
A DEVS–based End-to-end Methodology
for Hybrid Control of Embedded

Networking Systems

Gabriel Wainer ∗ Rodrigo Castro ∗∗ Ernesto Kofman ∗∗

∗Department of Systems and Computer Engineering, Carleton
University, Ottawa, ON, Canada. (e-mail: gwainer@sce.carleton.ca)

∗∗ CIFASIS–CONICET. Control Department, Universidad Nacional de
Rosario, Argentina. (e-mail: {rodrigoc,kofman}@fceia.unr.edu.ar)

Abstract: We present a formal Modeling and Simulation (M&S) methodology for hybrid control
of networking systems. The method is used for analysis, design and implementation of Quality
of Service (QoS) control systems in Network Processor (NP)-based applications. We apply
continuous Control Systems Theory to enforce Admission Control strategies into discrete–event
network traffic. This represents a hybrid system modeling problem, that has to be treated
formally to guarantee the applicability of the continuous control theoretical results into discrete–
event systems. We show that using DEVS (Discrete Event System Specification), in combination
with Quantized State Systems (QSS) numerical methods for the approximation of continuous
systems, offers numerous advantages: these frameworks provide the means to accurately analyze
and design hybrid models for Admission Control and they can be seamlessly integrated into a
unified formal framework. It also enables the transition between the DEVS–based simulation
and the deployment of the obtained hybrid models into the target networking platform.

Keywords: DEVS, Hybrid Systems, Embedded Networking, Admission Control.

1. INTRODUCTION

Embedded networking systems include protocols and algo-
rithms embedded in specific–purpose devices with limited
resources. Control of Real-Time Computing Systems is
a new area where traditional continuous control system
techniques are applied to computing and/or networking
systems, which are considered as the subjects to be con-
trolled Hellerstein (2004). In these systems, the control
objective is to keep performance metrics (delay, jitter,
throughput, resource consumption, deadline miss ratio,
etc.) within certain required bounds, usually specified by
Quality of Service (QoS) requirements. The control actions
trigger discrete events involving the allocation of available
resources (pools, buffers, queues, slots, etc.) among differ-
ent competing resource consumers (tasks, packets, jobs,
requests, etc.) which are also discrete in nature.

Although these control systems are typically designed
using ad–hoc techniques, classic control theory has been
recognized as a way to exploit the theoretical and method-
ological background of the discipline (Arzen et al., 2006).
Based on control theory, stability and transient response
can be easily and systematically analyzed, and controllers
can be designed following different optimal and/or ro-
bust criteria. In the last decade, control theory has been
applied to many computing and networking systems, in-
cluding active queue management schemes (Hollot et al.,
2001a,b), network routers (Christin et al., 2002) and high-
performance web servers (Robertsson et al., 2003), among
many others.

One of the difficulties of applying control theory to these
systems is related to the heterogeneous nature of the
models used to analyze them. Real–time Computing and
networking systems are usually described by discrete event
dynamic systems (Cassandras and Lafortune, 2004), mod-
eled with languages such as timed Petri Nets, timed Au-
tomata or timed Finite State Machines. Instead, classic
control theory is based on continuous–time models (differ-
ential equations) or discrete–time models (difference equa-
tions). Although there are many techniques for dealing
with control of discrete–event systems (Cassandras and
Lafortune, 2004), their goal (i.e., safety, deadlocks) is not
performance control (where stability, transient response
and robustness play a key role).

In order to bridge the analytical gap between event based
and time based control techniques, systems are usually ap-
proximated by either continuous or discrete–time models.
Then controllers are designed and analyzed in these do-
mains. However, this usually leads to over–simplifications
and errors, and controllers must be checked (and even-
tually redesigned) with more accurate models (i.e., using
discrete–event M&S). Although there are very advanced
tools for this phase (e.g., ns-2 (Issariyakul and Hossain,
2008), OMNET++ (?)) their integration with the control
theoretical models is very complex. This usually forces
ad-hoc customizations, without a supporting formalism
guaranteeing the correctness of these procedures.

As we can see, the resulting design process involves work-
ing with models of different nature, described with dif-
ferent languages and obtained by specialists of different



fields. This usually leads to switching between M&S tools
and techniques, which yields many practical difficulties.
Moreover, the implementation of the control algorithms
in embedded platforms poses additional challenges as the
algorithms usually must be translated and adapted to the
target architecture.

In this work we propose an integrative methodology to
deal with these issues, exploiting the features of Discrete
Event System Specification (DEVS, Zeigler et al. (2000)),
a M&S framework that can describe and simulate all
kind of hybrid systems. We illustrate the methodology
applied to the analysis, design and implementation of a
traffic QoS control system in an Intel IXP2400 network
processor (Intel, 2004). We show the definition of a case
study on Admission Control strategies to network traffic
based on non linear control theory. The Admission Control
algorithm is designed as a sequence of M&S tasks. We first
model the network with a continuous–time approximation
(designing a continuous–time control law). We then find
a discrete–time approximation of the control law (veri-
fying the discrete–time controller applied to the original
discrete–event system). We finally deploy the controller
into an embedded network processor. This end–to–end
methodology is completely based on a unified DEVS M&S
framework.

2. BACKGROUND

DEVS (Zeigler et al., 2000) is a general formalism for
describing systems that perform finite number of changes
in finite intervals of time. A system modeled with DEVS is
described as a composite of submodels, each of them being
behavioral (atomic) or structural (coupled). Formally, a
DEVS atomic model is defined by the following structure:

M = (X, Y, S, δint, δext, λ, ta)

Each possible state s (s ∈ S) has an associated lifetime
ta (ta : S → <+

0 ). If a state adopts a value s1 at time
t1, after ta(s1) time units the system performs an internal
transition to a new state s2. The new state is calculated as
s2 = δint(s1), where δint (δint : S → S) is called internal
transition function. At the same time an output event y
is produced with value y1 = λ(s1). λ (λ : S → Y ) is
called the output function. If an input event x arrives,
the state changes instantaneously. The new state value
depends on the input value, the previous state value, and
the time elapsed e since the last transition. The new state
is computed as s4 = δext(s3, e, x1) with s3 the state at time
t3 and x1 the input event arriving at time t3 +e (note that
e ≤ ta(s3)). Function δext (δext : S × <+

0 × X → S) is
called the external transition function.

DEVS models can be coupled in a modular and hierarchi-
cal way. A DEVS coupled model is formally defined as:

CM = (X, Y,D, {Mi}, {Zij})
CM is a set of atomic components Mi (i ∈ D) inter-
connected through their interfaces (X, Y ). The translation
functions Zij convert the outputs of a model into inputs
for others using I/O ports. The formailsm is closed under
coupling (i.e., the coupling of DEVS models defines an
equivalent atomic DEVS model).

Most networking systems present stochastic behavior.
STDEVS (Castro et al., 2009) extended DEVS providing
a formal specification of general stochastic discrete–event
systems based on the theory of Probability Spaces. While
DEVS and STDEVS can model and simulate any discrete
system (discrete–time and discrete-event), continuous sys-
tems cannot be represented by the formalism due to the
continuous evolution of its variables. However, although
differential equations can model continuous systems, in
order to simulate them we need to use classic numerical
integration methods (i.e., Euler or Runge Kutta) to ap-
proximate the corresponding differential equations. These
discrete–time models can be straightforwardly represented
as DEVS models. Following this idea, we can simulate
general hybrid systems under a unified formalism.

Classic numerical integration methods have problems with
the discontinuities that are found in hybrid systems
(caused by the discrete dynamics). These must be properly
detected and treated; otherwise, the approximation of the
continuous parts can lead to wrong results (Cellier and
Kofman, 2006). Appropriate treatment and detection of
discontinuities is in general difficult and computation-
ally demanding, as it usually calls for iterations. DEVS,
however, can represent discrete–time and discrete-event
approximations of continuous systems. Quantized State
Systems (QSS) methods provide a way to approximate a
differential equation by a discrete-event model, preserv-
ing stability properties and guaranteeing error bounds.
QSS methods can detect and handle discontinuities in an
efficient and straightforward way, that does not require
any iterations (Cellier and Kofman, 2006). Thus, they are
particularly convenient to simulate hybrid systems.

Our goal is to apply these methods to improve the design of
layered communication networks, where services provided
by an immediate lower layer can be seen as delivered
by a Service Control Node composed by service logic
and control logic. In embedded networking systems, these
algorithms run in special purpose processors with limited
resources. The service logic is provided by servers (that
process packets at a service rate), and incoming packets
that cannot be processed are put into queues. The control
logic tries to enforce QoS requirements under congestion (a
network state where the demand of QoS levels cannot be
satisfied for all traffic sources). This situation is handled by
congestion control methods (Kwon and Kim, 2000). Well-
known examples of congestion control techniques are the
rate–based control for ATM networks and the window–
based control for TCP/IP networks (which enforce QoS
requirements for throughput and delay metrics).

Admission Control is a particular control logic based on
the rejection of incoming packets before they are allowed
to join the queues, while accepted packets are guaranteed
to get serviced. Control Theory is an increasingly preferred
choice to describe, analyze and design robust Admission
Control algorithms. Non-linear control theory was used to
design an admission controller for a Service Control Node
in Kihl et al. (2003). While the authors resort to diverse
M&S techniques and tools to deal with the hybrid nature
of the system, we will show how to obtain the same results
using an integrated methodology. This methodology has
the potential to improve model reliability, sharing and



Figure 1. Service Control Node system under study.

reuse, while facilitating the transition into the target
hardware.

3. CONTROL THEORY FOR ADMISSION CONTROL

We present a case study on the use of our methodology in
a control theory based solution for designing an Admission
Control mechanism. We will adopt the example shown
in Figure 1 for a Service Control Node, originally
presented in Kihl et al. (2003).

In our case, the block Server System is the plant to be
controlled. It is composed by one Queue and one Server.
In this example, the QoS requirement is to keep the queue
length at a given reference desired value (i.e. the set point
xref for the plant), this being the control objective. The
input signal to the plant is the admittance rate ū of packets
into the queue, which is assumed to follow a stochastic
Markovian process. The queue is assumed to have infinite
capacity, and the instantaneous number of packets in the
queue is the output signal x of the plant. The servicing
times at the server follow some probability distribution
with a mean value of 1/µ seconds. The stochastic nature
of both the queue admittance rate and the servicing times
represent noise that will have to be compensated by the
Admission Control block. The Controller block is
designed to keep the number of enqueued packets x at
the given desired value xref . The control action consists
in opening and closing a gate at the entrance of the Server
System to limit the incoming traffic (arrival rate λ). This
is achieved by the Gate block which is the actuator of
the controller. According to the control signal u, the gate
selectively rejects packets from λ to obtain a controlled
admittance rate ū.

In order to apply control theory methods to the Server
System, a differential equation model can be derived
to describe the system behavior. Following a fluid flow
approximation method (Tipper and Sundareshan, 1990),
the system can be modeled by the expression:

dx

dt
= ū(t)− µG(x(t)) (1)

where ū(t) is the queue packet admittance rate, 1/µ is the
mean service time and G(x) is a nonlinear function:

G(x(t)) =
x(t) + 1−

√
x2(t) + 2C2x(t) + 1
1− C2

(2)

C is the coefficient of variance of the service times. This
approximation reproduces the steady state condition for
the average number of packets in the system and the server
utilization accurately. In terms of dynamic behavior, the

Figure 2. Continuous-time non-linear model.

approximation captures some stochastic properties of the
system under non–stationary traffic conditions.

The gate action can be described as follows:

ū(t) =
{

λ(t) if u(t) > λ(t)
max(0, u(t)) otherwise

(3)

The authors proposed a PI controller for the Control Node
(see Fig.2) with the following law:

u(t) = Ke(t) +
K

Ti

∫
e(t)dt (4)

where e(t) = xref − x(t).

The system parameters for this example are set according:

λ = 20s−1 µ = 5s−1 µ1 = 2s−1

xref = 10 C2 = 3.7 µ2 = 60s−1

α1 = 0.38
(5)

The service processing times at the server are hyper–
exponentially distributed, combining 2 exponential distri-
butions of mean service rates µ1 and µ2 respectively, with a
bias of α1 = 38% in favor of µ1. This yields a mean service
rate µ = 5 sec−1 with a squared coefficient of variance
C2 = 3.7. The design is completed by finding appropriate
values for K and Ti. In this case, following a linearization
and pole placement procedure, they are K = Ti = 2.4. We
will refer to the system parametrized as in Eq.(5) as the
Controlled Packet Processing System (CPPS).

4. DEVS–BASED M&S METHODOLOGY FOR A
CONTROLLED PACKET PROCESSING SYSTEM

This section shows the use of our DEVS–based M&S
methodology to assist the processes of analysis, design,
verification, implementation, and validation of the PI-
controller for the CPPS specified in the previous section.
The main results of the original work of Kihl et al. (2003)
are reproduced as a step for validating our approach.

Analysis, design and verification are supported by Pow-
erDEVS (Kofman et al., 2003), a DEVS–based tool for
Hybrid System M&S. Implementation and deployment in
the target platform are supported by the DEVS–based
M&S software ECD++ (Embedded CD++), an exten-
sion of the general purpose CD++ tool with capabilities
for running in real-time, embedded on special-purpose
processors (Wainer, 2009). Thanks to their compliance
with the DEVS framework, both tools can simulate the
hybrid models designed, and the transition between them
is straightforward.



Figure 3. Continuous time CPPS model in PowerDEVS.

4.1 Continuous Control. Continuous Plant

The first goal of the process is to verify the control
parameters for the CPPS by running simulations. At this
point we have a continuous-time non-linear approximation
of the Server System and a continuous-time specification
of the controller.

The CPPS continuous-time model built in PowerDEVS
is shown in Figure 3. Each block in the model represents
either a Coupled DEVS model or an Atomic DEVS model.
The inner details for the coupled models Server System
and PI-Controller are also provided in Figure 3. The
Weighted Sumator models implement the required mul-
tiplication factors to implement the control law (i.e., the
K and Ti parameters and proper sumation/substraction
signs). A Non-Linear Function atomic model (a com-
ponent of the Server System coupled model) implements
the non-linear expression of the right hand side of Eq.((1)).
The QSS Integrator models locally implement the QSS
methods (in this case, we selected the third order accurate
QSS3 algorithm). All the mentioned models are part of the
standard libraries of PowerDEVS.

We ran the simulation of this deterministic system for 30
seconds. Results are shown in Figure 4. We can see that
the queue length response is slightly under damped, and
stabilizes quickly to the reference value with a settling
time of about 7 seconds (with a small overshoot at the
beginning). These results (obtained in a full discrete–
event framework) show a qualitative close match to the
simulation results shown in Kihl et al. (2003) (obtained
with a discrete–time numerical integration approach) for
the same parameters and signal ranges.

4.2 Discrete Control. Continuous Plant

The second goal of the design process is to obtain a
controller that can be implemented with an algorithm
in a digital computer. For this aim we translate the
continuous-time controller into a discrete-time controller,
while keeping (for now) the continuous-time version of the
plant. By applying the Euler method to the control law
(4) we obtain the following discrete-time expression for
the PI-controller:

zk+1 = zk + ekh uk = K(ek +
zk

Ti
) (6)

Figure 4. Continuous time CPPS simulation results.

Figure 5. Discretized PI-Controller in PowerDEVS.

Figure 6. Discrete Time CPPS simulation results.

where k ∈ Z is the discrete-time index and h ∈ <+

is the time step size such as zk = z(t = kh). Now
we proceed to replace the previous PI-controller DEVS
coupled model by its discretized counterpart, which will
implement Eq.(6). The block diagram of the discretized
controller is shown in Figure 5, where the discrete versions
of the input variables xk and xrefk

are obtained by means
of Sample and Hold blocks, and the delay operation
on the controller variable z is performed by a Discrete
Delay block. These blocks are DEVS atomic models
parametrized with a common sampling period of h = 0.5
seconds.

We ran the simulation of the new system with the dis-
cretized control for 30 seconds. The results are shown in
Figure 6. The analysis of the results shows that the re-
sponse reproduces closely the properties of the continuous–
time simulation results of Figure 4, noting that in the
discrete–time case the queue length response is slightly
more under damped (with a more pronounced overshoot
at the beginning). This is due to the control delay intro-
duced by the discretized controller. The system stabilizes
to the reference value in a time qualitatively similar to the
continuous controller case, with a settling time of about
7 seconds. With these results we can adopt the discrete-
controller design as a satisfactory solution.



Figure 7. Hybrid CPPS model in PowerDEVS.

4.3 Discrete Control. Discrete Event Plant

Now, following a standard M&S design cycle, we should
verify our controller design against a more accurate rep-
resentation of the real system, getting rid of all kind of
approximations as much as possible. This constitutes the
third goal of our design process.

The real M/G/1 Server System is in fact a stochastic
DEDS, and can be straightforwardly represented and exe-
cuted under the DEVS framework. Thus, one of the advan-
tages of our full DEVS–based methodology arises at this
stage of the M&S process, where the verification activity
against the real system involves a simple model replace-
ment task (without switching formalisms or design tools).
Then, the continuous–time continuous–variable compo-
nents of our original model are replaced by their discrete–
event counterparts. By doing so we obtain the Hybrid
CPPS model shown in Figure 7. Traditional M&S method-
ologies, on the contrary, would usually involve some kind
of special-purpose language-specific implementation of the
Hybrid CPPS, i.e. the M/G/1 system and the controller
algorithm. In the case of Kihl et al. (2003) it consisted
in a custom code implemented by the authors in the C
language.

The Hybrid CPPS model in Figure 7 implements the fol-
lowing DEVS atomic models for the networking system: a
Packet Generator, an Admission Gate, a Queue and
a Server. These models handle discrete entities individ-
ually (which represent network packets) on a continuous-
time basis. The stochastic behavior of the network traffic is
considered explicitly at the packet inter–generation times
and the servicing times, so no approximation is involved.
The queueing of the packets is achieved by a First In-First
Out (FIFO) policy at the Queue block. A token bucket
algorithm is implemented at the Admission Gate block,
which is exactly like the one that would be implemented
on a real-world target embedded piece of code. It generates
internal tickets at a rate commanded by the control signal
u coming from the Controller. Individual incoming packets
will be accepted if there exist available tickets for them.
Otherwise, the packets are rejected. The control signal will
be updated at the time base imposed by the discrete-time
controller (the control period) which in our case is set to
h=0.5 from previous design phases.

Given the stochastic nature of the system we performed a
set of 1000 simulations (of 30 seconds each) and obtained
the average statistics of interest. This task was automated
with the PowerDEVS–Scilab (Scilab, 2009) integrated en-
vironment for simulation and numerical computation. The
results are shown in Figure 8, where the Queue Length
measure is provided for the average of the set of simu-
lations, and also for a single representative realization of
the set. Both curves were obtained by sampling the queue
lenght values every 1 second. The dotted curve shows a sat-
isfactory regulation of the average Queue Length around
the desired reference value of 10 packets (as specified by
the system parameters in (5)). A qualitative comparison
of our stochastic simulation results with those obtained
in Kihl et al. (2003) for the discrete–event experiments
(under the same conditions) shows a close match in terms
of time response and excursion values for both the average
and the particular realization curves.

Figure 8. Hybrid Discrete Event CPPS simulation results.

4.4 Implementation and Hardware-In-The-Loop Execution

Our methodology allows to implement the obtained
DEVS–based controller embedded in a real-world Network
Processor Unit (NPU), a target chip for high-performance
networking applications. We want to avoid the recoding
of the solution designed, and port our Controller design
from PowerDEVS to a DEVS–based executive capable of
running into the NPU. To this aim we ported the ECD++
toolkit to run in real–time into a NPU, and developed
libraries to communicate the DEVS models with the high
speed network processing layers. The embedded DEVS
models will then be able to control real-world traffic in
a Hardware-in-the-Loop (HIL) fashion.

We used an Intel IXP2400 NPU, an OC-48/2.5 Gbps.
line rate chip structured in two processing levels: the
Slow Data Path with an Intel XScale Core processor,
and the Fast Data Path, with 8 multithreaded dedicated
microengines (ME). Both types of processing hardware
(plus units for memory, control and I/O) coexist in the
same chip, constituting a networking System on Chip
(SoC). By means of supporting software libraries, we can
orchestrate tasks between the Core processor and the
MEs. Figure 9 shows the mapping between the Hardware
Architecture and the Software Architecture. In a typical
application, the MEs are programmed to do the line rate
speed processing, taking advantage of special purpose
hardware designs for latency hiding. The Core processor



Figure 9. ECD++ embedded on the Intel IXP2400. Hard-
ware and Software conceptual architectures.

usually performs control, management and exception tasks
delegated by the MEs.

As depicted in Figure 9 ECD++ runs at the Slow Data
Path. We developed an ECD++ I/O Core library as a
collection of Core Components (Linux Kernel modules)
which are used by the DEVS models in ECD++ to
communicate with microblocks (at the Fast Data Path).
Microblocks are the specialized software modules that
perform protocol-specific tasks running multithreaded and
pipelined inside the MEs. We developed an ECD++ I/O
microblock to communicate with the DEVS models at the
Core. With this infrastructure we are able to replace those
DEVS models that represent the real system by equivalent
I/O operations to the actual real-world system. In our case
study, for the hybrid CPPS model depicted in Figure 7,
only the Control model (and its Reference signal) will
be the retained DEVS models running in ECD++. They
communicate with the real-world networking system (Fast
Data Path) using two signals: the sensing of the Queue
Length signal (ME to Core) and the actuation of the
Control Rate signal (Core to ME).

5. CONCLUSIONS

In this work we showed how to utilize the DEVS M&S
framework as the basis of an end–to–end methodology
for applying control theory into a network admission
control problem, which yields an stochastic hybrid sys-
tem. We showed how the usual challenges that arise in
hybrid systems due to the needs for switching between
M&S paradigms disappear by following a full DEVS–
based methodology. Thanks to the QSS numerical meth-
ods, continuous systems can be seamlessly integrated with
discrete-event systems, providing a very suitable common
framework to integrate heterogeneous disciplines in the
area of control of real-time computing and networking
systems. Our approach enabled a seamless transition be-
tween DEVS–based tools for the final implementation of
the obtained models into an Intel IXP2400 NPU. This fact
greatly reduced the usual risks and efforts due to recoding
and adaptation of solutions when they are ported to real

embedded targets. The next steps will be focused on the
design of more sophisticated control strategies and the
testing of the solutions with real-world network traffic.

REFERENCES

Arzen, K.E., Robertsson, A., Henriksson, D., Johansson,
M., Hjalmarsson, H., and Johansson, K.H. (2006). Con-
clusions of the ARTIST2 roadmap on control of com-
puting systems. SIGBED Rev., 3(3), 11–20.

Cassandras, C. and Lafortune, S. (2004). Introduction to
discrete event systems. Kluwer Academic Publishers.

Castro, R., Kofman, E., and Wainer, G. (2009). A
Formal Framework for Stochastic DEVS Modeling and
Simulation. Transactions of SCS (in print).

Cellier, F. and Kofman, E. (2006). Continuous System
Simulation. Springer, New York.

Christin, N., Liebeherr, J., and Abdelzaher, T. (2002).
A quantitative assured forwarding service. In IEEE
INFOCOM 2002, volume 2.

Hellerstein, J. (2004). Feedback control of computing
systems. Wiley-IEEE Press.

Hollot, C., Misra, V., Towsley, D., and Gong, W. (2001a).
A control theoretic analysis of RED. In IEEE INFO-
COM 2001, volume 3.

Hollot, C., Misra, V., Towsley, D., and Gong, W. (2001b).
On designing improved controllers for AQM routers
supporting TCP flows. In IEEE INFOCOM 2001,
volume 3.

Intel (2004). Intel IXP2400 Network Processors.
URL http://download.intel.com/design/network/
ProdBrf/27905302.pdf.

Issariyakul, T. and Hossain, E. (2008). Introduction to
Network Simulator NS2. Springer.

Kihl, M., Robertsson, A., and Wittenmark, B. (2003).
Analysis of admission control mechanisms using non-
linear control theory. In Proceedings of ISCC 2003,
volume 2, 1306–1311. Kiris-Kemer, Turkey.

Kofman, E., Lapadula, M., and Pagliero, E. (2003).
PowerDEVS: A DEVS Based Environment for Hybrid
System Modeling and Simulation. Technical Report
LSD0306, LSD, UNR.

Kwon, W. and Kim, H. (2000). A survey of control
theoretic approaches in wired and wireless communica-
tion networks. In Proceedings of the Korea-Japan Joint
Workshop, volume 1, 30–45.

OMNeT++ Community (2004). OMNeT++ Discrete
Event Simulation System. www.omnetpp.org.

Robertsson, A., Wittenmark, B., and Kihl, M. (2003).
Analysis and Design of Admission Control in Web-server
Systems. In Proceedings of ACC’03, 254–259. Denver,
Colorado.

Scilab (2009). The open source platform for numerical
computation. http://www.scilab.org.

Tipper, D. and Sundareshan, M. (1990). Numerical meth-
ods for modeling computer networks undernonstation-
ary conditions. IEEE Journal on Selected Areas in
Communications, 8(9), 1682–1695.

Wainer, G. (2009). Discrete-Event Modeling and Simula-
tion: A Practitioner’s Approach. CRC Press (in print).

Zeigler, B., Kim, T., and Praehofer, H. (2000). Theory of
Modeling and Simulation. 2nd. edition. Academic Press,
New York.


