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Abstract 
 Cell-DEVS is an extension to the DEVS formalism that 
allows the definition of cellular models. CD++ is a modeling 
and simulation tool that implements Discrete Event Simulation 
(DEVS) and Cell-DEVS formalisms.  The methodology 
proposed in this paper uses the Cell-DEVS formalism and 
C++ tool chain [4, 5] to model Uninhabited Aerial Vehicle 
(UAV) search in a dynamic intelligence environment. 
 Algorithms proposed in previous works [1] were applied to 
modify the intelligence environment over time. The UAV 
search pattern was based on this information and the resulting 
simulation demonstrates emergent UAV search patterns in this 
intelligence environment. Rule sets model the degradation of 
this intelligence over time using algorithms proposed in [1], 
are referred to as a diffusion algorithm; the UAV traversed 
this map using a hill-climbing algorithm.  The resulting UAV 
search pattern showed preference for the local maximum of 
target location probability before total maximum to produce 
an intuitive search pattern. The Cell-DEVS architecture and 
CD++ tool chain provided a robust development and 
visualization environment suited to this research. 
 
 
1. INTRODUCTION 

UAVs provide advantages over manned aircraft for 
reconnaissance missions. It is advantageous for UAVs to be 
able to change flight plans dynamically based on new 
intelligence and sensor data. The methodology proposed in 
this paper models this changing intelligence environment as a 
Cellular Automata digital map.  Rule set models the 
degradation of this intelligence over time using algorithms 
proposed in [1], referred to as a diffusion algorithm. A second 
rule set defines an efficient search pattern for the UAV using 
this map combined with a hill-climbing algorithm.  This 
proposed solution was implemented in a CD++ development 
environment, which implemented the Cell-DEVS (Discrete 
Events Systems) formal specification [4, 5].  DEVS provides a 
formal framework for hierarchical construction of discrete-
event models in a modular manner, allowing for model re-use 

and reduced development time. These models can be 
synchronous, concurrent, and highly non-linear nature. Cell-
DEVS [3] was defined as a combination of cellular automata 
and DEVS. The CD++ tool is an open-source framework that 
enables the simulation of a variety of discrete-event models in 
biology, physics, chemistry, and artificial systems. CD++ 
includes a tool chain with a scripting language, simulation 
engine, testing environment, and graphical interface. 

 
This paper describes an application of Cell-DEVS to the 

problem of finding an efficient Uninhabited Aerial Vehicle 
(UAV) searching pattern in a dynamic environment.  The 
Cell-DEVS formalism provides a framework in which to 
simulate cellular models as discrete-event systems. This paper 
demonstrates how efficient Uninhabited Aerial Vehicle 
(UAV) search patterns can be generated by modeling target 
probabilities as gradients in Cell-DEVS.  

This paper demonstrates that Cell-DEVS provides an 
intuitive and effective way to encode this information and 
generate dynamic path plans for UAVs. We show the results 
obtained when testing this model in a multi-UAV scenario and 
validating the path planner’s effectiveness with multiple 
UAVs searching the same area. 
 
2. BACKGROUND 

UAVs provide advantages over manned aircraft for 
reconnaissance missions. A long loiter time allows extended 
search patterns and target search. During this extended 
mission period, many variables can change, including other 
UAVs in the area, target position uncertainty, new targets and 
points of interest, and updated intelligence.  

It is advantageous for UAVs to be able to change flight 
plans dynamically. Traditionally this has been done by ground 
based operators, who in response to new information, update, 
waypoints and assign predetermined search patterns. In an 
environment with multiple targets, UAVs and prohibited 
zones, this coordination and manual control requires 
significant operator input and workload [7]. Because of the 
increasing capability of UAV sensors to gather large volumes 
of real-time data, it becomes desirable to reduce operator 
workload wherever possible, allowing the operator to focus on 
pattern recognition and sensor monitoring tasks which are best 
managed by human oversight. 
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One area in which operator workload can be reduced is by 
offloading is UAV path planning to automated systems. In this 
situation the operator assigns priorities to new intelligence and 
sensor information, and allows the UAV automated system to 
determine a search path using the fused information. While the 
specific algorithms for fusing data and intelligence is outside 
the scope of this paper, we show how the fused data can be 
represented as a gradient field that affects UAV search 
patterns. 

Work by Steils and Glickstein [2] have presented the use 
of Cellular Automata (CA) in digital map-based tasks. Their 
two major applications were devoted to study situation 
assessment and flight path routing. They consider the cost 
function of the UAV movement in a terrain consisting of 
targets and hazards, and define methods of mapping UAV 
sensor input into a CA model of this environment. They 
showed that CA could be applied to taking many sources of 
intelligence and quickly and efficiently combining them to 
establish probable target location. 

Cooperation between UAVs and assignment of priorities 
to determine paths have been approached from a systems 
level, typically with agent behaviours, and defined UAV 
intercommunication schemes [6, 8]. Shem, Mazzuchi, and 
Sarkani [1] presented a framework for fusing data sources into 
a CA model of a UAV’s environment. They use the model to 
determine the probabilities of target occupancy in any given 
cell, which is mapped to a geographic coordinate. The UAV’s 
path was determined by what the authors termed a ‘virtual 
potential field’. The UAV moved in the direction of highest 
local target probability. The concept of prediction updating 
using diffusion equations was also demonstrated in the paper. 
This modeled the increasing uncertainty in a target’s location 
over time due to movement between sensor detections. 

By using a CA, the path planning problem can be mapped 
to a gradient hill-climbing algorithm in which the UAV’s path 
is always in the direction of greatest increase in gradient. This 
gradient field represents probability of locating a target, and in 
practice, it would be a fusion of many data and intelligence 
sources.  

Our approach is a pure cellular model, with the UAV’s 
location embedded into the cellular model. Embedding the 
UAV has the benefit of allowing interaction between the UAV 
and the target location probability map. The UAV’s presence 
in a given cell reduces its probability of containing the target 
to zero. Reducing the desirability of a cell to zero causes 
neighbouring cells to have a higher desirability and thereby 
generate a search pattern.  

The research in this paper is an extension of the model 
first proposed in [1], which significantly reduces the 
complexity of planning and communication while still 
generating dynamic paths plans and scalable UAV cooperation 
implicitly. Our model simplifies the UAV path-planning 
algorithm development and testing by using the 
implementation framework of Cell-DEVS. This approach 
leverages the testing and visualization interfaces of Cell-
DEVS and the atomic and coupled model representations of 

individual cell and cell-layer rules. In addition, behaviour 
rules for each cell layer are defined in text-based script files 
and different influences on UAV path planning can be isolated 
in separate cell layers for reconfiguration and sharing with 
other models.  

In Cell-DEVS, each cell’s value at a given time is defined 
by a neighbourhood of adjacent cell values via a rule set. Cell- 
DEVS provides a framework for discrete event simulation of 
these cellular models, including time and propagation delays. 
A tool chain for modeling and simulation using Cell-DEVS is 
CD++ [4], which includes a modelling language that defines 
cellular models rule sets and allows automated coupling of 
these atomic models.  

The proposed model of UAV path planning involves 
navigating through a dynamic gradient field. This field reflects 
the probability of target presence versus potential danger. By 
summing the influences from these multiple fields in a local 
neighbourhood around the UAV position, a route can be 
generated that efficiently searches for targets. The 
implementation described in this paper is based on the 
concepts described in [1] of gradient hill climbing for UAV 
search, and fusion of data from multiple sensor and 
intelligence sources into a single “target location probability 
terrain”. 
 
3. CELL-DEVS IMPLEMENTATION 
The transform from the reality of a UAV terrain exploration to 
a Cell-DEVS model included the following assumptions and 
mappings: 

1. The 3D cell space was divided into three 2D layers. 
Layer 0 stored UAV position and previous travel 
path. Layer 1 stored the Target Location Probability 
Terrain or “gradient”. Level 2 stored the UAV 
restricted boundary information (as seen in Figure 1). 

2. The cell space was assigned a dimension of 2000 
meters by 2000 meters, for a coverage area for this 
UAV of 4km2. This size would apply to a mini-
UAV, such as the ones under development for ‘back 
pack’ deployment by soldiers or rescue teams. 

3. The cell size was mapped to 100 meters by dividing 
UAV travel speed by rate of sensor sweeps per 
second for a constant search altitude of 1000 meters. 
This allows the model to represent UAV travel at one 
cell per bases simulation period (1000) without 
skipping or loitering in a given cell. 

4. The target location probability diffusion rate varies 
with the speed of the target. Although a target is 
implicitly defined by probabilities in this model, the 
diffusion rate reflects the speed and unpredictable 
movement of the target. In this case it was modeled 
as a ground vehicle with a speed of 10 meters per 
second. Target diffusion is not direction-preferential 
in this model as target direction or vector information 
is assumed to be unknown. 
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Figure 1. Target location probability gradient field. 
 

3.1. Cell-DEVS model Rules 
Each layer applies different rules that individually 

integrate neighbouring cells. Each layer is composed together 
to use additional formulas defined by Cell-DEVS that form the 
intelligence the UAV uses to determine its path. 

The most important rule determining where the UAV will 
proceed is a diffusion rule. The diffusion rule models the 
increase of uncertainty over time for data such as target 
location. 

 In real UAV situations, initial intelligence provides a 
location for a target. This data becomes increasingly out of 
date over time due to factors like target movement. To model 
this effect a diffusion algorithm is implemented adds a factor 
of uncertainty to account for this time lag. Because the 
Diffusion Layer averages the probability amongst its 
neighbours, it takes into account a target moving into 
neighbouring cells and moving in any direction over time.  
The diffusion algorithm in implemented on its own gradient 
layer which allows for injection of updated intelligence. 
Additionally, this diffusion acts to convey information 
throughout the cell space, preventing a UAV from limiting its 
search pattern to a local maximum.  

In terms of path planning, this diffusion rule provides the 
UAV with an effective "preference" for smaller local maxima 
over larger distant ones, which in practical terms means that 
the UAV would search for nearby targets before searching 
more distant ones. It also allows implicit effective cooperation 
between multiple UAVs searching the same gradient. 

On the UAV layer, the formula of the cell containing the 
UAV looks at its local 8 neighbours. Out of these 8 cells, the 
neighbour with the maximum value is set as the direction in 
which the UAV will proceed.  After the UAV moves to the 
next cell the cell value below it is set to zero. This ensures the 
UAV will not hover on one location.  

On the Boundary layer, the value of each cell is set to a 
value indicating whether it’s an acceptable location to travel 

to. Values that are considered out of bounds are given a value 
of 0. Cells that are considered acceptable are given a positive 
value. These values are multiplied with the value of the same 
cell in gradient layer to effectively "mask" the gradient layer 
values. A cell value of 0 in the boundary layer effectively 
makes that direction the least interesting to UAV. This allows 
the algorithm to support searching an area with an irregular 
perimeter. In addition, this layer allows the flexibility to 
integrate areas that are out-of-bounds within the general 
vicinity. 

Another benefit of this Cell-DEVS approach by defining a 
border on the boundary layer around the entire search region 
ensures that the UAV stays within the defined area. This 
simplifies the formulas by not requiring constant boundary 
checks. 

The Cell-DEVS coupled model specification considers the 
three separate zones defined in Figure 1. These planes, are 
defined in order to separate rule sets for the UAV, the target 
location probability gradient, and the UAV path boundary. 
The Cell-DEVS specification provides for coupled models, 
which allows the model to act on a cell space neighbourhood 
that is a combination of these three cell spaces, or layers. This 
became a 3×3×3 cell space, which is specified here.  
 

3.2. Cell-DEVS Conceptual Model Definition 
As discussed earlier, the 3D cell space was divided into three 
2D slices (or Cell-DEVS “Zones”). Layer 0 stored UAV 
position and previous travel path. Layer 1 stored the Target 
Location Probability Terrain or “gradient”. Level 2 stored the 
UAV “no-go” boundary information. Each zone defines a 
separate behaviour, as follows: 
 

1. Zone “UAV-Layer”: this zone stores UAV's current 
and previous positions this information is used to 
move the UAV using a hill-climb algorithm with the 
DIF-Layer as a data source. If a UAV is in the current 
cell, relative values of neighbouring cells on the DIF-
Layer are compared and the current cell value is 
changed to a ‘pending move’ value of 1-8 
representing direction of pending UAV movement. 
Detection of a value of on the BDR-Layer is used as 
a flag to prohibit movement in a boundary area. 

2. Zone “DIF-Layer”: the diffusion of a Target Location 
Probability is handled by a single rule that changes 
the current cells value based on an average of 
neighbouring cell values in the same zone. This 
change is slowed down by using a ‘viscosity’ divisor 
that can be increased to slow the diffusion rate. 
Diffusion has no preferential direction. An additional 
rule acts to reduce the target location probability of 
the current cell to zero if the corresponding cell the 
UAV-Layer Zone is occupied by a UAV. This 
models a UAV passing overhead and scanning the 
area. 
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3. Zone “BDR-Layer”: during research, the boundary 
layer remains static throughout the entire simulation; 
although it is feasible to use events to change the 
boundaries and affect the UAV path planning. A 
binary cell value encoding indicates if a UAV can 
move to the corresponding cell in its zone or is 
prohibited from crossing into the corresponding cell 
in its Zone. 

 
 

3.3. CD++ Implementation 
CD++ uses configuration files to specify the problem to be 

solved. This involves setting preloading cells with initial 
values.  

Code Sample 1 shows a sample of the initial values.  On 
the top (or UAV) layer, represented by z=0, a cell containing a 
UAV is set to an arbitrary value of 100. 

The DIF-Layer is located on the layer with z-value of 1. 
For the purposes of the testing the methodology in this paper, 
the simulation was initialized with random values between 0 
and 7. The range 0 to 7 is arbitrary and can be any value as 
long as the range is consistent throughout the entire field. 
Where 7 represents a cell with a high desirability based on the 
probability of a target being within that cell and 0 represents a 
low desirability. 

The final layer, or BDR-Layer (z=2), is initialized with 
values of 1000 representing cells where the UAV is not 
permitted to go.  Since this is represented as a layer rather than 
encoded as rules allows the boundary or "no fly zone" to be an 
arbitrary shape. 
 

(16,12,0) = 100 
(0,10,1) = 1 
(0,11,1) = 1.172 
(0,0,2) = 1000 
(0,1,2) = 1000 

Code Sample 1. Subset of the configuration file that sets 
the initial cell values at the start of simulation 

 
Code Sample 2 shows static properties for the Cell-DEVS 

coupled model using CD++ notation. The following static 
information is set: 

1. The model is a Cell-DEVS  
2. The model should have a size of 20 × 20 × 3 
3. The model uses Transport Delays 
4. Borders around the model wrap around. If wrapping 

was not allowed then the rules for the diffusion 
algorithm would be more problematic around the edges 
because the algorithm would have to account for less 
neighbours contributing to the desirability. The fact 
that the no-fly zone layer has a border that prevents the 
UAV flying off the edge of the map allows for a 
simplification in the diffusion layer 

5. The neighbours command defines model’s 
neighbourhood, which includes which cells to check if 
they need to be updated if one cell changes its value. 

The neighbourhood for the model defined in this paper 
is a 3 × 3 × 3 cube. 

6. The zone attribute defines which cells are in which 
zones. As we can see, we split the cells into the 
different layers mentioned previously in this paper 
here. Each zone is given a name. These names relate to 
sections found later within the configuration file that 
contain rules CD++ applies to evolve the simulation. 

 
[uav] 
type : cell 
dim : (20,20,3) 
delay : inertial 
border : wrapped  
neighbors :  (-1,-1,0)  (-1,0,0)  (-1,1,0)  
neighbors :  (0,-1,0)   (0,0,0)   (0,1,0) 
neighbors :  (1,-1,0)   (1,0,0)   (1,1,0) 
... 
zone : UAV-layer { (0,0,0)..(19,19,0) } 
zone : DIF-layer { (0,0,1)..(19,19,1) } 
zone : BDR-layer { (0,0,2)..(19,19,2) } 
 

Code Sample 2. CD++ Simulation initial configuration 
 
Each zone defines rules in a CD++ specific notation; 

CD++ applies these rules during simulation execution.  Each 
rule takes 3 parameters in the following format: 

 
rule : {Postcondition} {Delay} {Precondition} 
 
The precondition indicates a condition a cell value meet in 

order to trigger the rule. If the precondition is valid the cell’s 
value is sent to the post condition. The post condition specifies 
a new value to set. This value is spread out to neighbouring 
cells after a time delay. Once a cell matches a rule, then no 
further rules on that cell are evaluated until the next simulation 
step. After a cell value changes, cells in the neighbourhood are 
checked to see if they match any rules specific to their zones. 

The direction the UAV travels in is determined by which 
neighbour has the highest "desirability". Code Sample 3 
defines a macro in CD++ notation that calculates the highest 
value on the DIF-layer amongst the cells around the current 
location. This macro determines the neighbouring cell with the 
highest desirability value in the gradient field by sequentially 
comparing each neighbour with the highest known maximum.  

 
#BeginMacro(MAX_NEIGHBOUR_1) 
  max( max( max( max( max( max( max( ( (0,1,1) 
- (0,1,2) ), ( (1,0,1) - (1,0,2) ) ), ( (0,-
1,1) - (0,-1,2) ) ), ( (-1,0,1) - (-1,0,2) ) 
), ( (1,1,1) - (1,1,2) ) ), ( (1,-1,1) - (1,-
1,2) ) ), ( (-1,-1,1) - (-1,-1,2) ) ), ( (-
1,1,1) - (-1,1,2) ) ) 
#EndMacro 
 

Code Sample 3. CD++ notation for defining a macro that 
returns neighbouring cell with the highest value offset by 
one layer 
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The first layer, UAV-layer, is considered a zone in CD++. 
The model makes two passes to move the UAV. Code Sample 
4 is a portion of the rule set for the first pass where the 
simulation determines the direction the UAV should move. 
This rule set changes the value of the current cell to a 
predetermined number that represents the direction the UAV 
will move. The value is only set if the current cell contains a 
UAV and if the neighbouring cell in the direction under test 
has the highest desirability amongst all neighbouring cells. 
The rule set also checks the boundary layer to determine if it is 
a valid cell for the UAV to occupy.  
 

[UAV-layer] 
rule : 1 1000 { (0,0,0) = 100 AND 
#macro(CELL_N_2) < 1000 AND 
#macro(MAX_NEIGHBOUR_1) = #macro(CELL_N_1) } 
rule : 2 1000 { (0,0,0) = 100 AND 
#macro(CELL_E_2) < 1000 AND 
#macro(MAX_NEIGHBOUR_1) = #macro(CELL_E_1) } 
... 
 

Code Sample 4. Rule set to identify the direction to move a 
UAV by iterating through each neighbouring cell and 
determining which if that neighbour has the maximum 
desirability and not excluded from movement because it lies 
within an area that is marked out-of-bounds.  

 
Code Sample 5 changes the current cell value to 100, 

which indicates the UAV is in the current cell, if the cell in the 
direction under test indicates the UAV was moving toward the 
current cell.  The second last rule stipulates to set a value of 
50, indicating the UAV was previously there, if the value of 
the cell is greater than 0.  

 
rule : 100 0 { #macro(CELL_S) = 1 } 
rule : 100 0 { #macro(CELL_W) = 2 } 
rule : 100 0 { #macro(CELL_N) = 3 } 
rule : 100 0 { #macro(CELL_E) = 4 } 
rule : 100 0 { #macro(CELL_SW) = 5 } 
rule : 100 0 { #macro(CELL_NW) = 6 } 
rule : 100 0 { #macro(CELL_NE) = 7 } 
rule : 100 0 { #macro(CELL_SE) = 8 } 
rule : 50 0 { (0,0,0) > 0 } 
rule : 0 0 { t } 
 

Code Sample 5. Rule set to move the UAV if the 
neighbouring cell under test indicates the UAV current cell’s 
direction. 
 

 
Code Sample 6 shows the rule for the diffusion layer zone.  

This section contains two rules. The first rule sets the cell 
value under a UAV to zero.  The second rule sets all other 
cells to a value sums that cell’s current value with the average 
of all neighbouring cells. 

 
[DIF-layer] 
rule : 0 500 { (0,0,2) = 100 } 
rule : { ( ( (1,0,0) + (1,1,0) + (0,1,0) + (-
1,0,0) + (0,-1,0) + (-1,1,0) + (-1,-1,0) + 

(1,-1,0) ) / 8 - (0,0,0) ) / 32 + (0,0,0) } 
1000 { t } 

 
Code Sample 6. Rule set for the Diffusion Layer.   
 

Code Sample 7 defines the rules for the Boundary Layer of 
the model. This rule simply keeps the value constant 
throughout simulation execution.  However, one may expand 
the model in the future to support a dynamic boundary for the 
UAV.  

 
[BDR-layer] 
rule : { (0,0,0) } 10000 {t} 
 

Code Sample 7.  Rule set for the Boundary Layer, which 
maintains each cell’s value during simulation. 

4. SEARCH PATH SIMULATION RESULTS 
The testing was divided into three stages. The first part of 

testing involved the rules which determined the behaviour of 
target location probability gradient field over time. This 
diffusion rule is shown in  

Figure 2. The diffusion spreads high-probability 
‘mountains’ to low probability ‘valleys’, modelling target 
location certainty reduction over time. A ‘viscosity’ term 
effectively slows down the diffusion process by modifying 
each cell by a fixed fraction of the difference between its value 
and neighbouring cell values. Testing was successful and this 
sub-model behaved as expected. 
 

 
 
Figure 2. Diffusion of target location probability at three 
sequential times. A cell’s probability of containing a target is 
represents by cell colour, darker colour for higher probability. 
Areas of Higher probability are shown to diffuse to areas of 
lower probability, modelling the increasing uncertainty in a 
target’s location over time due to movement.  

 
The second part of testing isolated the UAV hill climb rules to 
effectively move towards local areas of higher target location 
probability. The rule operates in three steps. First, a rule set 
determines the neighbouring cell with the highest target 
location probability and sets the current UAV location cell to a 
value which represents pending movement (1=East, 2=North 
etc.). The second step completes the movement by scanning 
neighbouring cells for a ‘pending movement’ value that 
‘points’ in the current cell’s direction, causing that  cell to be 
assigned a ‘UAV present’ value. A final step removes residual 
‘pending movement’ values from the zone. This hill climb was 
tested using a terrain generation application, which generates 
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smooth terrain for testing the hill climbing algorithm. The 
diffusion rules were disabled to maintain a constant 
probability terrain. Viewing the results Cell-DEVS animation 
tool showed the hill-climbing algorithm functioned as 
expected (Figure 3). 

 

 
 
Figure 3. Two simulation times, top and bottom. The 3 

layers of the Cell-DEVS model from left to right are the UAV  
search pattern, the gradient field, and the search boundaries. 
The UAV is shown to move towards a local maximum in the 
gradient field. 
 

The third part of testing was an all up test of the target 
location probability diffusion rules, UAV path planning (hill 
climb) rules, and the go/no-go area rules. Figure 5 shows the 
results at three simulation steps with edge and 'island' 
restricted boundaries and initial terrain generated by the 
custom “TerrainG” tool. The second row is Simulation Step 5, 
showing the UAV searching the local high-probability area 
first; later it moved to the top right area while once-again 
avoiding the high probability restricted island area. The last 
image overlay shows that the UAV avoided the no-go areas as 
expected. The relatively 'flat' DIF-Layer at the end of 
simulation indicates that the simulation has run for some time. 

 
In this test, all rules were active. It was tested by adding a 

1-cell boundary around the cell space, eliminating and 
requirement for special edge detection or wrapping rules. An 
additional ‘island’ of prohibited area was added near the 
centre of the cell space to represent an area where flyovers are 
prohibited or dangerous. The UAV was then tested over an 
extended simulation time. No incursions took place either on 
the boundaries or across the restricted area. The hill climb 
rules for UAV operated as expected with the UAV 
consistently moving in the direction of greatest increase in 
target probability as represented in the Target Location 
Probability layer. Diffusion of target location probability rules 
operated successfully, resulting in a flatter terrain over time. 
The terrain was also successfully flattened to zero target 
probability directly ‘under’ the UAV as desired. The overall 
UAV search pattern was effective at locating local maxima of 
Target Probability and thoroughly searching those areas 

without re-crossing paths. This is relatively complex 
behaviour defined as simple rule set. Additionally, the 
Diffusion of Target Probability had the additional positive 
feature of the constantly providing a gradient for the UAV to 
‘climb’, even from distant targets. This had the benefit of 
keeping the UAV from staying near a local maximum, leading 
to a thorough search of the majority of the cell area from 
most-to-least probable Target location areas. 

 

 
 
Figure 4. Four UAV’s simultaneous search the same 

Target probability terrain. The three layers shown left to right 
are (1) the paths of the four UAVs, (2) the gradient field and 
(3) the search boundary. 
 

Overall, the showed remarkably complex emergent UAV 
paths that had efficient local search behaviour, typically 
climbing to a local maxima then spiralling out from it to lower 
probabilities until the diffusion effect created a gradient to 
more distant maxima, which would subsequently be climbed.  
This architecture allows the use of multiple UAVs searching 
the same target location probability terrain in a coordinated 
fashion. There will not be repetition of search patterns since 
each UAV interacts with localized area and modifies the target 
probability terrain when passing over ( 
Figure 4). Additional neighbourhood patterns could be 
simulated and preferred target movement paths could be 
modeled, reflecting roads and population areas.  
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Figure 5. Three time steps at the start, midpoint and end of a simulation as a single UAV completing a target search. The 

three cell layers containing information on UAV position, target location probability, and boundary areas are shown left to right. 
Simulation step 5 (center) demonstrates UAV initial search of a local maximum of target location probability. The last image 
overlays the three layers at the endpoint of the simulation, showing avoidance of boundary areas while completing search of the 
search zone. 
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5. CONCLUSION 

The methodology proposed in this paper models a 
dynamic intelligence environment in which UAVs operate 
as a digital map in Cellular Automata.  Algorithms proposed 
in previous works [1] were applied using the Cell-DEVS 
formulism. The resulting simulation demonstrated emergent 
UAV search patterns of this intelligence environment. Rule 
set models the degradation of this intelligence over time 
using algorithms proposed in [1], referred to as a diffusion 
algorithm. The UAV traversed this map using a hill-
climbing algorithm.  This proposed solution was 
implemented in a CD++ development environment, which 
implemented the Cell-DEVS formal specification [4, 5]. The 
UAV searched the local maximum of target location 
probability before total maximum to produce an intuitive, 
search pattern. A boundary cell layer was implemented to 
contain and limit the UAV search. The Cell-DEVS 
architecture and CD++ tool chain provided a robust 
development and visualization environment suited to this 
research. 
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