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Abstract 

 This Thesis focuses on the exploration of parallelization approaches for improving the 

performance of ANN. A main goal of this Thesis is to define the routes for the parallel 

computation of this problem using the multi-core Cell Broadband Engine. In particular, a 

new design for parallel tracing of the gradient descent algorithm showed the feasibility 

for efficient finding of viable solutions for the approximations of 2D non-linear functions 

and the predictions of 1D time series by neural networks. One objective was to identify 

the parameters of the gradient descent algorithm which can be used for parallelization of 

the tasks in 2D function approximation and 1D time series prediction in terms of speed 

and accuracy of the delivered solutions, and to obtain fast convergence to the optimal 

solutions. Specifically, for a 2D function approximation, the entrapment in the local 

minima has been addressed via parallel tracing of the converging trajectories, while 

verifying the optimality of the solutions. For a 1D function approximation, the original 

task involves multiple-input-multiple-output multi-dimensional neural networks and thus 

is challenging for the gradient descent algorithm, posing problems of speed and 

convergence. In this case, the goal was set to verify the efficiency of the splitting of the 

multiple-steps forecasting task into several sub-tasks with various forecasting horizons in 

order to achieve fast and accurate forecasting solutions. The sub-tasks with various 

forecasting horizons extracted from the complex task would require a simpler type of 

multiple-input-single-output neural networks. The objective was to demonstrate the 

improved efficiency of such approach in parallel computing environment to reach fast 

and accurate solutions with the gradient descent algorithm.  
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Chapter 1. Introduction 

An Artificial Neural Network (ANN) represents a mathematical model to simulate the 

operation of the neural systems, such as those of biological objects (including the brain), 

which have been applied to solve a variety of complex problems [1]. In particular, ANNs 

have multiple applications in adaptive control systems, where a controller has the ability 

to adapt to changes in the environment. Examples include systems with non-linearities of 

any kind, such as mechanical (friction, etc), electrical, thermal, temporal, etc. Other well 

known applications, include stock market prediction, temperature distribution controllers, 

robotics vision, signal processing, etc. [2 - 30] 

 Artificial neural networks (ANN) possess important abilities to infer functions from 

observations. In practice, they are especially useful for the cases of dealing with complex 

data, where the ANNs are capable of actually mimicking an underlying unknown 

function, in particular for non-linear function approximations [3 - 8], regression analysis 

[27] and time series prediction. [25 - 30] 

 Typically, a neural network (NN) consists of a set of highly interconnected neurons. 

Each neuron in the ANN represents an object that accepts incoming signals from 

neighboring neurons, multiplies it by a weight coefficient, adds all the signals obtained 

and produces output signal, which is a preset function of the obtained sum. An ANN 

possesses adaptivity in that it can change the input weights of the neurons in such a way 

that signals coming from the outside of the network can be memorized (in the form of the 

weights distribution inside the neural network). This means that ANN actually can learn 

about the environment by interacting with it, and changing its structure to reflect the 

record of such interaction. It can be seen as a machine learning technique, where the 
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ANN as a machine learns and adapts its properties in accordance with its interaction with 

the outside world. [9 - 11]  

 ANNs are usually organized in layered structures of neurons, in which the neurons of 

consecutive layers are interconnected (but with no interconnection between the neurons 

within the same layer). Such organization for an ANN is called multi-layer perceptron 

(MLP) [1]. MLPs are capable of mapping the sets of the incoming signals to the sets of 

the outgoing signals according to a specified transformation function, which MLP can 

approximate. According to existing terminology, the minimal number of layers for an 

MLP is 3: at the very least the MLP contains one layer of input nodes, one layer of 

neurons (called the hidden layer or hidden neurons), and the layer of the output neurons 

[1]. Any incoming signal is transferred from the input layer to the hidden layer through 

the connections of the NN. Then it proceeds to the output layer. Each neuron collects an 

input signal from each connection, multiplies them by the input weights, adds them, and 

performs a functional transformation using its internal function, passing the result to its 

output.  

 The input weights of the neurons are free parameters of the NN. These free parameters 

are subject to updates in the process of adapting the structure of the NN to the signal from 

the outside. The algorithm for adjusting the input weights of the neurons, called the 

gradient descent algorithm [1], is a mathematical procedure for calculating the required 

updates for the network's free parameters (such as the input weights of the neurons). This 

algorithm starts from obtaining an input from the environment (i.e. from the outside). For 

the MLP to perform the required mapping, it needs to undergo through a training process, 

during which the MLP is exposed to a set of standard incoming signals with known 
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outputs. During this training procedure the neurons’ free parameters compares the actual 

output of the MLP with the expected value, and it calculates the error obtained. Then, the 

algorithm updates each free parameter based on the requirement to minimize the overall 

error. In this way, the error is propagates back along the network connections, and the 

result of this process is the incremental update of the free parameters (i.e. the input 

weights of the neurons), which reduces of the overall output error. For that reason this 

procedure is also called error backpropagation, and it does constitute the basis of the 

gradient descent algorithm [1]. The gradient descent is a first order optimization 

algorithm that allows finding a local minimum of the error function (thus optimizing the 

approximation of the function represented by ANN) by taking steps proportional to the 

negative of the gradient of this error function [1]. 

 The gradient descent algorithm became very popular in the early 1990s [3 - 5] and it still 

remains one of the most widely used algorithms for machine learning [15, 17]. 

Nevertheless, the algorithm poses various implementation difficulties for NN training in 

single processor computing environments. The following list includes some of the major 

problems, which have inspired various research efforts for more sophisticated versions of 

it and/or alternative algorithmic approaches [1]:  

(1) the gradient descent algorithm does not guarantee reproducible results;  

(2) the systems to which gradient descent is applied to can be too complex, so that the 

convergence of the algorithm can become poor;  

(3) the gradient descent can be too slow;  

(4) the solutions offered by the gradient descent can be non-optimal. 
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 Addressing the above listed problems in a single processor environment is sometimes 

unfeasible. For instance, the reproducibility of the results may be addressed by multiple 

repetitions of random initial starting conditions and memorizing those of them that led to 

the acceptable solutions. The complexity of the system involved can be addressed by 

splitting the task into smaller sub-tasks (each with better convergence). The sequential 

screening of the various step sizes would lead to finding its optimized value. The use of 

these methods on a single processor results in extra computational time (which is not 

feasible for real time applications). For instance, in time series prediction, the time itself 

is an essential parameter of the task, which makes it essential for the gradient descent to 

be sufficiently fast on the time scale of the series. A parallel computing environment can 

help to solve these problems, and increasing the available computational power may 

reduce the risks of failure due to the problems with implementation of the gradient 

descent algorithm may offer in facing the challenge [31 - 35].  

 There had been systematic efforts in exploring advantages of parallelization for the 

neural networks applications, in particular large size networks [34 - 37]. For example, 

Hasselström (2008) in his Thesis [37] investigated and analyzed the efficiency of 

parallelization for accelerating the gradient descent for large-size neural networks. The 

idea was to distribute the computational load between parallel processors of the Cell 

Broadband Engine [38 – 47], which has been used as a tool for supporting the parallel 

architecture. The effort had been successful in allowing parallel processors to jointly 

simulate large size neural net. The communication between processors allowed to retain 

the connections within portions of the networks, which were simulated by different 

processors. This however is redundant for small size neural networks which are 
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considered herewith. There also had been research implementations of the tasks 

parallelization for the neural networks [48 – 50]. In one case the same data sets were 

processed by multiple parallel processors to extract different features from them [49]. In 

another case a complex problem was split in a number of sub-tasks to be processed by 

different processors and the obtained solutions were combined together in order to obtain 

solution not available otherwise [50].  

In this Thesis similar to the above mentioned [49, 50] parallelization approaches have 

been explored with regard to 2D function approximation and 1D time series prediction 

tasks. A main goal of this Thesis is to define the routes for the parallel computation of 

these problems. The implementation of the parallel tracing of the gradient descent 

algorithm showed the feasibility for efficient finding of viable solutions for the 

approximations of 2D non-linear functions and the predictions of 1D time series by 

neural networks. The main goal of this Thesis was to identify the parameters of the 

gradient descent algorithm which can be used for parallelization of the tasks in 2D 

function approximation and 1D time series prediction in terms of speed and accuracy of 

the delivered solutions, and to obtain fast convergence to the optimal solutions. The idea 

was to target the problems (1) - (4) described above. Specifically, for a 2D function 

approximation, the entrapment in the local minima in the parallel computing environment 

can be addressed via parallel tracing of the converging trajectories, while verifying the 

optimality of the solutions to which efficient convergence is reached. For a 1D function 

approximation, the original task involves multiple-input-multiple-output multi-

dimensional neural networks and thus is challenging for the gradient descent algorithm, 

posing problems of speed and convergence. In this case, the goal was set to verify the 
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efficiency of the splitting of the multiple-steps forecasting task into several sub-tasks with 

various forecasting horizons in order to achieve fast and accurate forecasting solutions. 

The sub-tasks with various forecasting horizons extracted from the complex task would 

require a simpler type of multiple-input-single-output neural networks. The objective was 

to demonstrate the efficiency of such approach in parallel computing environment to 

reach fast and accurate solutions with the gradient descent algorithm.  

 The Cell Broadband Engine (Cell/B.E.) [36] was used as a tool for providing parallel 

computing in this study. The capacity of the Cell/B.E. to asynchronously trace several 

trajectories of implemented gradient descent algorithm from random sets of the starting 

points offered the advantage of revealing statistical trends and classifying viable optimal 

approximations delivered by simulated function generator.  

 The algorithms were applied and numerous simulations were conducted (which will be 

presented in this document). The first problem to be discussed is the approximation 

conditions of the surfaces of 2nd and 3rd order with saddle points (which are derived via 

implementation of the gradient descent algorithm for a MPL). The results of these 

experiments show the conditions for generating function approximations with an optimal 

error distribution. Then, the advantages of the use of the Cell/B.E. parallel environment 

were explored for a time series prediction, using two types of time series. One type of 

series has been designed to contain a long term trend. A second one is a deterministic 

chaos time series, such as the Mackey–Glass 30 time series [25] (regarded as one of the 

benchmark in the time series prediction field). For both the above time series, it has been 

shown that scaling up the base step for prediction (which acts as a factor of extending the 

base for prediction into the preceding history), does improve the accuracy of the long 
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term forecasts. Quantitatively, such an improvement is characterized by about 

proportional reduction of the root mean square error (RMSE) for 10-steps-ahead 

forecasts. Moreover, if the long term trend of the time series changes its sign, which 

herewith is regarded to be a negating trend as compared to the trend in training, then it is 

shown that scaling up of the base step B brings about a significant change in the 

dependence of the RMSE of the prediction from the duration of training session. 

Detection of such change in the above dependence is suggested to be the ground for 

detecting of the occurrences of the negating trend events in the time series.  

For the deterministic chaos time series prediction two major results have been obtained. 

Firstly, the fast portion of the training process for Mackey-Glass series is identified, 

which provides about 102 reduction of the Root Mean Square Error in the predicted 

values and thus amounts to more than 95% of the training benefit (i.e. RMS Error 

reduction) within less than 2% of total amount of training time. The fast track of training 

takes less than 1000 epochs as compared to 50000 of a full training time length with 

detectable convergence. The parallel computing environment allows for an early 

engagement of the neural forecaster which is better than 95% ready while still continuing 

full training of the final forecaster with the additional benefit of supplying the newly 

arrived time points for ongoing training. The last procedure benefits in that the most 

recent time points would be accounted for when forecaster is finalized. It has also been 

shown that the long term forecasts can be improved by leveraging the forecasting time 

base by points from the prior history. Specifically, for 10 step forecasts based on 

immediately preceding points of the Mackey-Glass 30 time series the RMS Error can be 

improved up to the order of magnitude (ca. 10 times) when engaging forecaster with the 
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leverage depth of 10 times into the history. The leverage is provided by feeding in to the 

neural network the points separated by 10 consecutive time intervals instead of sequential 

time points. The Cell/B.E. provides an adequate parallel environment for taking 

advantage of availability of the long range forecaster with leverage in the prior history.  

 The rest of the thesis is structured as follows. Chapter 2 presents the state-of-the-art for 

neural networks in parallel computing environments, reviewing the subject of the 

research and its coverage in the related literature. Chapter 3 contains a concise 

formulation of the research question, its justification based on the analysis of the existing 

literature, and a discussion on its significance. Chapter 4 presents algorithm design, 

implementation and the results on 2Dfunction approximation tasks, while Chapter 5 – 

does the same for 1D time series prediction tasks. Concluding remarks and major 

discussions with the formulated contributions delivered by the work done are 

summarized in Chapter 6. 

 

LIST OF CONTRIBUTIONS 

The following contributions of new knowledge have been made by this thesis.  

1. Using a neural approximation of the 2D functions of 2nd and 3rd order with saddle 

points, the parallel tracing of the gradient descent trajectories is demonstrated as a viable 

alternative in identifying the favorable starting conditions, avoiding local minima traps 

and obtaining the optimal solution in a quickest possible time frame. It is shown that 

optimality of the solution can only be determined by overall testing, until finalization of 

which all the viable candidates obtained in the parallel tracing need to be retained. For the 
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first time the close proximity extrapolation ability of the neural network is shown to 

reflect its interpolation quality in the 2D function non-linear approximation.  

 

2. A new approach is introduced for performance improvement of the neural 

network MLP multi-step forecaster in the 1D time series. The approach includes 

simultaneous (i) redundancy removal in the 1D time series and (ii) base step increase for 

the prediction basis, implementation of which results in accuracy increase of the 

forecasts. For the Mackey-Glass 30 time series a 10 fold simultaneous redundancy 

removal and a base step increase is shown to result in almost order of magnitude 

improvement of the RMSE for the 10-steps and 20-steps forecasts, as well as more than 

double in accuracy for long-term forecasts of 50-, 100- and 150-steps ahead. In the 

parallel environment splitting the multi-task into the individual ones and distributing of 

the individual forecasting tasks between the processors is shown to provide fast-tracks for 

training of the neural networks, as well as to offer alternative forecasts for selection of the 

best available accuracy.  

 

3. A new approach is demonstrated capable to identify occurrence of the negating 

trend in the compositional 1D time series. The approach is based on evaluating the 

performance of the neural network MLP forecaster and includes comparing RMSE 

dependences of the long range forecasts from the number of training epochs for the 

minimal base step and the scaled up base step of the prediction basis. Specifically, it is 

demonstrated, that for a steady continuous trend doubling the base step results in almost 

doubling the accuracy of the 10-steps forecasts, while for negating trend in the same time 
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series such procedure creates an expressed optimum in training length for the same 

forecasts. Parallel tracing of the above dependences enables an in-situ detection of the 

negating trend occurrences at the central control unit.  
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 Chapter 2.  Neural Networks in Parallel Computing 

Environments  

 

2.1 Function approximation with neural network  

The concept of a neural network (NN) stems from the attempts to simulate 

computationally and electronically operation of biological nervous systems, brain in 

particular [1]. Of about hundred billion of cells called neurons make up a human's brain. 

Neurons are highly interconnected with each other and are communicating via sending 

and receiving electrochemical signals, thus composing sophisticated network of 

interconnected and communicating neurons. The incoming signals are entering the 

neurons via junctions called synapses. Operation of each neuron is in collecting the 

incoming signals and producing the output, which is a function of the received integrated 

input. Multi-layer perceptron (MLP) represents a basic type of neural network, which is 

capable of implementing the multi-dimensional mapping of set of input variables into the 

designated set of output variables. The structure of the MLP includes at least three 

interconnected layers – (1) the layer of input nodes to take in the values of input 

variables, (2) the layer of hidden nodes which are simulating functional neurons and (3) 

the layers of output neurons to deliver the result of input processing. There is one 

additional variable, the bias, which is normally set to be equal to “-1” and is connected to 

all the neurons in the same way as the input variables are, i.e. via adjustable input 

weights. Adjusting the input weights of the hidden nodes and output nodes is called 

“training”, which is the algorithmic process of finding combination of input weights for 

all neurons, hidden and output ones, so that to represent by MLP the desired mapping 
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function with the minimal error. The training of MLP may be looked at as a function 

approximation problem. In this view, the neural network plays the role of a mapping 

function, which provides a nonlinear mapping of the input values to the output. Wieland 

and Leighton (1987) [2] suggested that a neural network can efficiently generalize the 

mapping, thus exhibiting the effect of a good nonlinear interpolation for those input 

values, which never had been presented to the network before. Such interpolation is 

possible due to the fact that having continuous nonlinear function for its nodes the MLPs 

provide a continuous output function. Possible outcomes of the generalization are 

illustrated on Fig.1 for a hypothetical network. The input data supplied to the MLP 

consist of a set of points, called “fitting points”, for which the output values are known. 

These data are provided to the network to adjust weights of neuron’s inputs via 

algorithm, called gradient descent or error backpropagation algorithm [1]. This algorithm 

which involves calculation of the error for each of the supplied points and based on the 

value and the sign of that error the increment of each neuron’s input weight is derived 

aiming to minimize the error at the output of MLP. When the number of "fitting points" 

is too small, the underfitting may occur. One way to counter it is by increasing the 

number of hidden nodes of the network and thus improving its learning capability. In 

contrast to that, increasing the number of the "fitting points" in training allows to pursue 

convergence under more stringent accuracy criteria. After the training is completed and 

all the input weights of the neurons are adjusted so that the resulting error for the set of 

“fitting points” is minimized, the MLP becomes ready to perform a role of function 

approximation by taking in the intermediate points which had never been offered to it 

before. The output values for those intermediate points are calculated by implementing 
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operations of applying the weights (and biases) derived via training based on "fitting 

points" only (it is called a feed-forward process). Such direct calculation provides the 

mapping values for any other points other than "fitting points", thus performing an 

interpolation as well as an extrapolation. The trained network needs to allow accurate 

mapping even for points other than "fitting points" not included in the training. However, 

training algorithm only ensures accuracy for the fitting points while values in the 

intermediate points (interpolation points) might differ significantly from the correct 

values.  

 

 
 

 Fig.1. Generalization by hypothetical network: (a) ideal fit; (b) underfitting; (c) 

overfitting; (d) enhanced fitting of intermediate points. 

 

Such situation when occurs is called over-fitting and needs to be avoided. An essential 

feature of the over-fitting (as compared to the ideal fit) is the lack of smoothness in the 

ideal 

underfitting 

overfitting 

f(x)~-log(tanh(x/2))  

x 

Set of points 

enhanced fitting of  
intermediate points  
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fitting interpolation. Without involving extra "fitting points" the desired smoothness can 

be attained by selecting of the "simplest" function to meet the fitting criteria. There are 

two major factors that affect the accuracy in the generalization: 

(1) the number of the "fitting points", which represent essential features of the model;  

(2) the design/architecture of the neural network.  

 Additionally, the complexity of the model to fit the required mapping is supposed to be 

represented by the set of the selected fitting points. A good generalization is obtained by 

either: (i) fixing the architecture of the network and finding the representative set of 

fitting points; or by (ii) finding the best architecture for a given fixed set of the fitting 

points. A practical criterion to achieve a good generalization for fixed network 

architecture is to provide a training set of N fitting points,  

 

N = O(W/),     (2.1) 

where W is the number of the network's adjustable parameters, such as weights of the 

neurons,  is the fraction of classification errors allowed on the test, and O(.) is the order 

of inside quantity. As an example, for 1% error (i.e. =0.01) the number of training points 

need to be 100 times the number of W[1].  

 If m0 is the number of inputs of the MLP and M=mL - the number of its outputs, the 

MLP function provides mapping of the m0-dimentional input space into M-dimensional 

output space. The minimum number of hidden neurons in the MLP with one hidden layer 

and input-output mapping that provides an approximate realization of any continuous 

mapping is determined by the Universal Approximation Theorem, which merely 

generalizes an approximation by finite Fourier series. It follows from this theorem that a 
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single hidden layer is sufficient for an MLP to compute a uniform  approximation to a 

given training set represented by the set of inputs x1,...,xm0 and a desired output 

f(x1,...,xm0). The optimum solution may require the hidden neurons to be arranged in 

more than one hidden layer to minimize a learning time, a total number of hidden 

neurons, and to improve mapping accuracy.  

 There are bounds on the approximation errors, which were established by Barron in 1993 

[3 - 5] under the following assumptions: (1) MLP contains only one hidden layer; (2) 

hidden neurons are using tanh(.) function; (3) the output neuron is linear. At the training 

stage the network learns the set of the training data and as a result reproduces the 

approximating function F. At the testing stage the network is faced with the new data and 

there the network function F assumes the role of the estimator of the output target 

function: F = f*. The approximation error is measured by the integrated squared error 

with respect to an arbitrary probability measure  on the ball Br = {x: ||x|| < r} of radius 

r>0. The final expression for the bound on the risk resulting from the MLP approximation 

mapping can be presented in the form [1]:  

  

R < O(Cf 2/mI) + O((mIm0 logN)/N ) ,   (2.2) 

  

This expression with two terms for the bound on the risk R contains two conflicting 

requirements on the size of the hidden layer and reflects the existing tradeoffs: 

1. Accuracy of the best approximation: mI must be large (as the universal 

approximation theorem suggests). 
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2. Accuracy of the empirical fit to the approximation: mI/N must be small. Because 

N, the number of fitting points, is fixed, this contradicts to the first requirement.  

 The consequence of the above is that an exponentially large sample size N, large in the 

dimensionality m0 of the input space, is not required to achieve an accurate estimate of 

the target function f(x), provided that the first absolute moment Cf remains finite. This 

conclusion contributes greatly to the recognition of the MLP as universal approximators 

for the practical cases. If 0 denotes the mean-square value of the estimation error, then 

from the last bound it may be inferred that the size N of the training sample necessary for 

a good generalization is about m0mI/0. As m0mI~W, the above relation for the number of 

fitting points N in a good generalization case becomes confirmed: N >> W/0.  

 

 

2.2. Structure of the neural network function approximator 

Barron’s consideration of the function approximation had been extended by G. Cheang 

on two-hidden-layers neural net [6, 7]. For one hidden layer neural network, the 

limitations were analyzed by Chui et al [8]. Application wise, the neural function 

approximators are of interest for adaptive control systems with non-linear actuators [9 - 

12], for instance, for systems with one of the following non-linearities: friction, dead-

zones, backlash, and time delays. Obtaining 2D non-linear function approximators in 

such systems is achieved by employing the concept of the function mapping with a neural 

network as shown in Fig.2.  
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Fig. 2. The concept of the function-approximation training of a neural network.  

 

In the training stage, the neural network is connected to a function source, and it is 

subjected to a set of the training data (which contain values of the respective output values 

of the source function to these data). Based on the error signal (generated by comparing 

the expected values from the function source and the current output of the network) the 

neural network undergoes adjustments to minimize the error signal.  

General structure of the neural network for function approximation is shown in Fig.3. 

(Omitted there is additional bias node at the input, which has the input value of 1.0 and is 

connected to each hidden node as well as to the output node). 
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Fig.3. Feed-forward network for function generation (Bias is omitted). 

 

Such neural network can be implemented, for instance, by employing Intel’s chip 

8017NW ETANN (Electrically Trainable Analogue Neural Network). An alternative is 

the design suggested by Malcolm Stagg [13]. Electronic versions of the neural network 

support the backpropagation algorithm, which is the feedback-based learning algorithm 

mentioned in Chapter 2 and also called supervised learning. For training, it requires the 

calculation of the correct output for an input pattern, but will learn to represent the correct 

output as a result. The neuron design uses an SRAM cell to enable/disable algorithm-

dependent circuits, and also uses tanh(.) sigmoid circuit for forwards-propagation (range: 

[-1, 1]) and its derivative as sech2() for backwards propagation (range: [0, 1]).  
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2.3. Time series forecasting with neural network 

Another class of functions in which neural network's mapping ability had been found to 

be useful is 1D times series [14 - 17]. A time series is a sequence of data points, 

representing values of the variables at successive times, usually spaced uniformly on the 

time scale. Examples of well known time series are the stock rates on financial markets, 

temperature changes in the weather forecasts, traffic volume in the communication 

channels. Very often the need is to actually predict the expected values of the time series 

in some remote future based on its past evolution. It was shown [14] that feed-forward 

type neural networks based on MLP are capable of efficient single-step predictions of the 

frames sizes in MPEG-coded streams, which reflect representation of those video streams 

by the time-series with very long range time dependencies. Multi-step prediction based 

on recurrent networks proved to be efficient for 2-steps-ahead and 4-steps-ahead 

prediction horizons [14].  

 The structure of the time series predictor based on a MLP is shown in Fig.4. It is seen 

that the time series stream is filling in the n inputs of the MLP based on which the 

prediction, Xt+k, of the future value k-steps ahead is obtained at the output, the actual 

value being xt+k (so that the Error = xt+k - Xt+k ).  
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Fig.4. Time series prediction with the neural network (Bias is omitted). 

 

 
 
 

Fig.5. Training scheme of multilayer perceptron type neural network. 
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The error calculated at each iteration step of the gradient descent algorithm is used for 

training of the MLP, as it is depicted in Fig.5, where n is number of input points from the 

training set, k is the number of step for prediction target (also inside the same training 

set). Thus the error back-propagation allows adjusting the free parameters of the MLP, 

i.e. neuron’s input weights and biases, to minimize the overall error. Converging to the 

optimal solution in training then allows employing the obtained MLP as a forecaster in 

the future values of the same time series. In the above scheme the forecasting was 

pursued for a fixed number of steps into the future. The forecast of only one single point 

was targeted there for each set of the input values.  

 In general, the forecasting may involve the requirement to deliver the forecasts for 

various numbers of steps ahead, i.e. include a short term forecast as well as a longer term 

forecasts based on the same data and/or preceding past. The neural network suitable for 

that would be inherently MIMO-type (multiple-inputs-multiple-outputs), as the one 

depicted in Fig.6. Advantage of the multi-step forecasts is that various horizons of the 

future values are obtained, which allows for more thoroughly weighted and flexible 

decision making approach due to more comprehensive view into the upcoming events 

and changes. However, the increase of the dimensionality of the task makes it more 

difficult to obtain the optimal solutions due to higher complexity of the problem.  

There are number of time series [15], which are widely accepted by the research 

community, among which deterministic chaos time series is regarded as a benchmark for 

prediction. Example of such series is the Mackey-Glass time series [16], which originates 

from a numerical solution of the Mackey-Glass linear differential equation. This time 

series had been extensively studied with the neural network’s approach.  
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Fig.6. Multiple forecast neural network time series predictor (Bias is omitted). 

 

A time-series forecasting model based on the flexible neural tree were introduced by Y. 

Chen et al [17, 18], allowing optimization of the neural net structure via evolution by 

mutations. The neuro-fuzzy systems were explored to integrate neural networks, fuzzy 

inference systems and evolutionary search procedures [19]. An incremental cascade 

network architecture based on error minimization were explored [20]. Demonstrated were 

advantages of the local approximation technique for non-linear function approximation 

[21]. The Support Vector Machines were reported as a viable alternative to a neural 

approach in the time series forecasting [22]. A direct adaptive output feedback control 

design procedure was developed for highly uncertain nonlinear systems that do not rely 

on state estimation [23]. Number of research efforts was dedicated to multi-step 

prediction algorithms [24 – 30], among which the neural approaches included B-spline 
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interpolation and adaptive time-delay neural network [24], superimposed noise modeling 

in the neural systems [25] and co-evolutionary recurrent neural network [28].  

At the same time, the parallel programming approaches were in the focus of research 

efforts due to an expected increase in efficiency of iterative processing in the parallel 

computational environment. On this end the parallel evolutionary asymmetric subset-

hood product fuzzy-neural inference system has been developed to take advantage of 

parallelization in message passing [31]. Another efficient effort to materialize advantages 

of the parallel geometry was in implementing a holographic neural predictor which was 

demonstrated for fractional Brownian motion predictions [32]. A multi-core environment 

as one of the recent trends in the computer architectures also was part of the 

parallelization research in the neural network algorithm area [33]. Such an effort is a 

continuation of the earlier push for efficiency increase when adopting the parallel 

computational environment [34] from Sharp Corp. The implementation of neural 

networks on FPGAs has several benefits, with emphasis on the parallelism and the real 

time capabilities, which had been addressed at Sapientia Hungarian University of 

Transilvania [35]. An attractive alternative of the parallel environment offers the Cell 

broadband engine (Cell/B.E.) multiprocessor recently produced by IBM [36]. The 

potential of the Cell broadband engine for modeling the large size neural networks has 

recently been addressed by Per Hasselström of Stockholm University [37], in which 

optimization of the model was sought via distributing the large computational task over 

the multiple processing units. Such potential of the Cell/B.E. is intrinsically present in its 

architecture and the simplest example of that is seen in the fast matrix multiplication [38].  
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The neural predictors have potential also in video compression via predicting 

quantification parameter of discrete cosine transform coefficients as shown in [39]. The 

neural classifiers were demonstrated to be efficient in improving characteristics of the 

video encoder [40].  

 

2.4.  Potential deficiencies of the gradient descent algorithm 

Despite its continuous popularity [2 - 30], the gradient descent algorithm poses various 

implementation difficulties for the neural networks training in a single processor 

computing environments. The following list includes some major problems with the 

gradient descent [1], which have inspired various research efforts for more sophisticated 

versions of it and/or alternative algorithmic approaches: (1) The gradient descent 

algorithm does not guarantee reproducible results. (2) The systems to which gradient 

descent is applied to can be too complex, so that the convergence of the algorithm 

becomes poor. (3) The gradient descent can be too slow. (4) The solutions offered by the 

gradient descent can be non-optimal. 

 The first problem stems from the fact that typically the algorithm starts from setting up 

initial parameters, such as input weights of the neurons, to small random values. 

Moreover, the preferred also is the random order of the training patterns supplied to the 

neural network within the algorithm. These two sources of randomness are essential to 

ensure versatility of the algorithm in general, but it does poses an obstacle in reproducing 

once obtained results.  

 The second problem occurs when the task requires a complex system, for which the 

convergence of the gradient descent becomes negatively affected by sophistication of the 
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system. As an example of that can be multi-dimensional neural networks, such as those of 

multiple-input-multiple-output type, for which the gradient descents in various 

dimensions may contradict to each other.  

 The third problem may occur when the complexity of the task allows only slow 

convergence and/or for the large networks, where the number of the connections requires 

prohibitively high number of iterations to maintain the convergence. Alternatively, the 

problem of the speed of convergence may be the result of the lack of clarity in the task on 

what the step size in the gradient descent should be. Adopting infinitesimal step size 

would make the time frame to be indefinitely long to complete the algorithm, which is 

not acceptable. However what exactly the size of the step should be in each particular 

case is unclear and needs to be found first, which in itself requires extra-resources. The 

number of algorithms had been developed for adjusting the step size during the run time. 

However many of those sophisticated algorithms bring in the sensitivity to noise or 

negatively affect scalability, or both [1]. Consequently, the gradient descent approach still 

is used and it remains to be an important robust tool, where only minor improvements 

with a simple momentum heuristic address the adjustment of the step size and thus the 

speed of convergence.  

 The fourth problem, the optimality of the obtained solutions, is due to entrapment of the 

gradient descent trajectory in the local minimum. There are many optimization 

algorithms designed to address the local minima entrapment problem, such as variational 

learning, annealing [1]. However none of it offers guarantees against the local minima 

entrapment as well as versatility of the gradient descent algorithm keeps it as preferred 

method in many practical tasks, particularly those with on-chip learning [13, 35].  
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2.5. Cell Broadband Engine as a tool for parallel processing of algorithms  

 The Cell Broadband Engine (Cell/B.E.) has been recently introduced [41 - 47] by IBM 

as a new class of multi-core processors (Fig.7). The Cell/B.E. processor extends the 

trends in processors development by offering network of Synergistic Processor Elements 

(SPE) on the board, operating under command of Power Processor Element (PPE), as 

shown in Fig.8.  

 

 
 

Fig.7. Hardware of Cell Broadband Engine (Cell/B.E.). 

(http://domino.research.ibm.com/comm/research_projects.nsf/pages/multicore.Cel

lBE.html/%24FILE/cellbe.jpg) 

 
 The SPEs are adapted to efficiently run computational tasks, while the PPE is more 

suitable to perform the controlling tasks. The Cell/B.E. can perform multithreading tasks 

of concurrent tracing of various trajectories of the numerical algorithms, in particular the 

gradient descent algorithm, which is in the basis of backpropagation training of the feed-

forward neural networks.  

http://domino.research.ibm.com/comm/research_projects.nsf/pages/multicore.CellBE.html/%24FILE/cellbe.jpg
http://domino.research.ibm.com/comm/research_projects.nsf/pages/multicore.CellBE.html/%24FILE/cellbe.jpg
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Fig.8. The architecture of the Cell/B.E. processor from IBM. 

(http://www.ibm.com/developerworks/power/library/pa-celltips1/) 

 
 

The exploration of tracing the parallel trajectories with neural network’s algorithms has 

its history, summarized by LiMin Fu [48]. It stems from the pioneering work of Gevins 

and Morgan (1988) [49] and that of Casselman and Acres (1990) [50] for processing data 

with neural networks, which, as had been emphasized by LiMin Fu [48], represented two 

principally distinct parallelization strategies: (i) connecting different networks in parallel 

so that each network extracts different features from the same data [49] (see Fig.9) and 

(ii) breaking up a complex problem into a number of subtasks to be solved by different 

networks [50] (see Fig.10).  

 

http://www.ibm.com/developerworks/power/library/pa-celltips1/
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Fig.9. Parallel network model without central control (reproduced from [48]).  

 

Fig.10. Parallel network model with central control (reproduced from [48]).  

 

According to LiMin Fu [48], the usefulness of approach (i) is in the possibility of making 

different analyses of the same data (extracting more information as a result). The first 

implementation of such approach by Gevins and Morgan (1988) consisted of applying 

different networks to detect different types of the contaminants in the brain’s EEF signals 

[49]. The approach (i) may potentially result in unexpected discoveries due to 
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implementation of the multiple networks, because unexpected favorable combinations 

may occur. 

 Alternatively, in the approach (ii), the results from different networks may be combined 

in order to reach the solution of the task. For instance, Casselman and Acres (1990) [50] 

had employed a parallelization scheme (ii) to conduct different diagnostic tasks of 

satellite spectral data. Essential here is the fact that the parallelization scheme (ii) allows 

obtaining a solution for the task, whose complexity is too high for a single network of 

equivalent size. In other words, the parallelization (ii) enables to reach a solution not 

available otherwise.  

The application of approaches (i) and/or (ii) has so far not been considered with regard to 

2D non-linear functions approximation as well as to 1D time series prediction problems, 

which is in the core of consideration herewith. For nonlinear function approximation, the 

obvious benefit of parallelization (i) is the extensive coverage of the starting conditions 

for gradient descent algorithm, which allows address the problem of potential trapping in 

local minima (and identify the most efficient trajectory to the global minimum). This will 

be discussed in Section 4.  

 Both schemes of parallelization may benefit the task of the time series prediction, 

because such task contain several dimensions suitable for parallelization, among which 

the obvious ones are: 1) varying the initial set of the time values for prediction; 2) 

varying the length of the forecast; 3) varying the depth in the history to rely on in making 

the forecast; 4) varying the structure and/or the parameters of the predicting neural 

network. The first three advantages will be explored in details in Section 5. As a 

hardware for parallel computing environment, the IBM’s BladeCenter® QS22 based on 
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the innovative multi-core IBM PowerXCell 8i processor, a new generation processor 

based on the Cell/B.E. architecture, has been used in this work.  
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Chapter 3. Research Question Formulation  

 

This thesis identifies and demonstrates the advantages offered by the parallel 

programming environment of the Cell/B.E. for the implementation of the gradient 

descent algorithm (in terms of speed and accuracy of the attained solutions of 2D non-

linear functions approximations and 1D time series predictions by multilayer perceptron 

neural networks).  

 A parallel computational environment offers potential of extra power, which traditionally 

is used to improve the speed and the accuracy of the calculations. Such potential is readily 

available from the Cell/B.E. multiprocessor [36, 41 - 47]. In the field of neural networks, 

this is useful for the case of large-scale networks [37], where a large task can be split into 

several smaller sub-tasks, each of which is assigned to a separate SPE. Another well 

known example of large-scale tasks implemented on the Cell/B.E. is large matrix 

multiplication [38]. In both last cases the gain was in engaging combined computing 

power of the SPE processors to solve sub-tasks, which initially large whole task was 

divided into. On the other hand, for small scale tasks (sufficiently small for a single 

processor to efficiently handle), there are two commonly used parallelization schemes 

originated in [49] and [50], which had been reviewed in Section 2. Possible applications 

of these schemes to neural networks were shown in Fig.9 and Fig.10 and, up-to-date, 

neither of them had been explored. Single processor environment has limitations in 

specific implementations of the neural approximations of 1D and/or 2D nonlinear 

functions. Specifically, the gradient descent algorithm is known to be vulnerable to the 

local minima traps [1 - 12]. For a single processor the consequences of such entrapment 



 39 

are double fold: (1) unproductive loss of the computational time; (2) uncertainty as to the 

optimality of the solutions found. Both of them can be addressed by a parallel computing 

environment via employing extra processors. Still, the efficiency of this solution need to 

be observed and therefore specific considerations are needed to determine under which 

circumstances and to which extent such brute-force approach is an adequate way to 

address the posed risks of losing the optimal solutions.  

 A parallel computing environment offers extra dimensions that can be used to boost the 

efficiency of the neural network application for the nonlinear function predictions. Two 

main aspects of the predictions are in the center of attention – speed and accuracy. 

Timely and accurate predictions are key in the successful targeting of applications 

involving neural forecasting in time series (such as stock markets). The same is true for 

the 2D non-linear function approximators, where controllers require accurate and speedy 

conclusions about properties of the 2D function underlying the input data in order to 

adequately manage the system. The limitations of single processor environment for 

employing gradient descent algorithm in neural predictions and approximations tasks 

become disadvantageous in quickly changing environments, because the changes may 

render the previous training of the neural network forecasters to be no longer useful and 

require either fast and/or efficient re-training or switch to the pre-trained forecaster from 

the stored ones, or combinations thereof. The sequential handling of those tasks with a 

single processor carries a risk of delivering the solutions too late and may become 

unacceptable. A parallel computing environment may face the required time cost with 

much better efficiency and therefore the aspects of the advantages available from its 

employment deserve a detailed study to account for in the applications. Availability of 



 40 

the parallel computing environment from the portable sources, such as the multi-core 

processors, the Cell/B.E. multi-processor, the FPGAs, render such consideration to be 

beneficial for various kinds of the parallel environments due to potential applicability of 

the principles developed to all of them to at least some, if not equal, extent.  

Moreover, even though the Cell/B.E. was used in this thesis as platform to support 

parallel computing environment, changing the platform itself would still keep the 

principles of parallelization intact (i.e., the same principles may be employed later in other 

systems supporting a parallel environment, such as with multi-core processors [33], 

computer network architectures [34], or FPGA hardware systems [35]). There are multiple 

applications in which the increased efficiency of the neural network algorithms can be 

beneficial. This includes adaptive control systems with non-linear actuators [9 - 12], such 

as systems with one of the following non-linearities: a friction, dead-zones, a backlash, 

time delays, and for which 2D nonlinear functions approximators are needed. The 

applications for 1D time series prediction includes those with the chaotic time series 

prediction, such as the forecasters of the frame or visual object plane sizes of MPEG-

coded streams [14], the Mackey-Glass time series [15 – 30], the Brownian motion 

prediction [32], the stock and financial market forecasters [56 – 64].   

   The concept of tracing the parallel trajectories was recently formulated [65] for bio-

chemical reaction simulation approach with Stochastic Simulation Algorithm. A 

trajectory in Stochastic Simulation Algorithm is a time-ordered sequence of states of the 

chemical system.  For example, in a model with 4 species such as the metabolite-enzyme 

model, each state is a tuple (ordered set) of 4 integers.  Each element's value in the tuple 

is the population of the corresponding species. At any time, the state of the system 
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possesses Markov property, i.e. depends only on the current state and not on any previous 

state. This is equivalent to that the system has no memory of any earlier state. 

Trajectories of the system in this case are Markov chains over the state-space of the 

chemical system.  The state-space for such system consists of all possible combinations 

of populations of the species.  Each trajectory in this case is a random walk through the 

state-space of the system.  The idea in Stochastic Simulation Algorithm is to start with 

some amount of each species at initial time moment (set to be zero on the time scale) and 

then advance in small random steps through the time.  The random numbers are used to 

decide which reaction should occur at each time-step (as in Markov chains) until we 

reach the stopping conditions (i.e. the time frame decided on).  Such an individual 

simulation, which tracks the amounts of each species at each time-step, will represent a 

trajectory of the system.  However, each individual trajectory represents only one 

possible way of the system advancement.  In order to obtain a fully representative picture 

of system’s behavior, many thousands of trajectories are needed.  To accomplish the task, 

a power of parallel computing environment were individual processors may 

accommodate simulation of one possible trajectory is a suitable alternative to implement 

the simulation of multiple trajectories. A Cell multiprocessor had been suggested for this 

purpose by Emmet Caulfield and Andreas Hellander and implemented in multiplatform 

compiler for the Cell/B.E. and x86 processors [65].  However, this approach had not been 

explored in the area of neural networks, even though it does have potential to address the 

bottleneck of the grtadient descent algorithm approach, which is vulnerable to occurance 

of unfavorable staring conditions.  This further contributes to justification of the research 

question formulation in this Thesis.    
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Another example of multiple trajectories generated for various starting points and 

simulated in massively parallel computing environment is represented by implementation 

of Magnetic Pendulum Fractal Simulation by René Müller [66].  The task of a magnetic 

pendulum movement over n magnets is described by a system of differential equations.   

The solution of the coupled differential equations is implemented numerically using 

Verlet leap-frog integration.  The potential and kinetic energies of pendulum are 

computed for every iteration step. Stopping conditions for simulation requires the system 

energy to drop below a threshold ET.  As simulations had shown, a slightly different 

origin produces different trajectories, so that to see the full range of capabilities the dense 

coverage of the starting conditions is needed, which brings multiple trajectories as viable 

solutions.  Software packages had been developed to implement this simulation in 

various parallel environments, such as Unix cluster consisted of 12 Alpha Workstations 

that ran on DEC Tru64 UNIX, Sony PlayStation3 with Cell/B.E.., demonstrating 

advantages of tracing various trajectories in the parallel computing environment.  Similar 

approach is feasible for the gradient descent algorithm, which however was not explored 

so far and therefore may constitute part of the research question of this Thesis. 
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Chapter 4. Parallel tracing of multiple trajectories in gradient 

descent algorithm with Cell/B.E. multiprocessor 

 
Efficient function generators are needed in the areas of signal processing systems, such as 

speech recognition [51], text-to-speech synthesizers [52], Optical Character Recognition 

(OCR), data mining, image compression, medical diagnosis, Automatic Speech 

Recognition (ASR) etc. Artificial Neural Networks (ANN) are recognized to be able of 

delivering efficient technical solutions to this problems [83 - 85]. The Cell/B.E. 

environment offers an efficient tool for algorithm implementation in parallel allowing for 

simultaneous tracing of multiple trajectories of such algorithms from randomly selected 

starting points, thus efficiently observing the diversity of possible solutions and allowing 

for the efficient selection of the better ones.  

The first 2D non-linear function selected for this study was the standard saddle surface of 

hyperbolic paraboloid z=x2-y2, which is polynomial of the 2nd order with saddle point as 

shown in Fig.11(a).  The second selected function was defined by the equation z = x2 – 

3*x*y2 and is polynomial of 3rd order with saddle point as it is shown in Fig.11,(b).  The 

choice of the 2D non-linear functions here is motivated to verify the concept with the 

polynomials of the lowest order of non-linearity, which also have saddle point as the 

center of the area of quasi-stability.  While it is feasible that some practical system may 

require functions of that kind, in this Thesis the selected functions are not linked to 

specific application, but rather to their ability to provide features of non-linearity and area 

of quasi-stability.   
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The MLP’s structure consisted of the three layers as that shown in Fig.3 with 3 inputs (x, 

y, 1), of which two were for the variables and one for the bias. There was one hidden layer 

with tanh(.) activation function for the hidden neurons and linear output neuron, thus 

allowing 2D function generation. Particular parameters of the neural network used for 

simulation of 2D function approximator were as follows: (1) two inputs (n=2) for the 

variables X and Y (2) one input for the bias set to be “1.0” (so that a set of the input data 

is represented by variables X=x and Y=y and the bias, so that each node has weighted 

adjustable input and adjustable bias); (3) the network has one output, so that a mapping 

function is represented by variable Z=f(x, y).  

 

Fig.11. Graphical representation of 2D functions selected for neural approximation: (a) 

hyperbolic paraboloid z=x2-y2 ; ( b ) z = x2 – 3*x*y2. 

 
 

4.1. Software operation in Cell/B.E. simulation environment  

A simulation environment was implemented using a multithreaded synergistic mode on 

the Cell/B.E. The idea is that the PPU initiates asynchronous threads of the gradient 

descent algorithm on the available SPU's concurrently. The diagram in Fig. 12 shows 

( a ) 
 

( b ) 
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operation of the software designed for tracing parallel trajectories of the gradient descent 

algorithm. The program written in C/C++ has been developed for Linux (Fedora 9) using 

IBM’s Cell SDK 3.0. The program included four files: main.c, m_spu.c, dimensions.h and 

control_block.h. The data were organized in the structure, DataStruct{.} specified in the 

control_block.h file. DataStruct includes variables used for the transfers between PPU 

and SPUs, among which there were data for input and output training points, i.e. the sets 

of values for X, Y and Z, as well as the sets of values for neuron’s input weights. The 

dimensions.h file contained values for the parameters used in the MLP training algorithm, 

among which there were numInputs for the number of MLP’s inputs, including bias, 

numOutputs for the number of outputs, which here was set to be equal to 1, numPatterns 

for the number of patterns used in the training, numHidden for the number of hidden 

nodes of the MLP, numEpochs for the number of the training epochs. The algorithm also 

included the learning rates as parameters (specified in dimentions.h file): LR_IH for the 

input-hidden nodes connections, LR_HO for the hidden nodes-output connections, LR_IO 

for the input-output direct connections, as well as the momentum coefficients – alphaHO, 

alphaIO and alphaIH with the same notations for HO, IO and IH indices.  The MLP’s 

training algorithm was placed in the m_spu.c file to enable concurrent training of various 

MLPs by SPE processors. As it is indicated in Fig.12, the program starts by loading in the 

data. There are three sets of values for 2D function variables in the program: (1) the set 

for training, including X, Y and Z; (2) the set for the first level testing, including Xt, Yt 

and Zt; and (3) the set for comprehensive testing, which included values for Xd, Yd and Zd. 

Unlike X, Y and Z, the variables Xt, Yt, Zt, Xd, Yd and Zd were not included into the 

Datastruct{.}.  
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Fig.12. Software operation diagram for tracing parallel trajectories of the gradient 

descent algorithm for 2D function approximation. .  

 

It is because the tests involving Xt, Yt, Zt, Xd, Yd and Zd are part of the procedures listed 

in the main.c file, all of which are ran by the PPU. Contrary to that, the variables X, Y and 

Z are part of the algorithm listed in the m_spu.c file for the gradient descent trajectory 

tracing conducted by the SPEs, which therefore required X, Y and Z to be placed in 

DataStruct{.} to enable transfers between the PPU and the SPEs via Direct Memory 

Access (DMA). The first level of testing was conducted for the points (Xt; Yt), which 

were equally distanced from the closest neighbor points (X; Y). The comprehensive 

testing of resulting MLPs was implemented on points (Xd; Yd), which apart from (X; Y) 
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and (Xt; Yt) also included all intermediate cross-reference points, namely (X; Yt) and (Xt; 

Y), as well as close-proximity interpolation point extending outside training region for 

half of the distance between two closest (X; Y) points. Specific coordinates for the 

training as well as both testing sets of points are listed below for each of the experiments. 

The data loading stage shown in Fig.12 also included assignment of the starting values for 

the input weights of the MLP’s neurons. Such assignment was implemented by using 

either a random choice of relatively small values (<<1) or a specially chosen set of pre-

assigned values. The last case was needed for verification of reproducibility of the 

trajectories. Parallelization can be started at this point via varying the scale of the 

quantization step for the input values, so that training of the MLPs can be conducted at 

different scale factors.  

 After completion of the data loading, the program proceeds to initiating p-threads by 

loading SPEs with the instructions generated by m_spu.c’s code (Fig.12). Threads are 

asynchronous, which is provided by pthread(.) function of the Cell SDK package and 

which interrupts the main program execution until completion of all the initiated threads. 

The part of the program in the m_spu.c file contains the declared structure of the MLP, so 

that as parallelization parameter the number of hidden neurons, numHidden, can be varied 

for the SPEs to allow algorithm convergence verification for various values of the 

parameter numHidden. This would start the number of specified in the program 

asynchronous p-threads at specified number of SPEs, each implementing the same 

algorithm but for a different number of the hidden neurons in the MLPs. Otherwise for the 

case of 2D functions the instructions are the same for each SPE and as a first step they 

start from the data loading into the local store via DMA transfer from the main memory 
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employing the function mfc_get(.). Similar instructions are for all SPEs with the only 

difference being in the starting point for the gradient descent, which is stored in the 

variable of input weights for the neurons. Thus the parallel trajectories would reflect 

diversity of the gradient descent routes originating from the various starting points.  

Once started, each SPE’s thread would run in asynchronous mode to enter the training 

cycle for its MLP. The algorithm includes screening the available input/output mapping 

relations in order to calculate the respective error which current MLP produces at its 

output. From the obtained errors the updating increments are derived for the input weights 

of the neurons so that updating the weights reduces the overall root mean square error of 

the MLP as 2D function approximator. At the end of each updating cycle the program 

calculates and reports the current RMSE attained for the given epoch, . The sequence of 

these reported  values forms the trajectory of the MLP training, which is observed in the 

conducted experiments as the dependence = (numEpochs). Termination of the training 

cycle and thus the end of the trajectory occurs when either the specified accuracy of the 

approximation or the allowed number of training epochs is reached. In Fig.12 this 

corresponds to ending the MLP training loop and proceeding to initiating DMA transfer 

of the resulting parameters of the MLP, which are kept in the structure DataStruct{.} back 

to the main memory of the PPU. The function mfc_put(.) is employed to carry out this 

operation.  

 In asynchronous mode, the PPU waits for all the p-threads to be completed in order to 

proceed with the programmed testing of the obtained MLPs. The two above mentioned 

tests are based on the sets {Xt; Yt; Zt} and {Xd; Yd; Zd}, which brings about the respective 
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RMSE values Et and Ed to be saved along with the obtained parameters of the data 

structure DataStruct{.} thus completing the program.  

 

 

 

 
 

 
 

Fig.13. Parallelization scheme and software operation for tracing the trajectories of 

the gradient descent algorithm to obtain 2D function approximator with the neural 

networks.  

 
 
 A parallelization scheme for software operation used in tracing parallel trajectories of the 

gradient descent algorithm of neural 2D function approximator is shown in Fig.13. Three 
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sets of data were loaded into the main memory: (i) data set {X, Y, Z} for training of the 

MLPs included vectors X =[x0, x1, x2, …, x7] and Y=[y1, y2, y3, …, y7] of (x; y) 

coordinates and matrix Z=[ z00, z01, z02, …, z07; z10, z11, z12, …, z17; …; z70, z71, z72, …, 

z77] of the 2D function values supplied to SPEs to implement gradient descent algorithm; 

(ii) data set {Xt, Yt, Zt}of testing points with vectors Xt =[x0, x1, x2, …, x8] and Yt=[y1, 

y2, y3, …, y7] of (xt; yt) coordinates chosen as most remote ones from the training points, 

and with the matrix Zt=[z00, z01, z02, …, z08; z10, z11, z12, …, z18; …; z80, z81, z82, …, z88] 

of the 2D function testing values; and (iii) data set {Xd, Yd, Zd} for comprehensive testing 

which included coordinates (xd; yd) of points presented by vectors Xd =[x0, x1, x2, …, x17] 

and Yd=[y1, y2, y3, …, y17] and function values Zd=[z0;0, z0;1, z0;2, …, z0;17; z1;0, z1;1, z1;2, 

…, z1;17; …; z17;0, z17;1, z17;2, …, z17;17] for comprehensive testing with intermediate points 

inclusive. The training sets {X; Y; Z} were equally distributed to all SPEs to run the 

gradient descent algorithm from random starting points. The random starting points were 

generated by supplying to each SPE the matrix [Wi], where SPE’s index i=0, 1, 2, …M; 

(M+1) being the maximum number of SPEs (in Fig.13 it is shown to be 8) of input 

weights for the hidden and the output neurons, which thus represented the essential 

information about the structure of the MLP under training. The elements of the matrices 

[Wi] were initiated by the PPU at small random values thus selecting the starting points 

for each SPE and stored in the main memory. Initiation of the gradient descent algorithm 

was accompanied by the DMA transfer of the data sets {X, Y, Z) and the matrices [Wi] to 

the local memory store of each SPE-i. Running the gradient at SPE-i, i=0, 1, 2, …, M, 

resulted in updating the values of the matrices [Wi]. After completion of the gradient 

descent algorithm by either satisfying the conditions for the required RMSE value , or 
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by exhausting the allocated resource of the training epochs, controlled by the parameter 

numEpoch (both parameters were programmed in the file control_block.h of the 

program), the final versions of the matrices [Wi] were DMA transferred from the SPE’s 

local stores back to the main memory for the testing procedures (as shown in Fig.13 by 

the arrows from the SPEs to the PPU). These [Wi] matrices contained the resulting 

weights information for neuron’s inputs, which the MLP marked in Fig.13 as NNT was 

using for the final testing procedures. Two testing procedures were used in the program – 

one for the points represented by the set {Xt, Yt, Zt} and which were most remote from 

the training ones, and another one, the overall comprehensive test, for the points 

represented by the set {Xd, Yd, Zd}, which additionally included intermediate points. 

These two testing procedures were conducted in the program sequentially, which was 

provided by the switch shown in Fig.13. The results of the testing procedures were then 

directed to the output [0] – [M] (M=7 in Fig.13) of the program together with the data of 

matrices [Wi], thus enabling further analysis of the obtained function approximators, such 

as graphic analysis with Matlab program to visualize the approximated 2D surfaces as 

well s error distributions.  

The parallelization scheme shown in Fig.13 is close to the one represented by Fig.10 as 

the control module of the program does contain the testing neural network NNT to 

conduct the comparison of the resulting solutions and selecting the most optimal one 

based on supplied information from the SPEs about training trajectories as well as results 

of the tests by the network NNT in the central control module of the program. 
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4.2. Simulation results for hyperbolic paraboloid z=x2-y2 case 

For the hyperbolic paraboloid, the MLP’s training algorithm converges with a minimum 

of 7 hidden neurons and the training points sets of X=Y=[3.5 2.5 1.5 0.5 -0.5 -1.5 -2.5 -

3.5]. The tests below have been conducted for the number of hidden neurons 

numHidden=10 for improved convergence.  

Table 1 shows the data for the parallel tracing of the training trajectories on 8 SPEs 

(namely SPE-0 through SPE-7). The targeted precision value was =10-5, after achieving 

which the training was terminated (or continued until reaching the limit of max training 

cycles otherwise). The first column of the Table 1 shows the level of the training reached 

in terms of conducted training sessions for MLPs , i.e. the number of epochs spent in the 

training. The rest of the columns in the Table 1 show the reached by the MLPs of each 

SPE level of accuracy, represented by the RMSE value, . For each training level listed 

there is a winner by the reached accuracy level, i.e. the MLP demonstrated the lowest 

RMSE thus far. Graphically the same data are presented in Fig.14 (a-d) as tracings of 

trajectories followed by SPEs in training.  

Some of the trajectories (such as those the SPE-0, the SPE-2, the SPE-6 and the SPE-7), 

exhibit the desired “diving” behavior, i.e. finding and following a quick descent track to 

converge and deliver smallest RMS Error values at smallest computational cost (in other 

words, requiring minimal number of epochs for training of the neural net). Others (such 

as the SPE-4 and the SPE-5), after a quick start, saturate the progress at certain level of 

accuracy in function approximation. In this example, the SPE-5 did not reach targeted 

precision level of =10-5 for the allocated training interval, while the SPE-4 did achieve 
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=10-5 but at much higher calculating cost than the pack of leaders (the SPE-0, the SPE-2, 

the SPE-6 and the SPE-7).  

 
 

Table 1. Training progress of the MLP on various SPEs of the Cell/B.E. (RMSE vs. 

numEpochs) for the hyperbolic paraboloid function.  (Rate 2500 epochs/sec.) 

epoch SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7 

0 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48 

70 2.35 1.45 1.11 2.022 1.3825 1.9625 1.65 1.7925 

125 1.38 1.5 0.4275 1.633333 1.78333333 0.8325 1.625 1.4625 

191 1.2225 1.45 0.25 1.625 0.2425 0.1925 0.18625 1.345 

280 0.7175 1.4225 0.1925 1.4225 0.06975 0.1824 0.04475 0.7875 

400 0.25 1.3025 0.09625 1.5275 0.04225 0.0445 0.05525 0.885 

540 0.08075 1.19 0.0295 1.475 0.02175 0.03225 0.025 0.7375 

1164 0.0165 0.98 0.001965 1.282 0.006275 0.003175 0.0099 0.011 

1675 0.007525 0.9955 0.00090675 1.46 0.001122 0.002175 0.004825 0.003375 

1755 0.00435 0.875 0.00040125 1.285 0.0011165 0.0032245 0.003275 0.003 

2775 0.001266 1.05 0.00008625 1.385 0.00017875 0.0018 0.00097 0.000485 

3171 0.0006435 1.25 0.00007825 1.54 0.00025075 0.00095 0.0004915 0.0002585 

4635 0.00007575 1.135 0.00004925 1.35 0.00011725 0.00096175 0.0001485 0.00002225 

4951 0.00004775 1 0.00004075 1.335 0.00010025 0.0008945 0.00011525 0.00001475 

5087 0.000038 0.93 0.00003625 1.355 0.00009125 0.0010355 0.000105 0.00001 

6785 0.00001 1.11 0.00002275 1.37 0.000124 0.001183 0.00003025  

7410  1.36 0.00001 1.485 0.0000785 0.0006735 0.0000175  

7745  1.14  1.14 0.00007625 0.0007015 0.00001  

15240  0.93  1.545 0.0000435 0.00031675   

18775  0.94  1.645 0.00003775 0.00027825   

25345  1.015  1.8 0.00002925 0.00022475   

43540  1.025  1.29 0.00001725 0.00003725   

48298  1.1  1.32 0.00001 0.00004475   
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Fig.14. Trajectories of the SPE’s training on the Cell/B.E. in achieving the levels of 

precision  equal to: (a) 0.1; (b) 0.01; (c) 0.001 and 0.0001; (d) 0.00001. Windows 

(a), (b), (c) and (d) show various parts of the same trajectories at different 

magnification.  Training rate is 2500 epochs/sec.   

 

 The resulting function approximation differs not only in the value of  reached, but also 

in the error distribution, which can be characterized by evaluating separately RMS Errors 

for the training points (), the testing points (Et) and the full set of all points (Ed). 

Herewith for hyperbolic paraboloid the training points sets of X=Y=[3.5 2.5 1.5 0.5 -0.5 -

1.5 -2.5 -3.5] have been used, while the testing points have been Xt=Yt=[4.0 3.0 2.0 1.0 

0.0 -1.0 -2.0 -3.0 -4.0] and the sets of overall evaluation points have been Xd=Yd=[4.0 3.5 

3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0]. Table 2 shows the case, 

in which three winning the SPEs (the SPE-1, the SPE-2 and the SPE-6) achieved the 

0.01

0.1

1

10

0 200 400 600

number of epoch (in training)

a
c
h

ie
v
e
d

 p
re

c
is

io
n

, 
E

p
s
il
o

n
 

SPE-0

SPE-1

SPE-2

SPE-3

SPE-4

SPE-5

SPE-6

SPE-7

0.0001

0.001

0.01

0.1

1

10

0 500 1000 1500 2000

number of epoch  (in training)

a
c

h
ie

v
e

d
 p

re
c

is
io

n
, E

p
s

ilo
n

SPE-0

SPE-1

SPE-2

SPE-3

SPE-4

SPE-5

SPE-6

SPE-7

0.00001

0.0001

0.001

0.01

0.1

1

10

0 2000 4000 6000

number of epoch (in training)

a
c

h
ie

v
e

d
 p

re
c

is
io

n
, E

p
s

ilo
n

SPE-0

SPE-1

SPE-2

SPE-3

SPE-4

SPE-5

SPE--6

SPE-7
0.00001

0.0001

0.001

0.01

0.1

1

10

0 20000 40000 60000

number of epochs (in training)

a
c

h
ie

v
e

d
 p

re
c

is
io

n
, E

p
s

ilo
n

SPE-0

SPE-1

SPE-2

SPE-3

SPE-4

SPE-5

SPE-6

SPE-7

( a ) ( b ) 

( c )  ( d ) 



 55 

designated level of the precision prior to expiration of allocated iterations limit of 5400 

epochs. Among them there is a clear winner, which exhibited best value at each 

parameter, including , Et and Ed while spending smallest amount of calculations, i.e. 

1419 epochs as compares to 1874 for the SPE-1 and 2151 for the SPE-5. The training tracks 

which lead to this outcome are shown in Fig.15. It is seen that three SPEs (the SPE-0, the 

SPE-4 and the SPE-7) got trapped in the local minima and did not progress. Their traces 

in Fig.15 remained at shallow level of RMS Error of ca. 1.0. Two SPEs , namely the SPE-

2 and the SPE-3 there, managed to escape the entrapment and eventually reached 

appreciable RMS Error level of less than 10-2.  

 

Table 2. Training results for the MLP in approximating hyperbolic paraboloid 

function z=x2-y2 to achieve either precision =Eps=0.001 or maximal number of 

training epochs of 5400. (The input parameters see in the Appendix B).  

 
 

 

The next experiment has been designed to verify the stability of the observed trajectories. 

The source of instability in the algorithm is the randomness of the pattern sequences in 

the training epochs. There are total of 8*8=64 different patterns in this training 

experiment (as variables X and Y have 8 values each in the set), each pattern 

 SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7 
RMSE, 
 training 

0.897521 0.000974 0.006523 0.004064 1.576885 0.000954 0.000999 0.760430 

RMSE, Et, 
testing 

2.779444 2.079857 1.989340 1.979378 2.677969 1.978961 1.879715 2.690461 

RMSE, 
Ed overall 

2.250431 1.637820 1.570713 1.524210 2.276174 1.505976 1.435486 2.150663 

number 
of epoch 

5400 1874 5400 5400 5400 2151 1419 5400 
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corresponding to one combination of values (x, y, z) representing one point on the surface 

of 2D function. In the training algorithm one epoch consists of 64 patterns, which are 

selected randomly from the initial set of total 64 various patterns. Within each epoch the 

selected patterns are ordered randomly too. Such randomness is meant to avoid 

entrapment in local minima and to increase chances of convergence. However the 

trajectory of the convergence may deviate from trial to trial even when originating from 

the same starting conditions due to remaining randomness of the order of the patterns 

offered to MLP in the training. Deviation of trajectories from the original track may be 

stochastic and small enough to keep within its close proximity and eventually converging 

to the same global minimum, in which case the trajectory is seen as a stable one. In the 

alternative case, the deviation from the original track may be significant and lead to 

essentially different route of the convergence, rendering the trajectory to be unstable. For 

the experiment depicted in Fig.14, the stability of the trajectories can be verified by 

repeating this experiment from the same starting conditions (i.e. the same values of the 

initially assigned weights for the neuron’s inputs) but keeping random order of the 

pattern’s flow in the training. The result of this experiment is shown in Table 3 and 

Fig.16. While the overall trend remains similar to that in Table 2 and Fig.15, the 

trajectories differ, showing some instability. For example, the SPE-6 on a second run 

abandoned the leader’s group, while still delivering good performance at the end. The 

rest of the trajectories where not far from that of the first run as well as sufficiently close 

by the end results on error values, as can be seen by comparing the RMSE values for 

respective trajectories in Table 2 and Table 3. .  
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Fig.15. Gradient descent tracks of the SPE’s neural networks training, which lead to 

RMS Error values shown in Table 2. Windows (a), (b) and (c) show different parts 

of the same trajectories at various scales. Training rate is 2500 epochs/sec. 

 

 

 

 

 

 

Fig.16. Gradient descent traces for reproducing the same starting conditions as those 

in Table 2 and Fig.15, but with random selection of the pattern sequence in the 

epochs.  Training rate is 2500 epochs/sec.  
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The overall winner of the last run (Fig.16) is the SPE-1, which delivered the function 

approximation presented in Fig.17,(a). Respective error distribution for that case is 

presented in Fig.17,(b). It is worth to note, that the minimal deviation from the original 

function is located inside the training area, while at the edges error tends to significantly 

increase, particularly in the extrapolation part of it, where MLP’s approximation exhibits 

stronger vulnerability to errors. (The errors are evaluated as deviations from the ideal 

surface shown in Fig.11(a)).  

 

Table 3. Results of reproduction of the same starting conditions as those in Table 2 

and Fig.15, but with random selection for pattern sequence in the epochs left 

intact.      

 SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7 

RMSE, 
 training 

0.909161 0.000977 0.003556 0.011714 1.199642 0.000993 0.003308 0.808976 

RMSE, 
Et, testing 

2.776967 2.078992 1.994234 2.053515 2.707388 1.953186 1.970799 2.678789 

RMSE, Ed 
overall 

2.24974 1.633622 1.54502 1.605672 2.184742 1.479834 1.495387 2.165177 

number 
of epoch 

5400 1563 5400 5400 5400 2803 5400 5400 

 

 

The worse performance in the run reflected in Table 3 and in Fig.16 is shown by the SPE-

4, which was trapped at the shallow level of precision. The surface of hyperbolic 

hyperboloid (z=x2-y2) approximated by the MLP trained on the SPE-4 is shown in 

Fig.18,(a), in which string distortions are seen.  
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( a )      ( b )  

Fig.17. Results of the MLP’s training delivered by the SPE-1 from Fig.16 and Table 

3: ( a ) hyperbolic paraboloid’s (z=x2-y2) approximation and ( b ) the error 

distribution for it.  
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Fig.18. ( a ) Highly distorted approximation of z=x2-y2, delivered by the SPE-4 from 

Table 3 and Fig.16 and ( b ) the error distribution for it.  
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Fig.19. ( a ) The approximation of hyperbolic paraboloid z=x2-y2 by MLP on the 

SPE-5 (from Table 3) and ( b ) the error distribution for it (i.e. deviation from the 

original z=x2-y2 surface shown in Fig.11,(a)). 

 

As we can see, the strong errors have affected the internal area of the area of training. It is 

also instructive to compare the final result delivered by second runner-up of Table 3 and 

Fig.16, the SPE-5, which closely matched the quality of the function approximation to 

that of the winner, the SPE-1, but at almost twice higher computational cost (2803 epochs 

by the SPE-5 compare to 1563 epochs taken by the winner, the SPE-1). The surface of 

hyperbolic paraboloid approximation rendered by the MLP on SPE-5 (from Table 3) is 

shown in Fig.19,(a) with respective error distribution shown in Fig._23.  

 
The tests reveal that significant enhancement of the quality of the approximation can be 

achieved by scaling down by factor of 2 the distance between training points, i.e. for 

X=Y=[1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75]. This case is illustrated in Fig.20, 
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where the enhancement of the edges is seen as compared to that in Fig.17,(a), which was 

the best approximation in its series.  

 

Fig.20. Neural approximation of the hyperbolic paraboloid by MLP with 10 hidden 

neurons and the training points sets of X=Y=[1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 

-1.75]; .= 0.000999.  

 

4.3. Simulation for z = x2 – 3*x*y2 case   

For the case of z = x2 – 3*x*y2, the convergence of the gradient descent algorithm 

converges with the least number of hidden nodes being 10 and under training sets of 

points X=Y= [1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75], which has been followed by 

the test on the set of points Xt = Yt = [2 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0] and finally 

evaluated overall at the set of points Xd = Yd = [2.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25 0.0 -

0.25 -0.5 -0.75 -1.0 -1.25 -1.5 -1.75 -2.0].  

 For a stable performance the number of hidden nodes needs to be slightly increased from 

its minimum value of 10 up to 12, the result of which is shown in Fig.21, where 

approximated is the function z = x2 – 3*x*y2 from the Fig.11,(b) at the accuracy level 

characterized by the RMSE for training = 0.050009.  
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Fig.21. The function generated to approximate z = x2 – 3*x*y2 with 12 hidden neurons 

and the training points sets of X=Y=[1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75]; 

= 0.050009.  

 

 

Fig.22. The function generated to approximate z = x2 – 3*x*y2 with 12 hidden neurons 

and the training points sets of X = Y = [0.875 0.625 0.375 0.125 -0.125 -0.375 -

0.625 -0.875]; .= 0.050001.  

 

Scaling down the distance between training points by factor of 2 also gives good results 

for the hyperbolic paraboloid as it is illustrated in Fig.22. Coordinates in question were X 
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= Y = [0.875 0.625 0.375 0.125 -0.125 -0.375 -0.625 -0.875]; Xt = Yt = [1.0 0.75 0.5 0.25 

0.0 -0.25 -0.5 -0.75 -1.0] and Xd = Yd = [1.0 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0.0 -

0.125 -0.25 -0.375 -0.5 -0.625 -0.75 -0.875 -1.0].  

Table 4 shows the data on MLP’s training to approximate z = x2 – 3*x*y2 function in the 

Cell/B.E. environment by various SPEs, using training set of points X=Y= [1.75 1.25 0.75 

0.25 -0.25 -0.75 -1.25 -1.75]. When comparing to the data for the hyperbolic paraboloid 

(Table 1), it is seen that the "diving depth" becomes at least 2 orders of magnitude 

shallower (1.E-3 instead of 1.E-5), which is attributed to the higher complexity of the 

function (a 3rd order non-linearity instead of a 2nd one). The earliest possibility to take 

advantage of the function approximator becomes available after 400 epochs from the 

SPE-4, which demonstrated the convergence of RMSE more than order of magnitude 

from its initial value (RMSE=0.302902 in Table 4). The next order of magnitude 

improvement of RMSE is delivered at the cost of 25000 epochs, i.e. more than 60 times 

later, by the SPE-3 (RMSE=0.021230 in Table 2). And the last order of magnitude 

improvement comes at a cost of 200 times more training, i.e. 500000 epochs, by the SPE-

3 again (RMSE=0.002463 ), coming ahead of possibly trapped in local minima the SPE-1 

(RMSE=0.011991), the SPE-4 (RMSE=0.010353), the SPE-5 (RMSE=0.011089), the SPE-6 

(RMSE=0.016755) and the SPE-7 (RMSE=0.010210). Closest rivals were the SPE-0 

(RMSE=0.007165) and the SPE-2 (RMSE=0.003166). Here the parallelization of the 

gradient descent algorithm also brought about two advantages – (1) an early possibility of 

having intermediate level of the function approximator, while still continuing to pursue 

(2) the improved version of it at a higher training cost. 
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Table 4. Training progress of the MLP to approximate z = x2 – 3*x*y2 function of 

Fig.11,(b) on various SPEs of the Cell/B.E.: the achieved root mean square error 

(RMSE) as a function of the number of training epochs. (Training rate is 2500 

epochs/sec. The input parameters see in the Appendix B). 

 

epoch SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7 
0 6.009953 5.945440 5.950127 5.990887 5.956882 6.008109 5.955856 5.994685 

1 4.836313 4.681596 4.706274 4.778773 4.715749 4.821934 4.708642 4.815393 

10 4.103190 4.109827 4.105010 4.107424 4.104908 4.113448 4.106591 4.099485 

100 4.000068 3.910591 4.001476 4.001890 4.004594 4.009252 3.986856 3.997863 

200 1.297651 1.102347 2.832628 3.984855 1.131285 3.975515 1.128888 2.387645 

400 0.876783 0.359232 1.785159 1.538579 0.302902 4.057113 0.333089 0.836074 

1000 0.715561 0.647003 0.378379 0.961722 0.413758 1.764666 0.365806 0.376895 

2500 0.557923 0.191916 0.137183 0.155060 0.136230 0.289552 0.130241 0.097422 

5000 0.193410 0.159165 0.123817 0.149576 0.196570 0.200460 0.117920 0.073319 

10000 0.059317 0.093106 0.037009 0.065814 0.074203 0.126986 0.051245 0.050357 

25000 0.029546 0.050399 0.028597 0.021230 0.039612 0.080636 0.036883 0.022541 

50000 0.018220 0.024786 0.019204 0.010966 0.027617 0.085836 0.029983 0.019581 

100000 0.018314 0.024303 0.012499 0.009595 0.042930 0.035079 0.048818 0.013050 

250000 0.015588 0.032691 0.003565 0.005046 0.015257 0.026570 0.035521 0.012381 

400000 0.014561 0.015149 0.002409 0.002874 0.007456 0.014684 0.011710 0.008363 

500000 0.007165 0.011991 0.003166 0.002463 0.010353 0.011089 0.016755 0.010210 

555000 0.011785 0.00938 0.002317 0.001963 0.006767 0.006677 0.017233 0.008357 
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Fig.23. Trajectories of the MLP’s training to approximate z = x2 – 3*x*y2 function of 

Fig.11,(b), as presented in Table 4. Windows (a), (b) and (c) present various views 

of the same trajectories at different magnification.  Training rate is 2500 

epochs/sec. 

 

Table 5. Resulting RMSE values for training (), testing (Et) and overall (Ed) 

evaluation of the delivered approximation of z = x2 – 3*x*y2 function by the 

session conducted in Table 4 and Fig.23 after reaching number of epochs 

numEpochs = 555000.  

RMSE: 
, Et, Ed 

SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7 

 training 0.011785 0.00938 0.002317 0.001963 0.006767 0.006677 0.017233 0.008357 

Et, testing 0.450612 0.649413 0.486791 0.901734 0.430226 0.619031 0.632174 0.510427 

Ed, overall 0.383039 0.529887 0.490481 0.712765 0.586881 0.47007 0.614342 0.481186 
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The Fig.23 shows the trajectories of the MLP’s training presented in Table 4 to 

approximate z = x2 – 3*x*y2 function (shown in Fig.11,(b)), the training being conducted 

on the sets of X=Y= [1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75]. It is seen that none of 

the trajectories are trapped in the local minima but rather all converge efficiently, 

splitting in the two major groups: 1) the SPE-2 and the SPE-3, which converge to lowest 

values of RMSE on training, << 0.01; 2) the rest of the pack (the SPEs ## 0, 1, 4, 5, 6 

and 7), closely positioned at demonstrated RMSE values on the training session, i.e. 

~0.01. Based on the training results, the first group looks as that of the winners of the 

training race in Fig.23, which however appears to be misleading based on the following 

testing and verification of the overall performance, summarized in Table 5. The tests of 

the trained MLPs delivered by the SPEs and performed on the sets Xt = Yt = [2 1.5 1.0 0.5 

0.0 -0.5 -1.0 -1.5 -2.0] have revealed that the leaders appeared to be the two MLPs from 

the second group, namely those delivered by the SPE-0 and the SPE-4 with RMSE Et = 

0.450612 and 0.430226 respectively. The overall evaluation on the sets Xd = Yd = [2.0 1.75 

1.5 1.25 1.0 0.75 0.5 0.25 0.0 -0.25 -0.5 -0.75 -1.0 -1.25 -1.5 -1.75 -2.0] left only one 

leader namely the SPE-0, which showed the lowest RMSE overall value Ed = 0.383039. 

The below Fig.24,(a) through Fig.26,(b) illustrate quality of the function approximation, 

delivered by the potential winners, namely the SPE-0, the SPE-3 and the SPE-4 selected 

based on the data of Table 5, which in turn already accounts for the argument derived 

from that of Table 4 and Fig.23. Here the SPE-0 holds a promise to be a winner based on 

the lowest Ed value of 0.383039 and close to the lowest Et value of 0.450612, while the SPE-

3 have been the winner of the training session with the lowest  value of 0.001963 and the 

SPE-4 showed lowest testing RMSE, Et= 0.430226. While appearance of the surfaces in 
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Fig.24,(a), Fig.25,(a) and Fig.26,(a) does confirms that approximation is tends to 

approach that of the sought function z = x2 – 3*x*y2, it still does not reveal the actual 

quality of the achieved approximation. The last issue is best addressed by the plots of 

distribution of errors on the approximated surfaces as compared to ideal one from the 

Fig.11,(b), which are depicted in Fig.24,(b) for the SPE-3, Fig.25,(b) for the SPE-0 and 

Fig.26,(b) for the SPE-4. A clear winner here is the SPE-0, which is indicated by several 

features: 1) the lowest Ed value, i.e. lowest overall RMSE in surface approximation; 2) 

error distribution in Fig.25,(b) appears to be obviously more uniform than that of the 

SPE-3 and the SPE-4; 3) the extrapolation close proximity area is represented with the 

smallest distortion. Noticeable here is the uniformity of the internal area of the error 

surface in Fig.25,(b), which represents interpolation area (i.e. where the tested and the 

overall evaluation points represented interpolations of the training data). Most of the error 

is accumulated there in the corners, which represent extrapolations from the border 

training points and which are indeed expected to contain worse errors than the 

interpolation points. Moreover, even at the interpolation edges the function representation 

in Fig.25,(b) appears to be very accurate and explicitly better than that of the SPE-3 and 

of the SPE-4 in Fig.25,(b) and Fig.26,(b) respectively. It is therefore seen that among 8 

SPEs only one, the SPE-0, actually delivers the approximator with a uniform error 

distribution in the interpolation area and the lowest overall RMSE value (Ed = 0.383039). 

Trajectory for the SPE-0 in Fig.23 lies always in the middle of the pack, so that in the 

training session nothing indicates it to be a potential winner even on the completion of 

the training. Moreover, testing itself also appears to be insufficient to identify the SPE-0 

as a clear winner. Only overall comprehensive testing clearly shows strong advantages of 
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the MLP delivered by the SPE-0 over its competitors. Under conditions when testing 

points are not available and training is conducted on the limited amount of the data from 

the plant, which normally is the case (otherwise the training set should be expanded 

accordingly), the parallel environment allows to attain set of the solutions with potential 

hidden winner, which can be identified at a later stage after overall in-line testing of all 

the obtained approximators (such as the one of the SPE-0 in the above example). 

Moreover, as it is seen in Fig.23, significant part of the training is completed at the stage 

of 25000 epochs with RMSE value of =0.029546 with the further progress to be very 

slow. Therefore, a parallel environment offers the advantage of having an early 

approximator with slightly suboptimal properties for immediate usage and concurrent 

continuing training to further optimization, if such still needed.  

 

Fig.24. ( a ) The surface generated by the SPE-3 ( Table 4, Fig.23 ) to approximate z = 

x2 – 3*x*y2 function with 24 hidden neurons (numEpochs = 555000) and (b) the 

error surface associated with it.  
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Fig.25. ( a ) The surface generated by the SPE-0 (Table 4, Fig.23) to approximate z = 

x2 – 3*x*y2 with 24 hidden neurons (numEpochs = 555000) and ( b ) the error 

surface associated with it (supporting the best performance).  

 

Fig.26. ( a ) The surface generated by the SPE-4 (Table 4, Fig.23) to approximate z = 

x2 – 3*x*y2 with 24 hidden neurons (numEpochs = 555000) and ( b ) the error 

surface associated with it.  
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4.4. Comparison with single CPU 

A simultaneous tracing of the multiple trajectories in parallel via involving the power of 

multiprocessor’s environment offers advantages in comparison with sequential tracing of 

the same or similar trajectories by a single processor (CPU) when there are obstacles in 

finding the optimal or close to the optimal trajectory, or even risk of getting trapped in the 

local minima, which is the case in the above examples. The benefit is therefore not in the 

speeding up the algorithm itself but rather engaging parallelization power in getting 

through the bottleneck set by starting conditions. Additionally, the statistical distribution 

of the trajectories becomes available in the parallel environment, such as that of the 

Cell/B.E., which brings about the confidence that the identified solution is close to the 

optimal one under given conditions.  Therefore, while the same data can be obtained in 

the single processor environment by engaging multi-threading approach, the benefit of the 

parallel computations here in possibility of engaging higher computational power when 

the need is in obtaining optimal solution within limited time frame as Cell/B.E. provides 

possibility of multi-threading with multiple processors dedicating single processor for 

each thread.  The number of processors of 8 used in the described experiments can be 

significantly increased depending on the hardware used.  Additionally, the observed 

results are not Cell/B.E. specific in terms of that they should be valid also for other 

parallel computing hardware, such as multi-core, computer clusters, FPGAs.   

 

4.5.  Summary on approximations of 2D non-linear functions.  

Summarizing the above consideration, we can see that the Cell/B.E. is allowing for 

efficient tracing of the multiple trajectories of the gradient descent algorithm, gathering 



 71 

the best approximation conditions for 2D non-linear functions. The specific advantages 

achieved by employing a parallel computational environment of the Cell/B.E. for the 

gradient descent algorithm implementation of non-linear 2D function approximation of 

2nd and 3rd order with saddle points are as follows. 

1.  Parallelization of the various starting conditions between the SPE processors allows 

coping with the encounters of trapping of the algorithm trajectory in the local minima, 

as well as identifying favorable starting conditions, which deliver a fast convergence 

track and thus minimize training calculation cost.  

2. A close range extrapolation ability of the MLP’s neural network is shown to reflect its 

interpolation capacity in that low root mean square error (RMSE) for close proximity 

extrapolation range correlates with low interpolation RMSE for selected 2D non-linear 

function approximator. In a parallel environment the criteria of obtaining reduced 

RMSE for close proximity extrapolation region may serve as an identification 

parameter to distinguish between the high quality approximator for interpolation region 

prior to or under limited possibility for comprehensive testing of the obtained in 

parallel tracing candidates for 2D non-linear approximator.  

3. The optimal solution among delivered in parallel tracing candidates for 2D non-linear 

function approximation can only be identified in the aftermath via overall testing of the 

solutions, in which the winner does not necessarily coincide with that in training. 

Therefore it is advantageous to retain all the potential candidates from the SPE 

processors intact available for final determination of the winner, which contributes 

further to advantages of the parallel environment.  
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Chapter 5. 

Time series prediction in the parallel Cell/B.E. environment  

 

5.1. Task formulation for the time series prediction 

The task of the present research is to explore potential of the Cell/B.E.’s parallel 

environment in order to improve a time series prediction in terms of it’s speed and 

accuracy. Two types of the time series have been considered herwith: (a) a fully 

deterministic one with the long term trend; (b) a deterministic chaos time series. As a 

type (a), the series of linear combination of trigonometric functions has been designed. 

As a type (b) - a benchmark, the Mackey-Glass 30 deterministic chaos time series has 

been selected. Despite the extended literature covering the prediction problem for both 

types, with the long term trend one as well as for the Mackey Glass time series, 

advantages of the parallel computing environment for these tasks have only limited 

coverage, and specifically the Cell/B.E.’s contribution to the field is missing. A 

justification for the task of this research is due to the importance of having in-situ quick 

and accurate predictions, so that training of the forecaster would not render it to be 

outdated when it becomes ready to actually perform. A specific focus has been on (1) the 

short and (2) the long term forecasts based on immediate past as well as on (3) the long 

term forecasts based on the leverage of extended past. 

 

5.2. Time series function with the long term trend  

A time series predictor has been implemented on the Cell/B.E. architecture, in which 

individual SPE’s processors compete to predict n (with n=1; 3 ; 5 or 10) steps ahead of 
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the 5 current values of the times series. The first test function of the time series x(t) has 

been constructed to represent an underlying long term trend as x(t) = int [103 * sin2(t/2)] 

+ int [103 * sin2(t/20)] + int [103 * sin2(t/30)] + int [103 * sin2(t/300)], where t=1, 2, 3…, 

Tb+tp+n; and which is shown graphically in Fig.27 for Tb=500; tp=10; n=5). For the time 

series prediction the structure of three layers MLP has included n=5 inputs, which tested 

the n consecutive values of the time series based on which the prediction of the future 

value k-steps ahead, Xt+k, is obtained at the output, the actual value being xt+k, so that 

Error= xt+k – Xt+k . A total number of basic t points was Tb=500, out of which the first 

200 points formed the training set, while the rest 300 points were used for testing, i.e. 

verification of the predicting ability of the trained MLP. The maximal number of t points 

involved Tmax also includes extra points above t=500 and is calculated via Tmax = Tb + tp 

+ n, where tp is the number of time-steps for the prediction.  

The above mentioned in Fig.9 parallelization scheme (i) has been employed to trace the 

gradient descent of the training from various starting points. 

For comparison with the above time series containing a continuous long term trend, 

another time series with the trend changing from positive to the negative one has also 

been constructed, as it is shown in Fig.28.  For this series the training is performed within 

the same function as in Fig.27, while in the forecasting area the sign of the last term is 

changing to the opposite one (from plus to minus) as shown in Fig.28, thus representing 

the negating trend.  Herewith the meaning of the negating trend includes retaining the 

analytical form of the trend, which is represented by the last term of the equation, namely 

int [103 * sin2(t/300)], but taking it in the equation with the opposite sign, for which 

coefficient h(t) is changing the value from “+1” to “-1”.   
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Fig.27. Time series of x=int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * 

sin2(t/30)] + int [103 * sin2(t/300)], where t=1, 2, 3…, Tb+tp+n. The terms of the 

expression are shown as Series 1 through Series 4, while the full function is 

represented by Series 5. (Here Tb=500; tp=10; n=5). 

 

Fig.28. Time series of x=int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * 

sin2(t/30)] + h(t) * int [103 * sin2(t/300)], where t=1, 2, 3,…, Tb+tp+n, and h(t)= 

{+1 for 1<t<210; -1 for t>211 }; (here Tb=500; tp=3; n=5). The terms of the 

expression are shown as Series 1 through Series 4, while the full function is 

represented by Series 5.  
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It is essential here that the training set has not included the negating trend at all, so that in 

the forecasting area the predictor would face it for the first time.  Mathematically this 

function could be described as x(t) = int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 

* sin2(t/30)] + h(t) * int [103 * sin2(t/300)], where t=1, 2, 3,…, Tb+tp+n, and h(t)= {+1 for 

1<t<210; -1 for t>211 }.  

 

5.3.  Mackey-Glass as deterministic chaos time series 

In the area of time series the Mackey–Glass series represent the sequence of deterministic 

chaos events, which mathematically are based on nonlinear time delay differential 

equation of the first order:  

 

 
 
where A and B are real numbers, and h represents time delay, so that the value of the 

variable x at the time t is connected with that for the time (t - h) by means of differential 

equation ( 5.1 ). Depending on the values of the parameters, this equation displays a 

range of periodic and chaotic dynamics, which brings about the time series of values x(t) 

via numerical solution of the equation ( 5.1 ), usually obtained by the Runge–Kutta 

method of 4th order. The Mackey-Glass time series have been generated by Matlab under 

parameters A=0.2, B=0.1 and h=30 and it is shown in Fig.29.  

 

dx                   x(t –h) 
     = A ×                             −    B × x(t) ;         A, B, h > 0                           (5.1 ) 
dt        1 + x(t –h)10 
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Fig.29. A generated Mackey-Glass time series with the parameters of equation 

(6.1) set as h=30; A=0.2; B=0.1 .  

 

 

5.4. Parallelization strategy for the time series 

A general task has been considered here of delivering the forecasts simultaneously for 

various number of steps ahead, which include short term as well as long term forecasts 

based on the same preceding history and therefore based on the same initial data set. The 

solution of such complex task with one processor would lead to a neural predictor of the 

multiple-input-multiple-output (MIMO) type shown in Fig.6.  
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Formulating such multiple forecasting tasks to a single neural network leads to an 

increased complexity of the network. This in turn is the major cause of the problems with 

the convergence, which is more difficult to achieve for the multiple variables task, as well 

as would take much longer to complete as the number of the required message passing 

events is increasing respectively. It also would be a disadvantage to require completion of 

such a task from one processor as compared to the multiple processors of inherently 

parallel environment. On the other hand, in itself, single forecasting task based on the 

neural network of MISO type (multiple-inputs-single-output), shown in Fig.4, is free 

from the above mentioned difficulties for a single processor. This would give a reason to 

justify the following parallelization strategy, namely to address the complex multiple-

forecasts task by splitting it into more simple single-forecast sub-tasks between multiple 

processor units (which are the SPEs units for the Cell/B.E.), as it is shown in Fig.30.  

Herewith the approach (i) of [48] (see Fig.9) is employed for implementing the neural 

predictor of the time series, as it is illustrated in Fig.30. The incoming values of x(t), 

where t is discrete time moments of preceding history t, t-1, t-2,…,t-n, based on which 

the prediction of the expected values has been made for the future time moments starting 

from t+1 and following the sequential time moments t+2, t+3,.., t+k, where k is the 

number of the time steps of the prediction. This approach comprises splitting of the task 

by parameter k, which is the number of prediction steps, while prediction is still based on 

the n preceding time points of immediate past. Additionally, the task to different 

processor units can be modified in terms of the data basis – for example the input points 

can be separated so that only each 10th point gets connected to the network, thus 

increasing the leverage for the forecast, as this approach would allow 10 times deeper 
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reliance on the past history, which may be of particular importance for the long term 

forecasts (see the focus point #3 above).  

 

 
 
 

Fig.30. Parallelization of the neural time series predictor: X(t+k) is the predicted 

value for x(t+k) based on the input set [x(t); x(t-1);…;x(t-n)]; where n is the 

number of time points in the preceding history as a basis for forecast, k – the 

number of the time steps of prediction.  
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Fig.31. Software operation diagram for tracing parallel trajectories of the gradient 

descent algorithm for time series prediction.  

 

 Algorithm implementation for the time series prediction, shown in Fig.31, differs from 

that for 2D function approximator (Fig.12), in that there is only one dimension for the 

input variable, t, and parallelization parameters become associated with the base step 

parameter, B, and forecasting depth, F. A base step parameter, B, is defined as a number 

of time steps between consecutive intake values for the forecast. A forecasting depth, F, is 

defined as a number of time steps along original time series from the last intake value and 

the forecasted point in the future. The use of these parameters for parallelization is via the 

embedded portion of the program run by SPEs, i.e. via m_spu.c file, as shown in the 

Fig.31.  
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Fig.32. Parallelization scheme and software operation for tracing the trajectories of 

the gradient descent algorithm for time series prediction experiments.  
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supplied for training purposes. Additionally, n is the number of points taken as a base for 

prediction for the input of the MLP, and k is the required maximum forecasting depth, 

k=max(F); tmax is the last point taken as the basis for prediction input. Initialization of the 

weight matrices [Wi] here is similar to that in Fig.13 – the matrices are initialized at 

random starting points with small random values put in it, stored in the main memory and 

DMA transferred to the local SPE stores after p-threads initiation to run the parallel 

trajectories of the gradient descent algorithm. Again, as in Fig.13, after completion of the 

gradient descent, the resulting matrices [Wi] are transferred back from the SPE’s local 

stores to the main memory for testing (as shown in Fig.32). The two testing procedures, 

controlled in the program by the switch shown in Fig.32, employ forecasting set (iii) of 

the time series, which includes values from t=t0-n-k till t=tmax+k inclusive. It is seen that 

there is overlap with the training set, and such overlap assumes availability of the points 

x(t0-n-k+1), …, x(t0-2), x(t0-1), x(t0) for both sets – the training and the forecasting one. 

However in the training set points x(t0-n-k), x(t0-n-k+1), …, x(t0-k) are only used as the 

basis to predict the last value x(t0) of the training set, while in the forecasting set the 

points x(t0-n-k+1), …, x(t0-k), x(t0-k+1) are used to make forecast for the first future point 

x(t0+1) in the series. Therefore the points x(t0-k), …, x(t0) are playing role of “dummies” 

to only account for the forecasting depth at which the point x(t0) stands. 

 

 

5.5. Forecasting time series with the long term trend 

 The training of the time series predictor of the sequence with long term trend, described 

by the equation x(t) = int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * sin2(t/30)] + 
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h(t) * int [103 * sin2(t/300)], where t=1, 2, 3…, Tmax and int(.) is the function taking 

integer part of the argument, has been conducted in Cell/B.E. environment in order to 

demonstrate best predictive capability between the 8 SPEs, each modeling MLP neural 

network with 12 hidden nodes and trained for 5000 epoch on 200 training patterns. The 

results for Tmax =Tb+tp+n, with Tb=500; tp=3; n=5 are summarized in Table 6, where it is 

seen that the best performance has been attained by the SPE-3 and the SPE-7 with final 

Root Mean Square Error (RMSE) values of 0.056455 and 0.056087 respectively for the 

training points. It is seen however that the best predictive capability is demonstrated by 

the SPE-3, which provides lowest RMSE value of 0.121441 for novel points versus that 

of 0.121573 for the SPE-7. The worst performance here was by the SPE-2 with RMSE 

values of 0.058436 for training points and 0.125095 for novel ones, which are 

respectively ca. 4% and 3% worse than that of the winner (the SPE-3). It is seen that final 

values for all trajectories are falling within close proximity of each other and there were 

no instances of entrapment in local minima. Therefore, the parallelization here is not 

beneficial unless another dimension in forecasting is present. Such a dimension can be 

the parameter tp – the number of steps for prediction. The parallelization on parameter tp 

for the time series is therefore seen as the viable target.  

A forecasting property of the best MLPs (those of the SPE-3 and the SPE-7 from Table 6) 

is illustrated in Fig.33, where the plot 1 represents the actual series, of which first 200 

points were used for training while the rest 300 points for actual test in prediction 

capability. The plots 2 and 4 show predictions made by the SPE-3 and the SPE-7, while 

plots 3 and 5 – the errors made by the same. It is worth to note that for the training region 

the error in prediction oscillates around the axis x, while for the testing points it stays 
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entirely in the negative area, which reflects the influence of the persistent long term trend. 

It is seen that errors are located in the vicinity of the local trend change areas. Otherwise, 

the forecasting is accurate and it reflects the underlying long term trend. Changing the 

trend from positive (as in Fig.27) to negative one (as in Fig.28) practically retains the 

predictive capability of the MLP, as it is illustrated in Fig.34 and in Table 7. Despite the 

fact that training was entirely performed on the part of the function which only contained 

a positive trend (points ##1 to 200 in Fig.28 and Fig.34), the network appeared to fully 

retain the forecasting capability for the part where the trend was the opposite one, i.e. for 

the negated trend in Fig.28 in the forecasting area. The partial cost however for that is the 

higher RMS Error as it is seen by comparing related RMSE values of Table 6 and Table 

7. Specifically, for the best performing SPEs, namely the SPE-3 and the SPE-7, the 

change in RMSE for the forecasting area become respectively RMSE = 0.171191 - 

0.121441 = 0.049750 and 0.170680 - 0.121573 = 0.049107 due to negating the trend. These 

changes amount to 40.97% and 40.39% respectively of its initial values (or 29.06% and 

28.77% respectively of its final values). Thus the costs of negating the trend become less 

then twice increase in RMS Error for the forecasting area. Apart from being higher in 

amplitude, the error also changes the sign, as it is seen by comparing plots #3 and #5 of 

the Fig.33 with the same of the Fig.34.  
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Table 6. Results of the competition for prediction of time series seen in Fig.27 and 

described by x(t) = int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * 

sin2(t/30)] + int [103 * sin2(t/300)], where t=1, 2, 3…, Tb+tp+n, where Tb=500; 

tp=3; n=5. (The input parameters see in the Appendix B). 

 

 
 
 
Table 7. Results of the competition for 3 steps ahead in time series prediction with the 

negating trend seen in Fig.28 and described by x(t) = int[103 * sin2(t/2)] + int[103 * 

sin2(t/20)] + int[103 *sin2(t/30)] + h(t) * int [103 * sin2(t/300)], where t=1, 2, 3,…, 

Tb+tp+n, and h(t)= {+1 for 1<t<210; -1 for t>211 }; (here Tb=500; tp=3; n=5). (The 

input parameters see in the Appendix B).  

 

 SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7 
RMSE 
training 

0.057047 0.056689 0.058436 0.056455 0.056678 0.057080 0.056961 0.056087 

RMSE 
new 
points 

0.122910 0.122039 0.125095 0.121441 0.121953 0.123024 0.122692 0.121573 

RMSE 
overall 

0.101813 0.101102 0.103707 0.100616 0.101037 0.101903 0.101636 0.100629 

 SPE-0 SPE-1 SPE-2 SPE-3 SPE-4 SPE-5 SPE-6 SPE-7 
RMSE 
training 

0.057047 0.056689 0.058436 0.056455 0.056678 0.057080 0.056961 0.056087 

RMSE 
forecast 

0.171012 0.171538 0.170898 0.171191 0.170940 0.170927 0.170956 0.170680 

RMSE 
overall 

0.137291 0.137625 0.137439 0.137327 0.137176 0.137233 0.137234 0.136885 
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Fig.33. Prediction of the time series of Fig.27 for 3 steps ahead (tp =3) by trained 

MLPs of the SPE-3 and the SPE-7 from Table 6. Here: 1 is for the values x(T) of 

initial function x(t)=int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * 

sin2(t/30)] + int [103 * sin2(t/300)], where t=1, 2, 3…, Tb+tp+n, Tb=500; tp=3; 

n=5; 2 and 4 – the MLP’s outputs X(T) in the tests of forecasting from the SPE-3 

and the SPE-7 respectively; 3 and 5 – forecasting errors =[X(T) – x(T)] in tests 

of the resulting MLP from the SPE-3 and the SPE-7. T is the forecasted pattern 

number, T = t+n+tp = t+5+3. All units (for T, x(T) and X(T)) are arbitrary. The 

values x(T) and X(T) are scaled down 103 times. 
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Fig.34. Prediction of the time series with the negating trend (Fig.28) 3 steps ahead 

(tp=3) by trained MLPs of the SPE-3 and the SPE-7 in Table 7. Here: 1 is for the 

values x(T) of initial function x(t)=int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int 

[103 * sin2(t/30)] + h(t) * int [103 * sin2(t/300)], where t=1, 2, 3,…, Tb+tp+n, and 

h(t)= {+1 for 1<t<210; -1 for t>211 }; Tb=500; tp=3; n=5; 2 and 4 – the MLP’s 

outputs X(T) in the tests of forecasting from the SPE-3 and the SPE-7 

respectively; 3 and 5 – forecasting errors =[X(T) – x(T)] in tests of the resulting 

MLP from the SPE-3 and the SPE-7. T is the forecasted pattern number, T = 

t+n+tp = t+5+3. All units (for T, x(T) and X(T)) are arbitrary. The values x(T) and 

X(T) are scaled down 103 times. 
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Fig.35. Prediction of the time series of Fig.27 for 10 steps ahead (F=B*tp =10) by 

trained MLP (numEpochs=5000). Here: 1 is for the values x(T) of initial function 

x(t)=int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * sin2(t/30)] + int [103 * 

sin2(t/300)], where t=1, 2, 3…, Tb+tp+n; Tb=500; tp=10; n=5; T is the forecasted 

pattern number, T = t+n+tp = t+15. 2 is the MLP’s output X(T) in the tests of 

forecasting; 3 is the forecasting error =[X(T) – x(T)] in the tests of the resulting 

MLP. All units (for T, x(T) and X(T)) are arbitrary. The values x(T) and X(T) are 

scaled down 103 times. 
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Fig.36. Prediction of the time series of Fig.28 for 10 steps ahead (F=B*tp =10) by 

trained MLP (numEpochs=5000). Here: 1 is for the values x(T) of initial function 

x(t)=int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * sin2(t/30)] + h(t) * int 

[103 * sin2(t/300)], where t=1, 2, 3,…, Tb+tp+n, and h(t)= {+1 for 1<t<210; -1 for 

t>211 }; Tb=500; tp=10; n=5; T is the forecasted pattern number, T = t+n+tp = 

t+15. 2 is MLP outputs X(T) in tests of forecasting; 3 is forecasting error =[X(T) 

– x(T)] in tests of the resulting MLP. All units (for T, x(T) and X(T)) are 

arbitrary. The values x(T) and X(T) are scaled down 103 times.  

 

 

The increase of the prediction range to tp=10 leads to the increase in RMSE both for 
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forecasting of the negating trend (Fig.36) is almost twice less accurate than that of the 

continuing one (Fig.35).  

 The behavior of the neural net in predicting the time series seen in Fig.35 and Fig.36 

suggests that increasing the forecasting range tp values makes it increasingly difficult for 

the MLP to anticipate the expected value based on provided current information and 

previous training. As it is seen in Fig.35 and Fig.36 even training areas become prone to 

significant errors. The suggested here solution for this problem is in trying to increase the 

length of the base the prediction is based upon while retaining the same number of input 

points for the MLP. It is important however first to complete optimization of the MLP 

training in terms of the applied number of training epochs (parameter numEpochs). The 

result of such optimization is shown in Fig.38 (a), where it is seen that to minimize the 

forecasting RMSE there is an optimum number of the training epochs, which is located in 

the range of 5*104 for tp=10 and which provides the best forecasting results possible under 

the settings. The settings in particular include n=5, i.e. the number of input data points for 

the MLP is 5 consecutive values of the time series of that in Fig.27, forecasting length – 

10 steps ahead (F=B*tp=10). The performance of the optimized forecaster of Fig.35 is 

presented in Fig.39. It is seen that there is certain improvement as compared to the 

performance in Fig.35: while the case of Fig.35 demonstrates the RSME values of = 

0.23384; Et= 0.35773; Ed= 0.314094, the optimized case in Fig.39 demonstrates 

appreciably lower values of = 0.199224; Et= 0.242113; Ed= 0.22595. Thus, the best 

attainable value of forecasting RMSE for 10 step prediction in B=1, n=5 mode becomes 

Et= 0.242113. As it is seen from Fig.39, this optimized performance is still prone to 

significant errors even at the training stage, which leads to even higher errors at the 
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forecasting stage. As it is mentioned earlier, now it is no longer possible to achieve further 

improvement via the training, therefore the suggested alternative needs be explored via 

increasing the length of the base the prediction is based upon (while retaining the same 

number of input points for the MLP). The approach here is that instead of taking 

consecutive time points for the MLP inputs, which in this terminology would constitute 

the base step value B=1, the intake would be conducted of every second time point, i.e. 

making the base step value B=2 and with n=5 inputs this would cover the total length for 

the forecast to be LB = n * B = 5 * 2 = 10, which is twice longer (in proportion to the 

increase of the base step coefficient B from 1 to 2). At the same time, the parameter tp has 

to be set at 5 in order to maintain the forecasting length at equivalent level of F = B * tp = 

2 * 5 = 10.  

 

 

Fig.37. Redundancy removal by the factor of 2 in the time series prediction 

experiment via setting base step parameter B=2.  
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 The data manipulation aiming to have simultaneous effect of the increased base step B 

for prediction equal 2 and redundancy removal in the data set by the same factor of 2, is 

shown in Fig.37 for the case of the continuous function from Fig.28 and negating 

function from Fig.29. It is seen in Fig.37 that the initial time series is split in two: one 

with values for the even time points t= 0, 2, 4, 6, ..514; and another one for the odd time 

points t=1, 3, 5, 7, …, 515. The value of 514 is obtained by adding 10 for F=10 steps for 

prediction used in the experiment and 5 for n=5 input values to the 499 as the index of the 

selected 500 points. One more value is added on the top of that to equalize the number of 

points in both sub-series, which becomes 208. After that one of the sub-sets is used to 

extract the training and forecasting sub-set from and follow the procedure described for 

the Fig.32 to obtain the testing and forecasting, but this time based on the increased value 

of B=2 and both made sequentially in automatic manner by using the whole sub-set as the 

input to testing neural network NNT.  

The results of testing such a procedure are summarized in Fig.38,(b) while covering 

comparable to the previous case range of the training epochs up to 500000 in order to 

insure that the optimized solution is not missed. As it is seen in Fig.38,(b), such optimized 

solution is in fact present at the same level of training expense of 50000 epochs as before, 

but it is demonstrating significant improvement in RMSE values, delivering  = 0.060972; 

Et = 0.142678; Ed = 0.117052; at the optimal of 50000 training epochs, where the 

forecasting RMSE parameter Et is almost twice lower than initially. The actual 

performance of the suggested procedure at its optimal point is presented in Fig.40, which 

shows a sensible improvement as compared to that in Fig.39. It is worth noting that a 

deterioration of the predictive capability of the MLP took place when attempting to make 
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predictions to the length twice that of the predictive base itself. Such deterioration 

occurred notwithstanding of the fact that the functionality of the time series was still 

maintained the same, i.e. as that in Fig.27. Intuitively, this may be interpreted as 

redundancy of short term information supplied to the MLP and insufficiency of the long 

range information. Because in the suggested procedure the number of the input values 

retained to be the same, n=5, expanding the forecasting base via doubling the base step B 

was equivalent to sacrificing the short term redundancy in favor of the longer term 

information. This appears to be beneficial when attempting the long range forecast, 

because allowed to equalize forecasting range with the base for prediction. To put it in 

another way, attempting to forecast to the length of F = B * tp = 1 * 10 = 10 based on the 

base of LB = n * B = 5 * 1 = 5 is more prone to errors than that to the length of F = B * tp = 

2 * 5 = 10 based on the base of LB = n * B = 5 * 2 = 10. It can be therefore concluded that 

expanding the base for prediction allowed recovering the predictive capability of the 

MLP, which deteriorated when attempting to exceed the predictive base LB by the 

forecasting length F.  

 In terms of parallelization, the predictive base step B becomes one more dimension, in 

which parallelization according to either scheme – that of Fig.9 and/or Fig.10 – may 

benefit the forecaster. The simplest case of implementing the module according to Fig.10 

scheme would include distributing between SPUs computations for various values of B, 

followed by the selection switch on the PPU module to utilize a better predictor when 

such is identified based on the on-line tests for the current incoming values of the 

controlled time series.  
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Fig.38. The results of the RMSE optimization of the neural time series predictor for 

the series of Fig.27 via scanning the number of training epochs (numEpochs) for 

two different base-lengths B for prediction: ( a ) B=1 with tp=10; ( b ) B=2 with 

tp=5. 

 

 

Fig.39. Optimized performance of the forecaster of Fig.35.  
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Fig.40. Performance of the forecaster with increased base step (B=2) and tp=5 steps 

for the function of Fig.27 with the depth F=B*tp=10. Every second point has been 

excluded from the initial time series to form a subset to operate on.  
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The parameter numEpochs, representing number of epochs in training, does not represent 

further parallelization dimension, as it may be perceived from Fig.38, because various 

stages of the training can be retrieved sequentially from the same SPU within the same 

training process.  

 The efficiency of the same procedure of extending the predictive base as above needs to 

be also verified in the case of the function with the negating trend (Fig.28), as the 

problem of deterioration of the forecasting accuracy when exceeding the predictive base 

LB = n * B by the length of forecast F = B * tp here appears to be even worse (see Fig.36). 

As before, the scanning of the numEpochs parameter reveals somewhat optimized 

training of about 3000 epochs, which delivers the following RMSE parameters  = 

0.281052; Et = 0.738044; Ed = 0.598683, which however is quite close to those values for 

which Fig.36 has been generated, namely  = 0.268044; Et = 0.766880; Ed = 0.617739. In 

fact, as it is seen in Fig.41,(a), the training does not have much of the effect on the MLP 

predictor for this range of the forecast as the forecasting capability keeps at the same 

level for the training range from 5000 to 30000 epochs (see Fig.41,(a)). Intuitively it may 

be understood, because the training is done for the positive trend, while actual testing is 

taking place for the negating trend not seen by the MLP on the training. Effect of 

extending the predictive base by doubling the base step parameter B, i.e. setting B = 2, is 

summarized in Fig.41,(b). It is seen that the plot of Et vs numEpochs acquires convexity 

with the minimal value Et = 0.552548 at numEpochs=5000. The full set of RMSE values 

at this point become  = 0.29266; Et = 0.552548; Ed = 0.466311; which constitute 

detectable improvement as compared to the best case for B=1 situation in Fig.41,(a). 
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Important here is not the improvement of the performance itself, as it remains poor, but a 

significant and quite characteristic change of Et vs numEpochs dependence. It is because 

such pattern of behavior may be used to identify occurrences of negating trends in the 

time series. Application example may potentially include algorithmic modules in stocks 

prediction software, which may be able to identify occurrences of negating behavioral 

trends of large scale stock holders.  

 In terms of parallelization in the Cell/B.E. environment, the benefit here is in possibility 

for simultaneous training of the two neural forecasters for various B values (B=1 and 

B=2 in our particular case) in different SPUs and finally comparing their performance in 

Et vs numEpochs dependencies with the real time series at the PPU module (i.e. according 

to scheme of Fig.42), at which detecting the relations depicted in Fig.41 would give the 

ground for conclusions about occurrences of the negating trends. Again, as parallelization 

parameter here would be the value of the base step B. The numEpochs parameter would 

be scanned within the same SPU module thus not requiring the parallelization.  
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Fig.42. Resulting parallelization scheme for the prediction of time series with the 

long term trend, which is designed to accommodate routes explored in Section 5.5 

(i.e. those shown in Fig.33 through Fig.41)  
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5.6. Experimental results of prediction for Mackey-Glass series  

The Mackey-Glass time series generated (see Fig.29) has been used to train and to test 

the neural forecasters. For training purposes the 200 points have been taken, after which 

the following 300 points have been used for the forecasting purposes, i.e. to test the 

quality of the forecasts made. The root mean square error has been used as the criteria 

parameter for training as well as for testing.  

 The initial tests revealed that the training of the individual single-forecasters is not prone 

to the trapping into local minima, but rather is swiftly reaching the diving trajectory, 

followed by the saturation and slow lengthy finalizing training track, as it is shown in 

Fig.43. It is therefore possible to take advantage of the diving part of the training 

trajectory by deploying the forecaster after completion of the training in the diving part of 

the trajectory, which results in almost two orders of magnitude improvement of the RMS 

error value and comprises more than 90% of the forecasting capacity at a cost of the short 

but efficient initial “diving” part of training trajectory (about 300 epochs in Fig.43). In 

the parallel environment the remaining part of the training can be continued while the 

partially trained forecaster can be already employed for the forecasting purposes. Another 

advantage here is that newly incoming time points may also be included in training, thus 

ensuring that the forecaster is up-to-date at all the time.  
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Fig.43. Diving and saturation parts of the training trajectory of the neural forecaster 

(12 hidden nodes, 5-inputs, 1-output; k=1).  
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Fig.44. A neural forecaster’s performance of 1-step ahead based on 5 prior input 

values (36 hidden nodes MLP) over initial 500 patterns of the Mackey Glass time 

series.  
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Fig.45. Performance of the MLP’s forecaster of 10-step ahead based on 5 consecutive 

input points, trained and tested within initial 500 patterns of the Mackey-Glass 

time series 
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Fig.46. Performance of the 1-step-ahead MLP forecaster (n=5; B=1; tp=1) for the time 

patterns T=[3000; 3500].  
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Fig.47. Performance of the 10-step-ahead MLP forecaster (n=5; B=1; tp=10) for the 

time patterns T=[3000; 3500].  
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Fig.48. Performance of the 20-step-ahead MLP forecaster (n=5; B=1; tp=20) for the 

time patterns T=[3000; 3500].  
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Fig.49. Performance of the 50-step-ahead MLP forecaster (n=5; B=1; tp=50) for the 

time patterns T=[3000; 3500].  
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In Fig.44 the operation of the forecaster of 1 step ahead (tp=1; B=1; n=5)) is shown based 

on MLP with 36 hidden nodes and 5 input points. It is seen that the low forecasting error 

is attributed to the area which has similarity to the training area, while significant 

increase of the quadratic error occurs when the trend is changing to a different one. 

Similar situation is for the 10-steps-ahead forecaster (tp=10; B=1; n=5), shown in Fig.45, 

where quadratic error for the forecasting area increases more than 3 orders of magnitude 

for the area of changing trend. For the points presented in Fig.44 and Fig.45 there is not 

much of the prior history, as it is the very beginning of the time series. This problem has 

similarity to the considered earlier deterioration of the forecasting capability for the time 

series with the long term trend (as shown in Fig.35). Here in the same way the forecasting 

errors increase when the forecasting depth F = B * tp = 1 * 10 exceeded predicting base’s 

length LB = n * B = 5 * 1 = 5. The difference between the two cases (that in Fig.45 with 

Fig.44 and the one previously considered in Fig.35), however, is in the nature of the 

function involved. More specifically, as it is seen in Fig.44, the scale chosen for the 

training purposes allows covering only portion of the function with the expressed trend – 

the trend down, with no oscillation at all. Shifting to another area, when training portion 

has more similarity of the features involved in the forecasting is shown in Fig.46 for 1 

step prediction (B = 1; tp = 1) and in Fig.47 for 10 step prediction (B = 1;. tp = 10). 

Comparison of the later with that in Fig.45 reveals, that introducing into training area 

features present later at the testing/forecasting stage does lead to reduction of forecasting 

errors (as the quadratic errors in Fig.45 quite strongly exceed the level of 10-2, while in 

Fig.47 it keeps below 10-2 level. However, as it is seen there, it comes at the expense of 

having somewhat higher level of the errors at the training stage. More results of the 
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multi-step training and forecasting tests are reproduced in the next figures: the 20 steps 

MLP predictor (B=1; tp=20) in Fig.48 and the 50 steps MLP predictor (B=1; tp=50) in 

Fig.49 (for the same portion of the Mackey-Glass series as in Fig.44 and Fig.45). It is 

seen that increasing the forecasting depth F = B * tp leads to increase in the forecasting 

errors. In terms of RMSE as a measure parameter, the trend of the error increase with the 

forecasting depth is shown for the above cases of multi-step neural predictor in 

Fig.51,(a). It is seen that in the range of small values for F = B * tp, from 1 to about 20 

steps ahead, both RMSEs, for training, , as well as for prediction, Et, are increasing 

jointly, with some trend of the spread between them increasing too, which however is not 

very significant until F reaches the value of 50. Starting from about this point, F = 50, the 

spread between  and Et accelerates, to which a big deal of contribution is added by the 

change of the trend for   After that the training and forecasts are less and less connected, 

so that the MLP predictor is becoming “blind” to the forecasting depth F.  

 As earlier in the case of the function in Fig.35, it would be natural to address the problem 

of increasing disparity between the training and the forecasting via increase of the 

predicting step base B in order to at least equalize the predicting base length LB = n * B 

and the forecasting depth F = B * tp. This concern seems to be addressed by setting B=10, 

which provides 10 fold increase in predictive base to LB = n * B = 5 * 10 = 50. Because 

this value becomes comparable to the size of the whole training area itself, which is 200 

points, the training area needs to be proportionally expanded. Also the apparent 

redundancy in the Mackey-Glass time series could be removed by considering only every 

10th point from it for the training purposes, while eventually recovering the whole series 

at the forecasting stage. To accomplish that, the initial set of the Mackey-Glass series is 
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split into 10 subsets, each assigned an index k, where k=1, 2, 3, … , 10. Each set k is 

composed by taking in the points numbered (10 * m + k) into it from the initial time 

series, where m=0, 1, 2, 3, … , maxMG/10, with maxMG being the maximum number of 

the points in the initial time series, which in our case is maxMG=12000 (see Fig.29). 

Reducing redundancy in such a way, we then form the training set by selecting the first 

200 points from the set k=1, the point’s numbers being (10 * m + 1), where m=0, 1, 2, 3, 

… , 199. To keep the same ratio of the size of the training set to the testing set, the next 

300 points will form the forecasting area. To the forecasting area also the F = B * tp 

points need to be added to account for the border effect, when the predicting base at the 

end of the selected area still needs a full coverage of the predictive depth to be present to 

complete verification of the forecast made.  
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Fig.50. Parallelization scheme and software operation for the Mackey Glass series 

prediction with the neural networks, which takes the advantage of the redundancy 

removal by setting B=10 and allows multiple-step forecasts of F= 10; 20; 50; 100; 

150. The switches at the lines intersection mean the respective connections to be: 

“ON”           and “OFF”            .  
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forecasting operations are sequential and automatically performed on the whole subset. 

All the subsets are available to the neural network NNT at the PPU and whether or not it 

is used in the forecast is indicated by the color of the fill for the switches (circles) at the 

line intersections inside the PPU area: white color means “connection is ON”, black color 

means “connection is OFF”. In the Fig.50 all the sub-sets are delivered to the testing and 

forecasting line [0] with F0=10, which is indicated by the switches descriptor 

[1111111111] at the output and where “1” in the escriptor stands for “ON” (alternatively 

“0” would be for “OFF”) for the respective switch. The examples of the output generated 

from the line [0] of Fig.50 with switches descriptor being [1111111111] are presented in 

Fig. 52, Fig.57 and Fig.58. The remaining output lines [1] through [4] in Fig.50 are 

shown in configuration of accepting only the first sub-set for the testing and forecasting 

with B=10 and F=20, 50, 100 and 150, which is indicated by the colors of the switches 

and the configuration of the switches descriptor being [1000000000]. The examples of 

the outputs for that are shown in Fig.53 for the line [1], in Fig.54 for the line [2]. Results 

of the outputs for the lines [3] and [4] are summarized in Fig.51,(b). The configuration of 

the switches for the line [0] characterized by the descriptor [1000000000] brings about 

the output illustrated in Fig.52 and Fig.55.  

 Application of the above procedure of the 10-fold increase of the base step B as well as 

related to that 10-fold reduction of the redundancy of the initial time series, is equivalent 

to reliance in the forecast on 10 times deeper prior history, while retaining the same 

structure of the MLP forecaster. Such forecaster has a 10-fold leverage for both – the 

prior history in training as well as for the forecasting perspective. It means that 1-step-
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ahead prediction (tp=1) for such forecaster is in fact providing forecasting depth of F = 

B* tp = 10 * 1 = 10, i.e. 10 steps on the scale of initial time series.  

 

 

Fig.51. Comparative summarized performances of the MLP’s forecasters for 

Mackey-Glass 30 series with the RMSE as a performance measure: (a) B=1; (b) 

B=10;  and Et are RMSE for training and forecasting.  
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The result of the implementation of the above approach for B=10, tp=1 and n=5 is shown 

in Fig.52, where the forecaster with 5 inputs is trained within points from the designed set 

(indexed k=1), covering time intervals [1; 2000] and then tested as a forecaster on the 

interval [2000, 5000]. The quality of the forecaster in the area [2000; 5000] can be 

compared to that of the regularly trained forecaster, performance of which is shown in 

Fig.47 for the overlapping area of pattern numbers T = [3000; 3510].  

 Training and verification of the forecasters for the higher depths, namely for F = 20 and 

F = 50, are shown in Fig.53 and in Fig.54 respectively. Comparisons of those should be 

performed with that of Fig.48 (a 20-steps-ahead forecaster) and in Fig.49 (a 50-steps-

ahead forecaster), with the time intervals adjusted accordingly to address the pattern 

numbers T = [3000; 3500 + B * tp ]. Here the pattern numbers T are connected to the time 

point numbers t via relation: 

T = pattern number = t + n * B + B * tp ; ( 5.2 ) 

which reflects the fact that the earliest forecast involving the time point t needs to be 

made for the point T, which is separated from t by the predicting base length LB = n * B 

and the forecasting depth F = B * tp.  

 The performance of the forecasters with the base step B=10 for various depths F from 10 

to 150 is summarized in Fig.51,(b), in which the RMSE parameters  and Et of training 

and verification sessions respectively are used for the quality assessment. Two 

improvements are seen as compared to the same shown in Fig.51,(a): (1) the spread 

between RMSE trends for training and testing is eliminated; and (2) demonstrated values 

of RMSE become smaller. So, firstly, the increase of the base step B allows to keep 

training in line with the forecasting, when improvement in the training leads to 
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proportional improvement in the forecasting. Moreover, the forecasting accuracy actually 

becomes better than that in the training, as the Et stays below  for F<50. And secondly, 

the RMSE errors become smaller for increased B, particularly for intermediate values of 

forecasting depth F < 50. Indeed, Et for F=10 in case of B=10 goes down to 0.005732 

from 0.054552 in B=1 case, which is 9.5 times improvement, i.e. almost order of 

magnitude in RMSE’s scale. This is seen as a reduction of the quadratic errors [X(T) – 

x(T)]2 in Fig.52 in comparison with the same in Fig.47 – in the first case (B=10) the 

[X(T) – x(T)]2 keeps under 10-4, while in the second case (B=1) it mostly stays above 10-4 

level and even reaching almost 10-2 level in the vicinity of T=3400. Only slightly smaller 

improvement takes place for the next point of Fig.51,(b), i.e. F = 20. The Et for F = 20 in 

the case of B = 10 is 0.013989 while it was 0.094918 in B = 1 case, which constitutes 

6.78 times improvement. Again, in terms of quadratic error reduction it can be seen when 

comparing the F = 20 forecaster of Fig.53 (B=10) with that of Fig.48 (B=1): the [X(T) – 

x(T)]2 keeps under 10-3 level in B=10 case, while in B=1 case it mostly stays above 10-3 

level and breaking 10-2 level for 3400 < T < 3500.  

Less dramatic, but still appreciable improvement of the RMSE is for F=50 of 

Fig.51,(a,b): 0.068591 versus 0.191484 of Et for B=10 and B=1, i.e. 2.79 fold 

improvement, which also reflects the [X(T) – x(T)]2 change from mostly under 10-2 level 

for F=50 forecaster in Fig.54 to reaching almost 0.1 level at 3400 < T < 3500 for the 

same F=50 forecaster in Fig.49. Some improvement remains for further points, F=100 

and F=150, but it is vanishing.  
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Fig.52. Performance of the F=10 MLP’s forecaster trained on the reduced subset of 

the Mackey-Glass time series, consisting of each 10th point of the initial set 

starting from the first one (indexed k=1).  
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Fig.53. Performance of the F=20 MLP’s forecaster trained on the reduced subset of 

the Mackey-Glass time series, consisting of each 10th point of the initial set 

starting from the first one (indexed k=1).  
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Fig.54. Performance of the F=50 MLP’s forecaster trained on the reduced subset of 

the Mackey-Glass time series, consisting of each 10th point of the initial set 

starting from the first one (indexed k=1).  
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 The low RMSE level of 0.005732 and the quadratic error under 10-4 level demonstrated 

by the F=10 forecaster in Fig.52 allows to accurately recompose the initial time series 

forecast in full point-by-point by feeding into the MLP’s F=10 forecaster trained on the 

k=1 subset the data points for the rest of subsets of k=2, 3, … , 10. Implementation of this 

procedure is shown in Fig.55 through Fig.58. First, in Fig.55 the results of the forecasting 

are shown of the forecaster with F=10 (n=5; B=10; tp =1;) for the pattern numbers 3000 < 

T < 3500 only with the set of points indexed k=1 and used for both the training and the 

forecasting purposes. It is seen that the accuracy of the forecasting is very high and the 

sole problem remains that only every 10th point is forecasted, missing the intermediate 

ones with k=2, 3, …, 10. This can be addressed by re-using the forecaster on the data 

points from the rest of the sets and combining the forecasts together. Implementation of 

this approach is shown in Fig.56 for the whole range of the patterns T = [1; 5000]. In this 

Fig.56 the training points included are only those from the subset k=1, while testing of all 

of the rest of the subsets has been conducted without any further training, but rather by 

directly feeding the data points from the sets k=2, 3, …, 10 into the forecaster trained on 

the set k=1. It is seen that lack of the training on the set points k=2, 3 … 10 does not have 

detectable negative effect and the accuracy remains the same for the extra sets as it was 

for the initial one with k=1. This supports the presence of redundancy in the time series, 

which had been eliminated by splitting it into subsets in the first place. Composing all of 

forecasts together restores the whole time series required. Enlarged portion of the 

restored series composed of the 10 sets together in one plot is shown in Fig.57. It is seen 

that the prediction points strongly correlate producing consistent forecasts. To show the 

separate points of this picture, the stronger enlargement is used in Fig.58, where 
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forecasting points for subsets j = k = 1, 2, 3, …, 10 go one after another mostly 

overlapping with the initial time series, indexed there as j=0. The error points [X(T) – 

x(T)] are shown there too in the same scale indexed j=11, 12, …, 20 with j = k + 10 being 

the error of the forecasting pattern points of the subsets with k=1, 2, …, 10. This 

demonstrates the operational ability of the suggested method.  
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Fig.55. Forecasting results by the forecaster trained on the designed training set (k=1) 

consisting of each 10th of the Mackey-Glass initial series. Forecasting by 1 step 

here is equivalent to the10 steps in the initial series.  
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Fig.56. Joint forecast built by the MLP with F=10 trained on the subset indexed k=1 

and tested by sequentially incorporating subsets with k=2, 3, …, 10 with no further 

training on extra-subsets (so that for k=2, 3, …, 10 all outputs are forecasts only 

within the whole range of the points). Indexed j=0, 1, 2, …, 20 are the following: 

j=0 are the pattern points from the original Mackey-Glass series; j=1, 2, .., 10 are 

for the subsets k=1, 2, …, 10; j=11, 12, …, 20 are the errors for the subsets k=j-10.  
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Fig.57. Enlarged portion from Fig.56 of times series built point-by-point by the F=10 

forecaster for the 3015<T<4016 patterns. 
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Fig.58. Enlarged portion from Fig.56 and Fig.57 of the Mackey-Glass times series 

built point-by-point by the F=10 forecaster for the 3015 < T < 3515 patterns. 

 

To conclude, in parallel Cell/B.E.’s environment, the multiple steps forecasts can be 

distributed between the available SPUs and gathered together on the PPU module. 

Separation of the forecasts allows accelerating the process of obtaining the joint picture 

of the multiple step forecasts, which is essential for the time series case. Fast track for the 

individual forecasts is available and allows obtaining most of the forecasting power in the 

short training session. Varying the base step parameter B offers one more useful 

dimension for parallelization, which in some cases, such as above mentioned forecasts by 

F=10 and F=20 allows essential accuracy increase due to prediction base expansion 

effect.  
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5.7.  Comparison with a single CPU 

As it is seen above, parallelization procedure for the time series prediction allows to 

simplify the initial task – instead of solving single complex problem of multiple forecasts 

from the given data set, the parallelized approach allows pursuing the same forecasts 

separately by individual processors assigning one processor for one forecast. 

Simplification of the task for each processor from multi-dimensional to two-dimensional 

brings about the fast track for convergence for each processing unit and thus opens up a 

possibility not available otherwise – to complete the training process within the fast track 

and to obtain predictor within shortest possible time frame. Additional possibility – 

extending the leverage of the training points into the preceding history – is available 

equally for a single processor as well as in the parallel environment. However, only in the 

parallel environment it is available simultaneously with the forecasts from the short term 

perspectives.  

 

5.8. Summary on predictions of the 1D time series 

The above consideration supports that the Cell/B.E. is allowing an efficient multi-step 

prediction in the 1D time series, offering the following advantages.  

1. Splitting the complex multi-step forecasting task into the separate individual fixed-step 

forecasting sub-tasks and distributing them among the parallel processors allows attaining 

the fast track in the training for each individual sub-task. The above goes in addition to 

the natural acceleration of the calculations due to simplification of the individual sub-

tasks. Attaining the same fast track in the training with a single processor carries the cost 
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of sequential implementation of each, which therefore favors the parallel computing 

environment.  

2. Scaling up the base step used for the 1D time series prediction by the neural network 

MLP trained via the gradient descent algorithm allows: (i) removing redundancy in the 

data and (ii) at the same time improving the accuracy of the multi-step long range 

forecasts; (iii) identifying the occurrence of the negating trend. In the parallel computing 

environment these advantages (i) - (iii) are attainable when using the base step as one of 

the parallelization parameter and engaging for each base step value a separate processing 

unit, thus covering otherwise unavoidable time cost in a single processor approach.  
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Chapter 6. Overall conclusions 

As summarized below, to answer the research question of this thesis identified and 

demonstrated are the following advantages, offered by the parallel programming 

environment of the Cell/B.E. for the gradient descent algorithm implementations in terms 

of speed and accuracy of the attained solutions of the 2D functions approximations and of 

the 1D time series predictions by multilayer perceptron neural network.  

 

6.1. Summary of conclusions  

1. For nonlinear 2D function approximation of second and third order with saddle 

point the parallel tracing of the gradient descent trajectories from various starting 

conditions allows for separation of those which lead to local minima traps and those with 

the fast track convergence to the optimal solution with minimized training computational 

cost.  

2. The parallel tracing of the gradient descent allows obtaining a set of viable 

candidates for the 2D non-linear function approximation, suitable for final selection of the 

optimal solution in overall testing procedure when available. The winner does not 

necessarily coincide with that in the training, which makes it advantageous to retain all 

the potential candidates from the SPE processors intact available for the final 

determination of the winner. This way the parallel tracing enhances the probability in 

attaining the best optimal solution in a fastest way, which contributes further to the 

advantages of the parallel computing environment.  

3. The criteria of obtaining the reduced RMSE for the close proximity extrapolation 

region is demonstrated to serve as the indication parameter to distinguish the high quality 
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approximator for the interpolation region among those candidates obtained in the parallel 

tracing mode. Thus the close range extrapolation ability of the MLP neural network is 

shown to reflect its interpolation capacity in that low root mean square error (RMSE) for 

the close proximity extrapolation range correlates with the low interpolation RMSE for 

selected 2D non-linear function approximators. This enables an early identification of 

possible optimal solutions prior to or in the absence of a possibility for the comprehensive 

testing of the obtained solutions.  

4. For the 1D time series prediction the splitting of the complex multi-step 

forecasting task into the individual fixed-step forecasting sub-tasks and distributing them 

among the parallel processors allows attaining a fast track in training for each individual 

subtask. The parallel computing environment is shown to allow efficient tracing and 

gathering of the solutions, offering speed advantage with respect to a single processor 

situation.  

Scaling up the base step used for the 1D time series prediction by the neural network MLP 

trained via the gradient descent algorithm allows: (i) removing redundancy in the data and 

(ii) at the same time improving the accuracy of the multi-step long range forecasts; (iii) 

identifying the occurrence of the negating trend. In the parallel computing environment 

these advantages (i) - (iii) are attainable when using the base step as one of the 

parallelization parameter and engaging for each base step value a separate processing unit, 

thus covering otherwise unavoidable time cost in a single processor approach.  
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6.2. Summary of contributions 

The following contributions of new knowledge have been made by this thesis.  

1. Using a neural approximation of the 2D functions of 2nd and 3rd order with saddle 

points, the parallel tracing of the gradient descent trajectories is demonstrated as a 

viable alternative in identifying the favorable starting conditions, avoiding local 

minima traps and obtaining the optimal solution in a quickest possible time frame. It is 

shown that optimality of the solution can only be determined by overall testing, until 

finalization of which all the viable candidates obtained in the parallel tracing need to 

be retained. For the first time the close proximity extrapolation ability of the neural 

network is shown to reflect its interpolation quality in the 2D function non-linear 

approximation.  

 

2.  A new approach is introduced for performance improvement of the neural network 

MLP multi-step forecaster in the 1D time series. The approach includes simultaneous 

(i) redundancy removal in the 1D time series and (ii) base step increase for the 

prediction basis, implementation of which results in accuracy increase of the forecasts. 

For the Mackey-Glass 30 time series a 10 fold simultaneous redundancy removal and 

a base step increase is shown to result in almost order of magnitude improvement of 

the RMSE for the 10-steps and 20-steps forecasts, as well as more than double in 

accuracy for long-term forecasts of 50-, 100- and 150-steps ahead. In the parallel 

environment splitting the multi-task into the individual ones and distributing of the 

individual forecasting tasks between the processors is shown to provide fast-tracks for 
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training of the neural networks, as well as to offer alternative forecasts for selection of 

the best available accuracy.  

 

3.   A new approach is demonstrated capable to identify occurrence of the negating trend 

in the compositional 1D time series. The approach is based on evaluating the 

performance of the neural network MLP forecaster and includes comparing RMSE 

dependences of the long range forecasts from the number of training epochs for the 

minimal base step and the scaled up base step of the prediction basis. Specifically, it is 

demonstrated, that for a steady continuous trend doubling the base step results in 

almost doubling the accuracy of the 10-steps forecasts, while for negating trend in the 

same time series such procedure creates an expressed optimum in training length for 

the same forecasts. Parallel tracing of the above dependences enables an in-situ 

detection of the negating trend occurrences at the central control unit.  

 

6.3. Future research  

The extension of the presented research is seen in applications to specific systems based 

either on Sony Playstation-3, which includes the Cell/B.E. processors or on IBM’s 

Cell/B.E. Blade Center with multiple Cell/B.E. processors. 

More specific examples are: 

- applications to controllers of the 2D functions with Sony Playstation-3; 

- applications of the neural predictors in software for stocks prediction and/or 

video compression with Sony Playstation-3 and/or IBM Blade Center. 
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Appendix A. 

List of variables 

To simplify reading, herewith all variables used in this thesis are gathered and essential 

relations between them are summarized. 

Variables used as input to neural network:  

numInputs – for number of inputs, including bias; numOutputs – for number of outputs; 

numPatterns – for number of patterns used in training, numHidden – for number of hidden 

nodes; numEpochs – for number of training epochs; LR_IH - learning rate for input-

hidden nodes connections, LR_HO learning rate for hidden nodes-output connections, 

LR_IO learning rate input-output direct connections; alphaHO, alphaIO and alphaIH - 

momentum coefficients with the same notations for HO, IO and IH indices as for learning 

rates (hidden nodes-output, input-output and input-hidden nodes connections); =Eps – 

root mean square error for set of training points of neural network.  

, Et and Ed. – RMS Errors for training points (), testing points (Et) and full set of all 

points (Ed). 

X and Y – sets of input points x and y for 2D functions z=z(x, y); Xt and Yt are sets of 

testing points as well as Xd and Yd are full sets of points for 2D functions z=z(x, y).  

 

Variables in the sections on time series: 

x(t) – time series of x values; t – time points;  

X(t) – predicted values of the time series x(t); 

Tb – total number of basic time points t in the time series;  

tp – the number of time-steps for prediction;  
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n – the number of consecutive time series values based on which the prediction of the 

future value k-steps ahead Xt+k is obtained, the actual value being xt+k;  

Tmax – maximal number of t points used in simulations from the time series;  

Tmax = Tb + tp + n;  

B – base step for prediction, i.e. the time increment between sequential time points 

selected from the time series to make prediction; B=1 means that time points are taken 

from the time series consecutively; B=2 means that every second time point is taken to 

make prediction, etc.  

LB = n*B is predictive base, i.e. total time length from the series used to make a forecast;  

F = B*tp is the length of forecast, i.e. the length in time point units from the last obtained 

value of the time series and the forecasted time point in the future;  

tp – a number of predictive base steps in the forecast; if B=1, then tp coincides with F;  

T – the pattern number, i.e. time point in the series, number of which is calculated as T= t 

+ n*B + B*tp; the introduction of a variable T for pattern number reflects the fact, that 

first (n*B + B*tp) points of the time series are in the blind spot of the forecaster as 

n*B of them form the basis for the forecast (starting from the very first one), while 

next B*tp points are those above which the forecaster is trying to see into the future, 

which shifts enumeration between points in the time series and pattern numbers is 

both are to start enumeration from #1 and up by (n*B + B*tp);  

maxMG – the maximum number of the time points in the initial time series; 
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Appendix B. 

Input parameters in the simulations 

Listed below are the sets of the input parameters, used in specific simulations, results of 

which are presented in Tables and Figures of this thesis. 

For Table 2. Training results for the MLP in approximating hyperbolic paraboloid 

function z=x2-y2 to achieve either precision =Eps=0.001 or maximal number of 

training epochs of 5400. Training rate was 2500 epochs/sec. 

The input parameters were: numInputs=3, numOutputs=1, numPatterns=64, 

numHidden=10, max numEpochs=5400, Learning rates are: LR_IH=0.007, 

LR_HO=0.007, LR_IO=0.007; momentum coefficients: alphaHO=0.007, 

alphaIO=0.007, alphaIH=0.007; while precision =Eps=0.001 .  

 

For Table 4. Training progress of the MLP to approximate z = x2 – 3*x*y2 function of 

Fig.11,(b) on various SPEs of the Cell/B.E.: the achieved root mean square error 

(RMSE) as a function of the number of training epochs. Training rate was 2500 

epochs/sec. 

Input parameters were: numInputs=3, numOutputs=1, numPatterns=64, 

numHidden=24, max numEpochs=555000; Learning rates are: LR_IH=0.007, 

LR_HO=0.007, LR_IO=0.007; momentum coefficients: alphaHO=0.007, 

alphaIO=0.007, alphaIH=0.007.    

 

For Table 6. Results of the competition for prediction of time series seen in Fig.27 and 

described by x(t) = int [103 * sin2(t/2)] + int [103 * sin2(t/20)] + int [103 * 

sin2(t/30)] + int [103 * sin2(t/300)], where t=1, 2, 3…, Tb+tp+n, where Tb=500; 

tp=3; n=5. . Training rate was 200 epochs/sec. 

 Final number of epoch = 5000. Input parameters are: numInputs=6, 

numOutputs=1, numTrainPat=200, numHidden=12, max numEpochs=5000, 

Learning rates are: LR_IH=0.000700, LR_HO=0.000700, LR_IO=0.000700, 
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momemtum coefficients: alphaHO=0.000700, alphaIO=0.000700, 

alphaIH=0.000700; while precision Eps=0.001000 

 

For Table 7. Results of the competition for 3 steps ahead in time series prediction with 

the negating trend seen in Fig.28 and described by x(t) = int[103 * sin2(t/2)] + 

int[103 * sin2(t/20)] + int[103 *sin2(t/30)] + h(t) * int [103 * sin2(t/300)], where t=1, 

2, 3,…, Tb+tp+n, and h(t)= {+1 for 1<t<210; -1 for t>211 }; (here Tb=500; tp=3; 

n=5).  Training rate was 200 epochs/sec. 

 Final number of epoch = 5000. The input parameters are: numInputs = 6, 

numOutputs = 1, numTrainPat = 200, numHidden = 12, max numEpochs = 5000, 

Learning rates are: LR_IH = 0.000700, LR_HO = 0.000700, LR_IO = 0.000700, 

momemtum coefficients: alphaHO = 0.000700, alphaIO = 0.000700, alphaIH = 

0.000700; the precision Eps = 0.001000.   

 

 

 

 


