW

MEM × × × × × 1817.71 1375.23 1399.3 1086.72 905.96 744.91 562.55 532.14 425.91 399.51
T 1592.43 493.61 223.65 178.2 174.63 165.84 168.66 167.14 140.67 140.21 137.0 134.3 136.11 133.1 134.01

15
0×

15
0 414.25 (T)

243.71 (MEM)
LTW

MEM 1210.37 924.16 641.79 586.92 385.41 269.62 205.4 172.18 139.44 122.16 112.93 104.22 94.47 89.39 85.79
T × × × × × × × × × 12112.7 3206.02 1501.28 1202.48 900.05 764.21TW

MEM × × × × × × × × × 1943.55 1785.9 1618.94 1522.69 1475.58 1243.95
T 11707.5 3363.07 1339.92 1173.69 562.68 414.52 412.92 412.89 381.1 376.58 417.44 373.11 372.6 370.04 371.56

20
0×

20
0 1033.61 (T)

424.96 (MEM)
LTW

MEM 1661.95 1562.62 1267.71 1292.97 885.61 438.81 363.5 313.96 289.68 274.55 240.98 227.23 208.62 192.61 173.08

Table 5. Total execution time and maximum memory usage for Watershed
Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

T × × 2059.62 899.49 84.97 87.06 86.59 88.76 − − − − − − − TW
MEM × × 1718.02 997.21 691.2 536.37 422.49 333.53 − − − − − − −

T 262.99 171.18 112.69 100.54 79.45 82.27 82.08 82.59 − − − − − − −

15
×1

5×
2 258.27 (T)

43.99(MEM)
LTW

MEM 45.66 27.91 148.48 121.54 128.96 113.14 101.29 90.39 − − − − − − −
T × × × × 2451.7 857.3 757.65 724.55 638.97 676.42 − − − − − TW

MEM × × × × 1618.94 1180.67 967.51 778.53 643.52 535.21 − − − − −
T 473.81 268.87 181.94 155.09 140.14 104.77 108.52 109.58 110.35 112.87 − − − − −

20
×2

0×
2 471.86 (T)

72.67 (MEM)
LTW

MEM 76.02 40.04 164.35 136.36 130.82 149.81 137.24 129.85 115.87 111.99 − − − − −
T × × × × × × × 2002.73 1948.95 1922.21 1705.19 1597.08 1585.6 − − TW

MEM × × × × × × × 1519.54 1434.77 1262.59 1063.03 774.38 663.21 − −
T 748.49 469.65 306.25 257.18 195.16 176.19 172.39 136.18 136.37 142.69 143.86 139.54 141.85 − −

25
×2

5×
2 735.39 (T)

115.48 (MEM)
LTW

MEM 119.8 70.46 164.86 128.68 131.07 132.81 132.27 153.82 141.87 128.25 114.39 113.95 103.44 − −
T × × × × × × × × 5381.55 4475.37 3133.72 3130.89 2920.06 2765.2 2784.83TW

MEM × × × × × × × × 2192.96 1867.83 1602.25 1388.87 1206.87 1055.31 924.49
T 1098.11 616.28 390.68 293.33 237.82 208.26 204.82 198.27 169.12 168.45 168.01 165.54 165.64 166.55 162.43

30
×3

0×
2 1041.39 (T)

168.46 (MEM)
LTW

MEM 174.08 89.69 163.07 164.18 151.55 171.62 148.91 138.31 117.57 139.45 156.5 149.91 130.2 122.69 114.69

Table 6. 100×100 Fire2 on 20 nodes Table 7. 20×20×2 Watershed on 18 nodes
Metrics TW LTW LTW vs. TW Metrics TW LTW LTW vs. TW

PEE 68346.55 11658.75 PEE 1253641.94 361457.78
VEE 0 56057.00 VEE 0 856256.00

PQLen 17533.37 2149.91 ↓ 87.74% PQLen 334016.67 77790.62 ↓ 76.71%
VQLen 0 75.31 VQLen 0 26.04

SS 33833.00 17565.40 ↓ 48.08% SS 371273.33 73186.94 ↓ 80.29%
OPT-SK 0 15591.10 OPT-SK 0 288247.50

FCT 245.12 58.36 ↓ 76.19% FCT 61313.67 395.63 ↓ 99.35%
PriRB 769.95 740.55 ↓ 3.82% PriRB 173.50 159.94 ↓ 7.81%
SecRB 12794.35 2036.45 ↓ 84.08% SecRB 22816.67 2165.33 ↓ 90.51%

RB 13564.30 2777.00 ↓ 79.53% RB 22990.17 2325.28 ↓ 89.89%
EI 46877.55 7197.90 ↓ 84.65% EI 625210.33 175521.11 ↓ 71.93%
ER 29512.45 6651.60 ↓ 77.46% ER 569337.94 172280.33 ↓ 69.74%

For those cases with sufficient memory, the total
execution time is decreased by 13% up to 32% for
Fire2 and by 5% up to 91% for Watershed. A general
trend reflected in the experimental results is that the
reduction in execution time and memory usage is
greater for models with larger sizes, indicating an
improved scalability.

The other metric values for the 100×100 Fire2 on
20 nodes and 20×20×2 Watershed on 18 nodes are
given in Table 6 and Table 7 respectively. As we can
see, a similar pattern can be observed regarding the

improvement of the metrics, suggesting that the LTW
protocol is suitable for simulating models with varied
computation and communication characteristics.

In terms of absolute performance, the LTW cases
attain higher and more consistent speedup than the
TW cases. In some scenarios, the performance of a
TW simulation is even worse than the sequential
execution (e.g., 50×50 Fire1 on 2 and 4 nodes;
20×20×2 Watershed on 14, 16, and 18 nodes) mainly
due to the excessive communication and operational
overhead. However, such scenarios do not arise in

3333

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

the LTW cases tested in our experiment.

5. Conclusion and future work

The LTW protocol offers a novel approach that
systematically addresses several important issues of
TW-based optimistic PDES systems, especially for
DEVS-based simulations that require a large number
of simultaneous events to be executed at each virtual
time. It allows purely optimistic simulation to be
driven by only a few full-fledged TW LPs,
preserving the dynamics of the TW mechanism,
while at the same time, accelerating the execution in
each local simulation space significantly.

This paper presented an extended version of the
PCD++ environment based on the LTW protocol. A
comparative performance analysis has been
conducted to evaluate both TW and LTW protocols
in simulating several DEVS-based environmental
models with different characteristics. The
experimental results demonstrated that the LTW
protocol outperforms the TW counterpart in various
aspects, including shortened execution time, reduced
memory usage, lowered operational cost, and
enhanced system stability and scalability. We are
currently working on integrating the LTW protocol
with other TW optimizations to further improve
performance. By taking advantages of the LTW
protocol, we are also investigating dynamic process
creation, deletion, and migration schemes to support
more efficient load balancing as well as runtime
structure changes in optimistic DEVS systems.

6. References

[1] D. R. Jefferson, “Virtual time”. ACM Transactions on
Programming Languages and Systems (TOPLAS) 7(3),
1985, pp. 404-425.
[2] J. S. Steinman, “The WarpIV simulation kernel”.
Proceedings of PADS, 2005, pp. 161-170.
[3] K. S. Perumalla, “µsik – A micro-kernel for
parallel/distributed simulation systems”. Proceedings of
PADS, 2005, pp. 59-68.
[4] R. M. Fujimoto, “Parallel and Distributed Simulation
Systems”. Wiley-Interscience, 2000.
[5] Q. Liu, G. Wainer, “Lightweight Time Warp – A Novel
Protocol for Parallel Optimistic Simulation of Large-Scale
DEVS and Cell-DEVS Models”. Proceedings of DS-RT,
2008, pp. 131-138.
[6] B. P. Zeigler, et al., “Theory of Modeling and
Simulation”. Academic Press, London, 2000.
[7] A. C. Chow, B. P. Zeigler, “Parallel DEVS: A parallel,
hierarchical, modular, modeling formalism”. Proceedings
of WSC, 1994, pp. 716-722.
[8] G. Wainer, N. Giambiasi, “N-dimensional Cell-DEVS
models”. Discrete Event Dynamic Systems 12(2), 2002, pp.

135-157.
[9] B. P. Zeigler, et al., “Implementation of the DEVS
formalism over the HLA/RTI: Problems and solutions”. In
Fall Simulation Interoperability Workshop, SIW, 1999.
[10] J. Nutaro, “Risk-free optimistic simulation of DEVS
models”. Military, Government, and Aerospace Simulation
Symposium, ASTC, 2004, pp. 113-118.
[11] K. H. Kim, W. S. Kang, “CORBA-based, multi-
threaded distributed simulation of hierarchical DEVS
models: Transforming model structure into a non-
hierarchical one”. ICCSA, LNCS 3046, 2004, pp. 167-176.
[12] Y. Sun, J. Nutaro, “Performance improvement using
parallel simulation protocol and Time Warp for DEVS
based applications”. Proceedings of DS-RT, 2008, pp. 277-
284.
[13] Q. Liu, G. Wainer, “Parallel environment for DEVS
and Cell-DEVS models”. SIMULATION 83(6), 2007,
pp.449-471.
[14] R. Radhakrishnan, et al., “An object-oriented Time
Warp simulation kernel”. ISCOPE, LNCS 1505, 1998,
pp. 13-23.
[15] V. Y. Vee, W. J. Hsu, “Pal: A new fossil collector for
Time Warp”. Proceedings of PADS, 2002, pp. 35-42.
[16] M. Chetlur, P. A. Wilsey, “Causality information and
fossil collection in Time Warp simulations”. Proceedings
of WSC, 2006, pp. 987-994.
[17] H. Rajaei, “Local Time Warp: An implementation and
performance analysis”. Proceedings of PADS, 2007, pp.
163-170.
[18] M. Lees, et al., “Analysing probabilistically
constrained optimism”. Proceedings of DS-RT, 2006, pp.
201-208.
[19] Y. Zeng, et al., “Batch based cancellation: A rollback
optimal cancellation scheme in Time Warp simulations”.
Proceedings of PADS, 2004, pp. 78-86.
[20] H. M. Soliman Ramadan, “Throttled lazy cancellation
in Time Warp parallel simulation”. SIMULATION 84(2-3),
2008, pp.149-160.
[21] J. Dahl, et al., “Event list management in distributed
simulation”. Euro-Par 2001 Parallel Processing, LNCS
2150, 2001, pp. 466-475.
[22] W. T. Tang, et al., “Ladder queue: An O(1) priority
queue structure for large-scale discrete event simulation”.
ACM TOMACS, 2005, pp. 175-204.
[23] P. L. Reiher, D. R. Jefferson, “Virtual time based
dynamic load management in the Time Warp operating
system”. SCS Multiconference on Distributed Simulation,
1990, pp. 103-111.
[24] L. Li, C. Tropper, “Event reconstruction in Time
Warp”. Proceedings of PADS, 2004, pp. 37-44.
[25] F. Wieland, “The threshold of event simultaneity”.
Proceedings of PADS, 1997, pp. 56-59.
[26] R. C. Rothermel, “A mathematical model for
predicting fire spread in wild-land fuels”. USDA Forest
Service Research Paper, 1972, INT-115.
[27] G. Wainer, “Applying Cell-DEVS methodology for
modeling the environment”. SIMULATION 82(10), 2006,
pp.635-660.
[28] C. D. Bevins, “fireLib User Manual and Technical
Reference”. http://www.fire.org/, accessed in Dec. 2008.

3434

Authorized licensed use limited to: Carleton University. Downloaded on January 20, 2010 at 16:09 from IEEE Xplore. Restrictions apply.

