
Advanced IDE for Modeling and Simulation of Discrete Event Systems

Matías Bonaventura

1
, Gabriel A. Wainer

2
, Rodrigo Castro

1

1
Computer Science Department

Universidad de Buenos Aires.

Ciudad Universitaria. Pabellón I

(1428) Buenos Aires, Argentina.

Email: abonaven@dc.uba.ar, rodrigocastro@ieee.org

2
Dept. of Systems and Computer Engineering

Carleton University Centre of Visualization and Simulation

(V-Sim)

1125 Colonel By Dr. Ottawa, ON, Canada.

Email: gwainer@sce.carleton.ca

Abstract: Creating models and analyzing simulation results

can be a difficult and time-consuming task, especially for

non-experienced users. Although several DEVS simulators

have been developed, the software that aids in the modeling

and simulation cycle still requires advanced development

skills, and they are implemented using non-standard inter-

faces, which makes them difficult to extend. The architec-

ture and design of CD++Builder we present here can simpli-

fy the construction and simulation of DEVS models, facili-

tate model reuse and promote good modeling practices by

allowing enhanced graphical editing and integration of tools

into a single environment. The Eclipse-based environment

includes new graphical editors for DEVS coupled models,

DEVS-Graphs and C++ atomic models (including code

templates that are synchronized with the graphical versions).

Integration with Eclipse allows extensibility while simplify-

ing software development, installation and updates.

1. INTRODUCTION

In recent years, the DEVS formalism [1] has become very

popular, and several simulators have been implemented us-

ing diverse technology. In most DEVS simulators, models

are defined using some programming language, which

makes a difficult task modeling real world systems for non-

expert developers. In order to deal with this problem, sever-

al tools now simplify the process of creating DEVS models,

executing simulations and analyzing the results. Some pro-

vide graphical modeling capabilities, tools for tracking and

viewing simulation results. Most of the tools have some

modeling limitations and require the users to have pro-

gramming experience.

While most of these tools allow the graphical definition

of DEVS coupled models, they have been developed from

the ground up without using standard user interfaces. That

makes extending their functionality very difficult, as it is re-

quired to know the implementation details. Likewise, atomic

models must be defined in some programming language.

This makes it difficult for non-expert users to create new

models. In some cases where code structure aids are pro-

vided, no graphical support is given for atomic model beha-

vior specification. For instance, CD++ [2] provides different

languages for specifying DEVS coupled and atomic models.

CD++ models can be defined in C++, but graphical repre-

sentation of the model is also available.

Here, we present new facilities of the CD++Builder tool

[3], which have focused on these problems. The integration

of several CD++ tools available into a single environment

reduces the learning curve for new users and students, and

simplifies the M&S processes by avoiding different model

formats. Enabling the creation and edition of coupled and

atomic models graphically allows users to specify complete

DEVS models without programming. In the cases where

complex behavior needs to be developed in C++, code tem-

plates avoid repetitive and error-prone tasks, and provide

basic sample structures that promote good programming and

modeling practices. CD++ simulator is continually being

updated and new tools are provided. To keep the M&S envi-

ronment integrated in the future and avoid new tools to be

developed in different platforms, CD++Builder features

need to be easily reusable and simple to extend.

To fulfill these requirements, CD++Builder refactors

the graphical modeling capabilities of CD++Modeler and

GGADTool [4] (which were developed in Java and Visual

Basic respectively) into the Eclipse environment [5].

Eclipse’s plug-in architecture makes it simple to add

new features, while guaranteeing the easy reuse of compo-

nents (by means of the standard frameworks used by CD++

Builder). Thus, all the main activities can be done using the

same user interface: composing and defining DEVS models,

animation of simulation results, programming of C++ code,

compilation of new atomic models into the CD++ frame-

work and launching the execution of simulations.

CD++Builder provides graphical modeling editors,

based on atomic DEVS-Graph models [6]. Coupled models

are described in a model definition file using a platform-

independent language that can potentially be used by other

tools as a mean for porting models between simulators.

CD++Builder provides code templates with the basic struc-

ture to implement the CD++ abstract Atomic class, and these

models are graphically represented and kept synchronized

with graphical coupled editors. Automated regression tests

are included, and they help to include new functionalities in

CD++Builder, while provide a way to verify the correct be-

havior of the software after new code is introduced.

mailto:abonaven@dc.uba.ar
mailto:rodrigocastro@ieee.org
mailto:gwainer@sce.carleton.ca

2. BACKGROUND

DEVS [1] is a general formalism for modeling and simula-

tion of any discrete systems using hierarchical composition

of behavioral models (atomic) and structural models

(coupled) with well-defined interfaces. DEVS is indepen-

dent from any simulation mechanism, which allowed sever-

al simulation tools to be developed, tackling different needs

and providing advantages on specific scenarios. A non-

comprehensive list includes:

- DEVSJAVA [7] provides four Java packages that sep-

arate modeling and simulation from user interface, allowing

hierarchical model definition and visualization. DEVS

coupled and atomic models are built by extending one of the

base Java classes provided by the framework. Models need

coded and recompiled for changes to take effect (which is

difficult for non-Java experts). SimView [8], a graphical

component of DEVSJAVA allows the user to specify the

model layout in the model’s source code. CoSMos [9] al-

lows generating the Java code used to extend DEVSJAVA

base classes, which simplifies the definition of atomic mod-

els. On the other hand, the user still needs to program, and

once the code is generated, model structure cannot be mod-

ified (adding/removing ports, changing model name).

- JDEVS [10] is a visual tool that provides a module for

executing simulations, a module for the user interface and

two modules for 2D and 3D visualization. Though general-

purpose models can be defined, the visualization modules

are specifically built for natural systems and its graphical

editors do not allow creating hierarchical models.

- SimStudio [11] is a web-based framework imple-

mented using Java web technologies, using a layered archi-

tecture that supplies modeling, visualization and analysis

players. The modeling plug-in, implemented in Flash, al-

lows to get from a graphical specification of a model, a

XML file that is used by other tools.

- VLE [12], implemented in C++, is a modeling and

simulation environment oriented to integrate heterogeneous

formalisms wrapping submodels as DEVS models to enable

interoperability. It provides separated modules for the GUI,

for visualizing results and a core that implements the simu-

lation algorithms.

- PowerDEVS [13] allows graphical specification of

coupled DEVS models, and atomic models are defined in

C++. A special editor aids the modeler with code structure,

and a model library enables model reuse in a drag and drop

fashion. Tracking model state during simulation is done by

special atomic models that interact with outside devices. Al-

though this approach is useful, model definition and simula-

tion tracking are mixed into the same editor.

Our work is based on CD++ [2, 14], a modeling and

simulation tool that implements the DEVS and Cell-DEVS

theory. CD++ has been widely used is several areas of inter-

est such as urban traffic, physical systems, computer archi-

tecture and embedded systems. CD++ is implemented in

C++ as a class hierarchy where models are related to simu-

lation entities. Atomic models behavior is programmed in

C++, and coupled models are defined in a model definition

file using a built-in high-level language. Though defining

atomic models in C++ gives the modeler flexibility to speci-

fy behavior, it requires advanced programming skills. Thus,

CD++ also supports defining DEVS-Graph atomic models

without a programming language.

CD++Builder [3] is an Eclipse plug-in that integrates

varied applications and utilities that aids in creating CD++

DEVS models, simulating and analyzing results. Among

these applications, CD++Modeler provides a graphical edi-

tor for coupled and DEVS-Graph atomic editors, and visua-

lization of simulation results. CD++Modeler lacks integra-

tion with the rest of CD++ applications and utilities (requir-

ing to export models to different formats) and has some li-

mitations (i.e., not being able to define atomic models in

C++). New extensions to CD++Builder were built from the

ground up, tackling most of the problems of other CD++

tools and introducing new features available in other simula-

tors into CD++ to facilitate modeling and simulation tasks.

3. CD++BUILDER

Figure 1 shows the CD++Builder environment, which inte-

grates all the capabilities available in CD++ tools with fea-

tures that facilitate modeling and compilation. Incorporation

of all features into the Eclipse environment allowed the de-

velopment of powerful tools built upon existing features and

Eclipse infrastructure.

Action buttons in the top toolbar allow executing exter-

nal tools. A special section is reserved for CD++Modeler

animations, including CELL-DEVS, Atomic and Coupled

models. Buttons for launching other legacy tools (CD++

Modeler, GGADTool and Drawlog) are provided. The Build

button generates a make file and compiles the source code

of all atomic models in the project, generating a simulator.

The Execute button pops up a wizard that allows specifying

necessary parameters to run a simulation. New model files

(coupled or atomic) can be added using Eclipse New File

wizard, which will be shown in the project files navigation

panel. Editing models is also done within Eclipse interface

by means of graphical editors. Coupled model editor allows

defining C++ atomic models and generates code structure to

extend the Atomic CD++ class. Eclipse allows users to rear-

range windows to personalize the interface, and the

CD++Builder Perspectives layout buttons and panels have

been used to improve the modeling of particular scenarios.

As seen on Figure 1, CD++Builder has been now inte-

grated with Eclipse C/C++ Development Tools. It also has

been provided with new animation features to allow visuali-

zation of simulation results graphically. This graphical

framework improves usability including usual editing ac-

tions (as copy, paste, undo and redo).

Figure 1. CD++Builder environment

 Other features that facilitate graphical modeling were

incorporated, such as zoom in/out capabilities, flexible look

and feel for texts and shapes and different styles for model

links to avoid obstructions and overlapping. Both coupled

and atomic model editors provide a special pane with tools

for easily creating available entities (atomic/ coupled mod-

els, links, ports, transitions, states, variables, etc.).

Figure 2. CD++Builder coupled model editor.

The Eclipse Properties view is used to show and edit entities

details, the Outline view to show an overview of the model

and the New File Wizards for creating new atomic and

coupled DEVS model diagrams. CD++Builder uses a com-

mon description file and editing domain for models and

submodels. Submodels are edited in their own tabs, and all

the opened models are kept consistently linked.

In the coupled model editor (shown on Figure 1 and 2),

models are graphically represented by colored rectangles

with the model’s name. Coupled and atomic models are dif-

ferentiated by color and shape, while inner images are used

to distinguish atomic models types (DEVS-Graph and C++).

Ports are rendered as black boxes with their names and di-

rected links to represent the associations with the models

(which makes easy the creation and understanding of links).

Figure 3. CD++Builder DEVS-graph model editor.

The DEVS-Graph atomic editor (Figure 3) uses DEVS-

Graphs notation: atomic model’s states are represented by

circles with id and time advance values. Internal transitions

are represented with dotted arrows and external transitions

with full arrows linking origin and destination states.

Implementing C++ atomic models in CD++ requires

creating C++ files that define a new class derived from the

abstract Atomic class, and modifying the register.cpp file to

register the model within the framework. These tasks are te-

dious and error prone. To simplify and speed up C++ atomic

model definition, code generation capabilities were added to

the coupled DEVS model editor. When a new C++ atomic

model is selected, C++ files are generated based on a tem-

plate, and register.cpp file is automatically updated. The

template (shown in Figure 4) supplies the code structure to

extend the Atomic class, providing helpful comments and

code samples. The model name is used to create the .cpp

and .h files and to name the new class. All methods that

must be implemented (initFunction, externalFunction, inter-

nalFunction and outputFunction) are set in place with a brief

comments useful for people learning DEVS or CD++.

Comments are also used to give an example of how to add

input/output ports and parameters to the model. A similar

template is also provided to implement the header (.h) file.

Figure 4 – Template-generated code for the Atomic class.

When developing atomic models directly in C++, the

model’s graphical representation is kept consistent with its

C++ underlying code by means of a newly developed pars-

er. When C++ files are modified and saved, the parser re-

cognizes special code structures to identify model name, in-

put/output ports and parameters (constant values to confi-

gure atomic models). In this way, the model graphical repre-

sentation and the code are always synchronized (with no re-

striction imposed on the code) enabling to modify the graph-

ical metaphor at any time.

New editors have been adapted to reuse the animation

features previously available for CD++Modeler (as they

have been successfully used for visualizing simulation evo-

lution and results). A control is provided to manage time

advance, and links are dynamically highlighted to represent

events from one model to another. For coupled models, a

block representation is used; for atomic models, the input/

output trajectories are shown on different ports over time

CD++ coupled models and DEVS-Graph high-level

languages have the power for fully describing DEVS mod-

els and enabling graphical representation while not restrict-

ing it with visualization-specific information. Thus, model

behavior definition and graphical representation are clearly

separated. Figures, sizes, layout, colors, and all graphic-

specific information are stored in a separate file from model

definition. While this separation is conceptually correct, it

presents some challenges when implementing graphical edi-

tors. CD++Modeler and GGADTool used custom structured

file formats for representing model graphics from which

model definition could be extracted (through export opera-

tions). Nevertheless, the opposite operation (generating a

graphical representation from model definition) was un-

available in both tools. CD++ has a vast model repository,

so this limitation is a stopper for using these tools: models

that were already implemented and tested could not be

opened in previous graphical tools. Moreover, once models

were exported to CD++ formats they could not be easily up-

dated without losing consistency with the graphical repre-

sentation. In CD++Builder, the graphical representation in-

formation is stored in XMI [15] (XML Metadata Inter-

change) format and persistence from and to this format is

handled by EMF services. New Parsers and Writers were

developed to implement translators, from CD++ grammar to

graphical representation and vice versa. This way, new

coupled and DEVS-Graphs editors can show both views

(graphical model representation and textual CD++ model

definition) which can be selected by means of small tabs at

the bottom (Figure 5). When any of the views is saved, both

files are synchronized using the translators to keep them

consistent.

Figure 5 – Model views available: a) graphical b) textual.

Although graphic files contain all the information to

rewrite the CD++ model definition completely, the opposite

is not true. Thus, when the textual file is saved, the graphic

diagram file can be consistently updated, but all graphical

information is lost. To overcome this issue, when the textual

model definition is saved, the idea is to synchronize the old

diagram using its graphical information (layout, figure sizes,

colors, etc) to supersede any missing information. To tackle

the limitations of previous tools, translators can also gener-

ate a new graphical representation from a textual model de-

finition, enabling to use models not built using graphical

editors. In this case, a default values are used for the missing

graphical information.

Figure 6 – Coupled model tool pane with reusable models.

Having the ability to view all models graphically helps

in better understanding other users’ models, facilitating

model reuse among the community. In this sense, we added

a pane (Figure 6) including a section for reusable models.

This let users that are not familiar with the CD++ model li-

brary to know which models previously created are availa-

ble. By dragging and dropping, these models can be com-

posed within the model being edited.

Installing CD++Builder previously was done by down-

loading Eclipse and other tools. Installation and updates of

CD++Builder Eclipse plug-in is now moved into a centra-

lized schema, integrated with the Eclipse Update Manager

package. This allows hosting plug-in compiled code and its

metadata in a single publication site, which all users will

access for installation and periodical check for updates. The

following figure shows this new architecture:

Figure 7. Centralized installation and update architecture.

This new scheme allows easier wizard-guided installa-

tion into already running instances of Eclipse. More impor-

tantly, it resolves versioning problems; software bug fixes

and latest features do not have to be distributed to users in-

dividually, but uploaded into a centralized point. Integration

with the Eclipse Update Manager allows clients to trigger

manual update checks or to configure for scheduling auto-

matic periodic updates.

For the development of key components in

CD++Builder, a Test Driven Development [16] approach

was used. Automated unit tests provided help improving

software quality, and they facilitate extensibility. Tests pro-

vide a higher level of certainty that a given functionality is

correctly implemented, and as they can be automatically run

at any time, they can be used to verify whether a code refac-

toring or a new feature did not break other features. For this

aim, JUnit [17] framework was used, as it provides out-of-

the-box support of Eclipse plug-ins testing.

4. ARCHITECTURE AND TECHNOLOGY

The layered scheme in Figure 8 depicts the role of each

CD++ component and their main relationships. At the low-

est layer (on top of the operating system) the CD++ Simula-

tor implements the simulation algorithms based on DEVS

and Cell-DEVS formalisms. CD++ provides different ver-

sions of the abstract simulators (e.g. parallel, flat, real-time).

 At the next level (Libraries) CD++ provides a basic out-

of-the-box atomic model library, including a Generator, a

Transducer, and a Queue, which can be directly used to de-

fine coupled models. The Core Simulator and the Libraries

layers are usually distributed together as the CD++ Simula-

tor. In addition, interpreters for high-level modeling lan-

guages are part of the Libraries. These interpreters accept

input files, coming from the Modeling level, which can de-

fine coupled models compositions, Cell-DEVS models or

DEVS-Graph atomic models, without requiring the use of a

high-level programming language for their definition.

 Other area-specific interpreters are also available in

some versions, such as ATLAS for describing urban traffic

or M/CD++ to describe continuous models using Bond

Graphs and Modelica [2]. All these interpreters are imple-

mented using the core classes, so they can be used indepen-

dently of the simulator version.

When a custom atomic model behavior needs to be de-

fined, it can be done with User Models, which extend the

Atomic C++ base class of the framework (in this case re-

compiling CD++ is required).

To execute a simulation, the coupled model definition

file and input events must be specified, among other op-

tions. A simulation can generates two output files that can

be used to track the simulation run; the .out file contains the

port-value pairs for the output events of the model, while the

.log file contains all the message passing and synchroniza-

tion information between different models.

Figure 8. CD++, high-level modeling languages, execution process and supporting tools.

At the top Tools layer, different applications have been

developed to facilitate output file visualization, such as

Drawlog for Cell-DEVS model simulation visualization and

CD++Modeler to animate coupled models message passing

and atomic model output values. CD++ provides graphical

editors to specify model behavior, and generate high-level

specifications that must be interpreted by the lower layers.

This layered architecture and the clear separation be-

tween simulation execution, model definition, supporting

tools and underlying libraries, allows modifying the simula-

tion runtime without affecting already developed models,

tools or visualization engines. The same tools and interfaces

can be used to facilitate model definition, whether those

models will run in a single processor, in a parallel distri-

buted environment or an embedded system.

CD++Builder is implemented on top of several well-

known Eclipse frameworks, which provide the overall user

interface and core plug-in services. A core requirement for

CD++Builder was to allow easy extensibility, as new fea-

tures are continuously being added and developed in geo-

graphically distant places. The Eclipse plug-in architecture

enables developing new decoupled features into

CD++Builder and integrate them seamlessly. One example

of CD++Builder extensibility is the CD++Repository [18],

an internet searchable database of CD++ models, which was

developed in parallel with the present work in a totally in-

dependent way, and has been easily integrated as a part of

the same software package.

To implement the graphical editors discussed earlier,

several frameworks have been considered. Some of them in-

clude the basic graphic libraries Standard Widget Toolkit

(SWT), the Abstract Window Toolkit (AWT) and Swing;

others more specific include Draw2D and the Graphical

Editing Framework (GEF). The first three libraries are based

on Java and they provide general GUI controls useful for

building form windows. Nevertheless, they are not practical

for manipulating figures and shapes, and they do not pro-

vide any special infrastructure for Eclipse-based editors.

Figures are the building blocks for Draw2D that builds on

top of the SWT library. GEF allows generating a graphical

editor based on an existing application model [19]. Due to

these reasons, we choose Eclipse’s Graphical Modeling

Framework (GMF), as this library [20] acts as a bridge be-

tween GEF and Eclipse Modeling Framework (EMF) and it

specifically tackles the creation of graphical Eclipse-based

editors. GMF also relies on the Model-View-Controller

(MVC) architectural pattern to separate the model from its

graphical representation, which has been successfully used

in other DEVS editors. A similar framework stack has also

been used in [21] for graphical editors of visual languages.

Figure 9 – CD++Builder technology architecture.

Figure 9 shows a description of the conceptual architec-

ture of CD++Builder, considering the tools and software

packages used. As we can see, EMF is used to define model

entities (the model part of MVC), as it provides several ser-

vices for specifying and maintaining entities. The model can

be specified in XMI format, or in a graphical editor, which

afterwards EMF uses to generate Java classes and interfaces.

The Java classes generated implement the observable pat-

tern, providing methods that notify whenever one of their

properties has changed. This greatly helps in keeping the

model completely decoupled from the rest of the implemen-

tation. Custom code and methods to provide extra behavior

to the model portion of the architecture can be added to

these classes. EMF recognizes special code comments in

customized methods not to overwrite them when the model

is regenerated. EMF also provides persistence and valida-

tion services for generated models. A detailed description of

the model used to represent DEVS entities in CD++Builder

can be found in [22].

GEF and GMF supply base classes which we extended

to implement the view and controller parts of the MVC pat-

tern. GEF extends Draw2D to make it easier to create a

graphic representation of the model and provides several

base Eclipse editor implementations. GEF controllers need

to be provided with a model that exposes its properties and

notifies whenever a change occurs.

The Eclipse Graphical Modeling Framework (GMF)

provides a generative component and runtime infrastructure

for developing graphical editors based on EMF and GEF

[23]. GMF runtime can be seen as a white-box framework

as it combines and extends EMF generated models with

GEF’s controllers and views, and provides additional ser-

vices such as transactional support. A generative part can be

seen as a black-box framework as it allows defining meta-

model information in XML files (graphical editors are pro-

vided for this purpose), which are used afterwards to gener-

ate Eclipse editors code.

In order to be able to generate new graphical editors

code based on an EMF model, GMF needs to be provided

with three meta-model files: graphical definition model

(.gmfgraph), tooling definition model (.gmftool), and a

mapping model (.gmfmap). gmfgraph XML file describe the

shapes and figures that are going to be used in the editor, to-

gether with their properties and how they will be composed

and layout. The gmftool file is used to describe diagram pa-

lette tools set, like Selection Tool, Zoom Tool, Creation

Tool, etc, and how they will be grouped and shown. The

gmfmap file references both previous files, and maps EMF

model entities to a graphical representation (defined in gmf-

graph) and associated tools (defined in gmftool).

For the purposes of CD++Builder editors, GMF code

generation facilities were used in the beginning to define the

general editors look and feel, layout and behavior. Never-

theless many necessary features have been developed, cus-

tomizing and extending the generated code. GMF generates

a decoupled infrastructure, where controllers, views and ec-

lipse editors implementation are separated from the model,

which is kept in a separated project. This suites

CD++Builder’s requirements as the model can be reused by

other CD++ or DEVS plug-ins without the need to depend

on the editors implementation. The model is completely ag-

nostic from graphical and edition details.

5. CONCLUSIONS

We presented a new architecture and the new features avail-

able in CD++Builder. This Eclipse plug-in is intended to fa-

cilitate the process of modeling and simulation with the

CD++ simulator. The tool now:

 Provides an Integrated Development Environment

(IDE) for all modeling and simulation tasks (modeling,

compiling, simulation execution and analysis).

 Supplies editors that support the complete modeling

cycle to be performed in a graphical manner.

 Includes C++ code templates to aid in the implemen-

tation of atomic models, while keeping the graphical repre-

sentation of these models consistent with their C++ code.

 Supports extensibility and development of new fea-

tures into the environment, including automated regression

testing capabilities.

We showed how CD++Builder, in contrast with pre-

vious CD++ tools, provides a unified user interface under

Eclipse for all the tasks involved in creating and updating

DEVS models, compiling new CD++ atomic models, ex-

ecuting simulations and analyzing results. We also showed

how new DEVS graphical editors have been integrated into

the Eclipse IDE that facilitates model creation, maintainabil-

ity and comprehension. These editors are based on CD++’s

high-level languages to represent model definition. Graphi-

cal information is stored independently and is kept synchro-

nized with model definition automatically.

Additionally, DEVS-Graph and C++ atomic models can

now be used to define atomic model behavior. Modeling

and definition of new C++ atomic models is simplified by

auto-generated code templates, which are kept synchronized

with their graphical representation. In addition, the CDT Ec-

lipse plug-in is used for highlighting of C++ code.

Issues about usability and modeling limitations have

been overcome with new editors, a tool for easier model

reuse, a coupled model editor with discovery, and new in-

stall and update mechanisms. In the future, we will syn-

chronize the new right tool pane with the online

CD++Repository, to extend the set of models to be reused

and facilitate searching and uploading models.

Having all features integrated into the Eclipse environ-

ment allows for easy extensibility by adding new plug-ins.

An example of this is the Virtual Laboratory of Model-

Based Development for Network Processors, (NP) currently

under construction by our group. The Lab is fully based on

CD++Builder, and is targeted to design advanced embedded

control algorithms for the Intel IXP family of NPs [24].

CD++Builder provides a transparent interface for dealing

with the intricacies of the target hardware such as compil-

ing, downloading and monitoring models for their real time

execution on an IXP chip. It also provides an integrated en-

vironment for mixing DEVS models with low-level hard-

ware-specific drivers, making the simulator interact with

real network signals in a Hardware In the Loop fashion.

References

[1] Zeigler, B; Praehofer, H; Kim, T. 2000, “Theory of

Modeling and Simulation”, 2nd Edition. Academic Press,

[2] Wainer, G. 2002. "CD++: A Toolkit to Define Discrete

Event Models". Software - Practice and Experience, Vol.

32, No.13, (November): 1261-1306.

[3] Chidisiuc, C.; Wainer G. 2007, “CD++Builder: An Ec-

lipse-Based IDE for DEVS Modeling”. Proceedings of

SpringSim 2007. Norfolk, VA. USA.

[4] Christen, G.; Dobniewski, A.; Wainer, G. 2004, “Model-

ing state-based DEVS models CD++”. Proceedings of Ad-

vanced Simulation Technologies, Arlington, VA.

[5] Budinsky, F; Steinberg, D.; Merks, E.; Ellersick, R.;

Grose, T.. “Eclipse Modeling Framework”. Addison-Wesley

Professional, 2003.

[6] Praehofer, H.; Pree, D. 1993, “Visual Modeling of

DEVS-based Multiformalism Systems Based on Higraphs”.

25th Winter Simulation Conference, Los Angeles, CA.

[7] Sarjoughian, H; Zeigler, B. 1998, “DEVSJAVA: Basis

for a DEVS-based collaborative M&S environment”. Pro-

ceedings of the International Conference on Web-based

Modeling & Simulation, San Diego, CA.

[8] Sungung, K.; Sarjoughian, H.; Elamvazhuthi, V. 2009.

“DEVS-Suite: A Simulator Supporting Visual Experimenta-

tion Design and Behavior Monitoring”. Spring Simulation

Multi-conference, San Diego, CA.

[9] Sarjoughian, H.; Elamvazhuthi, V. 2009. “CoSMos: A

Visual Environment for Component-based Modeling, Expe-

rimental Design, and Simulation”. Proceedings of SIMU-

Tools 2009, Rome, Italy.

 [10] Filippi, J-B.; Delhom, J.; Bernardi, F. 2002. “The

JDEVS Environmental Modeling and Simulation Environ-

ment,” Proceedings of the first Biennial Meeting of iEMSs.

Lugano, Switzerland.

[11] Traoré, M. 2008, “SimStudio: a next generation model-

ing and simulation framework”. Proceedings of SIMUTools

2008. Marseille, France.

[12] Quesnel, G.; Duboz, R.; Ramat, E.; Traoré, M. 2007,

“VLE: a multimodeling and simulation environment”. Pro-

ceedings of Summer Computer Simulation Conference. San

Diego, CA.

[13] Pagliero, E; Lapadula, M; Kofman, E. 2003, “Power-

DEVS. An Integrated Tool for Discrete Event Simulation”.

(in Spanish). Proceedings of RPIC, San Nicolas, Argentina.

[14] Wainer, G. 2009, “Discrete-Event Modeling and Simu-

lation: a Practitioner’s approach”. CRC Press.

[15] OMG/XMI: XML Model Interchange (XMI) OMG

Document AD/98-10-05, October 1998.

[16] Beck, K.“Test-Driven Development”. Addison-Wesley,

2003.

[17] Massol, V; Husted, T.. “JUnit in Action”. Manning

Publications, 2003.

[18] Chreyh, R.; Wainer, G. 2009, “CD++ Repository: An

Internet Based Searchable Database of DEVS Models and

Their Experimental Frames”. Proceedings of SpringSim’09,

San Diego, CA.

[19] Eclipse Consortium. 2009. “Eclipse Graphical Editing

Framework (GEF) – Version 3.4”, available at

http://www.eclipse.org/gef. [Accessed on Nov. 18, 2009].

[20] Eclipse Consortium. 2009. “Eclipse Graphical Model-

ing Framework (GMF)” http://www.eclipse.org/gmf. [Ac-

cessed on November 18, 2009].

 [21] Ehrig, K; Ermel, C; Hansgen, S; Taentzer, G. 2005.

“Generation of visual editors as eclipse plug-ins”. 20th

IEEE/ACM International Conference on Automated soft-

ware engineering, Long Beach, CA, USA.

[22] Bonaventura, M.; Wainer, G., Castro, R. 2009 “Ad-

vanced Environment for Discrete Event Simulation”. Inter-

nal Report, Carleton University, Ottawa (submitted).

[23] Shatalin, A; Tikhomirov, A. 2006, “Graphical Model-

ing Framework Architecture Overview”, Eclipse Modeling

Symposium, 2006.

[24] Castro, R.; Kofman, E. and Wainer, G. 2009, "A

DEVS-based End-to-end Methodology for Hybrid Control

of Embedded Networking Systems", 3rd. IFAC Conference

on Analysis and Design of Hybrid Systems, Zaragoza,

Spain.

http://www.eclipse.org/gef
http://www.eclipse.org/gmf

