
A System-On-Chip FPGA Implementation of Embedded CD++  
 

Mohammad Moallemi, Gabriel Wainer 
Dept. of Systems and Computer Engineering 

Carleton University Centre of Visualization and Simulation (V-Sim) 
 1125 Colonel By Dr. Ottawa, ON, Canada. 

moallemi@sce.carleton.ca, gwainer@sce.carleton.ca  
 
 

Keywords: embedded CD++, DEVS, real-time, FPGA, 
robot, hardware-in-loop, embedded systems 
 
Abstract 
 The development of embedded systems with real-time 
constraints has been rapidly advancing in the last 20 years. 
Most existing methods are still hard to scale up for large 
systems, or they require expensive testing efforts. 
Embedded CD++ is a software toolkit that uses model-
driven method to develop this kind of applications based on 
DEVS, a formal technique originally created for modeling 
and simulation of discrete event systems. Embedded CD++ 
is a framework to incrementally develop embedded 
applications, and to seamlessly integrate simulation models 
with hardware components. We have deployed this tool on a 
Virtex2 pro FPGA board and made use of different 
components of an FPGA device to upgrade the hardware 
control and simulation capabilities of this toolkit. The 
process of deployment and also execution of a case study 
control model will be explained in detail.  
 
1. INTRODUCTION 
 Embedded real-time software construction has usually 
posed interesting challenges due to the complexity of the 
tasks executed. Most methods are either hard to scale up for 
large systems, or require a difficult testing effort with no 
guarantee for bug-free software products. Formal methods 
have showed promising results, nevertheless, they are 
difficult to apply when the complexity of the system under 
development scales up. Instead, systems engineers have 
often relied on the use of modeling and simulation (M&S) 
techniques in order to make system development tasks 
manageable. Construction of system models and their 
analysis through simulation reduces both end costs and 
risks, while enhancing system capabilities and improving 
the quality of the final products. M&S let users experiment 
with “virtual” systems, allowing them to explore changes, 
and test dynamic conditions in a risk-free environment. This 
is a useful approach, moreover considering that testing 
under actual operating conditions may be impractical and in 
some cases impossible.  The goal is to develop a simulation 
environment which can operate in both virtual time and real-
time and also capable of transferring the simulated models 
to the real environment. To achieve this goal the current 

simulation tool must be modified and new functionalities 
should be added in order to support real-time and also real 
environment hardware interactions.  
 FPGA boards are specific tools for embedded 
development which are cheap compared to single purchase 
of embedded equipments and also incorporate variety of 
embedded tools and components that make them suitable for 
these kinds of applications. The AP1000 FPGA board  [1] is 
a Programmable logic—specifically field-programmable 
gate array or FPGA— board manufactured by AmirixTM. 
The rapid and easy design implementation and low cost of 
such platform enables researchers and students to design 
and implement variety of embedded projects. These boards 
consist of memory blocks, microprocessors (soft and hard 
macros), multiplier and digital signal processing (DSP) 
blocks, embedded system IP such as bus architectures and 
peripheral components, and application-specific IP such as 
in DSP and telecom. 
 The Virtex-II Pro FPGA Prototyping Station, the 
predecessor to this station was the System-Level 
Prototyping Station (SLPS) is based on the XilinxTM  [2] 
Virtex-II Pro FPGA and includes one AMIRIX AP1000 
development board installed in the 64-bit PCI-X slot of an 
IBMTM Intellisation Z Pro workstation that includes a dual 
Xeon processor core. With large FPGA gate capacity 
(44000 logic slices) and two embedded IBM PowerPC hard 
macros, as well as up to 1.4MB of on-chip RAM, this 
platform gives university researchers a high-performance, 
multiprocessor development environment.  
 The AP1000 PCI platform FPGA development board 
from AmirixTM is a PCI card that can be slid in to the PCI 
slot of an IBMTM workstation. The XilinxTM Virtex2 pro 
FPGA is connected to DDR SDRAM SRAM, Flash 
Memory, Ethernet and other interfaces. The AP1000 is 
configured as a single board computer complete with 
monitor software and Linux OS.  
 By using the AmirixTM PCI platform FPGA 
development board, developers can build embedded systems 
and explore the architecture in the areas of Networking, 
Communications, digital Signal Processing, Image 
Processing, Industrial Controls, Instrumentation, test and 
measurement and etc.  
In the rest of the paper will be introducing a DEVS 
(Discrete EVent System) based simulator and also a real-



time extension of this tool and its added capabilities and 
then propose the process and configurations required to port 
this tool on the AP1000 FPGA board and also run a case 
study model using this tool on the FPGA board.  
 
2. DEVS FORMALISM 
DEVS    [3] is an increasingly accepted framework for 
understanding and supporting the activities of modeling and 
simulation. DEVS is a sound formal framework based on 
generic dynamic systems, including well-defined coupling 
of components, hierarchical, modular construction, support 
for discrete event approximation of continuous systems and 
support for repository reuse. DEVS theory provides a 
rigorous methodology for representing models, and it does 
present an abstract way of thinking about the world with 
independence of the simulation mechanisms, underlying 
hardware and middleware. A real system modeled with 
DEVS is described as a composite of sub-models, each of 
them being behavioral (atomic) or structural (coupled).  
 
3. CD++ AND ECD++ TOOLKITS 
 CD++  [4],  [5] is a modeling and simulation tool that 
implements DEVS  [6] models simulation based on an 
abstract simulator mechanism. Atomic models are defined 
using a state-based approach (encoded in C++ or an 
interpreted graphical notation); while coupled models 
contain atomic models composition and interconnecting 
information of those atomic models. CD++ has been widely 
used in various applications from simple queuing systems to 
complex urban traffic systems or physical systems. CD++ 
employs the abstract simulators proposed in  [3]. Message 
drives the simulation according to the scheduled time 
points. CD++ is built as a class hierarchy of models related 
with simulation processing entities. DEVS Atomic models 
can be programmed and incorporated onto the Model basic 
class hierarchy using C++. Once an atomic model is 
defined, it can be combined with others into a multi-
component model using a specification language specially 
defined with this purpose. Different versions of CD++ have 
been developed to facilitate various applications. 
• Stand alone CD++ implements DEVS and Cell-DEVS 

simulation.  
• Parallel CD++ is aiming to enhance the performance of 

Cell-DEVS simulation by distributing calculation of 
different cells over multiple processors.  

• Distributed CD++ is developed to facilitate the 
coordination of the different simulating engines in 
different sites through the standard distributed 
computing protocols. 

• Real-Time embedded CD++ is constructed especially 
for Real-Time embedded systems. A timing feature of 
the Real-Time systems has been included in CD++ to 
check the timing deadlines of given points of the 
systems.  

 E-CD++  [7],  [8],  [9]has been developed based on RT-
DEVS formalism  [10],  [11] which unlike CD++ that works 
in simulated environment with simulated time advance 
function, the former works in real-time manner with real-
time time advance function. The inputs to E-CD++ can 
come from real input ports like sensors, thermometers, 
timers, or from event files. The outputs can be sent to 
external devices like motors, transducers, gears, valves or 
any other component. Hardware-In-The-Loop simulation 
technique has been used to integrate software with 
hardware. A comparison between the results of the control 
model on real hardware with real input and outputs and on 
the computer with input event files and output files can be 
done and the model design can be modified to obtain the 
desired results. Some of the added features to E-CD++ are: 
supporting GGAD notation, Real-Time functionality by 
implementing RT-DEVS formalism, flattened coordinator 
technique and added embedded functional capabilities.  
 Thus E-CD++ can be used as a controller as it is able to 
receive real inputs and generate real outputs. One of the 
advantages of E-CD++ is virtual and simulated model 
checking prior to real execution on the target.  
 Working on E-CD++ can be done writing C++ code in 
a text-based Linux environment with open source tools. E-
CD++ will most likely be running on embedded platforms 
with minimum, or even none output peripherals, therefore 
the information required during development is rather 
limited for the developer from the intended platform. In 
order to improve the development and simulation 
experience, an IDE is provided for the E-CD++ simulator 
core that adds Embedded CD++ functionality (the original 
IDE plus the simulator is called CD++ Builder  [12], and is 
built on the Eclipse Environment  [13]as a plug-in). 
The IDE for E-CD++ permits code reuse from the original 
CD++ Standalone version, sharing all the possible resources 
that the development environment has to offer from the 
later.  
 Since E-CD++ will be deployed in a different platform 
(Target) other than the one where it is being developed, 
cross-compilation for the Target is provided, as well as 
means of communication to the Target in order to download 
executable binary files, run the executable and debug 
remotely. The tool also remembers important preferences, 
i.e. last IP Address used if the connection is established 
through a Local Area Network, and other simulation 
configuration information that remains constant throughout 
the development process. 
 To achieve these features, new processes can be 
spawned from the CD++ Builder plug-in, each one parallel 
to the others but also following a certain order among 
themselves. For instance the project needs to be edited first 
in order to be compiled and generate an executable file. 
Only when this file is obtained it can be deployed to the 
embedded target, and only when this file is present in the 



target it can be run remotely thorough a remote shell 
connection or remotely via a remote command. However, 
each process is separated from the other to give the user 
complete control over the development, for instance, the 
project can be compiled but not deployed and a previous 
version of such project can be executed for testing purposes. 
 Given code reuse from the CD++ Standalone version to 
the E-CD++ version is a central aim, an important 
development resource to be exploited is the CD++Modeler 
tool, an application that permits defining DEVS models 
graphically. CD++Modeler provides an alternative method 
to create DEVS models for CD++Builder without the need 
to use programming languages. The IDE extended for E-
CD++ with the special features aforementioned, directly 
benefits from CD++Modeler, as it is a stand-alone 
application that generates models independently from the 
target execution environment they will be running on.  
  The E-CD++ features of the CD++Builder are: 
Compile2Target (a cross-compiling feature that compiles 
the model for the target environment while the host 
environment is different with the target one), Telnet2Target 
(opens a telnet connection between the host and the target 
environment), Download2Target (downloads the modelfils, 

eventfiles and executable file to the target environment), and 
Run Simulation on Target (runs the simulation remotely on 
the target). All of them are self contained JAVA classes 
which are called through the plug-in eXtensible Markup 
Language (XML) script. When the corresponding buttons in 
the IDE are clicked on, the XML script launches the 
corresponding JAVA class, which executes the intended 
task.  
 E-CD++ has a real-time simulation mode named no-
hardware mode, in which all hardware interactions are 
disabled, thus making the user capable of real-time 
simulation of his/her model and verify its correctness. The 
other advantage of this mode is hardware failure detection. 
In case of external hardware malfunction, the user can 
disconnect the hardware and simulate the same environment 
signals using the eventfile events and test the model in no-
hardware mode to keep track of simulation stages in order 
to find the malfunctioning or time limited hardware 
component.  
 
4. PROPOSED FPGA IMPLEMENTATION 
 Figure 1 shows the AMIRIXTM AP1000 FPGA board 
hardware architecture  [14].  

 
 



Figure 1- AP1000 FPGA Architecture Block Diagram modified from  [15]
 

 The FPGA element in our FPGA board is a Virtex-II 
Pro central FPGA element and has several interfaces to 
various devices. It has two DDR SDRAM banks which 
provide high bandwidth memory interfaces for the on chip 
processor. Two separate 18Mb synchronous SRAMs are 
also available, which can be accessed as a single 72-bit 
memory or as two completely separate 36-bit memory 
banks. They also provide high-bandwidth to the processor. 
Various peripheral devices are available through the local 
bus interface, including Flash memory for both program 
storage and FPGA configuration data. The SystemACE 
provides an additional means of FPGA configuration and 
the Processor Bus Dual PCI Bridge provides a portal to 
additional functions for the FPGA element. This bus 
provides the means to include a wide variety of I/O by 
installing a PMC module, as well as an Ethernet controller 
for network access. There are two Gigabit Ethernet physical 
layer devices connected directly to the Virtex-II Pro which 
provide additional high-speed network interfaces. 
Expansion I/O port provides additional expansion means, 
allowing either cabling or custom PCB daughter cards to be 
directly connected to the Virtex-II Pro. The PCI panel 
provides accessibility to the CompactFlash, PCI 
10/100/1000 Ethernet, and RS-232D connectors. The 
remaining connectors are accessible from within the system 
chassis. 
 The PowerPC405 processor interfaces to the DDR 
SDRAM controller on the Processor Local Bus (PLB). The 
16550 UART is present on the On-chip Peripheral Bus 
(OPB). The PLB-OPB Bridge allows access from the PLB 
to the OPB.  
 There are several ways to program an FPGA board. To 
provide broader support to a greater range of users, the 
AMIRIX TM Prototyping Station is supported by two 
operating systems:   
1. Microsoft Windows XP Professional, 32-bit edition is 

running on the IBM PC installed with the AMIRIX 
AP1000 board. EDK toolset from XilinxTM can be used 
to develop software applications, generate and 
download a bitstream executable file on to the board. 

2. Linux for 32-bit x86 processors. The Linux installation 
running as a virtual machine using VMware’s Player 
software on the Microsoft Windows XP Professional 
operating system and using ELDK  [16] toolset to 
develop software applications and using an embedded 
Linux kernel running on the PowerPC processor on the 
FPGA board to run the application.  

 Figure 2 shows different layers of operating system and 
software applications that can be used on the FPGA board 
and the IBM host PC.  
 We used the second approach and downloaded a small 
configurable Linux kernel to the SDRAM memory blocks 

on the FPGA board using TFTP server software application 
and booted the Linux kernel on the PowerPC processor. 
This way we could have an embedded configurable 
operating system kernel that can be configured to include 
drivers and libraries for different FPGA components for any 
type of hardware control application. The other advantage of 
using a Linux kernel on the PowerPC is that the operating 
system kernel provides suitable drivers for all hardware 
components that are available on the FPGA board, thus 
making E-CD++ code transfer and reuse from PC to FPGA 
easier and also provides efficiency for hardware utilization. 
In our implementation, the Linux kernel operates on the 
PowerPC processor of the FPGA board, a virtual Linux runs 
on top of Windows OS using VMware software player 
which runs ELDK software application, and the Eclipse 
which provides development environment for E-CD++ and 
also cross-compilation for E-CD++. Windows OS provides 
HyperTerminal connection and runs TFTP server and 
VMware Player.  
 

IBM Host Station

AP1000 FPGA Board

Linux Kernel

Windows XP OS

IBM Host Station

Vmware Player

TFTP Server

ELDK

Virtual Linux (FC6)

D
o
w
n
lo
a
d
 K
e
rn
e
l

Telnet 

(FTP)

D
o
w
n
lo
a
d
 E
-C
D
+
+

Eclipse

 
Figure 2- Architecture of the Software Environment  

 
 After configuring, building and downloading the 
Embedded Linux kernel on the board, ELDK tool has been 
used to compile and generate a compatible executable file 
for PowerPC processor. ELDK is an open source series of 
gnu Linux compilers that is used to develop the software 
application for FPGA board under Linux. Thus, it is suitable 
for E-CD++ in terms of providing cross-compilation 
environment in which E-CD++ uses Eclipse environment on 
the host PC and generates an executable file compatible 
with FPGA hardware.  
The RS-232 UART I/O peripheral on the Virtex2pro FPGA 
provides communication interface between the AP1000 
FPGA board and the Host PC. A serial connection between 
the RJ45 serial port of the board and the COM port of the 



host PC provides I/O communication. HyperTerminal 
application on Windows OS at the host PC is used to boot 
the board using uboot boot loader application and render the 
outputs on the screen. A peer to peer Ethernet connection 
make it possible to establish a telnet connection between the 
Linux OS on the host PC side and the embedded Linux on 
the PowerPC side and download the executable binary file 
and model related files.  
 
4.1. Robocart Case Study 
 We have implemented a simple control model that we 
have published previously in  [9] using E-CD++ on the 
FPGA. This example model has been modified which uses a 
simple DEVS model for control purposes. The main goal of 
this example model is to test the Embedded functionality of 
the E-CD++ to control the behavior of the robocart to avoid 
obstacles in its way and continue operating with real-time 
inputs until the simulation time ends. We use real-time 
clock feature of E-CD++, receive real-time inputs and send 
out real-time outputs to the real hardware.  
 We have built a simple robocart shape device and have 
used appropriate C++ open source library  [17] to control 
this device using E-CD++ toolkit. The robocart uses a touch 
sensor which detects obstacles in front of it. It also has an 
ultrasonic (sonar) sensor which can measure the distance 
between the sensor and an obstacle in front of it. The 
robocart has two motors which the direction and the speed 
of rotation of the motors can be controlled. Figure 3 shows 
the robocart from different angles. 
 

 
Figure 3- Robocart 

 Using above capabilities, we defined a simple atomic 
DEVS model to receive inputs from sensors and send 
outputs to the motors. For simplicity reasons, the model has 
only one input port which obtains its input from both 
sensors and differentiates the inputs of different sensors 
based on different value codes that is defined for each 
sensor and given to each sensor by Input Generator block 
(Another ideal case could be one input port per each sensor.) 

The model has one output port connected to both motors. 
Figure 4 illustrates the block diagram of the model and its 
input and output ports connectivity.  

 
Figure 4- Robocart model 

   
As mentioned before, E-CD++ uses hardware-in-the-loop 
approach to receive real-time inputs. In an iterative manner, 
the inputs from sensors will be available to the Input 
Generator. The input from touch sensor has higher priority 
than the one from sonar sensor; therefore, at each iteration 
of the loop, the input of touch sensor is checked by Input 
Generator. If there is an input from touch sensor, it shows 
that an obstacle has blocked the robocart. Thus, the input of 
sonar sensor will be discarded and touch sensor input value 
code will be sent to the model input port. Otherwise, the 
sonar sensor value will be obtained and checked and if it is 
less than a pre-specified value that is necessary to avoid 
bumping to an obstacle, the Input Generator generates an 
input with the sonar value (which is the distance from the 
sensor to the obstacle.)  
Below is the DEVS model specification of the robocart:  
M = <X, Y, S, ta, δδδδint, δδδδext, λλλλ> 
X: input ports: in (connected to Input Generator) 
Y: output ports: out (connected to motors)  
S: system states: Moving Forward, Moving Backward, Turn 
Left, Turn Right, and Stop. 
ta: time advance function: handled externally by the root 
coordinator.  
δδδδint: Internal transition function: specifies the next action 
and finally resume the forward movement of the robocart. 
δδδδext: External transition function: checks for sonar or touch 
value coming from input port to carry out required state 
transition. 
λλλλ: Output function: sends appropriate commands to the 
motors. 
Whenever there is an input, the external transition function 
is invoked and checks the input value. If the input is from 
touch sensor, in this case the robot should resume back to 
get the appropriate distance from the obstacle in order to do 
a turn action. Thus, the external transition function changes 
the state of the robocart to Move Backward and introduces a 
very small transition time (to avoid zero transition time 
conflict). The output function sends backward moving 
command to the output port and the internal state transition 
function changes the state to Turning Left or Turning Right 
and introduces a certain transition time for backward motion 



to complete. After transition time is passed, the output 
function will send turning command to the output port and 
internal transition function will resume the state to Moving 
Forward and start a new pre-specified transition time for 
turn command to complete. Again after elapse time is 
expired, the output function will resume Moving Forward 
motion and the internal transition will do nothing.  
 The other case is the sonar sensor input. In this case again a 
very small transition time is defined (to avoid zero transition 
time conflict) and the state of the robocart will change to 
Turn Left or Turn right. When the transition time expires, 
the output function sends appropriate output to the output 
port for both motors to do the Turn action (one motor floats 
and the other continues rotating). The internal function 
resumes the state of the robocart to Moving Forward and 
defines another elapse time which is calculated based on the 
Turning speed and desired degree of turn in order for the 
robocart to remain in turning state in this period and 
complete the turn. When this transition time is finished, the 
output function sends appropriate commands to move the 
robocart forward (both motors rotating) and the internal 
function will do nothing.  
 
4.2. Results  
We modified E-CD++ source code to adapt with the specific 
gcc compiler version included in ELDK tool that is 
compatible with PowerPC4xx processor series. Then the 
PowerPC executable binary file has been downloaded to the 
SDRAM memory block of the FPGA board. The Robocart 
hardware communicates through USB port. Because 
AP1000 FPGA port does not have USB port we ran the 
simulation in real-time and no-hardware mode in which the 
inputs only come from eventfiles and outputs get saved in 
output files. The robocart modelfile and eventfile have also 
been downloaded to the SDRAM memory block. Figure 5 
shows the execution outputs of the robocart model with 
three input events at 6th, 9th and 14th seconds after the start 
of the simulation with 10, 1000, and 3 respective input 
values. 10 and 3 are considered as sonar sensor distances in 
centimeters and 1000 is considered as touch sensor input 
value in robocart model. Below these lines, the state 
changes of the model based on the input values are shown.  

 
Figure 5- Robocart Model Execution Sequence on 

HyperTerminal Window 
 

 The AP1000 FPGA board is able to work as a single 
board computer, thus makes it suitable to be mounted on 
any external hardware as device controller.  
 Figure 6 shows the output file contents for another 
execution of robocart model in real-time and no-hardware 
mode with different eventfile events. We have defined 1 to 5 
numerical values associated with Moving Forward, Moving 
Backward, Turn Left, Turn Right, and Stop states 
respectively. At the beginning of the simulation an internal 
transition is performed to start the motors to move forward. 
This output is shown in line 1. At time 00:00:01:633 a touch 
sensor event has been detected. After passing a small 
external transition of 10 milliseconds, right at time 
00:00:01:643 the backward movement output has been 
produced (line 2) and after 2 seconds internal transition the 
next output which is Turn Left is generated (line 3). Finally 
after 2 seconds and 200 milliseconds the Moving Forward 
state is resumed (line 4). As you can see the outputs in 
lines2 and lines 3 are generated a bit later than the time 
expected which indicates hardware delay. There was also 
another touch sensor input at line 7 and a sonar input at line 
10.  
The concept of deadline for each transition is also visible in 
the output file.  

 
Figure 6- Robocart model output file 

 



This example proved Embedded functionality and real-time 
input capability of E-CD++ in a control project. Same 
example have been developed using real-time keyboard 
inputs to steer the robocart through its path. 
 
5. CONCLUSIONS AND FUTURE WORKS 
 M&S techniques offer significant support for the design 
and testing of complex embedded real-time applications. 
DEVS theory can be applied to improve the development of 
real-time embedded applications. A lot of experiments that 
have been carried out using CD++, a DEVS tool that has 
been built following DEVS formal definitions, proved its 
advantage and integrity. The models were developed 
independently, and were later integrated at the modeling 
level. In this paper we proposed system-on-chip FPGA 
implementation of ECD++ (a real-time and embedded 
version of CD++ tool) that is able to simulate different real-
time models and also be used as a controller in embedded 
applications. FPGA provides different hardware 
components and capabilities to our real-time simulator for 
control applications. It also has the advantage of being used 
as single board computer and run E-CD++ on any hardware 
environment for this purpose. We also verified our 
implementation using a hardware control simulation of a 
simple robocart and rendered the results.  
Future works can include: Developing more complex and 
applicable embedded models with more advance FPGA 
boards, Other FPGA components of the board can be used 
to develop more specific models of specific applications.  
 
6. ACKNOWLEDGEMENT  

We wish to thank CMCTM 
 [18] Corporation for the 

FPGA board donation and support to our lab. 
 
7. REFERENCES  

 
[1] AMIRIX TM Systems, Inc. AP1000 FPGA Development 

Board Users Guide. [PDF] 2007.  
[2] Xilinx TM, Inc corporation website available at: 

http://www.xilinx.com/.  
[3] Zeigler, B.; Kim, T.; Praehofer, H. "Theory of 

Modeling and Simulation: Integrating Discrete Event 

and Continuous Complex Dynamic Systems". 
Academic Press. 2000. 

[4] Wainer, G. 2002. “CD++: a toolkit to define discrete-
event models”. In Software, Practice and Experience. 
Wiley. Vol. 32, No.3, pp. 1261-130. 

[5] Wainer, G. et al. "CD++ A tool for DEVS and Cell-
DEVS Modeling and Simulation. User's Guide". Draft. 
August 2004.  

[6] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of 
Modeling and Simulation". Academic Press. 2000. 

[7] E. Glinsky, and G. Wainer, "Definition of Embedded 
simulation in the CD++ toolkit."  

[8] Y. H. Yu, and G. Wainer, "eCD++: an engine for 
executing DEVS models in embedded platforms." pp. 
323-330.  

[9] M. Moallemi, J. M. Gutierrez-Alcaraz, and G. Wainer, 
“ECD++ a DEVS based Embedded simulator for 
embedded systems,” in Proceedings of the 2008 Spring 
simulation multi-conference, Ottawa, Canada, 2008. 

[10] Chow, A.C., and B.P. Zeigler. 1994. “Revised DEVS: 
A Parallel, Hierarchical, Modular Modeling 
Formalism”. In the Proceedings of the SCS Winter 
Simulation Conference.  

[11] A. Chow, and B. Kim, "Abstract simulator for the 
parallel DEVS formalism." pp. 157-163. 

[12] C. Chidisiuc, and G. Wainer, “CD++ Builder: An 
Eclipse-Based IDE For DEVS Modeling.”  

[13] ECLIPSE, http://www.eclipse.org, Eclipse 3.2 Online 
Manual].  

[14] CMC. Getting Started with the FPGA Prototyping 
Station. [PDF] 2007. Available at 
https://www1.cmc.ca/clients/search/product-details.html?id=48840.  

[15] Inc., AMIRIXTM Systems. AP1000 FPGA Development 
Board Users Guide. [PDF] 2007. 

[16] ELDK official website Available at 
http://www.denx.de/twiki/bin/view/DULG/ELDK.  

[17] NXT++ main page available at 
http://nxtpp.sourceforge.net/index.php.  

[18] Canadian Microelectronics Corporation (CMCTM) 
website available at http://www.cmc.ca.  

 

 


