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Abstract 
Neural networks offer various possibilities for function 

approximation. When provided a set of data points, the 

network learns to approximate the underlying function that 

generates those points. Although the network can be very 

efficient, the amount computation needed during the 

learning process can be very high. In order to improve this 

process, we explore the parallelization for the random 

scanning of starting points selected for the gradient descent 

algorithm using Cell-BE multiprocessor environment. We 

show the application of this method for approximating 3D 

nonlinear function, as well as for predicting 2D time series.  

We show that the parallel tracing of gradient descent 

trajectories of the 3D function approximation allows 

identifying a suitable starting condition for implementing an 

efficient gradient descent, while being able deliver the 

required accuracy of approximation in a shorter time. In 2D 

time series prediction the attained advantage is the 

possibility to achieve simultaneous prediction for various 

numbers of steps ahead. It is shown how the Cell-BE 

multiprocessor offers a convenient parallel environment for 

the above solutions.  

 

1.  INTRODUCTION 

Artificial Neural Networks (ANN) allows achieving 

function approximation by learning the functionality 

underlying to available set of data points by either 

interpolating the non-linear function, or extrapolating its 

expected values [1-4].  The gradient descent algorithm is a 

popular method for training a popular kind of ANN: the 

multilayer perceptron. The idea is to back-propagate the 

errors found on output nodes in the ANN to hidden nodes; 

based on the adjustment of the hidden neuron’s weights, the 

overall error is minimized [5,6]. One of the associated 

problems is the local minimum trapping which may occur 

and thus either prevent convergence or allow it to 

suboptimal value only.  Another problem is the time 

required for training - which may be too long to reach a 

suitable solution.  Both problems may be addressed using 

parallel computing. In this article we explore the advantages 

offered by the Cell-BE multiprocessor architecture.  The 

objective here is to study the potential of Cell-BE 

multiprocessor parallel environment in optimizing the tasks 

of function approximation and/or interpolation, specifically 

for (1) 3D nonlinear function approximation and (2) 2D 

time series prediction. As a 3D nonlinear function the 

hyperbolic paraboloid has been taken, represented by the 

equation z=x2-y2, which is 2
nd

 order polynomial function 

with saddle point.  As a 2D time series the function 

x=int[1000*sin2(t/2)] + int[1000*sin2(t/20)] + 

int[1000*sin2(t/30)] + int[1000*sin2(t/300)] has been taken, 
in which the last term represented long term trend for the 

scale of prediction considered.  Multilayer percentron was 

the neural network of choice to resolve both task (1) and (2).  

It is demonstrated, that parallel tracing of gradient descent 

trajectories of 3D function approximator allows efficiently 

identifying the suitable starting condition for implementing 

gradient descent to realize diving trajectory and thus 

delivering the required accuracy of approximation in 

shortest time frame.  The 2D time series reveal narrow 

distribution of the gradient descent trajectories, which in 

itself does not benefit from parallel tracing.  The advantage 

from parallelization here is in splitting n-dimensional time 

series into n 2D ones because of naturally fast convergence 

track of its gradient descent training, which allows in 

shortest time frame to obtain simultaneous predictions for 

various numbers of steps ahead.   

 

1.1. Related work 

So far, at least two principally distinct parallelization 

approaches were realized [7] in processing data with ANN: 

(i) parallel connection of several networks so that each one 

extracts different features from the same set of data [8] (see 

Fig.1); (ii) splitting up a complex task into a number of 
subtasks to be solved by different networks [9] (see Fig.2).  

According to LiMin Fu [7], advantage of approach (i) is in 

making different analyses of the same data and as a result in 

extracting more information.  First implementation of such 

scheme was by Gevins and Morgan (1988) when applying 

different networks to detect different types of contaminants 

in EEF signals [8] from the brain.  Approach (i) carries 

potential for unexpected discoveries due to implementation 
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of multiple networks, because favorable combinations may 

occur however unexpected.    

 

 

Figure 1. Parallel network without central control  [7].   

 

 
Figure 2. Parallel network model with central control [8].   

 

In the scheme (ii) the results supplied by different networks 

may be combined in order to reach the solution of the 

complex task.  For instance, Casselman and Acres (1990) 

[9] had employed parallelization scheme (ii) to conduct 

different diagnostic tasks of satellite spectral data.   

Effectively, parallelization scheme (ii) allows obtaining 

solution for the task, complexity of which may be too high 

for a single network with equivalent size, i.e. parallelization 

(ii) enables to obtain the solution not reachable otherwise.  

 

For nonlinear function approximation the benefit of 

parallelization scheme (i) is in extensive coverage of 

starting condition of the gradient descent.  This has potential 

in addressing problems of either trapping in local minima 

and/or identifying the efficient trajectory of descent to the 

global minimum.  Both the above possibilities become part 

of present article.  

  

Either of the parallelization schemes, (i) and/or (ii), may 

benefit the task of prediction in time series, which task 

contain several dimensions suitable for parallelization, in 

particular varying one of the following: 1)the initial set of 

time values for prediction; 2)length of the forecast; 3) depth 

in the history to rely in making forecast; 4)structure and/or 

parameters of the predicting neural network.  In present 

article the first one of the above listed advantages will be 

explored in details by employing scheme (i) of 

parallelization.  Scheme (ii) is regarded as going beyond the 

scope of present article and is left for future research, as 

well as listed advantages (2)-(4).   

 

For parallelization purposes the environment offered by 

newly developed Cell multiprocessor [10-12] is suitable and 

will be exploited in this study.  

 

2.   PROBLEM FORMULATION  

2.1 Selection of 3D function for parallel tracing 

As nonlinear functions selected were those of 2
nd

 and 3rd
 

order with saddle points.  The first function was the standard 

saddle surface or hyperbolic paraboloid z=x2-y2, which is 

shown in Fig.3.  Second selected function is defined by the 

equation z = x2
 – 3*x*y

2
 , which is depicted in Fig.4.  As a 

function approximator the multilayer perceptron (MLP) has 

been designed, which consisted of three layers with 3 inputs 

(x, y, 1), one hidden layer with tanh(.) activation function 

for the neurons and linear output neuron, thus allowing 3-D 

function generation. 

 
 

Figure 3. Analytical representation of hyperbolic 

paraboloid z=x2-y2
 for the area under simulation.   

 

 
 

Figure 4. Analytical representation of z=x2
 – 3*x*y

2
 for 

the simulated area. 
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2.2   Selection of Time Series 

Time series predictor has been implemented on Cell/B.E. 

architecture, in which individual SPE processors compete to 

predict 3 steps ahead of the 5 current values of times series.  

As test functions two series were chosen: (1) series x(t) 

representing underlying long term trend as x=int [1000 * 

sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 * sin2(t/30)] +  

 

 
 

Figure 5.  Time series of x=int [1000 * sin2(t/2)] + int [1000 

* sin2(t/20)] + int [1000 * sin2(t/30)] + int [1000 * 

sin2(t/300)], where t=1, 2, 3…, Tb+tsp+n. The terms of the 

expression are shown as Series 1 to Series 4, while the full 

function is represented by Series 5. (Here Tb=500; tsp=10; 

n=5).  

 

int [1000 * sin2(t/300)], where t=1, 2, 3…, Tb+tsp+n; and 

which is shown graphically in Fig.5 for Tb=500; tsp=10; 

n=5).  For time series prediction the structure of three layer 

MLP included n=5 inputs, which tested the n consecutive 

time series values based on which the prediction of the 

future value k-steps ahead xt+k  is obtained at the output, the 

actual value being xt+k, so that Error= xt+k - xt+k .  Total 

number of basic t points was Tb=500, out of which the first 

200 points formed the training set, while the rest 300 points 

were used for testing, i.e. verification of the predicting 

ability of the trained MLP.  The maximal number of t points 

involved Tmax also includes extra points above t=500, which 

is calculated via Tmax = Tb + tsp + n, where tsp is the number 

of time-steps for prediction.   

The above mentioned parallelization scheme (i) was 

employed to trace the gradient descent of training from 

various starting points.   

For comparison, the time series with the trend changing 

from positive to the negative one has also been constructed, 
as it is shown in Fig. 6.  For this series the training is 

performed within the same function as in Fig.5, while in the 

forecasting area the sign of the last term is changed to the 

opposite (from plus to minus) as shown in Fig.6, thus 

representing negating trend.  Here the meaning of the 

negating trend includes retaining the analytical form of the 

trend, which is represented by the last term of the equation, 

namely int [1000 * sin2(t/300)], but taking it in the equation 

with the opposite sign, for which coefficient h(t) is hcanging 

the value from “+1” to “-1”.  It is essential here that the 

training set did not include the negating trend at all, so that 

in the forecasting area the predictor would face it for the 

first time.   

 
 

Figure 6.  Time series of x=int [1000 * sin2(t/2)] + int [1000 

* sin2(t/20)] + int [1000 * sin2(t/30)] + h(t) * int [1000 * 

sin2(t/300)], where t=1, 2, 3,…, Tb+tsp+n, and h(t)= {+1 for 

1<t<210; -1 for t>211 }; (here Tb=500; tsp=3; n=5). The 

terms of the expression are shown as Series 1 to Series 4, 

while the full function is represented by Series 5.   
 

2.3 Cell multiprocessor parallel environment 
As a simulation environment a multithreaded synergistic 

mode on Cell/B.E. was implemented by allowing PPU to 

initiate asynchronous threads of gradient descent algorithm 

on available SPU's concurrently.  Solutions were attained via 

subjecting MLP to training for selected training points until 

the convergence lead to attaining the desired level of mean 

squared error ε.  The output parameters of each SPU run are 

weights of the MLP's neurons, which compose the neural 

function generator/ approximator.  The algorithm solutions, 

which are above mentioned sets of the input weights for 

MLP's neurons, are classified according to the statistical 

characteristics of the function approximation they provide, 

such as under-fitting, over-fitting, minimal mean squared 

error fitting.  The starting points (i.e. weights of the neurons) 

for the gradient descent algorithm deterministically define 

the convergence route to the solution, which satisfies the 

conditions of optimality in that the average mean square 

error for a predetermined set of training points falls below 

chosen limit ε..Evaluation of the quality of the achieved 

solution was conducted by employing two more error 

parameters: (i) mean squared error for the most remote from 

training coordinate points Et, and (ii) overall mean squared 

error Ed for combined coordinates including joint set of X 

and Y, both including all of training and testing (used in (i)) 

coordinates.   

 

According to the adopted parallelization strategy, the 

training of MLPs were programmed for SPEs, transferring 

each SPE randomly chosen starting point.  The following 
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variables are used in the programs: numInputs for number of 

MLP inputs, including bias, numOutputs for number of 

outputs, which here was = 1, numPatterns for number of 

patterns used in training, numHidden for number of hidden 

nodes of MLP, numEpochs for number of training epochs.  

The algorithm also included learning rates: LR_IH for 

input-hidden nodes connections, LR_HO for hidden nodes-

output connections, LR_IO input-output direct connections 

as well as momentum coefficients: alphaHO,  alphaIO and 

alphaIH with the same notations for HO, IO and IH indices.   

Testing of the trained MLPs was conducted by PPU 

processor.   

 The main programming feature enabling the task solution 

was direct memory access (DMA), which allowed initiation 

of parallel trajectories by SPEs by multi-threading, where 

each trajectory represented one thread. Threads are 

asynchronous, for which is provided by pthread(.) function 

of Cell SDK package, which interrupts main program 

execution until completion of all threads.  The data were 

organized in the struct{.} in the control block file and DMA 

transferred to SPEs by the PPU.  Termination of the pthread 

is achieved either by reaching the required precision Eps, or 

by exhausting the resource of allowed training epochs 

(parameter numEpochs).  After termination of all threads, 

the PPU conducts tests for the networks obtained from each 

SPE.    

3.   RESULTS AND DISCUSSION  

3.1 Simulation for hyperbolic paraboloid z=x
2
-y

2
 case 

For hyperbolic paraboloid, the algorithm convergence is 

achieved at minimum 7 hidden neurons and the training 

points sets of X=Y=[3.5 2.5 1.5 0.5 -0.5 -1.5 -2.5 -3.5].   

Tests below were conducted for number of hidden neurons 

numHidden=10 for improved convergence.   

Table 1 gathers the data of parallel tracing of training 

trajectories presented by 8 SPEs of Cell/B.E. engine, namely 

SPE-0 through SPE-7).   Targeted precision value was 

ε =10
-5, after achieving which the training was terminated 

(or continued until reaching limit of max training cycles 

otherwise).  

 

Table 1.  Training progress of MLP to approximate hyperbolic paraboloid function of Fig.3 on various 

SPEs of Cell/B.E. engine: achieved root mean square error as function of number of training epoch. 

(Input parameters are: numInputs=3, numOutputs=1, numPatterns=64, numHidden=10, max 

numEpochs=5400; Learning rates are: LR_IH=0.007, LR_HO=0.007, LR_IO=0.007; momentum 

coefficients: alphaHO=0.007, alphaIO=0.007, alphaIH=0.007) 
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It is seen from Table 1 that some of the trajectories exhibit 

the desired “diving” behavior, i.e. finding and following a 

quick descent track to converge and deliver smallest RMS 

Error values at smallest computational cost (in other words, 

requiring minimal number of epochs for training of the 

neural net), such as those SPE-0, SPE-2, SPE-6 and SPE-7 

in Table 1.  At the same time others, after a quick start, such 

as SPE-4 and SPE-5 in Table 1, saturate the progress at 

certain level of accuracy in function approximation.   In this 

example, SPE-5 did not reach targeted precision level of 

ε=10
-5

 for the allocated training interval, while SPE-4 did 

achieve ε=10
-5

 but at much higher calculating cost than the 

pack of leaders (SPE-0, SPE-2, SPE-6 and SPE-7).   
 The result of the above experiment therefore demonstrates 

that parallel environment allows detecting the overall nature 

of the distribution of gradient descent trajectories for a given 

task.  In the above example the trajectories are divided on 

those (1) non-converging (such as SPE-1 and SPE-3), (2) 

saturating convergence (such as SPE-4 and SPE-5) and (3) 

quickly converging (“diving”) to the global minimum (such 

as SPE-0, SPE-2, SPE-6 and SPE-7).  Advantage offered by 

the parallel environment of Cell multiprocessor allows 

therefore avoiding time losses associated with possible 

trapping of the trajectories in local minima if sequentially 

attempting to find the solution with single processor.   

 

3.2 Simulation for z = x
2
 – 3*x*y

2 case 

For the case of z = x2
 – 3*x*y

2 the  convergence of the 

gradient descent algorithm become attainable with the least 

number of hidden nodes being 10 and under training sets of 

points  X=Y= [1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75].   

hyperbolic paraboloid, the algorithm convergence.  Scaling 

down the distance between training points by factor of 2, 

which was very much successful for the hyperbolic 

paraboloid, brings a success, which is worth mentioning.  

Coordinates in question become Xt = Yt = [1.0 0.75 0.5 0.25 

0.0 -0.25 -0.5 -0.75 -1.0] and Xd = Yd = [1.0 0.875 0.75 

0.625 0.5 0.375 0.25 0.125 0.0 -0.125 -0.25 -0.375 -0.5 -

0.625 -0.75 -0.875 -1.0].   

Table 2 shows data on MLP training to approximate z = x2
 – 

3*x*y
2 function in Cell/B.E. environment by various SPEs. 

Comparing to the data for hyperbolic paraboloid (Table), it 

is seen that the "diving depth" becomes at least 2 orders of 

magnitude shallower (E-3 vs E-5), which is attributed to the 

higher complexity of the function (3rd order nonlinearity 

instead of 2nd one). The earliest possibility to take 

advantage of the function approximator become available 

after 400 epochs from SPE-4, which demonstrated the 

converge of RMSE more than order of magnitude from its 

initial value (RMSE=����
��
� in Table 2). Next order of 
magnitude improvement of RMSE is delivered at the cost of 

25000 epochs, i.e. more than 60 times later, by SPE-3 

(RMSE=���
�
�� in Table 2). And the last order of 
magnitude improvement comes at a cost of 200 times more 

training, i.e. 500000 epochs, by SPE-3 again 

(RMSE=����
��� ), coming ahead of possibly trapped in 

local minima SPE-1 (RMSE=��������), SPE-4 

(RMSE=��������), SPE-5 (RMSE=������	�), SPE-6 

(RMSE=��������) and  SPE-7 (RMSE=�����
��).  Closest 

rivals were SPE-0 (RMSE=��������) and SPE-2 

(RMSE=��������).  Here the parallelization of the gradient 
descent algorithm also brought about two advantages – 

(1)early possibility of having intermediate level of function 

approximator, while still continuing to pursue (2) the 

improved version of it at higher training cost.  
 

 

Table 2.  Training progress of MLP to approximate z = x2
 – 3*x*y

2 function of Fig.4 on various SPEs 

of Cell/B.E. engine: achieved root mean square error as function of number of training epoch. (Input 

parameters are: numInputs=3, numOutputs=1, numPatterns=64, numHidden=24, max 

numEpochs=500000; Learning rates are: LR_IH=0.007, LR_HO=0.007, LR_IO=0.007; momentum 

coefficients: alphaHO=0.007, alphaIO=0.007, alphaIH=0.007) 
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Table 3. Results of the competition for Time Series Prediction described by x(t) = int[1000 * sin2(t/2)] + int[1000 * 

sin2(t/20)] + int[1000 *sin2(t/30)] + int[1000 * sin2(t/300)], where t=1, 2, 3,…, Tb+tsp+n; (here Tb=500; tsp=3; n=5). Final 

number of epoch = 5000. Input parameters are: numInputs=6, numOutputs=1, numTrainPat=200, numHidden=12, max 

numEpochs=5000, Learning rates are: LR_IH=0.000700, LR_HO=0.000700, LR_IO=0.000700, momemtum coefficients: 

alphaHO=0.000700, alphaIO=0.000700, alphaIH=0.000700;  while precision Eps=0.001000  

 

 

Table 4. Results of the competition for 3 steps ahead in time series prediction with negating trend described by x(t) = 

int[1000 * sin2(t/2)] + int[1000 * sin2(t/20)] + int[1000 *sin2(t/30)] + h(t) * int [1000 * sin2(t/300)], where t=1, 2, 3,…, 

Tb+tsp+n, and h(t)= {+1 for 1<t<210; -1 for t>211 }; (here Tb=500; tsp=3; n=5). Final number of epoch = 5000. Input 

parameters are: numInputs=6, numOutputs=1, numTrainPat=200, numHidden=12, max numEpochs=5000, Learning rates 

are: LR_IH=0.000700, LR_HO=0.000700, LR_IO=0.000700, momemtum coefficients: alphaHO=0.000700, 

alphaIO=0.000700, alphaIH=0.000700;  while precision Eps=0.001000  

 

3.3 Simulation for time series prediction 

    The training of time series predictor of the sequence with 

long term trend, described by equation x(t) = int [1000 * 

sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 * sin2(t/30)] + 

h(t) * int [1000 * sin2(t/300)], where t=1, 2, 3…, Tmax and 

int(.) takes the integer part of the argument, has been 

conducted in Cell/B.E. environment in order to demonstrate 

best predictive capability between the  8 SPEs, each 

modeling MLP neural network with 12 hidden nodes and 

trained for 5000 epoch on 200 training patterns.  The results 

for Tmax =Tb+tsp+n, with Tb=500; tsp=3; n=5 are summarized 

in Table 2, where it is seen that best performance has been 

attained by SPE-3 and SPE-7 with final Root Mean Square 

Error (RMSE) values of 0.056455 and 0.056087 

respectively for the training points.  It is seen however that 

best predictive capability is demonstrated by by SPE-3, 

which provides lowest RMSE value of 0.121441 for novel 

points versus that of 0.121573 for SPE-7.  The worst 

performance here was by SPE-2 with RMSE values of 

0.058436 for training points and 0.125095 for novel ones, 

which are respectively ca. 4% and 3% worse than that of the 

winner (SPE-3).    It is seen that final values for all 

trajectories are falling within close proximity of each other 
and there were no instances of entrapment in local minima.  

Therefore, parallelization here is not beneficial unless 

another dimension in forecasting is present.  Such 

dimension can be the parameter tsp – the number of steps for 

prediction.   

Parallelization on parameter tsp for time series is therefore 

seen as the viable target.    
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Forecasting property of the best MLPs (those of SPE-3 and 

SPE-7 from Table 3) is illustrated in Fig.7.  It is seen that 

errors are located in the vicinity of the local trend change  

 
Figure 7.  Prediction of time series of Fig.5 for 3 steps 

ahead (tsp =3) by trained MLPs of SPE-3 and SPE-7.  Here: 

1 is function x=int [1000 * sin2(t/2)] + int [1000 * sin2(t/20)] 

+ int [1000 * sin2(t/30)] + int [1000 * sin2(t/300)], (where 

t=1, 2, 3…, 507, 508); 2 and 4 – MLP output (forecasting) 

from SPE-3 and SPE-7 respectively; 3 and 5 – RMSE for 

MLPs from SPE-3 and SPE-7.   All units (for t, x(t) and 

RMSE) are arbitrary.  Values x(t) are scaled down 1000 

times, thus compensatory coefficient *1000 is to be used as 

shown.  

 

 
 

Figure 8.  Prediction of time series of Fig.5 for 10 steps 

ahead (tsp =10) by trained MLP..  Here: 1 is function x=int 

[1000 * sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 * 

sin2(t/30)] + int [1000 * sin2(t/300)], (where t=1, 2, 3…, 

507, 508); 2 is MLP output (tests of forecasting); 3 is  

RMSE for testing the resulting MLP.  All units (for t, x(t) 
and RMSE) are arbitrary.  Values x(t) are scaled down 1000 

times, thus compensatory coefficient *1000 is to be used as 

shown.  

 

 
Figure 9.  Prediction of time series with negating trend 

(Fig.6) 3 steps ahead (tsp=3) by trained MLPs of SPE-3 and 

SPE-7.  Here: 1 is function x=int [1000 * sin2(t/2)] + int 

[1000 * sin2(t/20)] + int [1000 * sin2(t/30)] + h(t) * int [1000 

* sin2(t/300)], where t=1, 2, 3,…, Tb+tsp+n, and h(t)= {+1 

for 1<t<210; -1 for t>211 }; (here Tb=500; tsp=3; n=5).); 2 

and 4 – MLP output (forecasting) from SPE-3 and SPE-7 

respectively; 3 and 5 – RMSE for MLPs from SPE-3 and 

SPE-7.   All units (for t, x(t) and RMSE) are arbitrary.  

Values x(t) are scaled down 1000 times, thus compensatory 

coefficient *1000 is to be used as shown. 
 

 
 

Figure 10.  Prediction of time series of Fig.6 for 10 steps 

ahead (tsp =10) by trained MLP.  Here: 1 is function x=int 

[1000 * sin2(t/2)] + int [1000 * sin2(t/20)] + int [1000 * 

sin2(t/30)] + h(t) * int [1000 * sin2(t/300)], where t=1, 2, 

3,…, Tb+tsp+n, and h(t)= {+1 for 1<t<210; -1 for t>211 }; 

(here Tb=500; tsp=3; n=5).); 2 is MLP output (tests of 

forecasting); 3 is  RMSE for testing the resulting MLP.  All 

units (for t, x(t) and RMSE) are arbitrary.  Values x(t) are 

scaled down 1000 times, thus compensatory coefficient 

*1000 is to be used as shown. 

 

areas.  Otherwise, forecasting is accurate and it reflects the 

underlying long term trend. Changing the trend from 

positive (as in Fig 5) to negative one (as in Fig.6) practically 

retains the predictive capability of the MLP, a it is 

illustrated in Fig. 9 and in Table 4.  Despite the fact that 

training was entirely performed on the part of the function 
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which only contained a positive trend (points ##1 to 200 in 

Fig.6 and Fig.9), the network appeared to fully retain 

forecasting capability for the part where the trend was 

opposite one, i.e. for the negated trend in Fig.6 in the 

forecasting area.  The partial cost however for that is 

involved of higher RMS Error as it is seen by comparing 

related RMSE values of Table 3 and Table 4.  Specifically, 

for the best performing SPEs, namely SPE-3 and SPE-7, the 

change in RMSE for the forecasting area become 
respectively ∆RMSE = ��������� 
� ���
����� �� �������� and 

������	�� 
� ���
����� �� �������� due to negating the trend.  
These changes amount to 40.97% and 40.39% respectively 

of its initial values (or 29.06% and 28.77% respectively of 

its final values).  Thus the costs of negating the trend 

become less then twice increase in RMS Error for the 

forecasting area.  Apart from being higher in amplitude, the 

error also changes the sign, as it is seen by comparing plots 

#3 and #5 with that of the Fig.7 and Fig.9.  

 Increase of the prediction range to tsp=10 leads to increase 

in RMSE both for training and forecasting areas, as it is 

shown in Fig.8 and Fig.10 for the continuing and negating 

trend respectfully.  The RMS Error for the training sessions 

of 5000 epochs long for both cases (Fig.8 and Fig.10) are 

close (0.263152 and 0.268044) as the training sets are the 

same.  It is ca. 4 times higher than that for tsp=3 in Table 3 

and Table 4, which suggest linear trend for RMSE increase 

with the tsp parameter.  For the forecasting area the values of 

RMSE are 0.430972 and 0.766880 respectfully, which 

indicates that forecasting of the negating trend (Fig.10) is 

almost twice less accurate as that of the continuing one 

(Fig.8).   

 Thus, it is seen that parallel tracing allows for simultaneous 

generation of the multiple range forecasts.   

 

 

3.   CONCLUSIONS 

The following conclusions can be drawn form the above 

considerations.  

1. Cell multiprocessor parallel environment allows for 

efficient scanning of starting points of gradient descent 

algorithm via parallel tracing of training trajectories 

from random locations.   

2. For 3D nonlinear function approximator Cell 

multiprocessor efficiently address the problem of local 

minima entrapment by identifying trajectories free of 

that. 

3. For the time series prediction parallelization within Cell 

multiprocessor environment brings the advantage of 

simultaneous forecasting for various steps ahead into 

the future.   

4. For both, nonlinear function approximator as well as 

time series predictor, the parallel tracing of the 

trajectories allows to access an early approximations, 

achievable at significantly lower calculating cost 

(number of training epochs) , while still continuing 

further training and achieving higher accuracy at later 

stage.  
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