
UAV Search Strategies Using Cell-DEVS

Keith Holman Jeremy Kuzub Gabriel Wainer
keith@sce.carleton.ca jkuzub@sce.carleton.ca gwainer@sce.carleton.ca

Department of Systems and Computer Engineering. Carleton University

1125 Colonel By Drive, Ottawa, ON, Canada.

Keywords: Cell-DEVS, path planning, uninhabited aerial
vehicles, UAV, simulation, CD++

Abstract
 Cell-DEVS is an extension to the DEVS formalism that
allows the definition of cellular models. CD++ is a modeling
and simulation tool that implements Discrete Event Simulation
(DEVS) and Cell-DEVS formalisms. The methodology
proposed in this paper uses the Cell-DEVS formalism and
C++ tool chain [4, 5] to model Uninhabited Aerial Vehicle
(UAV) search in a dynamic intelligence environment.
 Algorithms proposed in previous works [1] were applied to
modify the intelligence environment over time. The UAV
search pattern was based on this information and the resulting
simulation demonstrates emergent UAV search patterns in this
intelligence environment. Rule sets model the degradation of
this intelligence over time using algorithms proposed in [1],
are referred to as a diffusion algorithm; the UAV traversed
this map using a hill-climbing algorithm. The resulting UAV
search pattern showed preference for the local maximum of
target location probability before total maximum to produce
an intuitive search pattern. The Cell-DEVS architecture and
CD++ tool chain provided a robust development and
visualization environment suited to this research.

1. INTRODUCTION

UAVs provide advantages over manned aircraft for
reconnaissance missions. It is advantageous for UAVs to be
able to change flight plans dynamically based on new
intelligence and sensor data. The methodology proposed in
this paper models this changing intelligence environment as a
Cellular Automata digital map. Rule set models the
degradation of this intelligence over time using algorithms
proposed in [1], referred to as a diffusion algorithm. A second
rule set defines an efficient search pattern for the UAV using
this map combined with a hill-climbing algorithm. This
proposed solution was implemented in a CD++ development
environment, which implemented the Cell-DEVS (Discrete
Events Systems) formal specification [4, 5]. DEVS provides a
formal framework for hierarchical construction of discrete-
event models in a modular manner, allowing for model re-use

and reduced development time. These models can be
synchronous, concurrent, and highly non-linear nature. Cell-
DEVS [3] was defined as a combination of cellular automata
and DEVS. The CD++ tool is an open-source framework that
enables the simulation of a variety of discrete-event models in
biology, physics, chemistry, and artificial systems. CD++
includes a tool chain with a scripting language, simulation
engine, testing environment, and graphical interface.

This paper describes an application of Cell-DEVS to the

problem of finding an efficient Uninhabited Aerial Vehicle
(UAV) searching pattern in a dynamic environment. The
Cell-DEVS formalism provides a framework in which to
simulate cellular models as discrete-event systems. This paper
demonstrates how efficient Uninhabited Aerial Vehicle
(UAV) search patterns can be generated by modeling target
probabilities as gradients in Cell-DEVS.

This paper demonstrates that Cell-DEVS provides an
intuitive and effective way to encode this information and
generate dynamic path plans for UAVs. We show the results
obtained when testing this model in a multi-UAV scenario and
validating the path planner’s effectiveness with multiple
UAVs searching the same area.

2. BACKGROUND

UAVs provide advantages over manned aircraft for
reconnaissance missions. A long loiter time allows extended
search patterns and target search. During this extended
mission period, many variables can change, including other
UAVs in the area, target position uncertainty, new targets and
points of interest, and updated intelligence.

It is advantageous for UAVs to be able to change flight
plans dynamically. Traditionally this has been done by ground
based operators, who in response to new information, update,
waypoints and assign predetermined search patterns. In an
environment with multiple targets, UAVs and prohibited
zones, this coordination and manual control requires
significant operator input and workload [7]. Because of the
increasing capability of UAV sensors to gather large volumes
of real-time data, it becomes desirable to reduce operator
workload wherever possible, allowing the operator to focus on
pattern recognition and sensor monitoring tasks which are best
managed by human oversight.

ISBN: 1-56555-342-X 192

mailto:keith@sce.carleton.ca�
mailto:jkuzub@sce.carleton.ca�
mailto:gwainer@sce.carleton.ca�

One area in which operator workload can be reduced is by
offloading is UAV path planning to automated systems. In this
situation the operator assigns priorities to new intelligence and
sensor information, and allows the UAV automated system to
determine a search path using the fused information. While the
specific algorithms for fusing data and intelligence is outside
the scope of this paper, we show how the fused data can be
represented as a gradient field that affects UAV search
patterns.

Work by Steils and Glickstein [2] have presented the use
of Cellular Automata (CA) in digital map-based tasks. Their
two major applications were devoted to study situation
assessment and flight path routing. They consider the cost
function of the UAV movement in a terrain consisting of
targets and hazards, and define methods of mapping UAV
sensor input into a CA model of this environment. They
showed that CA could be applied to taking many sources of
intelligence and quickly and efficiently combining them to
establish probable target location.

Cooperation between UAVs and assignment of priorities
to determine paths have been approached from a systems
level, typically with agent behaviours, and defined UAV
intercommunication schemes [6, 8]. Shem, Mazzuchi, and
Sarkani [1] presented a framework for fusing data sources into
a CA model of a UAV’s environment. They use the model to
determine the probabilities of target occupancy in any given
cell, which is mapped to a geographic coordinate. The UAV’s
path was determined by what the authors termed a ‘virtual
potential field’. The UAV moved in the direction of highest
local target probability. The concept of prediction updating
using diffusion equations was also demonstrated in the paper.
This modeled the increasing uncertainty in a target’s location
over time due to movement between sensor detections.

By using a CA, the path planning problem can be mapped
to a gradient hill-climbing algorithm in which the UAV’s path
is always in the direction of greatest increase in gradient. This
gradient field represents probability of locating a target, and in
practice, it would be a fusion of many data and intelligence
sources.

Our approach is a pure cellular model, with the UAV’s
location embedded into the cellular model. Embedding the
UAV has the benefit of allowing interaction between the UAV
and the target location probability map. The UAV’s presence
in a given cell reduces its probability of containing the target
to zero. Reducing the desirability of a cell to zero causes
neighbouring cells to have a higher desirability and thereby
generate a search pattern.

The research in this paper is an extension of the model
first proposed in [1], which significantly reduces the
complexity of planning and communication while still
generating dynamic paths plans and scalable UAV cooperation
implicitly. Our model simplifies the UAV path-planning
algorithm development and testing by using the
implementation framework of Cell-DEVS. This approach
leverages the testing and visualization interfaces of Cell-
DEVS and the atomic and coupled model representations of

individual cell and cell-layer rules. In addition, behaviour
rules for each cell layer are defined in text-based script files
and different influences on UAV path planning can be isolated
in separate cell layers for reconfiguration and sharing with
other models.

In Cell-DEVS, each cell’s value at a given time is defined
by a neighbourhood of adjacent cell values via a rule set. Cell-
DEVS provides a framework for discrete event simulation of
these cellular models, including time and propagation delays.
A tool chain for modeling and simulation using Cell-DEVS is
CD++ [4], which includes a modelling language that defines
cellular models rule sets and allows automated coupling of
these atomic models.

The proposed model of UAV path planning involves
navigating through a dynamic gradient field. This field reflects
the probability of target presence versus potential danger. By
summing the influences from these multiple fields in a local
neighbourhood around the UAV position, a route can be
generated that efficiently searches for targets. The
implementation described in this paper is based on the
concepts described in [1] of gradient hill climbing for UAV
search, and fusion of data from multiple sensor and
intelligence sources into a single “target location probability
terrain”.

3. CELL-DEVS IMPLEMENTATION
The transform from the reality of a UAV terrain exploration to
a Cell-DEVS model included the following assumptions and
mappings:

1. The 3D cell space was divided into three 2D layers.
Layer 0 stored UAV position and previous travel
path. Layer 1 stored the Target Location Probability
Terrain or “gradient”. Level 2 stored the UAV
restricted boundary information (as seen in Figure 1).

2. The cell space was assigned a dimension of 2000
meters by 2000 meters, for a coverage area for this
UAV of 4km2. This size would apply to a mini-
UAV, such as the ones under development for ‘back
pack’ deployment by soldiers or rescue teams.

3. The cell size was mapped to 100 meters by dividing
UAV travel speed by rate of sensor sweeps per
second for a constant search altitude of 1000 meters.
This allows the model to represent UAV travel at one
cell per bases simulation period (1000) without
skipping or loitering in a given cell.

4. The target location probability diffusion rate varies
with the speed of the target. Although a target is
implicitly defined by probabilities in this model, the
diffusion rate reflects the speed and unpredictable
movement of the target. In this case it was modeled
as a ground vehicle with a speed of 10 meters per
second. Target diffusion is not direction-preferential
in this model as target direction or vector information
is assumed to be unknown.

ISBN: 1-56555-342-X 193

Figure 1. Target location probability gradient field.

3.1. Cell-DEVS model Rules
Each layer applies different rules that individually

integrate neighbouring cells. Each layer is composed together
to use additional formulas defined by Cell-DEVS that form the
intelligence the UAV uses to determine its path.

The most important rule determining where the UAV will
proceed is a diffusion rule. The diffusion rule models the
increase of uncertainty over time for data such as target
location.

 In real UAV situations, initial intelligence provides a
location for a target. This data becomes increasingly out of
date over time due to factors like target movement. To model
this effect a diffusion algorithm is implemented adds a factor
of uncertainty to account for this time lag. Because the
Diffusion Layer averages the probability amongst its
neighbours, it takes into account a target moving into
neighbouring cells and moving in any direction over time.
The diffusion algorithm in implemented on its own gradient
layer which allows for injection of updated intelligence.
Additionally, this diffusion acts to convey information
throughout the cell space, preventing a UAV from limiting its
search pattern to a local maximum.

In terms of path planning, this diffusion rule provides the
UAV with an effective "preference" for smaller local maxima
over larger distant ones, which in practical terms means that
the UAV would search for nearby targets before searching
more distant ones. It also allows implicit effective cooperation
between multiple UAVs searching the same gradient.

On the UAV layer, the formula of the cell containing the
UAV looks at its local 8 neighbours. Out of these 8 cells, the
neighbour with the maximum value is set as the direction in
which the UAV will proceed. After the UAV moves to the
next cell the cell value below it is set to zero. This ensures the
UAV will not hover on one location.

On the Boundary layer, the value of each cell is set to a
value indicating whether it’s an acceptable location to travel

to. Values that are considered out of bounds are given a value
of 0. Cells that are considered acceptable are given a positive
value. These values are multiplied with the value of the same
cell in gradient layer to effectively "mask" the gradient layer
values. A cell value of 0 in the boundary layer effectively
makes that direction the least interesting to UAV. This allows
the algorithm to support searching an area with an irregular
perimeter. In addition, this layer allows the flexibility to
integrate areas that are out-of-bounds within the general
vicinity.

Another benefit of this Cell-DEVS approach by defining a
border on the boundary layer around the entire search region
ensures that the UAV stays within the defined area. This
simplifies the formulas by not requiring constant boundary
checks.

The Cell-DEVS coupled model specification considers the
three separate zones defined in Figure 1. These planes, are
defined in order to separate rule sets for the UAV, the target
location probability gradient, and the UAV path boundary.
The Cell-DEVS specification provides for coupled models,
which allows the model to act on a cell space neighbourhood
that is a combination of these three cell spaces, or layers. This
became a 3×3×3 cell space, which is specified here.

3.2. Cell-DEVS Conceptual Model Definition
As discussed earlier, the 3D cell space was divided into three
2D slices (or Cell-DEVS “Zones”). Layer 0 stored UAV
position and previous travel path. Layer 1 stored the Target
Location Probability Terrain or “gradient”. Level 2 stored the
UAV “no-go” boundary information. Each zone defines a
separate behaviour, as follows:

1. Zone “UAV-Layer”: this zone stores UAV's current
and previous positions this information is used to
move the UAV using a hill-climb algorithm with the
DIF-Layer as a data source. If a UAV is in the current
cell, relative values of neighbouring cells on the DIF-
Layer are compared and the current cell value is
changed to a ‘pending move’ value of 1-8
representing direction of pending UAV movement.
Detection of a value of on the BDR-Layer is used as
a flag to prohibit movement in a boundary area.

2. Zone “DIF-Layer”: the diffusion of a Target Location
Probability is handled by a single rule that changes
the current cells value based on an average of
neighbouring cell values in the same zone. This
change is slowed down by using a ‘viscosity’ divisor
that can be increased to slow the diffusion rate.
Diffusion has no preferential direction. An additional
rule acts to reduce the target location probability of
the current cell to zero if the corresponding cell the
UAV-Layer Zone is occupied by a UAV. This
models a UAV passing overhead and scanning the
area.

ISBN: 1-56555-342-X 194

3. Zone “BDR-Layer”: during research, the boundary
layer remains static throughout the entire simulation;
although it is feasible to use events to change the
boundaries and affect the UAV path planning. A
binary cell value encoding indicates if a UAV can
move to the corresponding cell in its zone or is
prohibited from crossing into the corresponding cell
in its Zone.

3.3. CD++ Implementation
CD++ uses configuration files to specify the problem to be

solved. This involves setting preloading cells with initial
values.

Code Sample 1 shows a sample of the initial values. On
the top (or UAV) layer, represented by z=0, a cell containing a
UAV is set to an arbitrary value of 100.

The DIF-Layer is located on the layer with z-value of 1.
For the purposes of the testing the methodology in this paper,
the simulation was initialized with random values between 0
and 7. The range 0 to 7 is arbitrary and can be any value as
long as the range is consistent throughout the entire field.
Where 7 represents a cell with a high desirability based on the
probability of a target being within that cell and 0 represents a
low desirability.

The final layer, or BDR-Layer (z=2), is initialized with
values of 1000 representing cells where the UAV is not
permitted to go. Since this is represented as a layer rather than
encoded as rules allows the boundary or "no fly zone" to be an
arbitrary shape.

(16,12,0) = 100
(0,10,1) = 1
(0,11,1) = 1.172
(0,0,2) = 1000
(0,1,2) = 1000

Code Sample 1. Subset of the configuration file that sets
the initial cell values at the start of simulation

Code Sample 2 shows static properties for the Cell-DEVS

coupled model using CD++ notation. The following static
information is set:

1. The model is a Cell-DEVS
2. The model should have a size of 20 × 20 × 3
3. The model uses Transport Delays
4. Borders around the model wrap around. If wrapping

was not allowed then the rules for the diffusion
algorithm would be more problematic around the edges
because the algorithm would have to account for less
neighbours contributing to the desirability. The fact
that the no-fly zone layer has a border that prevents the
UAV flying off the edge of the map allows for a
simplification in the diffusion layer

5. The neighbours command defines model’s
neighbourhood, which includes which cells to check if
they need to be updated if one cell changes its value.

The neighbourhood for the model defined in this paper
is a 3 × 3 × 3 cube.

6. The zone attribute defines which cells are in which
zones. As we can see, we split the cells into the
different layers mentioned previously in this paper
here. Each zone is given a name. These names relate to
sections found later within the configuration file that
contain rules CD++ applies to evolve the simulation.

[uav]
type : cell
dim : (20,20,3)
delay : inertial
border : wrapped
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0)
neighbors : (0,-1,0) (0,0,0) (0,1,0)
neighbors : (1,-1,0) (1,0,0) (1,1,0)
...
zone : UAV-layer { (0,0,0)..(19,19,0) }
zone : DIF-layer { (0,0,1)..(19,19,1) }
zone : BDR-layer { (0,0,2)..(19,19,2) }

Code Sample 2. CD++ Simulation initial configuration

Each zone defines rules in a CD++ specific notation;

CD++ applies these rules during simulation execution. Each
rule takes 3 parameters in the following format:

rule : {Postcondition} {Delay} {Precondition}

The precondition indicates a condition a cell value meet in

order to trigger the rule. If the precondition is valid the cell’s
value is sent to the post condition. The post condition specifies
a new value to set. This value is spread out to neighbouring
cells after a time delay. Once a cell matches a rule, then no
further rules on that cell are evaluated until the next simulation
step. After a cell value changes, cells in the neighbourhood are
checked to see if they match any rules specific to their zones.

The direction the UAV travels in is determined by which
neighbour has the highest "desirability". Code Sample 3
defines a macro in CD++ notation that calculates the highest
value on the DIF-layer amongst the cells around the current
location. This macro determines the neighbouring cell with the
highest desirability value in the gradient field by sequentially
comparing each neighbour with the highest known maximum.

#BeginMacro(MAX_NEIGHBOUR_1)
 max(max(max(max(max(max(max(((0,1,1)
- (0,1,2)), ((1,0,1) - (1,0,2))), ((0,-
1,1) - (0,-1,2))), ((-1,0,1) - (-1,0,2))
), ((1,1,1) - (1,1,2))), ((1,-1,1) - (1,-
1,2))), ((-1,-1,1) - (-1,-1,2))), ((-
1,1,1) - (-1,1,2)))
#EndMacro

Code Sample 3. CD++ notation for defining a macro that
returns neighbouring cell with the highest value offset by
one layer

ISBN: 1-56555-342-X 195

The first layer, UAV-layer, is considered a zone in CD++.
The model makes two passes to move the UAV. Code Sample
4 is a portion of the rule set for the first pass where the
simulation determines the direction the UAV should move.
This rule set changes the value of the current cell to a
predetermined number that represents the direction the UAV
will move. The value is only set if the current cell contains a
UAV and if the neighbouring cell in the direction under test
has the highest desirability amongst all neighbouring cells.
The rule set also checks the boundary layer to determine if it is
a valid cell for the UAV to occupy.

[UAV-layer]
rule : 1 1000 { (0,0,0) = 100 AND
#macro(CELL_N_2) < 1000 AND
#macro(MAX_NEIGHBOUR_1) = #macro(CELL_N_1) }
rule : 2 1000 { (0,0,0) = 100 AND
#macro(CELL_E_2) < 1000 AND
#macro(MAX_NEIGHBOUR_1) = #macro(CELL_E_1) }
...

Code Sample 4. Rule set to identify the direction to move a
UAV by iterating through each neighbouring cell and
determining which if that neighbour has the maximum
desirability and not excluded from movement because it lies
within an area that is marked out-of-bounds.

Code Sample 5 changes the current cell value to 100,

which indicates the UAV is in the current cell, if the cell in the
direction under test indicates the UAV was moving toward the
current cell. The second last rule stipulates to set a value of
50, indicating the UAV was previously there, if the value of
the cell is greater than 0.

rule : 100 0 { #macro(CELL_S) = 1 }
rule : 100 0 { #macro(CELL_W) = 2 }
rule : 100 0 { #macro(CELL_N) = 3 }
rule : 100 0 { #macro(CELL_E) = 4 }
rule : 100 0 { #macro(CELL_SW) = 5 }
rule : 100 0 { #macro(CELL_NW) = 6 }
rule : 100 0 { #macro(CELL_NE) = 7 }
rule : 100 0 { #macro(CELL_SE) = 8 }
rule : 50 0 { (0,0,0) > 0 }
rule : 0 0 { t }

Code Sample 5. Rule set to move the UAV if the
neighbouring cell under test indicates the UAV current cell’s
direction.

Code Sample 6 shows the rule for the diffusion layer zone.

This section contains two rules. The first rule sets the cell
value under a UAV to zero. The second rule sets all other
cells to a value sums that cell’s current value with the average
of all neighbouring cells.

[DIF-layer]
rule : 0 500 { (0,0,2) = 100 }
rule : { (((1,0,0) + (1,1,0) + (0,1,0) + (-
1,0,0) + (0,-1,0) + (-1,1,0) + (-1,-1,0) +

(1,-1,0)) / 8 - (0,0,0)) / 32 + (0,0,0) }
1000 { t }

Code Sample 6. Rule set for the Diffusion Layer.

Code Sample 7 defines the rules for the Boundary Layer of
the model. This rule simply keeps the value constant
throughout simulation execution. However, one may expand
the model in the future to support a dynamic boundary for the
UAV.

[BDR-layer]
rule : { (0,0,0) } 10000 {t}

Code Sample 7. Rule set for the Boundary Layer, which
maintains each cell’s value during simulation.

4. SEARCH PATH SIMULATION RESULTS
The testing was divided into three stages. The first part of

testing involved the rules which determined the behaviour of
target location probability gradient field over time. This
diffusion rule is shown in

Figure 2. The diffusion spreads high-probability
‘mountains’ to low probability ‘valleys’, modelling target
location certainty reduction over time. A ‘viscosity’ term
effectively slows down the diffusion process by modifying
each cell by a fixed fraction of the difference between its value
and neighbouring cell values. Testing was successful and this
sub-model behaved as expected.

Figure 2. Diffusion of target location probability at three
sequential times. A cell’s probability of containing a target is
represents by cell colour, darker colour for higher probability.
Areas of Higher probability are shown to diffuse to areas of
lower probability, modelling the increasing uncertainty in a
target’s location over time due to movement.

The second part of testing isolated the UAV hill climb rules to
effectively move towards local areas of higher target location
probability. The rule operates in three steps. First, a rule set
determines the neighbouring cell with the highest target
location probability and sets the current UAV location cell to a
value which represents pending movement (1=East, 2=North
etc.). The second step completes the movement by scanning
neighbouring cells for a ‘pending movement’ value that
‘points’ in the current cell’s direction, causing that cell to be
assigned a ‘UAV present’ value. A final step removes residual
‘pending movement’ values from the zone. This hill climb was
tested using a terrain generation application, which generates

ISBN: 1-56555-342-X 196

smooth terrain for testing the hill climbing algorithm. The
diffusion rules were disabled to maintain a constant
probability terrain. Viewing the results Cell-DEVS animation
tool showed the hill-climbing algorithm functioned as
expected (Figure 3).

Figure 3. Two simulation times, top and bottom. The 3

layers of the Cell-DEVS model from left to right are the UAV
search pattern, the gradient field, and the search boundaries.
The UAV is shown to move towards a local maximum in the
gradient field.

The third part of testing was an all up test of the target
location probability diffusion rules, UAV path planning (hill
climb) rules, and the go/no-go area rules. Figure 5 shows the
results at three simulation steps with edge and 'island'
restricted boundaries and initial terrain generated by the
custom “TerrainG” tool. The second row is Simulation Step 5,
showing the UAV searching the local high-probability area
first; later it moved to the top right area while once-again
avoiding the high probability restricted island area. The last
image overlay shows that the UAV avoided the no-go areas as
expected. The relatively 'flat' DIF-Layer at the end of
simulation indicates that the simulation has run for some time.

In this test, all rules were active. It was tested by adding a

1-cell boundary around the cell space, eliminating and
requirement for special edge detection or wrapping rules. An
additional ‘island’ of prohibited area was added near the
centre of the cell space to represent an area where flyovers are
prohibited or dangerous. The UAV was then tested over an
extended simulation time. No incursions took place either on
the boundaries or across the restricted area. The hill climb
rules for UAV operated as expected with the UAV
consistently moving in the direction of greatest increase in
target probability as represented in the Target Location
Probability layer. Diffusion of target location probability rules
operated successfully, resulting in a flatter terrain over time.
The terrain was also successfully flattened to zero target
probability directly ‘under’ the UAV as desired. The overall
UAV search pattern was effective at locating local maxima of
Target Probability and thoroughly searching those areas

without re-crossing paths. This is relatively complex
behaviour defined as simple rule set. Additionally, the
Diffusion of Target Probability had the additional positive
feature of the constantly providing a gradient for the UAV to
‘climb’, even from distant targets. This had the benefit of
keeping the UAV from staying near a local maximum, leading
to a thorough search of the majority of the cell area from
most-to-least probable Target location areas.

Figure 4. Four UAV’s simultaneous search the same

Target probability terrain. The three layers shown left to right
are (1) the paths of the four UAVs, (2) the gradient field and
(3) the search boundary.

Overall, the showed remarkably complex emergent UAV
paths that had efficient local search behaviour, typically
climbing to a local maxima then spiralling out from it to lower
probabilities until the diffusion effect created a gradient to
more distant maxima, which would subsequently be climbed.
This architecture allows the use of multiple UAVs searching
the same target location probability terrain in a coordinated
fashion. There will not be repetition of search patterns since
each UAV interacts with localized area and modifies the target
probability terrain when passing over (
Figure 4). Additional neighbourhood patterns could be
simulated and preferred target movement paths could be
modeled, reflecting roads and population areas.

ISBN: 1-56555-342-X 197

Figure 5. Three time steps at the start, midpoint and end of a simulation as a single UAV completing a target search. The

three cell layers containing information on UAV position, target location probability, and boundary areas are shown left to right.
Simulation step 5 (center) demonstrates UAV initial search of a local maximum of target location probability. The last image
overlays the three layers at the endpoint of the simulation, showing avoidance of boundary areas while completing search of the
search zone.

ISBN: 1-56555-342-X 198

5. CONCLUSION

The methodology proposed in this paper models a
dynamic intelligence environment in which UAVs operate
as a digital map in Cellular Automata. Algorithms proposed
in previous works [1] were applied using the Cell-DEVS
formulism. The resulting simulation demonstrated emergent
UAV search patterns of this intelligence environment. Rule
set models the degradation of this intelligence over time
using algorithms proposed in [1], referred to as a diffusion
algorithm. The UAV traversed this map using a hill-
climbing algorithm. This proposed solution was
implemented in a CD++ development environment, which
implemented the Cell-DEVS formal specification [4, 5]. The
UAV searched the local maximum of target location
probability before total maximum to produce an intuitive,
search pattern. A boundary cell layer was implemented to
contain and limit the UAV search. The Cell-DEVS
architecture and CD++ tool chain provided a robust
development and visualization environment suited to this
research.

REFERENCES
[1] A. Shem; T. Mazzuchi; S. Sarkani, “Addressing Uncertainty

in UAV Navigation Decision-Making”. IEEE Transactions on
Aerospace and Electronic Systems Vol. 44, No. 1 January
2008

[2] I. Glickstein; P. Stiles, “Situation Assessment Using Cellular
Automata Paradigm”, IEEE AES Systems Magazine, January
1992

[3] Wainer, G. 2009, “Discrete-Event Modeling and Simulation:
a Practitioner’s approach”. CRC Press.

[4] Wainer, G. "CD++: a toolkit to define discrete-event models".
Software, Practice and Experience. Wiley. Vol. 32, No.3. pp.
1261-1306. November 2002.

[5] J. Ameghino; G. Wainer: “Application of the Cell-DEVS
formalism for modeling cell spaces” In Proceedings of
AIS’2004, Jeju Island, Korea, Lecture Notes in Computer
Science, 2004.

[6] F. Kamrani; R. Ayani. “Simulation-Aided Path Planning of
UAV” Proceedings of the 39th

[7] Hou, M.; Kobierski, R.D. : “Operational Analysis and
Performance Modeling for the Control of Multiple
Uninhabited Aerial Vehicles from An Airborne Platform”,
Defence R&D Canada - Toronto, Toronto ONT (CAN),
filename “p526642.pdf”, available online at http://pubs.drdc-
rddc.gc.ca

 Winter Simulation Conference,
2007.

[8] S. J. Rasmussen; P. R. Chandler: “MultiUAV: A Multiple
Uav Simulation For Investigation Of Cooperative Control”,
Proceedings of the 2002 Winter Simulation Conference.

ISBN: 1-56555-342-X 199

