
Creation of DEVS Models using Imitation Learning

Michael W. Floyd and Gabriel A. Wainer

Department of Systems and Computer Engineering

Carleton University

1125 Colonel By Drive, Ottawa, ON, Canada

{mfloyd, gwainer}@sce.carleton.ca

Keywords: DEVS, imitation learning, case-based reasoning,

real-time, transfer learning

Abstract
Modelling and simulation of robotic control systems allows

for low cost analysis and experimentation. However, creat-

ing these models requires a level of technical expertise. To

improve the technical quality of such models, we propose

a case-based reasoning approach to learn the behaviour of

models using the DEVS formalism. By observing a desired

behaviour, in the form of outputs produced in response to in-

puts, a DEVSmodel of the behaviour can be built. This model

can then be used during simulation to imitate the behaviour of

interest. Our results show that this learning approach can be

used to successfully imitate the behaviour of several DEVS

models. Additionally, it can be used to transfer behaviour to

and from a non-DEVS model.

1. INTRODUCTION
Modelling and simulation (M&S) allows for analysis and

experimentation on a variety of systems. One class of systems

M&S can be used on is robotic control. These systems are of-

ten modelled based on human-defined behaviour so the robot

reacts to its environment in a specific way as defined by an ex-

pert. However, developing such a model requires some level

of technical skill. This could be knowledge of the modelling

formalism being used or of the programming language used

to implement the model. In order to make easier the work of a

domain expert we look to learn the desired model behaviour.

The ability to learn a model’s behaviour is beneficial in

three primary ways. First, as mentioned previously, it allows

the transfer of knowledge from a non-technical user into a

model. This simplifies the user’s technical skill requirements.

Secondly, even if the user is technically able to create the

model they may not wish to explicitly create the model, pos-

sibly due to time constraints. Instead they could demonstrate

the desired behaviour which would require significantly less

of their time. Lastly, it would be possible to learn the be-

haviour of other models. This would be particularly useful

if the model was created with a different formalism or in-

compatible technology. The model behaviour could then be

converted for use in an existing modelling framework.

In order to perform this learning, we first model the human

or model as a black box. No assumptions are made about the

underlying design or behaviour of the black box, only that

it receives some external inputs and produces outputs in re-

sponse (Figure 1). We can say that the output events, Eo, are

based on the input events, Ei, as a function of the internal

reasoning process of the black box:

Eo = f (Ei) (1)

While we may not know the details of this function, we can

attempt to approximate it based on observations of the inputs

and outputs. After collecting a series of such observations, it

then becomes possible to learn how the black box will behave

when it receives input. Thus, we can then create a model that

uses this information to imitate the behaviour of the black

box.

Figure 1. Representing the human or model as a black box

The remainder of this paper will detail a method for

learning the behaviour of a discrete-event system specifi-

cation (DEVS) model using imitation learning. Section 2

provides background information about DEVS, embedded

CD++, case-based reasoning and related work. The DEVS

models used to observe and imitate are presented in Sec-

tions 3 and 4. Experimental results using these models are

described in Section 5 followed by conclusions in Sections 6.

2. BACKGROUND

Discrete-event system specification (DEVS) [1] is a for-

mal framework for modelling and simulation. The beneficial

properties of the DEVS formalism include allowing for indi-

vidual atomic models to to be coupled into hierarchies and

modules, support for discrete-event approximations of con-

tinuous systems, and the ability to separate the model from

the simulator. An atomic DEVS model (AM) is formally rep-

resented by the following tuple:

3341-56555-344-6

AM = (X ,Y,S, ta,δext ,δint ,λ) (2)

The model is able to receive input events from the set of pos-

sible inputs, X , which causes its external transition function,

δext , to be invoked. This function may change the state of the

model, to a state in S, and set the time for that state using

the time advance function, ta. If the state remains unchanged

for the duration of time set by ta, the internal transition func-

tion, δint , is called and can modify the model state and set

the associated time advance. Following the internal transition

function the output function, λ, is called and may produce an

output event from the set of possible outputs, Y .

Embedded CD++ (eCD++) [2] is an extension of the CD++

toolkit [3] that allows for real-time execution of models.

Both CD++ and eCD++ allow models to be defined using

the DEVS formalism. The primary advantage of these tools

is that they provide a clear separation between the models

and simulators. This allows models to be created without any

knowledge of the underlying simulation engine, so the same

model can be used with a variety of simulators.

The standard version of CD++ operates in simulated time,

so the internal simulator clock advances based on the time of

the next scheduled event. Embedded CD++, however, allows

for simulation in real-time so events are processed at their

scheduled time. Since models can be simulated in real-time,

they are able to interact with external hardware. These hard-

ware devices can produce input events for the DEVS model

or receive output events (Figure 2). If the simulation was not

in real-time, the internal simulation time might differ from

the real-world time causing synchronization problems when

hardware events are received.

Figure 2. Using embedded CD++ to interact with external

hardware

Models can then be used at various stages of the modelling

and simulation process using eCD++. Initial simulation can

be done in simulated-time using simulated input events. Pro-

vided the model’s behaviour can be verified and validated in

simulated-time, the same model can then be used in real-time

to interact with actual hardware. This allows a more thorough

testing of the model since interacting with hardware might

produce events that were not considered during simulated-

time experimentation.

Case-based reasoning (CBR) [4] is a learning method that

relies on the assumption that similar problems have similar

solutions. CBR makes use of instances of previously encoun-

tered problem-solution pairs, called cases, that are used to

solve novel input problems. In CBR, a collection of cases,

called a case base, is used to represent the knowledge learnt

by the system. When an input problem is received, a CBR

system compares the input to cases in the case base. Cases

that have similar problems as the input problem can then

have their solutions used to determine how the input problem

should be solved.

Case-based reasoning lends itself well to a task like imita-

tion learning because ideally the imitator should behave ex-

actly as the teacher would when presented with the same input

problems. In the case of a DEVS model, the problem would

be the inputs received and the solution would be the outputs

produced. In order to successfully imitate the model’s be-

haviour it becomes necessary to observe which inputs cause

the model to produce which outputs, and in turn to use those

observed cases to determine how to behave during run-time.

Learning by imitation and observation has been utilized

in a variety of domains, both physical and simulated. Many

early robotic applications looked at learning simple move-

ment tasks for robotic arms [5] but have since moved to more

advanced tasks like controlling aerial maneuvers performed

by robotic helicopters [6]. In these robotic domains the learn-

ing algorithms have prior knowledge of the dynamics of the

individual robot and learn the various control parameters. The

learning is generally tightly coupled to the specific task being

performed by the robot so it is not directly applicable to gen-

eral learning tasks.

There are many promising uses of case-based reasoning for

imitation learning in games. Examples of this include Tetris

[7], real-time strategy games [8], poker [9] and space invaders

[10]. The primary limitation of these works is that they are

domain specific and require information about the tasks be-

ing imitated. This information can include knowledge about

the goals of the task or utilizing data structures and algorithms

that are specific to a certain domain. The requirement for in-

formation about the task being performed is not limited to

CBR as other approaches to imitation learning suffer simi-

larly [11].

In our recent work we have focused on a domain-

independent approach to software agent imitation using case-

based reasoning [12, 13, 14]. However, we have only utilized

ad hoc simulators and never formal modelling techniques like

DEVS. One of the primary contributions of this work is the

ability to imitate formal models while the imitator itself ad-

heres to a modelling formalism. Additionally, this work dif-

fers from previous works in that it allows the transfer of learnt

behaviour from robotic to simulated domains and from formal

to ad hoc models (and the other way around).

3351-56555-344-6

3. MODEL OBSERVATION
In order to imitate the behaviour of a DEVS model, it first

becomes necessary to observe how the model responds to

input events1. This observation is performed with a model,

Observer, that is placed between the DEVS model being ob-

served and the external hardware (Figure 3). The Observer

model acts as an intermediary between the DEVS model and

the external hardware, recording any events that pass through

it.

Figure 3. Using the Observer model to log the behaviour of

a DEVS model

More formally, the Observer can be defined as a DEVS

atomic model:

• X: There is one input port for each input and output
port of the model being observed. The events sent on

these ports are not known in advance and are dependant

on what events can be sent or received by the observed

model.

• Y: Similarly, there will be one output port for each input
and output port of the observed model. Each output port

will be paired with an input port. There will also be one

extra output port, shown as Log in Figure 3, that outputs

the observations.

• S: The model is either in an active or passive state. The
model has a number of state variables. Three variables

to record the last event received from external hardware,

the time the event was received and the port it was re-

ceived on. Three similar variable are used for events

from the observed model as well. Also, a variable is used

to record which port received the last event (can be either

from external hardware or observed model).

1For the remainder of this paper we refer to the imitation of DEVS mod-

els, however, the same principles apply to the imitation of human behaviour.

Any parts of the learning system that interact with the DEVS model could

instead connect to an interface controlled by a human.

• ta: A short time advance is used to simulate the time it
takes to record the observations.

• δext : An external event means that an event was received

from the external hardware or the observed model.

Whichever port received the input will have its associ-

ated state variable updated with the event value and the

time of the event. State variables will also be updated to

identify which port received the last event. The model

will then enter an active state.

• δint : The model will return to a passive state and wait for

further input.

• λ: The last received value will be sent as output on the

appropriate output port. If the last received event from

the observed model, a message will be sent on the Log

port that contains the information contained in the state

variables.

This model will record all incoming events before transmit-

ting them along. As the model executes, it will create a log of

output events produced by the observed model and the input

event that the were received previously. These logged obser-

vations will be used to create cases that will be used during

imitation.

As was previously discussed, in case-based reasoning a

case,C, contains a problem-solution pair:

C = (P,S) (3)

We will define the problem, P, to represent the input events

received by the model. The problem can then be decomposed

into the port, p, where the input was received and the value,

v, of the event:

P= (p,v) (4)

The solution, S, is then the output events produced by the

observed model. Each solution is a series of output events:

S= [s1,s2, . . . ,sn] (5)

And each individual output event, si, is a triple composed of

the event port, p, event value, v, and amount of time, t, the

event takes.

si = (p,v, t) (6)

There are two possible options for observation and case

generation: passive and active. In passive observation, the

DEVS model receives events during the normal course of

execution. For example, the model could be receiving actual

events while operating in real-time. The other option is active

observation, where the input events are artificially generated.

While a passive approach may result in a more realistic series

of input events, it gives less control over which events are en-

countered. If a model was deployed in a robot, there would

3361-56555-344-6

be no guarantee that a representative sample of input events

would be seen. Due to these limitations, we will utilize an

active observation approach (Figure 4).

Figure 4. The process used to observe a model and build a

case base. The Observe Model process would be performed

by the Observer model from Figure 3

Input events are automatically created by randomly select-

ing an input port and then randomly generating a value to

send on that port. A series of such events can be generated

and stored in an event file which is then used as input to the

coupled model containing the Observer model and the model

being observed (Figure 3). As input events are processed by

the Observer model, it will log observations which can be

converted to cases. Once a number of cases have been stored

in the case base it then becomes possible to imitate the model.

4. MODEL IMITATION
The cases that are generated by observing a DEVS model

can be used to imitate the model’s behaviour. To accomplish

this another DEVS model, called the imitation model, is used

in place of the model being imitated (Figure 5). When the

imitation model receives inputs, it attempts to behave as the

original model would have.

Figure 5. Using the Imitation model in place of the original

model

The inputs are treated as novel problems without a known

solution. To find the solution, a k-nearest neighbour search

is used2. In a k-nearest neighbour search a novel input prob-

2Previous work [12, 13, 14] has shown imitation learning systems using

case-based reasoning with a k-nearest neighbour search to perform with a

high degree of accuracy. This has been shown both quantitatively and quali-

tatively by observing the behaviour of the agent.

lem is compared to known problem instances, in this situation

cases in the case base, and the k most similar instances are

found. These k problem instances, which already have known

solutions, can then be used to determine the solution to the in-

put problem. This requires some way to measure how similar

two cases are. Based on the problem definition from the pre-

vious section, we define the distance between two problems

as:

distance(Pi,Pj) =

{

|vi− v j| , i f pi = p j
∞ , i f pi %= p j

(7)

Therefore, the k-nearest neighbour search finds the cases that

are the minimum distance from the input problem. We utilize

a 1-nearest neighbour search so the solution portion of the

closest case is used as the solution to the input problem and

the events found in that solution are sent as output.

The DEVS specification for the imitation model has the

same set of input events, X , and output events,Y , as the model

it is imitating. The model can either be passive or active. It

keeps state variables containing the next event value to send,

the port to send it on, and a list of any other events that need to

be sent. When an external input event is received, the exter-

nal transition function, δext , performs a 1-nearest neighbour

search to find the best solution to perform. The state variables

are then updated to reflect the solution that will be performed.

The time advance, ta, depends on each event. The imitation

model attempts to keep event durations the same as they were

in the original model. When the internal transition function,

δint , is invoked, if there are more events to send the next is set

to be sent. Otherwise, the model becomes passive. The output

function, λ, then sends the next event value on the appropriate

output port.

The advantage of this approach to imitation is that no as-

sumptions are made about the model being imitated. It is not

necessary to modify the imitator model or add any domain

knowledge in order to imitate different behaviours. Instead,

only the case base needs to be changed. Several case bases

could be created, one for each DEVS model being imitated,

and simply interchanged depending on the desired behaviour.

This is particularly useful if a novel behaviour is required un-

der tight time constraints. The behaviour could be demon-

strated while being observed by the Observer model (from

the previous section), a case base could be created and used

directly by the imitation model.

5. SIMULATION AND RESULTS
In order to demonstrate the use of our imitation approach

we will discuss the following experiments:

• Imitation of an embedded CD++ model of an obstacle
avoidance robot.

• Imitation of an embedded CD++ model of a robotic arm.

3371-56555-344-6

• Transferring behaviour from a RoboCup [15] soccer

agent to a DEVS model.

• Transferring learnt behaviour to a RoboCup soccer

agent.

The results from these experiments will show not only that

imitating DEVS models is possible, but that it can be done

with a high degree of accuracy. In fact, we will show that it is

difficult to differentiate the original model from the imitator.

5.1. Obstacle Avoidance Model
In this experiment, we look to imitate the behaviour of an

existing DEVS model that performs obstacle avoidance in a

mobile robot called RoboCart [2]. This model receives input

events from two external hardware sensors, touch and sonar,

and can send events to motors that move the robot. The touch

sensor produces an event when it touches an object, whereas

the sonar sensor periodically produces events containing the

distance to the nearest object. The model produces events that

move the robot forward (the value 1), backward (the value 2),

turn left (the value 3) or turn right (the value 4). The model

causes the robot to move forward until it bumps into an object

(receives input from the touch sensor) or detects an object

nearby (receives input from the sonar sensor).

An event file was generated containing 500 randomly se-

lected input events. The obstacle avoidance model was cou-

pled with the Observer model (as described in Section 3) and

the event file was used as input, which produced 500 cases.

These cases were then used by the imitation model.

In order to test the ability of the imitation model to repro-

duce the behaviour of the original model, a second event file

was randomly generated. This event file was used as input to

both the imitation model and the original and their outputs

were compared. A smaller example of such an event file is

shown in Figure 6 with the imitation results in Figure 7 and

the original model’s results shown in Figure 8. This event file

represents the following events:

1. The robot touched an object

2. An object was sensed at a distance of 11.72

3. An object was sensed at a distance of 3.81

4. The robot touched an object

5. An object was sensed at a distance of 16.55

The first thing to notice when examining these results is

that they both contain the same number of events and those

events occur at identical times. This shows that not only is the

imitation model able to successfully determine when to send

output events but it is also able to determine the duration of

those events. In general, the values of the events are identical

as well. There are several situations where the event values

are not identical and they all relate to the turn direction (value

00:00:00:000 intouch 1000

00:00:10:000 insonar 11.72

00:00:20:000 insonar 3.81

00:00:30:000 intouch 1000

00:00:40:000 insonar 16.55

Figure 6. Sample input to test the imitation of the obstacle

avoidance model

00:00:00:020 out 2

00:00:01:040 out 3

00:00:02:560 out 1

00:00:10:020 out 3

00:00:11:540 out 1

00:00:20:020 out 2

00:00:21:040 out 3

00:00:22:560 out 1

00:00:30:020 out 2

00:00:31:040 out 3

00:00:32:560 out 1

00:00:40:020 out 4

00:00:41:540 out 1

Figure 7. Output events produced by the imitation model

3 or 4). This is because the original model does not use input

events to determine which direction to turn, it simply toggles

between turning left and right. The output for the imitation

model can be interpreted as follows:

1. In response to touching an object: the robot is moved in

reverse, turns left and then goes forward again

2. In response to sensing an object at medium distance: the

robot is moved left and then forward

3. In response to sensing an object at close distance: the

robot is moved in reverse, left and then forward

4. In response to touching an object: the robot is moved in

reverse, turns left and then goes forward again

5. In response to sensing an object at medium distance: the

robot is moved right and then forward

However, even though it does not always turn in a manner

that is identical to the original model the imitation model is

still able to behave in a very similar way. When the imitation

model is deployed in the robot, in real-time eCD++ simu-

lation mode, it is difficult to tell that the robot is not being

controlled by the original model. The only way to notice the

difference is if you are aware that the original model never

causes the robot to turn in the same direction twice in a row.

The imitation model clearly displays the obstacle avoidance

behaviour we would expect from the original model.

3381-56555-344-6

00:00:00:020 out 2

00:00:01:040 out 3

00:00:02:560 out 1

00:00:10:020 out 4

00:00:11:540 out 1

00:00:20:020 out 2

00:00:21:040 out 3

00:00:22:560 out 1

00:00:30:020 out 2

00:00:31:040 out 4

00:00:32:560 out 1

00:00:40:020 out 3

00:00:41:540 out 1

Figure 8. Output events produced by the original model

5.2. Robotic Arm Model
We now look to further experiment on the imitation model

by learning from the model for a robotic arm. The robotic arm

has three input ports that receive input events from a sound,

touch and light sensor. It can send events on two output ports:

one that controls the arm and one for the gripper claw. When

the model receives an event from the sound sensor (indicating

a significantly loud sound) the arm begins moving. It contin-

ues to move until it receives an input from the touch sensor

indicating it has touched something. The light sensor, which

has a short range and needs to be next to an object to suc-

cessfully determine colour, is then able to produce an event

indicating what colour the object is that was touched. If the

object was red, the gripper claw closes on the object and the

arm moves in reverse. If the object was blue, the arm moves

in reverse without gripping the object.

As with the obstacle avoidance model, a random event file

of 500 events is created. However, this model does not run

continuously. It runs one cycle of its behaviour (move to an

object, examine it and move back) and then terminates. This

means that it is impossible to watch the model grab a red

object and leave a blue object in a single observation session.

To overcome this 10 event files are randomly generated and

used during 10 observation sessions. The cases from each of

these observation sessions are then combined into a single

case base.

We look to test the two primary behaviours of the robotic

arm. Figure 9 shows a sample input event file that represents

encountering a red object and Figure 10 for a blue object. The

events in these files represent:

1. The robot heard a sound with volume 35

2. The robot touched an object

3. The robot sensed the object was red (when the value is

5) or blue (when the value is 15)

00:00:03:00 insound 35

00:00:05:00 intouch 1000

00:00:06:00 inlight 5

Figure 9. Sample input to test the imitation of grabbing a

red object

00:00:03:00 insound 35

00:00:05:00 intouch 1000

00:00:06:00 inlight 15

Figure 10. Sample input to test the imitation of not grabbing

a blue object

Unlike with the obstacle avoidance imitation, where there

were minor differences, both the original model and imitating

model produce identical output for the robotic arm. The out-

put when simulating a red object is shown in Figure 11 and for

a blue object in Figure 12. These outputs can be interpreted

as follows:

1. Sounds heard: The arm begins moving forward (value of

1)

2. Object touched: The arm stops (value of 2)

3. Colour sensed: If the object was red the claw is closed

(value of 3) and then stopped (value of 6). Regardless of

colour, the arm is moved in reverse (value of 5) and then

stopped (value of 2).

00:00:03:020 outarm 1

00:00:05:020 outarm 2

00:00:06:030 outclaw 3

00:00:08:030 outclaw 6

00:00:09:020 outarm 5

00:00:10:040 outarm 2

Figure 11. Output when simulating the robotic arm encoun-

tering a red object

These experiments show that this imitation approach can

be used for a variety of models and is not restricted to im-

itating a specific behaviour. The obstacle avoidance model

and the robotic arm model behave in a significantly differ-

ent manner and make use of different external hardware. The

imitation model itself does not have to be changed to imitate

these different behaviours, instead only the case base has to

be changed.

5.3. Transferring Behaviour from a Non-
DEVS Simulator

Up to this point the focus has been exclusively on imitat-

ing the behaviour of DEVS models. Another potential use of

3391-56555-344-6

00:00:03:020 outarm 1

00:00:05:020 outarm 2

00:00:06:020 outarm 5

00:00:07:040 outarm 2

Figure 12. Output when simulating the robotic arm encoun-

tering a blue object

imitation learning is to transfer behaviour to different sim-

ulators. This would be useful if the majority of models were

implemented using a specific formalism but some of the mod-

els used a different formalism. The behaviour of these other

models could be learnt and the behaviour could be imitated

by a model implemented in the desired formalism.

In these experiments we look to transfer the behaviour

from a non-DEVS simulator into a DEVS model. We make

use of the RoboCup soccer simulator. RoboCup is a popular

simulation platform that allows software agents to compete in

games of simulated soccer3. Numerous international compe-

titions occur each year allowing researchers to compare var-

ious artificial intelligence techniques in a friendly competi-

tion.

Simulated RoboCup soccer operates in a client-server ar-

chitecture. The central server handles simulation, enforces

the rules of soccer and coordinates messages to the various

clients (each of which represents a single soccer player). The

messages sent from the server to the players contain informa-

tion about the objects the player can currently see in its field

of vision and the distance those objects are from the player.

The objects a player can see include soccer balls, boundary

lines, boundary flags, goal nets and other soccer players. In

response the player can send a message to the server indicat-

ing what action they want to perform (like kicking the ball or

moving around the field).

The RoboCup agent we attempt to learn from performs an

object tracking behaviour. If it is unable to see the soccer ball

in its field of vision it turns until it can see the ball. When the

ball is visible, it moves toward the ball. In order to observe

this agent and build a case base we use an approach simi-

lar to the observer model (in Section 3) but with a modified

case structure (a detailed description is provided in [12]). The

problem that arises is that the cases in the RoboCup domain

are at a higher level of abstraction and contain information

about objects that are visible to the agent instead of sensor

inputs. This representation is incompatible with both the case

structure we have defined and also the sensory capabilities of

the robot we will deploy the model in.

In order to transfer the RoboCup cases into the cases we

have defined, we need to perform a conversion. We use the

following mapping which converts RoboCup cases to cases

3Robotic competitions also exist but we will focus exclusively on the

simulated league.

usable by the RoboCart robot:

Problem Mapping:

• The ball is visible and directly infront of the agent in the
RoboCup case → An event on the sonar port with the

distance of the object

• Otherwise→ An event on the sonar port that represents

no object is visible

Solution Mapping:

• A RoboCup dash action→ A forward event on the mo-

tor control port.

• A RoboCup left turn action→ A left turn action on the

motor port.

• A RoboCup right turn action → A right turn action on

the motor port.

Duration Mapping:

• All events are given a similar duration (300 ms).

This mapping helps convert RoboCup cases to RoboCart

cases but there is some information loss. Since the RoboCart

does not have the necessary sensors to uniquely identify ob-

jects it does not only track soccer balls but tracks any objects

it senses on its sonar sensor. Even with this limitation, dur-

ing real-time execution the robot successfully imitates the be-

haviour that was learnt from the RoboCup agent. This experi-

ment helps show that it is possible for behaviour programmed

in non-DEVS modelling formalisms to be successfully con-

verted to DEVS models. These models can then be integrated

with DEVSmodels so that all models use the same simulation

engine.

5.4. Transferring Behaviour to a Non-DEVS
Simulator

In the previous subsection we looked at transferring the

behaviour of a non-DEVS model to a DEVS model, but now

we will look to do the reverse. We will transfer the behaviour

that was learnt while observing the obstacle avoidance robot

to a RoboCup agent. As was the case previously, a method is

required to map cases:

Problem Mapping:

• Input event on the touch sensor port→ A RoboCup ball

object at a small distance from the agent

• Input event on the sonar sensor port→ A RoboCup ball

object at a distance equal to the input event value

Solution Mapping:

• Move the robot forward→ A RoboCup dash action

3401-56555-344-6

• Move the robot backward→ARoboCup backward dash

action

• Move the robot left→ A RoboCup left turn action

• Move the robot right→ A RoboCup right turn action

In this mapping ball objects were used as obstacles, but this

could be changed to any type of RoboCup object.

Using a case base created with this mapping, obstacle

avoidance behaviour can be successfully transferred to a

RoboCup agent. The agent clearly avoids colliding with the

ball and behaves very similarly to the obstacle avoidance

robot. This shows that imitation learning can be used to trans-

fer behaviour in both directions: to DEVS models and from

DEVS models. This makes models more portable as they can

quickly be transferred to a different modelling framework

without having to reimplement the model. Additionally, inter-

operability is promoted since models can be converted even

if their behaviour is not fully known or if their source code is

unavailable.

6. CONCLUSIONS
In this paper we have demonstrated an approach to devel-

oping DEVSmodels using imitation learning. Rather than ex-

plicitly implementing a model, the model behaviour is learnt

though observation. While this approach removes the need

for technical skills that are typically required for knowledge

transfer, it is not appropriate for all situations. Firstly, this ap-

proach involves learning so it may not provide an exact imi-

tation of the desired behaviour. This becomes an issue if the

model is to be deployed in a situation that is not tolerant of

error. Secondly, the learning approach assumes that the model

outputs are a function of the inputs. If a model does not use

recent inputs to generate outputs then this approach would be

unable to successfully imitate the model’s behaviour. Lastly,

if a teacher never performs a certain behaviour or action while

being observed then the imitator will never be able to perform

that behaviour.

Even with the listed limitations, this approach still provides

a novel technique for developing DEVS models. The two pri-

mary contributions of this work are demonstrating the abil-

ity of imitation learning to learn the behaviour of a DEVS

model and showing how behaviours can be transferred to and

from non-DEVS models. In our experiments we show how

two robotic control models, one for an obstacle avoidance

robot and one for a robotic arm, can be successfully learnt.

We also show that behaviour programmed in a simulator that

does not follow a modelling formalism, simulated Robocup

soccer, can be converted to or from a DEVS model.

REFERENCES
[1] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of

Modeling and Simulation: Integrating Discrete Event

and Continuous Complex Dynamic Systems. Academic

Press, 2000.
[2] M. Moallemi, J. M. Gutierrez-Alcaraz, and G. A.

Wainer, “ECD++ a DEVS based real-time simulator for

embedded systems,” in Spring Simulation Multiconfer-

ence, p. 12, 2008.
[3] G. A. Wainer, “CD++: A toolkit to define discrete-event

models,” Software, Practice and Experience, vol. 32,

no. 3, pp. 1261–1306, 2002.
[4] A. Aamodt and E. Plaza, “Case-based reasoning: Foun-

dational issues, methodological variations and system

approaches,” AI Communications, vol. 7, no. 1, pp. 39–

59, 1994.
[5] C. G. Atkeson and S. Schaal, “Robot learning from

demonstration,” in Fourteenth International Conference

on Machine Learning, pp. 12–20, 1997.
[6] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for

control from multiple demonstrations,” in 25th Interna-

tional Conference on Machine Learning, pp. 144–151,

2008.
[7] H. Romdhane and L. Lamontagne, “Reinforcement of

local pattern cases for playing Tetris,” in 21st Interna-

tional Florida Artificial Intelligence Research Society

Conference, pp. 263–268, 2008.
[8] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram,

“Case-based planning and execution for real-time strat-

egy games,” in 7th International Conference on Case-

Based Reasoning, pp. 164–178, 2007.
[9] J. Rubin and I. Watson, “SARTRE: System overview.

A case-based agent for two-player texas hold’em,” in

Workshop on CBR for Computer Games at the 8th Inter-

national Conference on Case-Based Reasoning, 2009.
[10] M. Fagan and P. Cunningham, “Case-based plan recog-

nition in computer games,” in 5th International Confer-

ence on Case-Based Reasoning, pp. 161–170, 2003.
[11] C. Thurau and C. Bauckhage, “Combining self orga-

nizing maps and multilayer perceptrons to learn bot-

behavior for a commercial game,” in GAME-ON Con-

ference, 2003.
[12] M. W. Floyd, B. Esfandiari, and K. Lam, “A case-

based reasoning approach to imitating RoboCup play-

ers,” in 21st International Florida Artificial Intelligence

Research Society Conference, pp. 251–256, 2008.
[13] M. W. Floyd, A. Davoust, and B. Esfandiari, “Consider-

ations for real-time spatially-aware case-based reason-

ing: A case study in robotic soccer imitation,” in 9th Eu-

ropean Conference on Case-Based Reasoning, pp. 195–

209, 2008.
[14] M. W. Floyd and B. Esfandiari, “An active approach to

automatic case generation,” in 8th International Confer-

ence on Case-Based Reasoning, pp. 150–164, 2009.
[15] RoboCup, “Robocup official site.”

http://www.robocup.org, 2009.

3411-56555-344-6

