
Accelerating the computation of parallel trajectories of gradient descent

with the Cell-BE multiprocessor environment

Yuri Boiko and Gabriel A. Wainer

Carleton University

1125 Colonel By Drive,

Ottawa, ON, K1S 5B6 CANADA

yuri.boiko@rocketmail.com , gwainer@sce.carleton.ca

Keywords: neural networks, multilayer perceptron, non-
linear function approximator, time series; predictor; parallel

computing; Cell broadband engine (Cell-BE), Cell

microprocessor, Cell/B.E.

Abstract
Neural networks offer various possibilities for function

approximation. When provided a set of data points, the

network learns to approximate the underlying function that

generates those points. Although the network can be very

efficient, the amount computation needed during the

learning process can be very high. In order to improve this

process, we explore the parallelization for the random

scanning of starting points selected for the gradient descent

algorithm using Cell-BE multiprocessor environment. We

show the application of this method for approximating 3D

nonlinear function, as well as for predicting 2D time series.

We show that the parallel tracing of gradient descent

trajectories of the 3D function approximation allows

identifying a suitable starting condition for implementing an

efficient gradient descent, while being able deliver the

required accuracy of approximation in a shorter time. In 2D

time series prediction the attained advantage is the

possibility to achieve simultaneous prediction for various

numbers of steps ahead. It is shown how the Cell-BE

multiprocessor offers a convenient parallel environment for

the above solutions.

1. INTRODUCTION

Artificial Neural Networks (ANN) allows achieving

function approximation by learning the functionality

underlying to available set of data points by either

interpolating the non-linear function, or extrapolating its

expected values [1-4]. The gradient descent algorithm is a

popular method for training a popular kind of ANN: the

multilayer perceptron. The idea is to back-propagate the

errors found on output nodes in the ANN to hidden nodes;

based on the adjustment of the hidden neuron’s weights, the

overall error is minimized [5,6]. One of the associated

problems is the local minimum trapping which may occur

and thus either prevent convergence or allow it to

suboptimal value only. Another problem is the time

required for training - which may be too long to reach a

suitable solution. Both problems may be addressed using

parallel computing. In this article we explore the advantages

offered by the Cell-BE multiprocessor architecture. The

objective here is to study the potential of Cell-BE

multiprocessor parallel environment in optimizing the tasks

of function approximation and/or interpolation, specifically

for (1) 3D nonlinear function approximation and (2) 2D

time series prediction. As a 3D nonlinear function the

hyperbolic paraboloid has been taken, represented by the

equation z=x2-y2, which is 2
nd

 order polynomial function

with saddle point. As a 2D time series the function

x=int[1000*sin2(t/2)] + int[1000*sin2(t/20)] +

int[1000*sin2(t/30)] + int[1000*sin2(t/300)] has been taken,
in which the last term represented long term trend for the

scale of prediction considered. Multilayer percentron was

the neural network of choice to resolve both task (1) and (2).

It is demonstrated, that parallel tracing of gradient descent

trajectories of 3D function approximator allows efficiently

identifying the suitable starting condition for implementing

gradient descent to realize diving trajectory and thus

delivering the required accuracy of approximation in

shortest time frame. The 2D time series reveal narrow

distribution of the gradient descent trajectories, which in

itself does not benefit from parallel tracing. The advantage

from parallelization here is in splitting n-dimensional time

series into n 2D ones because of naturally fast convergence

track of its gradient descent training, which allows in

shortest time frame to obtain simultaneous predictions for

various numbers of steps ahead.

1.1. Related work

So far, at least two principally distinct parallelization

approaches were realized [7] in processing data with ANN:

(i) parallel connection of several networks so that each one

extracts different features from the same set of data [8] (see

Fig.1); (ii) splitting up a complex task into a number of
subtasks to be solved by different networks [9] (see Fig.2).

According to LiMin Fu [7], advantage of approach (i) is in

making different analyses of the same data and as a result in

extracting more information. First implementation of such

scheme was by Gevins and Morgan (1988) when applying

different networks to detect different types of contaminants

in EEF signals [8] from the brain. Approach (i) carries

potential for unexpected discoveries due to implementation

3201-56555-344-6

of multiple networks, because favorable combinations may

occur however unexpected.

Figure 1. Parallel network without central control [7].

Figure 2. Parallel network model with central control [8].

In the scheme (ii) the results supplied by different networks

may be combined in order to reach the solution of the

complex task. For instance, Casselman and Acres (1990)

[9] had employed parallelization scheme (ii) to conduct

different diagnostic tasks of satellite spectral data.

Effectively, parallelization scheme (ii) allows obtaining

solution for the task, complexity of which may be too high

for a single network with equivalent size, i.e. parallelization

(ii) enables to obtain the solution not reachable otherwise.

For nonlinear function approximation the benefit of

parallelization scheme (i) is in extensive coverage of

starting condition of the gradient descent. This has potential

in addressing problems of either trapping in local minima

and/or identifying the efficient trajectory of descent to the

global minimum. Both the above possibilities become part

of present article.

Either of the parallelization schemes, (i) and/or (ii), may

benefit the task of prediction in time series, which task

contain several dimensions suitable for parallelization, in

particular varying one of the following: 1)the initial set of

time values for prediction; 2)length of the forecast; 3) depth

in the history to rely in making forecast; 4)structure and/or

parameters of the predicting neural network. In present

article the first one of the above listed advantages will be

explored in details by employing scheme (i) of

parallelization. Scheme (ii) is regarded as going beyond the

scope of present article and is left for future research, as

well as listed advantages (2)-(4).

For parallelization purposes the environment offered by

newly developed Cell multiprocessor [10-12] is suitable and

will be exploited in this study.

2. PROBLEM FORMULATION

2.1 Selection of 3D function for parallel tracing

As nonlinear functions selected were those of 2
nd

 and 3rd

order with saddle points. The first function was the standard

saddle surface or hyperbolic paraboloid z=x2-y2, which is

shown in Fig.3. Second selected function is defined by the

equation z = x2
 – 3*x*y

2
 , which is depicted in Fig.4. As a

function approximator the multilayer perceptron (MLP) has

been designed, which consisted of three layers with 3 inputs

(x, y, 1), one hidden layer with tanh(.) activation function

for the neurons and linear output neuron, thus allowing 3-D

function generation.

Figure 3. Analytical representation of hyperbolic

paraboloid z=x2-y2
 for the area under simulation.

Figure 4. Analytical representation of z=x2
 – 3*x*y

2
 for

the simulated area.

3211-56555-344-6

2.2 Selection of Time Series

Time series predictor has been implemented on Cell/B.E.

architecture, in which individual SPE processors compete to

predict 3 steps ahead of the 5 current values of times series.

As test functions two series were chosen: (1) series x(t)

representing underlying long term trend as x=int [1000 *

sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 * sin2(t/30)] +

Figure 5. Time series of x=int [1000 * sin2(t/2)] + int [1000

* sin2(t/20)] + int [1000 * sin2(t/30)] + int [1000 *

sin2(t/300)], where t=1, 2, 3…, Tb+tsp+n. The terms of the

expression are shown as Series 1 to Series 4, while the full

function is represented by Series 5. (Here Tb=500; tsp=10;

n=5).

int [1000 * sin2(t/300)], where t=1, 2, 3…, Tb+tsp+n; and

which is shown graphically in Fig.5 for Tb=500; tsp=10;

n=5). For time series prediction the structure of three layer

MLP included n=5 inputs, which tested the n consecutive

time series values based on which the prediction of the

future value k-steps ahead xt+k is obtained at the output, the

actual value being xt+k, so that Error= xt+k - xt+k . Total

number of basic t points was Tb=500, out of which the first

200 points formed the training set, while the rest 300 points

were used for testing, i.e. verification of the predicting

ability of the trained MLP. The maximal number of t points

involved Tmax also includes extra points above t=500, which

is calculated via Tmax = Tb + tsp + n, where tsp is the number

of time-steps for prediction.

The above mentioned parallelization scheme (i) was

employed to trace the gradient descent of training from

various starting points.

For comparison, the time series with the trend changing

from positive to the negative one has also been constructed,
as it is shown in Fig. 6. For this series the training is

performed within the same function as in Fig.5, while in the

forecasting area the sign of the last term is changed to the

opposite (from plus to minus) as shown in Fig.6, thus

representing negating trend. Here the meaning of the

negating trend includes retaining the analytical form of the

trend, which is represented by the last term of the equation,

namely int [1000 * sin2(t/300)], but taking it in the equation

with the opposite sign, for which coefficient h(t) is hcanging

the value from “+1” to “-1”. It is essential here that the

training set did not include the negating trend at all, so that

in the forecasting area the predictor would face it for the

first time.

Figure 6. Time series of x=int [1000 * sin2(t/2)] + int [1000

* sin2(t/20)] + int [1000 * sin2(t/30)] + h(t) * int [1000 *

sin2(t/300)], where t=1, 2, 3,…, Tb+tsp+n, and h(t)= {+1 for

1<t<210; -1 for t>211 }; (here Tb=500; tsp=3; n=5). The

terms of the expression are shown as Series 1 to Series 4,

while the full function is represented by Series 5.

2.3 Cell multiprocessor parallel environment
As a simulation environment a multithreaded synergistic

mode on Cell/B.E. was implemented by allowing PPU to

initiate asynchronous threads of gradient descent algorithm

on available SPU's concurrently. Solutions were attained via

subjecting MLP to training for selected training points until

the convergence lead to attaining the desired level of mean

squared error ε. The output parameters of each SPU run are

weights of the MLP's neurons, which compose the neural

function generator/ approximator. The algorithm solutions,

which are above mentioned sets of the input weights for

MLP's neurons, are classified according to the statistical

characteristics of the function approximation they provide,

such as under-fitting, over-fitting, minimal mean squared

error fitting. The starting points (i.e. weights of the neurons)

for the gradient descent algorithm deterministically define

the convergence route to the solution, which satisfies the

conditions of optimality in that the average mean square

error for a predetermined set of training points falls below

chosen limit ε..Evaluation of the quality of the achieved

solution was conducted by employing two more error

parameters: (i) mean squared error for the most remote from

training coordinate points Et, and (ii) overall mean squared

error Ed for combined coordinates including joint set of X

and Y, both including all of training and testing (used in (i))

coordinates.

According to the adopted parallelization strategy, the

training of MLPs were programmed for SPEs, transferring

each SPE randomly chosen starting point. The following

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

1 2 3 4 5

training forecasting
x(t)

t

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600

1 2 3 4 5

training forecasting

x(t)

t

3221-56555-344-6

variables are used in the programs: numInputs for number of

MLP inputs, including bias, numOutputs for number of

outputs, which here was = 1, numPatterns for number of

patterns used in training, numHidden for number of hidden

nodes of MLP, numEpochs for number of training epochs.

The algorithm also included learning rates: LR_IH for

input-hidden nodes connections, LR_HO for hidden nodes-

output connections, LR_IO input-output direct connections

as well as momentum coefficients: alphaHO, alphaIO and

alphaIH with the same notations for HO, IO and IH indices.

Testing of the trained MLPs was conducted by PPU

processor.

 The main programming feature enabling the task solution

was direct memory access (DMA), which allowed initiation

of parallel trajectories by SPEs by multi-threading, where

each trajectory represented one thread. Threads are

asynchronous, for which is provided by pthread(.) function

of Cell SDK package, which interrupts main program

execution until completion of all threads. The data were

organized in the struct{.} in the control block file and DMA

transferred to SPEs by the PPU. Termination of the pthread

is achieved either by reaching the required precision Eps, or

by exhausting the resource of allowed training epochs

(parameter numEpochs). After termination of all threads,

the PPU conducts tests for the networks obtained from each

SPE.

3. RESULTS AND DISCUSSION

3.1 Simulation for hyperbolic paraboloid z=x
2
-y

2
 case

For hyperbolic paraboloid, the algorithm convergence is

achieved at minimum 7 hidden neurons and the training

points sets of X=Y=[3.5 2.5 1.5 0.5 -0.5 -1.5 -2.5 -3.5].

Tests below were conducted for number of hidden neurons

numHidden=10 for improved convergence.

Table 1 gathers the data of parallel tracing of training

trajectories presented by 8 SPEs of Cell/B.E. engine, namely

SPE-0 through SPE-7). Targeted precision value was

ε =10
-5, after achieving which the training was terminated

(or continued until reaching limit of max training cycles

otherwise).

Table 1. Training progress of MLP to approximate hyperbolic paraboloid function of Fig.3 on various

SPEs of Cell/B.E. engine: achieved root mean square error as function of number of training epoch.

(Input parameters are: numInputs=3, numOutputs=1, numPatterns=64, numHidden=10, max

numEpochs=5400; Learning rates are: LR_IH=0.007, LR_HO=0.007, LR_IO=0.007; momentum

coefficients: alphaHO=0.007, alphaIO=0.007, alphaIH=0.007)

������ ��	
�� ��	
�� ��	

� ��	
�� ��	
�� ��	
�� ��	
�� ��	
��

�� ����� ����� ����� ����� ����� ����� ����� �����

���
���� ����� �����
��

� ����
�� ����
�� ����� ����
��

�
�� ����� ���� ���
��� ��������� ����������� ����
�� ���
�� ����
��

���� ��

�� ����� ��
�� ���
�� ��
�
�� ����
�� �����
�� ������

��� ������� ���

�� ����
�� ���

�� �������� ����
�� �������� �������

���� ��
�� ����
�� �����
�� ���
��� ����

�� ������� �����
�� ������

���� ���	���� ����� ���
��� ������ ���
���� ����

�� ���
�� �������

����� ������� ����� ��������� ��
�
� �����
��� ��������� ������� ������

����� ������
�� ������� ����������� ����� ������

� ����
���� ������
�� ���������

����� �������� ������ ��������
�� ��
��� ���������� �����

��� �����
��� ������

���� �����
��� ����� ��������
�� ������ �������	��� ������� �������� ������	��

����� ���������� ��
�� ��������
�� ����� �����
����� �������� ���������� �����
����

����� ����������� ������ ��������
�� ����� ��������
�� ����������� ���������� ������

��

����� ����������� �� ����������� ������ ��������
�� ���������� ��������
�� �����������

����� ��������� ����� ��������
�� ������ ��������
�� ���������� ��������� ��������

����� �������� ����� ������

��� ����� ������
�� ��������� ��������
�� �

����� � ����� �������� ������ ���������� ���������� ���������� �

����� � ����� � ����� ��������
�� ���������� �������� �

��
��� � ����� � ������ ���������� ����������� � �

������ � ����� � ������ ����������� �����
��
�� � �

����� � ������ � ���� ������
�
�� �����

���� � �

������ � ���
�� � ��
�� ��������
�� ��������
�� � �

��
��� � ���� � ���
� �������� ����������� � �

3231-56555-344-6

It is seen from Table 1 that some of the trajectories exhibit

the desired “diving” behavior, i.e. finding and following a

quick descent track to converge and deliver smallest RMS

Error values at smallest computational cost (in other words,

requiring minimal number of epochs for training of the

neural net), such as those SPE-0, SPE-2, SPE-6 and SPE-7

in Table 1. At the same time others, after a quick start, such

as SPE-4 and SPE-5 in Table 1, saturate the progress at

certain level of accuracy in function approximation. In this

example, SPE-5 did not reach targeted precision level of

ε=10
-5

 for the allocated training interval, while SPE-4 did

achieve ε=10
-5

 but at much higher calculating cost than the

pack of leaders (SPE-0, SPE-2, SPE-6 and SPE-7).
 The result of the above experiment therefore demonstrates

that parallel environment allows detecting the overall nature

of the distribution of gradient descent trajectories for a given

task. In the above example the trajectories are divided on

those (1) non-converging (such as SPE-1 and SPE-3), (2)

saturating convergence (such as SPE-4 and SPE-5) and (3)

quickly converging (“diving”) to the global minimum (such

as SPE-0, SPE-2, SPE-6 and SPE-7). Advantage offered by

the parallel environment of Cell multiprocessor allows

therefore avoiding time losses associated with possible

trapping of the trajectories in local minima if sequentially

attempting to find the solution with single processor.

3.2 Simulation for z = x
2
 – 3*x*y

2 case

For the case of z = x2
 – 3*x*y

2 the convergence of the

gradient descent algorithm become attainable with the least

number of hidden nodes being 10 and under training sets of

points X=Y= [1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75].

hyperbolic paraboloid, the algorithm convergence. Scaling

down the distance between training points by factor of 2,

which was very much successful for the hyperbolic

paraboloid, brings a success, which is worth mentioning.

Coordinates in question become Xt = Yt = [1.0 0.75 0.5 0.25

0.0 -0.25 -0.5 -0.75 -1.0] and Xd = Yd = [1.0 0.875 0.75

0.625 0.5 0.375 0.25 0.125 0.0 -0.125 -0.25 -0.375 -0.5 -

0.625 -0.75 -0.875 -1.0].

Table 2 shows data on MLP training to approximate z = x2
 –

3*x*y
2 function in Cell/B.E. environment by various SPEs.

Comparing to the data for hyperbolic paraboloid (Table), it

is seen that the "diving depth" becomes at least 2 orders of

magnitude shallower (E-3 vs E-5), which is attributed to the

higher complexity of the function (3rd order nonlinearity

instead of 2nd one). The earliest possibility to take

advantage of the function approximator become available

after 400 epochs from SPE-4, which demonstrated the

converge of RMSE more than order of magnitude from its

initial value (RMSE=����
��
� in Table 2). Next order of
magnitude improvement of RMSE is delivered at the cost of

25000 epochs, i.e. more than 60 times later, by SPE-3

(RMSE=���
�
�� in Table 2). And the last order of
magnitude improvement comes at a cost of 200 times more

training, i.e. 500000 epochs, by SPE-3 again

(RMSE=����
���), coming ahead of possibly trapped in

local minima SPE-1 (RMSE=��������), SPE-4

(RMSE=��������), SPE-5 (RMSE=������	�), SPE-6

(RMSE=��������) and SPE-7 (RMSE=�����
��). Closest

rivals were SPE-0 (RMSE=��������) and SPE-2

(RMSE=��������). Here the parallelization of the gradient
descent algorithm also brought about two advantages –

(1)early possibility of having intermediate level of function

approximator, while still continuing to pursue (2) the

improved version of it at higher training cost.

Table 2. Training progress of MLP to approximate z = x2
 – 3*x*y

2 function of Fig.4 on various SPEs

of Cell/B.E. engine: achieved root mean square error as function of number of training epoch. (Input

parameters are: numInputs=3, numOutputs=1, numPatterns=64, numHidden=24, max

numEpochs=500000; Learning rates are: LR_IH=0.007, LR_HO=0.007, LR_IO=0.007; momentum

coefficients: alphaHO=0.007, alphaIO=0.007, alphaIH=0.007)

epoch SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7

�� ��������� ��������� ������
�� ��������� �������
� ��������� ��������� ���������

�� ��������� ��������� �����
��� ��������� ��������� ���
����� �������
� ���������

��� ��������� ������
�� ��������� ������
�� ��������� ��������� ��������� ���������

���� ��������� ��������� ��������� ��������� ��������� �����
�
� ��������� ���������

��� ��
������ ����
����
���
�
�� ��������� �����
	�� ��������� ���
				�
��������

���� ��������� �����
�
� ��������� ��������� ����
��
� ��������� ������	�� ���������

����� ��������� ��������� ��������� ������

� ��������� ��������� ��������� ���������

���� ������
�� ��������� ��������� ��������� �����
��� ��
����
� �����
��� ������

�

����� ��������� ��������� ���
����� ��������� ��������� ��
������ ������
�� ���������

������ ��������� ��������� ��������� ��������� �����
��� ���
����� �����
��� ���������

3241-56555-344-6

����� ���
����� ��������� ���
����� ���
�
��� �������
� ��������� ��������� ���

����

������ �����

�� ���
����� �����
��� ��������� ���
����� ��������� ���
����� ���������

������� ��������� ���
����� ����
���� ��������� ����
���� ��������� ��������� ���������

������ ��������� ����
���� ��������� ��������� �����
��� ���
����� ������
�� ����
����

������� ��������� ��������� ����
���� ����
	��� ��������� ��������� ��������� ���������

������� ��������� ��������� ��������� ����
���� ��������� ��������� ����	
��� ���������

Table 3. Results of the competition for Time Series Prediction described by x(t) = int[1000 * sin2(t/2)] + int[1000 *

sin2(t/20)] + int[1000 *sin2(t/30)] + int[1000 * sin2(t/300)], where t=1, 2, 3,…, Tb+tsp+n; (here Tb=500; tsp=3; n=5). Final

number of epoch = 5000. Input parameters are: numInputs=6, numOutputs=1, numTrainPat=200, numHidden=12, max

numEpochs=5000, Learning rates are: LR_IH=0.000700, LR_HO=0.000700, LR_IO=0.000700, momemtum coefficients:

alphaHO=0.000700, alphaIO=0.000700, alphaIH=0.000700; while precision Eps=0.001000

Table 4. Results of the competition for 3 steps ahead in time series prediction with negating trend described by x(t) =

int[1000 * sin2(t/2)] + int[1000 * sin2(t/20)] + int[1000 *sin2(t/30)] + h(t) * int [1000 * sin2(t/300)], where t=1, 2, 3,…,

Tb+tsp+n, and h(t)= {+1 for 1<t<210; -1 for t>211 }; (here Tb=500; tsp=3; n=5). Final number of epoch = 5000. Input

parameters are: numInputs=6, numOutputs=1, numTrainPat=200, numHidden=12, max numEpochs=5000, Learning rates

are: LR_IH=0.000700, LR_HO=0.000700, LR_IO=0.000700, momemtum coefficients: alphaHO=0.000700,

alphaIO=0.000700, alphaIH=0.000700; while precision Eps=0.001000

3.3 Simulation for time series prediction

 The training of time series predictor of the sequence with

long term trend, described by equation x(t) = int [1000 *

sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 * sin2(t/30)] +

h(t) * int [1000 * sin2(t/300)], where t=1, 2, 3…, Tmax and

int(.) takes the integer part of the argument, has been

conducted in Cell/B.E. environment in order to demonstrate

best predictive capability between the 8 SPEs, each

modeling MLP neural network with 12 hidden nodes and

trained for 5000 epoch on 200 training patterns. The results

for Tmax =Tb+tsp+n, with Tb=500; tsp=3; n=5 are summarized

in Table 2, where it is seen that best performance has been

attained by SPE-3 and SPE-7 with final Root Mean Square

Error (RMSE) values of 0.056455 and 0.056087

respectively for the training points. It is seen however that

best predictive capability is demonstrated by by SPE-3,

which provides lowest RMSE value of 0.121441 for novel

points versus that of 0.121573 for SPE-7. The worst

performance here was by SPE-2 with RMSE values of

0.058436 for training points and 0.125095 for novel ones,

which are respectively ca. 4% and 3% worse than that of the

winner (SPE-3). It is seen that final values for all

trajectories are falling within close proximity of each other
and there were no instances of entrapment in local minima.

Therefore, parallelization here is not beneficial unless

another dimension in forecasting is present. Such

dimension can be the parameter tsp – the number of steps for

prediction.

Parallelization on parameter tsp for time series is therefore

seen as the viable target.

 SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7

RMSE

training

��������� ��������� ��������� ��������� ��������� ��������� ��������� ������	��

RMSE

forecast

���

���� ���

���� ��	
����� ���
����� ���
����� ���
��
�� ���

��
� ���
�����

RMSE

overall

��������� �������
� ��	������ ��������� ��������� ��������� ��������� ������
��

 SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7

RMSE

training

��������� ��������� ��������� ��������� ��������� ��������� ��������� ������	��

RMSE

forecast

�������
� ��������� ��	������ ��������� ��������� ������
�� ��������� ������	��

RMSE

overall

�����
��� ������
�� ��	������ ������
�� ��������� �����
��� �����
��� �����		��

3251-56555-344-6

Forecasting property of the best MLPs (those of SPE-3 and

SPE-7 from Table 3) is illustrated in Fig.7. It is seen that

errors are located in the vicinity of the local trend change

Figure 7. Prediction of time series of Fig.5 for 3 steps

ahead (tsp =3) by trained MLPs of SPE-3 and SPE-7. Here:

1 is function x=int [1000 * sin2(t/2)] + int [1000 * sin2(t/20)]

+ int [1000 * sin2(t/30)] + int [1000 * sin2(t/300)], (where

t=1, 2, 3…, 507, 508); 2 and 4 – MLP output (forecasting)

from SPE-3 and SPE-7 respectively; 3 and 5 – RMSE for

MLPs from SPE-3 and SPE-7. All units (for t, x(t) and

RMSE) are arbitrary. Values x(t) are scaled down 1000

times, thus compensatory coefficient *1000 is to be used as

shown.

Figure 8. Prediction of time series of Fig.5 for 10 steps

ahead (tsp =10) by trained MLP.. Here: 1 is function x=int

[1000 * sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 *

sin2(t/30)] + int [1000 * sin2(t/300)], (where t=1, 2, 3…,

507, 508); 2 is MLP output (tests of forecasting); 3 is

RMSE for testing the resulting MLP. All units (for t, x(t)
and RMSE) are arbitrary. Values x(t) are scaled down 1000

times, thus compensatory coefficient *1000 is to be used as

shown.

Figure 9. Prediction of time series with negating trend

(Fig.6) 3 steps ahead (tsp=3) by trained MLPs of SPE-3 and

SPE-7. Here: 1 is function x=int [1000 * sin2(t/2)] + int

[1000 * sin2(t/20)] + int [1000 * sin2(t/30)] + h(t) * int [1000

* sin2(t/300)], where t=1, 2, 3,…, Tb+tsp+n, and h(t)= {+1

for 1<t<210; -1 for t>211 }; (here Tb=500; tsp=3; n=5).); 2

and 4 – MLP output (forecasting) from SPE-3 and SPE-7

respectively; 3 and 5 – RMSE for MLPs from SPE-3 and

SPE-7. All units (for t, x(t) and RMSE) are arbitrary.

Values x(t) are scaled down 1000 times, thus compensatory

coefficient *1000 is to be used as shown.

Figure 10. Prediction of time series of Fig.6 for 10 steps

ahead (tsp =10) by trained MLP. Here: 1 is function x=int

[1000 * sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 *

sin2(t/30)] + h(t) * int [1000 * sin2(t/300)], where t=1, 2,

3,…, Tb+tsp+n, and h(t)= {+1 for 1<t<210; -1 for t>211 };

(here Tb=500; tsp=3; n=5).); 2 is MLP output (tests of

forecasting); 3 is RMSE for testing the resulting MLP. All

units (for t, x(t) and RMSE) are arbitrary. Values x(t) are

scaled down 1000 times, thus compensatory coefficient

*1000 is to be used as shown.

areas. Otherwise, forecasting is accurate and it reflects the

underlying long term trend. Changing the trend from

positive (as in Fig 5) to negative one (as in Fig.6) practically

retains the predictive capability of the MLP, a it is

illustrated in Fig. 9 and in Table 4. Despite the fact that

training was entirely performed on the part of the function

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

1

2

3

training forecasting

T

x(T), x(T), x(T)-x(T), (*103)

Time series prediction by SPE-3 and SPE7

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

1

2

3

4

5

T

training forecasting

x(T), x(T), x(T)-x(T),
 (*103)

-2

-1

0

1

2

3

0 100 200 300 400 500 600

1

2

3

4

5

training forecasting

T

x(T), x(T), x(T)-x(T), (*103)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

1

2

3

training forecasting

T

x(T), x(T), x(T)-x(T),
(*103)

3261-56555-344-6

which only contained a positive trend (points ##1 to 200 in

Fig.6 and Fig.9), the network appeared to fully retain

forecasting capability for the part where the trend was

opposite one, i.e. for the negated trend in Fig.6 in the

forecasting area. The partial cost however for that is

involved of higher RMS Error as it is seen by comparing

related RMSE values of Table 3 and Table 4. Specifically,

for the best performing SPEs, namely SPE-3 and SPE-7, the

change in RMSE for the forecasting area become
respectively ∆RMSE = ���������
� ���
����� �� �������� and

������	��
� ���
����� �� �������� due to negating the trend.
These changes amount to 40.97% and 40.39% respectively

of its initial values (or 29.06% and 28.77% respectively of

its final values). Thus the costs of negating the trend

become less then twice increase in RMS Error for the

forecasting area. Apart from being higher in amplitude, the

error also changes the sign, as it is seen by comparing plots

#3 and #5 with that of the Fig.7 and Fig.9.

 Increase of the prediction range to tsp=10 leads to increase

in RMSE both for training and forecasting areas, as it is

shown in Fig.8 and Fig.10 for the continuing and negating

trend respectfully. The RMS Error for the training sessions

of 5000 epochs long for both cases (Fig.8 and Fig.10) are

close (0.263152 and 0.268044) as the training sets are the

same. It is ca. 4 times higher than that for tsp=3 in Table 3

and Table 4, which suggest linear trend for RMSE increase

with the tsp parameter. For the forecasting area the values of

RMSE are 0.430972 and 0.766880 respectfully, which

indicates that forecasting of the negating trend (Fig.10) is

almost twice less accurate as that of the continuing one

(Fig.8).

 Thus, it is seen that parallel tracing allows for simultaneous

generation of the multiple range forecasts.

3. CONCLUSIONS

The following conclusions can be drawn form the above

considerations.

1. Cell multiprocessor parallel environment allows for

efficient scanning of starting points of gradient descent

algorithm via parallel tracing of training trajectories

from random locations.

2. For 3D nonlinear function approximator Cell

multiprocessor efficiently address the problem of local

minima entrapment by identifying trajectories free of

that.

3. For the time series prediction parallelization within Cell

multiprocessor environment brings the advantage of

simultaneous forecasting for various steps ahead into

the future.

4. For both, nonlinear function approximator as well as

time series predictor, the parallel tracing of the

trajectories allows to access an early approximations,

achievable at significantly lower calculating cost

(number of training epochs) , while still continuing

further training and achieving higher accuracy at later

stage.

REFERENCES

[1]. Simon Haykin. Neural Networks: A Comprehensive

Foundation. - Pearson Education (Singapore), 1999.

[2]. G. Cheang and A. R. Barron, “Estimation with two

hidden layer net”,- Neural Networks, IJCNN’99

International Joint Conference on, vol. 1, pp. 375-378

(1999).

 [3]. F. L. Lewis, J. Campos and R. Selmic, “Neuro-fuzzy

control of industrial systems with ctuator nonlinearities”,-

Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, 2002, 244 p.

[4]. J. Park and I. W. Sandberg, “Criteria for the

approximation of nonlinear systems”,- IEEE Trans.

Circuits Systems, 39 , pp. 673-676 (1992).
[5]. Lewis, Frank L.; Campos, J.; Selmic, R.; "Neuro-fuzzy

control of industrial systems with actuator nonlinearities",-

Frontiers in applied mathematics ; Society for Industrial

and Applied Mathematics, Philadelphia, 2002, 244 p.

[6]. Stavroulakis, Peter., "Neuro-fuzzy and fuzzy-neural

applications in telecommunications",- Signals and

communication technology; Engineering online library,

Springer-Verlag, Berlin; New York, 2004, 339 p.

[7]. LiMin Fu, Neural Networks in Computer Intelligence,

1994 by McGraw-Hill, p.211.

[8]. Gevins, A.S. and Morgan, N.H. (1988) Application of
neural network (NN) signal processing in brain research.

IEEE Transactions on Acoustics, Speech and Signal

Processing, 36, pp.1152-1166.

[9]. Casselman, F. and Acres J.D. (1990) DASA/LARS, a

large diagnostic system using neural networks. In

Proceedings of IJCNN (Washington, D.C.), pp.II-539-

542.

[10]. Sandeep Koranne, “Practical Computing on the Cell

Broadband Engine”, Springer, 2009, XXXV, 485 p..

http://www.springer.com/computer/communications/book/

978-1-4419-0307-5

[11]. Abraham Arevalo, Ricardo M. Matinata, Maharaja

Pandian, Eitan Peri, Kurtis Ruby, Francois Thomas, Chris

Almond, “Programming the Cell Broadband Engine™

Architecture: Examples and Best Practices” Publisher:

IBM® Redbooks®, 2008, 642 p.

http://www.redbooks.ibm.com/redbooks/pdfs/sg247575.pd

f

[12]. Matthew Scarpino, “Programming the Cell Processor:

For Games, Graphics, and Computation” Prentice Hall,

2008, 744 p. [Sample Chapter: Introducing the Cell

Processor @

http://www.informit.com/articles/article.aspx?p=1250899]

3271-56555-344-6

