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Abstract 

 
The Lightweight Time Warp (LTW) protocol offers 

a novel approach to high-performance optimistic 
parallel discrete-event simulation, especially when a 
large number of simultaneous events need to be 
executed at each virtual time. With LTW, the local 
simulation space on each node is partitioned into two 
sub-domains, allowing purely optimistic simulation to 
be driven by only a few full-fledged logical processes 
(LPs), while most processes are turned into lightweight 
LPs, free from the burden associated with Time Warp 
(TW) execution. This paper presents a comparative 
performance evaluation of the TW and LTW protocols 
for simulating several DEVS-based environmental 
models. The experiments indicate that the LTW 
protocol improves performance in terms of shortened 
execution time, reduced memory usage, lowered 
operational cost, and enhanced system stability.    
 
 
1. Introduction 
 

The Time Warp (TW) mechanism [1] has been 
widely used to speed up parallel discrete-event 
simulation (PDES) systems (e.g., [2-3]). A TW 
simulation is executed by several asynchronous logical 
processes (LPs). Each LP has its own Local Virtual 
Time (LVT) and interacts with other LPs via time-
stamped event messages. Potential causality errors are 
detected and recovered by rollbacks that are triggered 
by straggler or anti-messages. To this end, each LP 
also maintains persistent input, output, and state 
queues to store historical events and states, which can 
only be discarded when the Global Virtual Time 
(GVT) has advanced beyond their time stamps. A 
survey of PDES techniques is provided in [4]. 

The increasing scale and complexity of PDES 
systems poses new demands on the TW mechanism. 
With many LPs loaded on each available node, saving 

historical data in the persistent queues not only 
consumes enormous memory, but also increases the 
cost of queue operation, fossil collection, and dynamic 
process migration. Further, the conventional rollback 
mechanism relies solely on propagation of anti-
messages to cancel incorrect computation at the LPs, 
putting a tremendous burden on the communication 
infrastructure and, as the number of LPs involved in 
the rollback increases, impairing the performance and 
scalability of the entire system. To address these 
problems, the Lightweight Time Warp (LTW) protocol 
has been proposed in [5] to improve simulation 
performance in a variety of ways, including shortened 
execution time, reduced memory footprint, lowered 
operational cost, and enhanced system stability. 

The Discrete Event System Specification (DEVS) 
[6] is a general methodology for describing discrete-
event systems. P-DEVS [7] extends DEVS to handle 
simultaneous events, increasing the parallelism in the 
simulation. Cell-DEVS [8] defines n-dimensional cell 
spaces as discrete-event models. TW simulation of 
DEVS models is still uncommon in the literature [9-
12]. The PCD++ environment [13] is one of the recent 
efforts to support TW simulation of DEVS and Cell-
DEVS models based on the WARPED kernel [14]. In 
this research, we have extended PCD++ to include the 
LTW concepts. This paper compares the performance 
of LTW and standard TW protocols for simulating 
DEVS-based environmental systems in PCD++. 

The rest of the paper is organized as follows. 
Section 2 introduces the motivation and related work. 
Section 3 recaps LTW protocol in the context of 
PCD++. Section 4 gives the performance analysis. 
Conclusion and future work are presented in Section 5. 

 
2. Motivation and Related Work 

 
Although a number of studies have been devoted to 

improving the efficiency of the TW protocol, several 
issues remain to be resolved.  
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One issue is to maintain high-performance 
execution even when system memory is tight. 
Techniques such as pruneback, cancelback, and 
artificial rollback allow the system to recover from a 
memory stall [4], but only at the expense of increased 
computation and communication cost. Various fossil 
collection schemes have been used to reclaim past 
events and states (e.g., [15-16]). However, fossil 
collection still constitutes a major overhead simply 
because the number of LPs and fossil data increase 
dramatically in large-scale simulations. Further, it 
might be unable to reclaim fossil data before memory 
exhaustion if the GVT does not advance sufficiently 
fast, especially when a massive number of 
simultaneous events are executed at each virtual time.  

The pitfalls of rollback echoes, chasing hazards 
and cascading rollbacks have been discussed in 
numerous studies [4]. Optimism control is one way to 
improve rollback efficiency (e.g., [17-18]), sacrificing 
the degree of parallelism to a certain extent. Rollback 
cost can also be reduced by different cancellation 
algorithms (e.g., [19-20]), which inevitably increase 
computational complexity of the system.  

Various data structures have been investigated to 
facilitate event queue operations (e.g., [21-22]). While 
these approaches can certainly be used to improve 
performance, an attractive alternative solution is to 
keep the event queues short throughout the simulation. 

Agile process migration is needed in parallel 
systems to reduce the communication cost and to 
minimize the interference with normal system 
execution. Even more so in large-scale TW systems 
where a potentially unbounded number of events and 
states associated with an LP must be transferred. An 
early work proposed in [23] employed a phase-based 
computation model to reduce LP migration cost. Yet 
this scheme suffers from increased message routing 
overhead as any LP can be divided into small chunks 
spread all over the system. More recently, an event 
reconstruction algorithm was presented in [24] so that 
only the state queue needs to be transferred. 
Nevertheless, this approach only works for systems 
with fine event granularity and small state size. 

The way how simultaneous events are handled has 
serious implication on both simulation correctness and 
performance [25]. To ensure correct simulation results, 
P-DEVS introduces (partial) causal dependency among 
simultaneous events, requiring a control flow to 
enforce an orderly event execution at each virtual time. 
From a performance perspective, however, this 
expanded execution of simultaneous events could 
increase the overhead for state-saving, rollback, and 
fossil collection, an issue that has not yet been 
addressed by existing TW-based DEVS systems [9-12]. 

To address these challenges in a systematic way, the 
LTW protocol [5] takes a novel approach that isolates 
most LPs from the TW mechanism, while the purely 
optimistic simulation is driven by only a few full-
fledged TW LPs. In this paper, we analyze the 
effectiveness of the LTW protocol quantitatively. 
 
3. The Lightweight Time Warp Protocol 
 

This section briefly recaps the LTW protocol in the 
context of PCD++, while detailed LTW algorithms 
with pseudo-code can be found in [5]. 
 
3.1. Concepts and Assumptions 
 

P-DEVS supports hierarchical model construction 
in a modular way. A system is described as a hierarchy 
of behavioral (atomic) and structural (coupled) model 
components. The LPs are specialized into simulators 
and coordinators, forming a hierarchy that mimics the 
model structure [7]. A simulator executes the DEVS 
functions defined in its associated atomic model, while 
a coordinator is attached to a coupled model to control 
the simulation in line with the P-DEVS formalism.  

PCD++ adopts a flat LP structure that creates a 
Node Coordinator (NC), a Flat Coordinator (FC), and 
a set of Simulators on each node [13]. Doing so 
eliminates intermediary coordinators in the LP 
hierarchy, with reduced communication cost. The NC 
is the local central controller and the endpoint of inter-
node communication, whereas the FC routes messages 
between its child Simulators and the parent NC. The 
event-processing algorithms can be found in [13]. 

Six types of events are defined to execute the 
simulation in a message-driven fashion: External (x, t) 
and output (y, t) messages encode the actual model 
data, while initialization (I, t), collect (@, t), internal 
(*, t), and done (D, t) messages control the execution 
of simultaneous events at each virtual time.  

 
Figure 1. Simulation process on a node 

Figure 1 gives a high-level overview of the 
simulation process on a node. At any virtual time, the 
message flow among the LPs is organized into a multi-
phased structure that includes an optional collect phase 
(C) and a mandatory transition phase (T), which in 
turn may involve multiple rounds of computation 
([R0…Rn]) to execute state transitions incrementally. 
The LPs are initialized with an initialization phase (I) 
at virtual time 0. At the end of each transition phase, 
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the NC sends link messages to the local LPs, 
advancing the virtual time on the node. A closer look 
at the message-passing organization is presented in [5].   

 
Figure 2. Division of domains in LTW 

As illustrated in Figure 2, the novelty of the LTW 
protocol concerns the division of the local simulation 
space into two sub-domains, namely a TW domain and 
a LTW domain. The former contains full-fledged LPs 
that execute based on the standard TW protocol. In 
PCD++, the NC is the only full-fledged LP on each 
node. On the other hand, the latter contains lightweight 
LPs that are released from the burden of TW 
execution. The LTW domain is where all the PCD++ 
Simulators reside. LPs from different domains interact 
via a mixed-mode interface LP that serves as a 
gatekeeper for the lightweight LPs. The interface LP is 
realized by the FC in PCD++. Note that all the LPs 
still execute asynchronously and optimistically with 
potentially different LVT values. However, by virtue 
of the LTW protocol, the lightweight LPs no longer 
rely on the persistent queues to recover from causality 
errors, with much lower operational overhead.  

The LTW protocol is based on the following 
assumptions regarding the control of the LPs [5]. 

1. All communication of the Simulators goes 
through the FC (i.e. no direct communication between 
the Simulators). Hence, the FC has the full knowledge 
of the timing of state changes at the Simulators. 

2. The virtual time on each node is advanced only 
by the LPs in the TW domain. That is, the FC and 
Simulators do not advance their LVTs voluntarily, nor 
do they send messages across virtual time boundaries. 

3. Rollbacks always propagate from the TW 
domain to the LTW domain via the FC. This is actually 
implied by the other two assumptions since any 
speculative computation on a node is always initiated 
by full-fledged LPs in the TW domain and then spread 
to the LTW domain through the FC. Hence, the FC 
knows when rollbacks will occur at the Simulators. 
 
3.2. Rule-based dual-queue event scheduling 
 

As discussed earlier, keeping past events in the 
persistent input queue is one of the major sources of 

operational overhead in the TW mechanism. To solve 
this problem, the LTW protocol introduces an extra 
volatile input queue that does not preserve processed 
events at all. Specifically, it is used to hold temporarily 
the simultaneous events exchanged between the FC 
and the Simulators at each virtual time. These volatile 
events are deleted immediately after execution, 
reducing memory usage for saving past input events. 
Moreover, the volatile input queue only contains 
simultaneous events, allowing for efficient queue 
operation in O(1) time. At any virtual time, events are 
inserted into the volatile queue as the simulation 
moves into a collect or transition phase, and removed 
as the execution proceeds. By the end of the phase, the 
volatile queue becomes empty, making the queue 
relatively short throughout the simulation. 

Consequently, the persistent input queue only 
stores events sent between the NC and FC, making the 
queue far shorter than it would be in the TW protocol 
with more efficient queue operations. Since the 
simultaneous events executed by the FC and 
Simulators at any virtual time are either committed or 
cancelled together in the optimistic simulation, it is 
safe to exclude them from the persistent queue.  

In addition, anti-messages need not to be saved for 
the volatile events, further reducing memory usage. 
Since potentially incorrect volatile events have already 
been deleted during forward execution, no event 
cancellations are required to roll back the Simulators. 
Hence, rollback propagation is effectively restricted to 
the TW domain only between the NC and FC on each 
node, with much lower overhead. 

To schedule events in both queues properly, a 
scheduler is created on each node to determine the next 
event to be executed during each simulation cycle by 
evaluating the following rules. 

Rule 1. Idle condition. The simulation becomes 
idle on the host node if the volatile queue is empty and 
the persistent queue does not contain events with time 
stamps before or at the simulation stop time. The 
simulation may be reactivated later upon the arrival of 
messages from the other nodes.  

Rule 2. Simulation progress. The scheduler 
selects the next persistent event with a time stamp 
earlier than the simulation stop time if the volatile 
queue becomes empty so that the NC can 1) advance 
simulation time on the node, or 2) resume forward 
execution from the unprocessed persistent events after 
a rollback, or 3) reactivate the simulation from the idle 
state upon the arrival of remote messages, which are 
inserted into the persistent queue. 

Rule 3. Aggressive inter-node communication. 
During a collect phase, the NC may send messages to 
remote nodes. As these are potentially straggler 
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messages at the receiving end, a delay in their delivery 
could postpone rollbacks at the destination, resulting in 
degraded performance. Thus, the scheduler grants a 
higher priority to the persistent events than those 
volatile events with the same time stamp in order to 
process inter-node messages immediately. 

Rule 4. LTSF execution. The next volatile event 
is selected to execute in all other cases, enforcing a 
Least-Time-Stamp-First execution on the node.  

 
3.3. Aggregated state management 
 

LTW provides a new scheme that allows the 
Simulators to delegate the responsibility of state 
management to the FC. To this end, the FC uses an 
aggregated state manager that maintains not only the 
state queue for the FC itself, but also those used by the 
Simulators. In order to identify the active Simulators 
whose states have been modified at the current virtual 
time, a Simulator’s state queue is associated with a 
dirty bit, which is set whenever the FC sends an event 
to the corresponding Simulator. The actual state saving 
is carried out only when the FC detects that the events 
previously sent to the Simulators have already been 
processed, and is performed only for those Simulators 
with dirty bits set to true. No dirty bit is used for the 
FC’s own state queue because the FC is always 
involved in the computation at each virtual time. The 
dirty bit is reset after saving the state of a Simulator. 

With this state management scheme, an optimal 
risk-free state-saving strategy was proposed so that 
only a single state is saved for, and only for, an active 
LP at each virtual time [5]. It is risk-free as no 
performance penalty is incurred as a result of saving 
fewer states. To implement this strategy in PCD++, a 
new state-saving phase is added after each transition 
phase. Before the NC advances simulation time, it first 
instructs the FC to save states for the current virtual 
time. As all simultaneous events at the current virtual 
time have been processed at this moment, the saved 
states contain the latest values of the state variables. 
Only after the state-saving phase, can the NC send link 
messages to the FC to advance the simulation time on 
the node. The NC saves its own state using whatever 
strategy implemented in the TW domain.  

 
3.4. Lightweight rollback mechanism 
 

In LTW, the Simulators are turned into truly 
lightweight LPs whose input events become volatile, 
whose output queues are removed altogether, and 
whose state queues are delegated to the FC. The only 
operation required for the Simulators to recover from 
causality errors is state restoration, which is performed 

by the FC on behalf of the Simulators.  
To this end, the FC uses an array of latest state 

change time (LCT) to keep track of the latest times 
when state transitions are triggered by (*, t) messages 
at the Simulators. The LCT value is updated whenever 
the FC sends a (*, t) message to a Simulator. During 
rollbacks, the FC first cancels its speculative 
interactions with the NC based on standard TW. It then 
invokes the scheduler to delete all volatile events 
scheduled at or after the rollback time. Finally, the FC 
instructs its aggregated state manager to recover the 
state for each Simulator whose LCT is greater than or 
equal to the rollback time. After the state restoration, 
the LCT is reset to the LVT of the recovered state.  
Thus, rollbacks can be performed efficiently due to the 
elimination of secondary rollbacks at the Simulators. 

 
3.5. LTW implications 
 

Though largely a local control protocol, LTW also 
has an impact on several aspects of the TW global 
control mechanism. First, fossil collection on each 
node is accelerated, not only because the fossil data in 
the persistent queues are minimized, but also because 
most of the states are managed in a centralized manner, 
allowing for efficient batch operations. Secondly, agile 
process migration is possible since only the state 
queues need to be transferred to move the lightweight 
LPs around in dynamic load balancing. The 
appropriate decision points for process migration 
would be at the end of each state-saving phase when 
all the volatile events have been executed (and deleted) 
and the states of the LPs have been saved.  

Additionally, LTW can be seamlessly integrated 
with other TW optimizations to further improve 
performance. For instance, various state-saving and 
cancellation strategies can be applied to the TW 
domain directly. In a way, LTW can be considered as 
complimentary to the Local Time Warp [17] in the 
sense that the former is a purely optimistic approach to 
reducing operational cost within each local simulation 
space, while the latter is a locally optimistic approach 
to mitigating cascaded rollbacks in the global space. It 
is easy to combine both approaches in a consistent way.  

On the applicability of the LTW protocol, we stress 
that, though only a single LTW domain is considered 
in this paper, the protocol can be readily extended to 
support hybrid systems that require multiple LTW 
domains coexisting on each node to implement 
domain-specific formalisms. Besides, the basic 
concepts derived from the LTW protocol could also 
apply to a wide range of TW systems through carefully 
choosing the level of event granularity and imposing 
an appropriate control over the LPs.  
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4. Performance Evaluation 
  
4.1. Experiment platform and metrics 
 

Both TW and LTW protocols have been 
implemented in PCD++. A stress test was carried out 
on a cluster of 28 HP Proliant DL140 servers (dual 
3.2GHz Intel Xeon processors, 1GB 266MHz RAM 
with 2GB disk swap space) running on Linux WS 
2.4.21 and communicating over Gigabit Ethernet using 
MPICH 1.2.7. Note that severe memory swapping may 
occur if the memory usage approaches to the upper 
limit of 1GB on a node. 

Table 1. Performance metrics 
Metrics Description 

T Total execution time of the simulation (sec) 
MEM Maximum memory consumption (MB) 
PEE Number of events executed in persistent queue 
VEE Number of events executed in volatile queue 

PQLen Average length of the persistent input queue 
VQLen Average length of the volatile input queue 

SS Total number of states saved 
OPT-SK Number of states reduced by the optimal strategy 

FCT Average time spent on a single fossil collection (ms) 
PriRB Number of primary rollbacks 
SecRB Number of secondary rollbacks 

RB Total number of rollbacks (i.e., PriRB + SecRB) 
EI Number of events imploded in persistent queue 
ER Number of events unprocessed in persistent queue 

Table 1 lists the metrics collected in the 
experiments through extensive instrumentation and 
measurement. The experimental results for each test 
case were averaged over 10 independent runs to strike 
a balance between data reliability and testing effort1. 
For those test cases executed on multiple nodes, the 
results were also averaged over the participating nodes 
to obtain a per-node evaluation. The queue lengths (i.e., 
PQLen and VQLen) were averaged over samples 
collected every 20 event insertions in the queues. 

 
4.2. Environmental models 
 

Three Cell-DEVS models with varied 
characteristics were validated and tested. Two of them 
simulate stationary wildfire propagation over 50 hours 
in a 2D cell space based on the Rothermel model [26]. 
However, they differ in the way the spread rates are 
calculated. The first fire model, referred to as Fire1, 
uses predetermined rates at reduced runtime 
computation cost (see [27] for the model definition). 
The second fire model, referred to as Fire2, invokes 
the fireLib library [28] to calculate spread rates 

                                                           
1 An expanded experiment is being conducted to attain a 95% confidence 
interval for all the test cases. 

dynamically, with higher runtime computation density, 
based on a set of parameters such as fuel type, 
moisture, wind direction and speed. The time for 
executing a (*, t) message at the Simulators, which 
reflects the computation intensity of the state 
transitions, was calibrated at 112 and 748 µs for Fire1 
and Fire2 respectively.  

The other model, called as Watershed, simulates 
environmental influence on hydrological dynamics of 
water accumulation over 30 minutes in a 3D cell space 
[27]. Though it is not as compute-intensive as Fire2 
(577 µs state transition time), a larger neighborhood of 
10 cells on different layers of the cell space is defined 
with increased communication intensity. 

Unlike cellular automata models, which evaluate all 
the cells synchronously at discrete time steps, these 
Cell-DEVS models define the cell spaces as discrete-
event models where each cell is an independent DEVS 
atomic model executed by a Simulator in an event-
driven fashion, allowing for efficient asynchronous 
execution without losing simulation accuracy. 

As in many other DEVS systems, these Cell-DEVS 
models execute a great number of simultaneous events 
at each virtual time, increasing the operational cost of 
TW simulation considerably. In the next section, we 
will show that the LTW protocol is well-suited for 
improving simulation performance in such situations. 
 
4.3. Test results and analysis 
 

The comparative evaluation was conducted under 
the same configurations. Both protocols used 
aggressive cancellation, copy state-saving optimized 
with Message Type-based State Saving (MTSS) [13], 
and pGVT algorithm [14]. In addition, the optimal 
risk-free state-saving strategy introduced in Section 3 
was enabled for the LTW protocol. In all test cases, 
message logging activities were turned off to minimize 
the impact of file I/O operations on system 
performance. Also, the corresponding test cases used 
the same partition scheme that divides the cell spaces 
into horizontal rectangles (or rows) as evenly as 
possible among the compute nodes.  

In the following tables, a “×” mark indicates a 
failed test case due to memory exhaustion, while a 
shaded entry attributes the poor performance to severe 
memory swapping activities. A “−” mark stands for a 
case that was not tested because either the performance 
trend is already clear in the series, or the model cannot 
be divided further with the given partition scheme. The 
best execution time is highlighted in each series. The 
results (T and MEM) of a sequential simulator are also 
provided as a reference for evaluating the absolute 
performance of both protocols. 
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Table 2. Total execution time and maximum memory usage for Fire1 
Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

T × 9.08 5.87 5.26 5.01 5.39 5.49 5.55 5.95 − − − − − − TW 
MEM × 813.57 220.42 109.94 61.79 43.73 34.84 26.37 22.22 − − − − − − 

T 5.78 3.61 3.02 2.98 2.78 3.01 3.23 3.25 3.54 − − − − − − 50
×5

0  5.54 (T) 
 29.11 (MEM) 

LTW 
MEM 63.53 65.83 27.42 20.58 14.25 13.24 11.98 9.95 9.31 − − − − − − 

T × × 2749.13 484.91 40.09 35.66 34.46 32.35 33.51 32.53 32.44 33.4 35.0 35.19 35.96 TW 
MEM × × 2279.42 1492.31 882.82 576.61 410.19 307.79 244.6 197.97 162.92 137.77 121.47 103.03 91.75 

T 78.21 43.84 31.62 24.35 23.58 22.61 22.26 21.62 21.86 21.88 22.03 22.2 22.0 22.46 21.76 

10
0×

10
0  56.07 (T) 

110.59 (MEM) 
LTW 

MEM 405.5 373.25 271.62 160.26 110.94 82.65 66.75 55.65 48.18 43.55 38.92 36.22 34.05 32.3 29.94 
T × × × × × 1516.48 893.43 572.83 314.03 202.71 141.46 140.98 142.63 142.01 143.18TW 

MEM × × × × × 2309.12 1935.02 1449.83 1131.65 906.07 744.91 623.9 527.05 460.76 404.44
T 1489.77 517.92 394.56 122.44 112.93 110.63 111.7 109.67 107.02 107.23 105.27 107.1 106.75 104.88 104.74

15
0×

15
0  260.65 (T) 

242.69 (MEM) 
LTW 

MEM 1418.85 1294.08 986.62 660.31 415.01 296.96 230.4 186.68 161.7 137.22 123.85 105.07 96.8 90.88 85.09 
T × × × × × × × × × × 4324.31 1236.26 1065.79 881.61 737.14TW 

MEM × × × × × × × × × × 1848.93 1560.7 1528.73 1188.06 1058.7
T 12571.7 6894.36 1425.16 920.86 646.56 350.58 334.77 331.2 333.12 326.7 327.56 327.46 322.93 330.03 327.24

20
0×

20
0 815.43 (T) 

432.13 (MEM) 
LTW 

MEM 1679.36 1644.54 1393.66 1229.82 1145.6 805.17 582.49 431.18 393.15 291.49 244.01 209.52 235.47 186.1 188.68

Table 2 gives the resulting total execution time 
and maximum memory usage (T and MEM) for 
Fire1 of varied sizes on different number of nodes. It 
is clearly shown that the LTW protocol outperforms 
its TW counterpart in all successful cases. First, the 
maximum memory usage on each node is reduced by 
45% up to 92%, making it possible to execute the 
model using a smaller number of nodes, with 
significantly lower simulation cost. Secondly, the 
total execution time is decreased by 24% up to 60% 
among those test cases with sufficient memory, and 
this outstanding improvement in execution time is 
achieved with a much smaller memory footprint at 
the same time. 

To find out the reason that causes the differences, 
the other metric values are compared. As an example, 
we present a comparison of the 100×100 Fire1 on 14 
nodes using the collected metrics, shown in Table 3. 

Table 3. 100×100 Fire1 on 14 nodes 
Metrics TW LTW LTW vs. TW 

PEE 96685.07 10597.71  
VEE 0 67214.07  

PQLen 24798.12 2636.95 ↓ 89.37% 
VQLen 0 121.89  

SS 52819.64 22675.14 ↓ 57.07% 
OPT-SK 0 18445.36  

FCT 488.14 84.15 ↓ 82.76% 
PriRB 613.14 604.00 ↓  1.49% 
SecRB 11922.07 981.14 ↓ 91.77% 

RB 12535.21 1585.14 ↓ 87.35% 
EI 61751.93 5826.36 ↓ 90.56% 
ER 48118.79 5790.93 ↓ 87.97% 

Thanks to the introduction of the volatile input 
queue, the average length of the persistent input 
queue is shortened significantly by 89.37%, reducing 
the overhead of queue operations and memory 
consumption considerably. On the other hand, the 
volatile queue is kept short throughout the simulation 
with an average length of just 121.89 events, despite 

the fact that a majority of 86.38% input events 
executed on each node have been turned into volatile 
under the LTW protocol. 

Owning to the optimal risk-free state-saving 
strategy, which reduces the number of state-saving 
by 44.86% on top of the MTSS strategy, the total 
number of states saved in the LTW case is 57.07% 
fewer than in the TW case, resulting in less memory 
usage as well.  

As expected, the time for each fossil collection is 
decreased from 488.14 ms to just 84.15 ms, a 
dramatic reduction of 82.76%.  

When comparing the rollback performance, the 
LTW protocol again shows a big advantage over the 
TW counterpart. The number of secondary rollbacks 
is reduced by 91.77%, showing that rollback 
propagation is effectively contained within the TW 
domain on each node. Moreover, the number of 
primary rollbacks is reduced slightly by 1.49%, 
which, combined with the fact that the total number 
of events executed on each node (i.e., PPE + VEE) is 
decreased by 19.52%, suggests a more stable system 
with less speculative computation. Consequently, the 
numbers of events imploded and unprocessed in the 
persistent queue are also declined by around 90%, 
further accelerating the rollback operations.  

The experimental results for the Fire2 and 
Watershed models are shown in Table 4 and Table 5 
respectively. Again, LTW reduces maximum 
memory consumption by approximately 34% up to 
92% for Fire2 and by 73% up to 93% for Watershed. 
The reduction in memory usage is more prominent 
for Watershed largely because, with a higher number 
of simultaneous events exchanged between the LPs at 
each virtual time, a larger percentage of states are 
reduced with the optimal state-saving strategy.  
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Table 4. Total execution time and maximum memory usage for Fire2 
Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

T × 20.89 13.93 12.19 10.91 10.41 10.8 10.64 10.84 10.55 11.31 12.51 12.76 13.39 13.44 TW 
MEM × 800.26 226.82 108.41 65.37 46.29 34.54 28.13 23.23 20.19 18.19 16.31 14.81 13.72 12.85 

T 20.26 14.23 10.38 9.69 9.46 8.84 9.01 8.51 8.64 8.4 8.32 9.28 9.34 9.51 10.27 50
×5

0 19.29 (T) 
29.52 (MEM) 

LTW 
MEM 81.24 66.92 34.99 22.6 17.77 14.65 13.02 11.76 10.83 10.17 9.63 9.29 8.99 8.73 8.49 

T × × 3284.37 460.32 68.67 54.63 52.03 48.92 48.58 46.96 46.37 47.53 48.69 49.39 49.97 TW 
MEM × × 2159.1 1319.08 658.14 576.72 411.14 310.95 240.42 198.4 163.47 149.65 112.23 99.94 83.78 

T 206.16 114.98 60.09 54.37 51.22 44.11 41.61 40.37 38.87 37.55 35.54 36.83 36.23 36.46 36.48 

10
0×

10
0 119.95 (T) 

109.57 (MEM) 
LTW 

MEM 314.37 285.18 248.32 137.73 102.24 81.63 65.57 54.35 48.91 45.62 42.6 38.42 35.75 33.84 32.03 
T × × × × × 4448.08 2487.95 651.06 394.92 244.97 167.25 164.79 167.42 165.64 168.88TW 

MEM × × × × × 1817.71 1375.23 1399.3 1086.72 905.96 744.91 562.55 532.14 425.91 399.51
T 1592.43 493.61 223.65 178.2 174.63 165.84 168.66 167.14 140.67 140.21 137.0 134.3 136.11 133.1 134.01

15
0×

15
0 414.25 (T) 

243.71 (MEM) 
LTW 

MEM 1210.37 924.16 641.79 586.92 385.41 269.62 205.4 172.18 139.44 122.16 112.93 104.22 94.47 89.39 85.79 
T × × × × × × × × × 12112.7 3206.02 1501.28 1202.48 900.05 764.21TW 

MEM × × × × × × × × × 1943.55 1785.9 1618.94 1522.69 1475.58 1243.95
T 11707.5 3363.07 1339.92 1173.69 562.68 414.52 412.92 412.89 381.1 376.58 417.44 373.11 372.6 370.04 371.56

20
0×

20
0 1033.61 (T) 

424.96 (MEM) 
LTW 

MEM 1661.95 1562.62 1267.71 1292.97 885.61 438.81 363.5 313.96 289.68 274.55 240.98 227.23 208.62 192.61 173.08

Table 5. Total execution time and maximum memory usage for Watershed 
Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

T × × 2059.62 899.49 84.97 87.06 86.59 88.76 − − − − − − − TW 
MEM × × 1718.02 997.21 691.2 536.37 422.49 333.53 − − − − − − − 

T 262.99 171.18 112.69 100.54 79.45 82.27 82.08 82.59 − − − − − − − 

15
×1

5×
2 258.27 (T) 

43.99(MEM) 
LTW 

MEM 45.66 27.91 148.48 121.54 128.96 113.14 101.29 90.39 − − − − − − − 
T × × × × 2451.7 857.3 757.65 724.55 638.97 676.42 − − − − − TW 

MEM × × × × 1618.94 1180.67 967.51 778.53 643.52 535.21 − − − − − 
T 473.81 268.87 181.94 155.09 140.14 104.77 108.52 109.58 110.35 112.87 − − − − − 

20
×2

0×
2 471.86 (T) 

72.67 (MEM) 
LTW 

MEM 76.02 40.04 164.35 136.36 130.82 149.81 137.24 129.85 115.87 111.99 − − − − − 
T × × × × × × × 2002.73 1948.95 1922.21 1705.19 1597.08 1585.6 − − TW 

MEM × × × × × × × 1519.54 1434.77 1262.59 1063.03 774.38 663.21 − − 
T 748.49 469.65 306.25 257.18 195.16 176.19 172.39 136.18 136.37 142.69 143.86 139.54 141.85 − − 

25
×2

5×
2 735.39 (T) 

115.48 (MEM) 
LTW 

MEM 119.8 70.46 164.86 128.68 131.07 132.81 132.27 153.82 141.87 128.25 114.39 113.95 103.44 − − 
T × × × × × × × × 5381.55 4475.37 3133.72 3130.89 2920.06 2765.2 2784.83TW 

MEM × × × × × × × × 2192.96 1867.83 1602.25 1388.87 1206.87 1055.31 924.49
T 1098.11 616.28 390.68 293.33 237.82 208.26 204.82 198.27 169.12 168.45 168.01 165.54 165.64 166.55 162.43

30
×3

0×
2 1041.39 (T) 

168.46 (MEM) 
LTW 

MEM 174.08 89.69 163.07 164.18 151.55 171.62 148.91 138.31 117.57 139.45 156.5 149.91 130.2 122.69 114.69

Table 6. 100×100 Fire2 on 20 nodes                            Table 7. 20×20×2 Watershed on 18 nodes 
Metrics TW LTW LTW vs. TW Metrics TW LTW LTW vs. TW 

PEE 68346.55 11658.75  PEE 1253641.94 361457.78  
VEE 0 56057.00  VEE 0 856256.00  

PQLen 17533.37 2149.91 ↓ 87.74% PQLen 334016.67 77790.62 ↓ 76.71% 
VQLen 0 75.31  VQLen 0 26.04  

SS 33833.00 17565.40 ↓ 48.08% SS 371273.33 73186.94 ↓ 80.29% 
OPT-SK 0 15591.10  OPT-SK 0 288247.50  

FCT 245.12 58.36 ↓ 76.19% FCT 61313.67 395.63 ↓ 99.35% 
PriRB 769.95 740.55 ↓  3.82% PriRB 173.50 159.94 ↓  7.81% 
SecRB 12794.35 2036.45 ↓ 84.08% SecRB 22816.67 2165.33 ↓ 90.51% 

RB 13564.30 2777.00 ↓ 79.53% RB 22990.17 2325.28 ↓ 89.89% 
EI 46877.55 7197.90 ↓ 84.65% EI 625210.33 175521.11 ↓ 71.93% 
ER 29512.45 6651.60 ↓ 77.46% ER 569337.94 172280.33 ↓ 69.74% 

For those cases with sufficient memory, the total 
execution time is decreased by 13% up to 32% for 
Fire2 and by 5% up to 91% for Watershed. A general 
trend reflected in the experimental results is that the 
reduction in execution time and memory usage is 
greater for models with larger sizes, indicating an 
improved scalability. 

The other metric values for the 100×100 Fire2 on 
20 nodes and 20×20×2 Watershed on 18 nodes are 
given in Table 6 and Table 7 respectively. As we can 
see, a similar pattern can be observed regarding the 

improvement of the metrics, suggesting that the LTW 
protocol is suitable for simulating models with varied 
computation and communication characteristics. 

In terms of absolute performance, the LTW cases 
attain higher and more consistent speedup than the 
TW cases. In some scenarios, the performance of a 
TW simulation is even worse than the sequential 
execution (e.g., 50×50 Fire1 on 2 and 4 nodes; 
20×20×2 Watershed on 14, 16, and 18 nodes) mainly 
due to the excessive communication and operational 
overhead. However, such scenarios do not arise in 
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the LTW cases tested in our experiment. 
 

5. Conclusion and future work 
 

The LTW protocol offers a novel approach that 
systematically addresses several important issues of 
TW-based optimistic PDES systems, especially for 
DEVS-based simulations that require a large number 
of simultaneous events to be executed at each virtual 
time. It allows purely optimistic simulation to be 
driven by only a few full-fledged TW LPs, 
preserving the dynamics of the TW mechanism, 
while at the same time, accelerating the execution in 
each local simulation space significantly.  

This paper presented an extended version of the 
PCD++ environment based on the LTW protocol. A 
comparative performance analysis has been 
conducted to evaluate both TW and LTW protocols 
in simulating several DEVS-based environmental 
models with different characteristics. The 
experimental results demonstrated that the LTW 
protocol outperforms the TW counterpart in various 
aspects, including shortened execution time, reduced 
memory usage, lowered operational cost, and 
enhanced system stability and scalability. We are 
currently working on integrating the LTW protocol 
with other TW optimizations to further improve 
performance. By taking advantages of the LTW 
protocol, we are also investigating dynamic process 
creation, deletion, and migration schemes to support 
more efficient load balancing as well as runtime 
structure changes in optimistic DEVS systems. 
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