Conservative DEVS - A Novel Protocol for Parallel Conservative Srmulation of
DEVSand Cel-DEVS Models

Shafagh Jafer, Gabriel Wainer
Dept. of Systems and Computer Engineering
Carleton University Centre of Visualization and Simulation (V-Sim)
1125 Colonel By Dr. Ottawa, ON, Canada
{siafer ,gwainer}@sce.carleton.ca

Keywords. Conservative DEVS, parallel DEVS protocol,
Cell-DEVS models, DEVS models, dynamic look-ahead.

Abstract

We present a novel conservative algorithm basedhen
classical Chandy-Misra-Bryant (CMB) synchronizatioe-
chanism by extending DEVS abstract simulator tovigi®
means for look-ahead computation and null-messé&gg-d
bution. We integrate this mechanism into the CDirua-
tion toolkit, providing a purely conservative siratdr for
running large-scale DEVS and Cell-DEVS models. @ur
gorithm is implemented on a revised DEVS abstractia-
tor to reduce the frequency of look-ahead computati al-
so replaces time information estimations with aglgnoo-
kahead computation, causing reduction in the nundfer
null-messages. The dynamic lookahead values ofpthe
posed algorithm are extracted from the model sjpation
and the user is not required to provide lookahealdies
prior to the execution. In addition, the low-cosbkahead
computation feature of the algorithm provides a &asl ef-
ficient method and reduces overhead.

1. INTRODUCTION

rent processes. There are two major classes ohsymza-
tion: conservative approaches, which strictly avcadsality
violations[5] and optimistic approaches, which allow viola-
tions and recover from them by providing rollbackaha-

nism [6]. Conservative synchronization approach was the
first synchronization algorithms proposed in thee 1&4970s
by Bryant [7], Chandy and Misra[8]. This technique
(known as the Chandy-Misra-Bryant (CMB) algorithm)
prevents any occurrence of causality errors.

CD++ [9] is an M&S toolkit that implements DEVS

and Cell-DEVS theories. PCD+H.0] supports optimistic
parallel simulation of DEVS and Cell-DEVS modelséd
on the Time Warp mechanism. In this article, wespré a
Conservative DEVS algorithm, implemented based ten t
classical CMB synchronization mechanism with deekllo
avoidance. Our conservative algorithm extends ti/®
abstract simulator to provide means for look-aheatpu-
tation null-message distribution. Various issudatesl to
performance, scalability, and complexity of the imstic
simulation algorithms motivated us to implement fhist
purely conservative simulator for Cell-DEVS, call€dn-
servative CD++ (CCD++). CCD++ uses our Conservative

Modeling and simulation (M&S) methodologies have be DEVS synchronization algorithm.

come crucial for implementing, designing, and anialy a
broad variety of systems. Among the existing madghind
simulation techniques, the DEVS (Discrete EventtSys

2. RELATED WORK AND MOTIVATION
PDES synchronization techniques usually fall int@ tma-

Specification) formalisn{1] provides a discrete-event ap- jor categories: conservative and optimistic appheac In

proach to construct hierarchical models. This fesataf
DEVS enables the modeler to easily extend or exphed
model by simply creating new components or duplcat
the existing ones. P-DEVR], allows adequate handling of
simultaneous events, which is needed for efficexgcution
of models in parallel and distributed environmer@gll-

DEVS [3] combines DEVS with Cellular Automal4] to

form an n-dimensional cell space to represent cimaed
discrete event spatial models. As the models bedamger
and more complex, the problems of limited resourzigisin

a single-processor arise. Not only the shortagesdurces,
but also the long execution times brought up tlea idf Par-
allel discrete event simulation (PDES). Synchrotiizg as
the key to parallel and distributed simulation,uiegs a ro-

bust mechanism to handle communication among cencu

conservative schemes, a simulation entity (callddgécal
process - LP) does not allow causality errorshéf LP has
an unprocessed event with timestanipguarantees that no
event with earlier timestamp can be received (whpob-
vents causality errors). As long as there are wgssed
events from all other LPs, synchronization is gotzed.
However, if this condition is not met, deadlock n@cur.
A way to resolve deadlock is to find the modétiskahead
which provides the smallest timestamp of any neenev
the LP can schedule in the futuMull messageare used to
share lookahead information among LB
Numerous algorithms and tools have been builtudic

ing varied parallel DEVS simulators (for instan&@£VS-
C++ [11], DEVS/CORBA[12], DEVSClustef13], DEVS/

2P [14], DEVS/RMI[15], DEVSim+H16], and P-

EVSim++[17]). In[18] the authors presented a distributed

simulation strategy for DEVS, which combines couatve
and risk-free optimistic strategies. This optinidiCD++ is
purely optimistic, and based on the Time Warp maisma.

Likewise, in[1], the authors introduced an approach to con-

servative parallel simulation of DEVS, which is migi
based on the classical CMB approach with deadleockda
ance and the Yadd¢$9] algorithm. The principal idea be-
hind this conservative DEVS simulator is to maintainet-
work of correlated earliest output time (EOT) aratliest
input time (EIT) estimates, which matches the ottpu
input coupling structure of the DEVS coupled modeie
EOT/EIT estimates represent the time informatioat tis
distributed with null-messages. Under this schetime,loo-
kahead calculation is performed at each DEVS sitoula
(representing an atomic DEVS component) by lookatg
input and output ports. In fact, the conservativechanism
is implemented at the lowest level of the abstsatiulator
hierarchy and the coordinator sitting at the tophef hierar-
chy is only responsible for distributing the EITdaBOT in-
formation. Two main limitations of this algorithmea

tialization (I, t), collect (@, t),internal (*, t), anddonemes-
sages (D, t).

- inter-process messagd

—intra-process messagy

LPO

FCO

Simulatort Simulator2 Simulatord | | SimulatorS | | Simulators

Simulator3 ‘

Figure 1. Distributed flat structure of CCD++

Figure 1 illustrates the Processors hierardRgot is
created only on LPO (to start/end the simulatioth p@rform
I/0 operations). NC and FC are created on each-CHs in
charge of intra-LP communications between its cBilahu-

1. A large number of EIT and EOT computations are redators. NC is the local central controller on itB land the
quired to implement the algorithm at the simuldémel end of inter-LP communicationsSimulator executes the
(the overhead of the algorithm increases as the ®EVDEVS functions defined in its atomic model.

model grows, since there must be one DEVS simulator
for every DEV'S atomic component).

Large numbers of null-messages are sent among proc

inter-process message

essors, since both EIT and EOT must be distribwaed,

opposed to sending only one type of informatioe. (i.

only lookahead).

The need for a robust conservative simulator dred t
two limitations of the original conservative DEVigarithm
led us to propose a new representation of the ceathee
DEVS algorithm and the first purely conservative \[3E£
and Cell-DEVS simulator. Conservative CD++ (CCD++),
was implemented at the topmost level of the DEVSralot
simulator hierarchy (i.e. the coordinator); thubg tfre-
guency of information computation is reduced. lditdn,
EIT/ EOT calculations are replaced with a singlekehead
computation, reducing in the number of null-message

CCD++ was built on top of WARPE20], which pro-
vides services for defining different types of slation ob-

jects on top of the Message Passing Interface (MPI)

WARPED was chosen, as it allows comparing its nomer
optimistic algorithms with conservative performance

3. CONSERVATIVE SSIMULATION IN CCD++

CCD++ adopts a flat architecture with four DEVS qas-
sors[21]: Simulator, Flat Coordinator (FC), Node Coorah
tor (NC), and Root (Figure 1). The simulation isssege-
driven and managed by a set of NCs running on reiffe

— intra-process message

Root

Linit x| Ty
Conservative|Simulator Conservative Simulator
msg
- — — NC1
FC1
‘Simulatorl ‘Simulator‘ ‘Simulator‘ | simutator |
node0 node1

Figure 2. Structure of the parallel abstract simulator

Our conservative algorithm is mainly based ondtig-
inal CMB approach with deadlock avoidance. The foeys

is on how to compute lookahead and send it via-null
messages and when to suspend the LP or resumelddie
rithm is implemented at the NC and thus the sinoutaare
unaware of its existence (the NC is responsibleldoka-
head calculation and sending null-messages). Figjlias-
trates the proposed parallel abstract simulator.

After initialization, the execution of messagesaonLP

machines synchronizing through null-messages. CCD+is either one of two distinct phases: Tt¢wlect phase, and

processors exchange messages carrying contenhcinrey
nization information. The former includes tagternal(x, t)
andoutputmessages (y, t), while the latter includesitiie

the transition phase. The collect starts withcallect mes-
sage sent from the NC to the FC and ends with dliew-
ing donemessage received by the NC. The transition phase

begins with the first internal message sent from NC to
the FC, and ends at the last done message redeyéte
NC at that time. The transition phase is mandafmrneach
individual simulation time. The output functionstime im-
minent atomic models are invoked during the colfdwse;
the state transitions for the atomic models aréopmed in
the transition phase (as defined in P-DEVS). Outgdnter-
LP communication happens only in the collect phaste-
reas incoming inter-LP communication can occur ity a
phase. Since the output functions of the imminentias
are invoked only in the collect phases, it is cléwat at any
given simulation time, all external messages gtingmote
NCs are sent out by the end of the collect phaseh® oth-
er hand, an external message from a remote soarcare
rive at the destination NC during any phase.

The NC is the actual starter for every collect &adsi-
tion phase, and this is why our conservative atgoriis
implemented at the NC. The algorithm is invoked rgve
time the NC receives done message from the FC, which
could be in response to messages (I, t), (@, tj*,dj pre-
viously sent to the FC. The lookahead computagahus:

lookahead= MIN(timestamp of the x msg recently sent to a

remote LRtime of the NC Message Baf) (1)
wherety is the closest state transition time given by R
in thedonemessage, antime of the NC Message Bagthe
minimum timestamp of all unprocessedessages received
from other NCs. The NC then sends a null-messaggiicg
the lookahead time to all remote NCs. The lookahded
scribes when other LPs should expect an externakage
from this LP. Thus, the sender LP is blocked waitfor
other LPs to send their lookahead values. WherLEhee-
ceives all remote null-messages, the LP resumes. the
NC is responsible for driving the rest of the siatidn by
deciding if a transition or a collect phase hashéo per-
formed. If the NC decides to send an internal ngsg$s t),
then normal procedure takes. However, if the NCaatst
that a collect phase must be issued, rest of theerwative
algorithm is carried out (mainly because simulatiiome is
advanced during collect phase and this is whersyhehro-
nization is required). First, the NC recalculathe tocal
Virtual Time (LVT) of the LP, which could result iad-
vancement of the current time of the LP. The newl Wl
be the minimum value among:

LVT = MIN(timestamp of the event pointed by event-
pointer, timestamp of the x msg recently sent to a remote
LP, time of the NCMessageBaminimum RemotelLooka-
head ty). 2)

After this, according to the new LVT the NC choqgsese

of the following five cases must be performed:

1. |If there are input messages received from outsiié e
ronment to the system, the NC issues an internaeh
and sends a (*, t) message to the FC.

2. If there are external messages sent to remote L P& a
recent collect phase, the NC must send its cutoent
kahead and block the LP, because the LP receitiag t
external message could generate a smaller lookahead
than that of its previous stage. This will causesedity
violations at this LP because it had updated itsTLV
based on a larger lookahead and when it receiwes th
new lookahead which happens to be smaller than be-
fore, then the new LVT turns out to be smaller thaa
old LVT and this is strictly forbidden by the ddfion
of conservative synchronization mechanism.

3. If the new LVT is equal to the minimum of all locka
head values received from other LPs, the LP mudt wa
Therefore, the NC recalculates the lookahead, sends
null-messages, and the LP is suspended.

4. |If there are imminent children (Simulators) a ccile
phase is issued by sending a (@, t) message t€Che

5. If there are external messages received from dtRer
with receive time equal to the new LVT, the NC Bsu
an internal phase and sends a (*, t) message f©Che
These cases have processing priority and the NZ on

processes one of them every time. Special tie brgak

performed when more than one case is true whidtisis

cussed in Section 3.1.

As presented by Formula (1), our lookahead computa
tion is a fast, efficient, and low-cost method thmatolves a
simple comparison of existing model parameters. Gamed
to other existing conservative mechanisms, thisices the
overhead of the algorithm especially when the fesqy of
lookahead computation increases as the model s@esg
Likewise, the modeler is not required to specify thoka-
head of the system. Thus, the ability of the atpamniin dy-
namically extracting the lookahead information frdie
model itself stands as a remarkable point.

(i) the timestamp of the first not-yet-sent external3.1l. Revised DEVS Abstract Simulator
event in the event list as referred by the eventThe abstract simulator implemented in CCD++ is Hasea

pointer;

revised versiofj10] of the P-DEVS abstract simulator [2].

(i) the timestamp oéxternalmessage recently sent to Herein, we present our modifications to the NC citre,

a remote LP;
(i) the time of the NC Message Bag;
(iv) the minimum lookahead value from remote LPs;

(v) the closest state transition time given by the RC i

thedonemessage.

which reflect the new conservative NC. The resthef ab-
stract simulator remains unchanged from the oneepnted
in [10]. Figure 3 illustrates the description of thenserva-
tive NC functionalities when a (done, t) messageeived
from the FC.

1. when a (D, t) is received from the child FC

2 1L:1§1N:11+D.ta

3. if next-message-type = * then

4, send (*. t) to the child FC

s next-message-type = @

6 else

7 lookahead = MIN(timestamp of the x msg recently sent to a remote LP, time of the NC Message Bag. t)

8. for each NC in the RemoteNCList dao

9. sendNullMsg(lookahead);

10. end for each

11. if ty != o0 and minimumRemoteLookahead != oo and NCMessageBag != Empty then

12. suspend this LP

13. else this LP is DONE

14. end if

15. min-time = MIN(timestamp of the event pointed by event-pointer, timestamp of the x msg recently sent to a

16. remote LP.time of the NC Message Bag, minimum RemoteLookahead. tx)

17. resetLookaheadowooArray()

18. if min-time = oc then

19. min-time = the timestamp of the received D message

20. send (D. t) to this NC with D.ta = zero

21. else

22.

23. if min-time = the timestamp of the event pointed by event-pointer then

24. for each x in the Event List with min-time do

25, send (x. t) to the child FC

26. move event-pointer to the next event

27. end for each

28. end if

29. else if an x msg was recently sent to a remote LP then

30. send (D, 1) to this NC with D.ta = tx — (min-time — timestamp of the received D msg)

31. end if

32. else if min-time = minimumRemoteLookahead and minimumRemoteL.ookahead = t\ then

33. send (D, 1) to this NC with D.ta = tx — (min-time — timestamp of the received D msg)

34. end if

35, else if min-time = ty then

36. send (@. 1) to the child FC

37. next-message-type = *

38. end if

39. else if min-time = the time of the NC Message Bag then

40. for each x in the NC Message Bag with min-time do

41. send (x. t) to the child FC

42. end for each

43. end if

44. else if min-time = minimumRemoteL.ookahead then

45, send (D, 1) to this NC with D.ta = tx — (min-time — timestamp of the received D msg)

46. end if

47. end if

48. end if

49. end when

Figure 3. Conservative NC algorithm for done message
The NC starts by computing its lookahead according the simulation and carries on the event execufibie. NC

to Formula (1) (line 7). Each NC maintains a listre- performs checks (line 11 to 14) to see if the LPstrhe
mote NCs of LPs that will exchange messages with th suspended or finished (in this case, the LP withai
LP. This list is initialized at the beginning ofetlsimula- idle until the rest of LPs finish; the simulaticgrminates
tion and is used by the NC to send null-messages {1l when all the LPs are idle). When the LP is suspénide

to 9). On every LP, the NC acts as the local cdietrof will wait for the lookahead of every LP in tfemoteN-

CList When all the lookahead values are received, the 2.

NC resumes (line 14). The firBlone message received
by the NC is the response to the initialization sage
forwarded to the FC to start the simulation on tinet-
chine. Sincenext-message-typs initialized to @, the NC
follows the second half part of the algorithm (lieto
48). The NC first calculates min-time using Form(2x
(line 15 to 16). The resulting min-time is the néotal
simulation time (i.e. the LVT of this LP) to whi¢che NC

should advance. After calculation of min-time, theo- 3.

kaheadInfoArrayof the NC is reset so that it will be filled
with new lookahead information (line 17). A special
situation might occur (line 18 to 20) when the rtime is

. This case arises when the LP is done with theilsim 4,

tion, and there is no event to be received fronettPs
(because they have all sentaamookahead value). There-
fore, the LP is done with the simulation. To finigie si-
mulation at the LP, the NC sets the min-time baxckhe

previous value, which was the timestamp of theivece 5.

done message and sends a done message to itdelf wit
D.ta equal to zero, where D.ta is the next tramsitime

that is reported to the NC. When this done message
ceived at the NC (line 7) the LP will be markedidie

and no further event execution will take placehat &P
(line 9).

However, if the condition of line 18 is not metet
four cases mentioned earlier are checked (lineo246).
The tie-breaking mechanism is invoked as follows:

1. Case 1 (line 29 to 31) is given the highest piyorit
2. If the minimum remote lookahead value is equal to
the timestamp of the closest transition at this(iL&.

tn), priority is given to processing thminimumRe-

motelLookaheadine 32 to 34). 6.

The done messages sent from the NC to itself (line
30, 33, and 45) are for synchronization purposedy. on
They are recognized by looking at the sender aceiver
ID of the message (in this case, both are the N€lfjt
The D.ta value carried by these messages is ctécutes
the difference between the NC’s curregtand the LVT
advancement:
D.ta=ty — (min-time—timestampof the received D m}g
whereminTimeis the new LVT, andimestampof the re-
ceived D msgs the previous LVT.

When the NC receives this special done message it
calculates its new lookahead, sends it across, sasd
pends itself.

To summarize the Conservative DEVS algorithm, the 7.

key features and assumptions of the simulation gg®c

are highlighted as follows:

1. All messages originating from Simulators must go
through the parent FC. Hence, there is no direct
communication between Simulators (even local
ones), and FCs are always aware of the timing of
state changes at their child Simulators.

Outgoing inter-LP communication happens only in
the collect phases, whereas incoming inter-LP com-
munication can occur in any phase. Since the output
functions of imminent models are invoked only ie th
collect phases, at any given simulation time, eatt
ternal messages going to remote NCs are sent out by
the end of theollectphase. On the other hand, e
ternal message from a remote source can arrive at the
destination NC in any phase.

The NC is the starter for evecpllect andtransition
phase. The NC is invoked when it receivedome
message from the FC (in response to a (I, t), j@rt

(*, t) previously sent to the FC).

On each node, the NC advances the simulation time.
The NC calculates the Local Virtual Time (LVT) of
the LP at the beginning of every collect phase. The
local FC and the Simulators do not send messages
with a timestamp different from the current LVT.
Dynamic Lookaheadookahead computation is per-
formed after each LVT computation; hence, it is up-
dated and distributed among all remote LPs every
time before the LP is suspended. This strategy en-
sures that the lookahead value of an LP represeats
latest LVT update, as there is at least one lockahe
computation per LVT update. The dynamic looka-
head mechanism states that lookahead value is not
fixed and every lookahead computation could result
in a different value than the previous stage. Unlik
other conservative algorithms, the modeler is et r
quired to specify the lookahead; instead, the algo-
rithm dynamically extracts the lookahead informatio
from the model itself.

Low-cost Lookahead Computations presented by
Formula (1), our lookahead computation is a fdfst, e
ficient, and low-cost method, which involves a sim-
ple comparison of two existing parameters d&nhd
tncmessageBaly There is neither an actual computation
nor a significant computation time required to calc
late the lookahead. Rather, the lookahead is drtilac
from already computed data that existed in the simu
lator before the conservative algorithm was inte-
grated with it. Compared to other existing conserva
tive mechanisms, this benefit reduces the overbéad
our algorithm outstandingly especially that the- fre
guency of invoking lookahead computation increases
as the model size grows.

Deadlock Avoidancesince null-message distribution
occurs before LP suspension, deadlock is strictly
avoided. NC only suspends the LP after performing a
lookahead computation and propagating it to all re-
mote LPs via null-messages. Thus, when an LP is
suspended, it has already forwarded its null-
messages, and if every other LP gets suspended as
well, they would all resume because all requireldt nu

messages have been already distributed among them
before suspension has taken place. This property of

our algorithm was borrowed form the classical CMB
mechanism.

4. IMPLEMENTATION DETAILS

CCD++, developed in C++, implements the originatl an
Parallel DEVS and Cell-DEVS formalisms. It supports
both standalone and parallel conservative simuiatio
CCD++ uses the WARPED kernel as a middleware to
provide scheduling, memory, file, event, commundat
and time management. The major part of our contieeva
algorithm was implemented at the CCD++ level. Some
modifications were done at the WARPED kernel to €com
ply with the requirements of the conservative dtban.

4.1. Scheduling

Each node maintains an input quetngtQ, using linked
lists provided by WARPED). Since causality violaiso
are not allowedinputQ is based on a FIFO mechanism.

On every node, both DEVS messages and null-messages

are treated as basic events and inserted intojtieige.

1 when the scheduler is invoked to return the first unprocessed element
2 if currentPos != NULL then

3 if currentPos is a null-message then

4 currentPos = currentPos->next

5 return NULL

6 end if

7 else if currentPos is a remote X message then

8 currentPos = currentPos->next

9 return NULL

1C end if

11 else if currentPos is a suspension message then
12 for each unprocessed element of inputQ de
13 if event is a null-msg then
14 event->checked = true
15 recvdNullMsg++

1€ end if

17 end for

18 if recvdNullMsg = totalLPs — 1 then

16 return currentPos

2C else return NULL

21 end if

22 end if

23 else return currentPos

24 end if
25 end when

Figure 4. Conservative scheduler algorithm

When the scheduler is invoked, it simply returns liead
element of thénputQ and the event is deleted after execu-
tion. Our modifications to the scheduling mechanem
for the purpose of LP suspension. Recall the N®-alg
rithm: when the NC decides that the LP should b& su
pended, it sends a specadne message to itself. When
the event returned by the scheduler happens tdike t
message, the event is not executed until all remote

messages are received and inserted into the ihptgQ.
Figure 4 shows the conservative algorithm for tblees-
uler. ThecurrentPosvariable represents the first unproc-
essed element afiputQ When a suspension event is de-
tected (line 11), it is not returned until all réeal null-
messages are received. The number of null-mess$agies
must be received by an LP in order to resume isleigu
the total number of LPs minus one (line 17), sitheeLP
does not need a null-message from itself. In aoiditthe
recvdNullMsgcounter is only incremented once per null-
message sender (if there is more than one nullagess
from a remote LPi, only the first one is counted).

4.2. Resuming aBlocked LP

When the event returned by the scheduler is thpesuis
sion event (the special done message sent form & NC
self), two actions must be performed before it barexe-
cuted. First, all null-messages counted to incrémen
recvdNullMsgmust be executed. Second, all unprocessed
remote external messages sent from other NCs4d_thj
must be executed. Once they execute, the spdoiz
message is returned, and is serviced by the NQI(E).

1. when executeProcess() is invoked

2 event = Scheduler.getEvent()

3 if event != NULL then

4. if event is suspension event then

5. for each null-msg with checked = true
6 receive (null-msg)

7
8

end for
for each unprocessed remote x msg
9. receive (x)
10. end for
11. receive (suspension)
12. end if
13. end if

14. end when
Figure 5. Suspension of event execution algorithm

4.3. Null-message Handling

When a null-message is received at the NC, a null-
message handling mechanism is invoked. Every NC
maintains a queue nambxbkaheadlnfoArrayo store the
lookahead value carried by the null-message.

1 when a null-message is received

2 for i = 1 to arraySize do

3 if lookaheadInfoArray|i] = NULL then

4 lookaheadInfoArray|i] = recvdLookahead
5 break

6 end if

7 end for

8 latestRemotel.ookahead = MIN (lookaheadInfoArray)

S end when

Figure 6. NC null-message handling algorithm

The size of this queue is equal to the total nunaberPs
minus one (in a simulation with LPs, every LP commu-
nicates at most directly with — 1 LPs). When the null-
message is received, NC saves the lookahead content
lookaheadInfoArrayand calculates theinimumRemote-
Lookaheadas the smallest element of this queue. ifite
nimumRemoteLookahedd updated every time the NC
receives a null-message. Hence, it is always thménmoim
lookahead value of all remote LPs. This mechanism i
shown in Figure 7.

4.4. Simulation Termination

The NC on each LP decides the simulation terminatio
We discussed the criterion under which an LP teatais
and becomeglle. The WARPED kernel checks the status
of LPs every specified period. When all participgtLPs
areidle, the simulation terminates and the rest of memory
clean-ups will be taken care by the kernel. Figushows
the termination algorithm modified to support canse
tive simulation.

1 when the kernel checkIdle() is invoked
2 allldle = true

3 for each participating LF d¢

4 if LF inputQ has unprocessed event and is not a null-message then
5 allldle = false;
6 end if

7 end for

8 return allldle

9 end when

Figure 9. Simulation termination algorithm

An LP is not idle if it has an unprocessed evhat ts
not a null-message in its inputQ. The restrictibattthe
event should not be a null-message is for the vdmn
the LP has finished its simulation and is idle vgjtfor
other LPs to finish. While an LP is idle, it caillseceive
null-messages, however, they will not be execuidis
null-message is the last one that the sender iskdisng
before it enters the idle state. The lookaheadeverried
by these null-messagesdisand it states that the originat-
ing LP has completed the simulation (there is mugjldlse
to do on that machine).

5. RESULTSAND DISCUSSION
This section illustrates the performance of CCD##+ b
discussing the experiments we conducted on a closte
32 compute nodes (dual 3.2 GHz Intel Xeon procssdor
GB PC2100 266 MHz DDR RAM) running Linux WS
2.4.21 interconnected through Gigabit Ethernet com-
municating over MPICH 1.2.6. The Cell-DEVS model
tested in our experiments is a model for forest firopa-
gation[22] based on Rothermel’'s model [19].

We are interested in evaluating the performance of
the new CCD++ simulator in terms of the executiomet

and speedups. For all the Cell-DEVS models, a gmpl
partition strategy evenly divides the cell spad® inori-
zontal rectangles. The fire propagation model vesset
using 6400 cells (80 x 80 cell space). Figure listrates
the results for this model.

As we can see our conservative DEVS algorithm re-
duces the execution time of this model when momeso
are engaged in the simulation. The execution tirae d
creases from 77.37 to 17.24 s when the number d@éo
climbs from 1 to 8 achieving a speedup of 4.48. By,
when the number of nodes increases beyond 6, tfes-di
ence among execution times is not significant ékecu-
tion time decreases by only 3.3% from 6 to 8 nadEisis
is merely because when a model, especially a sonai)
is partitioned onto more nodes, the increasing loead
involved in inter-LP communication and the null-
messages eventually degrade the performance. Hance,
tradeoff between the benefits of a higher degrepaoél-
lelism and the associated overhead costs needsto b
reached when we consider different partition stiate

Fire Propagation (80x80)

90

80 | 77.3679
’g 70
2 60 | 54.5910
[
£ 50
[=4 40 A
S 30.8300
S 30 266511 »3 6258
@ 17.8223 17.4225 17.2383
5 20

0 T T T T T T T
1 2 3 4 5 6 7 8
Number of nodes

Figure 10. CCD++ performance - fire model (80x80)

6. CONCLUSION AND FUTURE WORK

We have presented a novel conservative algorithm
for DEVS and Cell-DEVS models and have integrated
this mechanism into the CD++ simulation toolkit.€Tie-
sulting parallel simulator, called, CCD++ is based
CMB null-messages and lookahead concept and sasves
the first purely conservative simulation benchméok
running large-scale DEVS and Cell-DEVS model in-par
allel and distributed fashion. We presented howaigo-
rithm overcomes the limitations of the original D&V
conservative algorithm by implementing the mechanis
at the top most level of the DEVS abstract simulater-
archy (i.e. the coordinator), thus, significantlducing
lookahead computation frequency. Also, by repla&ihf
and EOT calculations with a single lookahead colput
tion the number of null-messages distributed among
nodes are reduced notably.

Performance analysis has been conducted to egaluat
the conservative DEVS algorithm in simulating DEVS-
based models. We showed that CCD++ simulator mark-

edly improves execution times as the number ofi@art
pating nodes increases. Considerable speedupsokere
served in our experiments, indicating the conséereati-
mulator is well suited for simulating large and quex
models. We are currently working on a thoroughirigst
analysis by running intensive tests with larger amore
complex models on both CCD++ and the purely optimis
tic simulator (PCD++) to provide a reference guimte
whether to use a conservative simulator or an agtien
one and under which circumstances one outperfohms t
other.

7. REFERENCES

[1] Zeigler, B., T. Kim, and H. Praehofer. 200theory
of modeling and simulatiorsan Diego: Academic Press.
[2] Chow, A. C. and B. Zeigler. 1994. "Parallel DEVS:
A parallel, hierarchical, modular modeling formaiis In
Proceedings of the Winter Computer Simulation Qenfe
ence Orlando, FL.

[3] Wainer, G.Discrete-Event Modeling and Simulation:
a Practitioner's approachCRC Press. Taylor and Fran-
cis. 2009.

[4] Wolfram, S. 1986Theory and applications of cellu-

lar automata Advances series on complex systems, 1.

World Scientific: Singapore.

[5] Fujimoto, R. M.Parallel and distributed simulation
systemsNew York: Wiley. 2000.

[6] D. R. Jefferson. 1985. "Virtual time’ACM Trans.
Program. Lang. Syst.(3), pp. 404-425.

[7]1 Bryant, R. E. "Simulation of packet communication
architecture computer systems". Massachusettstutesti
of Technology. Cambridge, MA. USA. 1977.

[8] Chandy, K. M.; Misra J. "Distributed simulation: A
case study in design and verification of distrilbupgo-
grams". IEEE Transactions on Software Engineering
pp.440-452. 1978.

[9] Wainer, G. 2002. CD++: A toolkit to develop DEVS
models. Software — Practice and Experiencg2:1261-
1306.

[10]Q. Liu, G. Wainer, "Parallel environment for DEVS
and Cell-DEVS models".SIMULATION 83(6), 2007,
pp.449-471.

[11] Zeigler, B.; Moon, Y.; Kim, D.; Kim, J. G. “DEVS-
C++: A high performance modeling and simulationienv
ronment”. The 29th Hawaii International Confererue
System Sciences. 1996.

[12]Zeigler, B.; Kim, D.; Buckley, S. “Distributed sulyp
chain simulation in a DEVS/CORBA execution environ-

ment”. Proceedings of the 1999 Winter SimulatiomCo
ference. 1999.

[13]Kim, K.; Kang, W. “CORBA-based, Multi-threaded
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-hierarchica
One”. International Conference on ComputationakSce
and Its Applications (ICCSA).Assisi, Italy. 2004.
[14]Cheon, S.; Seo, C.; Park, S.; Zeigler, B. “Desigd a
implementation of distributed DEVS simulation irpeer

to peer network system”. Advanced Simulation Tech-
nologies Conference. Arlington, VA, USA. 2004.
[15]Zhang, M.; Zeigler, B.; Hammonds, P. “DEVS/RMI
— An auto-adaptive and reconfigurable distributiecuta-
tion environment for engineering studies”. DEV Selgria-
tive M&S Symposium. Huntsville, AL, USA. 2006.
[16]T.G. Kim, S.B. Park, "The DEVS formalism: Hierar-
chical modular systems specification in C++". Pno-
ceedings of European Simulation Multiconfererk@92.
[17]Y.R. Seong, S.H. Jung, T.G. Kim, K.H. Park, "Paral-
lel simulation of hierarchical modular DEVS modefs:
modified Time Warp approach'internat. J. Comput. Si-
mulation 5 (3) 1995, pp.263-285.

[18] Praehofer, H., Reisinger, G.: "Distributed Simialat
of DEVS-based Multiformalism Models'AlS '94, Gai-
nesville, FL, IEEE/CS PresPec. 1994, pp. 150-156.
[19]E. DeBenedictus, S Ghosh, M.-L- Yu. "A Novel Al-
gorithm for Discrete Event SimulationfEEE Computer
June 1991, pp. 21-33.

[20] Radhakrishnan, R., D. E. Martin, M. Chetlur, D. M.
Rao, and P. A. Wilsey. 1998. "An object-orienteahdi
warp simulation kernel". IlProceedings of the Interna-
tional Symposium on Computing in Object-Oriented- Pa
allel EnvironmentsLNCS 1505, pp. 13-23.

[21] Glinsky, E. and G. Wainer. 2006. "New parallel si-
mulation techniques of DEVS and Cell-DEVS in CD++",
Proceedings of 39th Annual Simulation Symposi2dd—
251.

[22]Ameghino, J., A. Troccoli, and G. Wainer. "Models
of Complex Physical Systems Using Cell-DEVShe
34" |IEEE/SCS Annual Simulation Symposi@@01.
[23]Rothermel, R. "A Mathematical Model for Predicting
Fire Spread in Wild-land Fuels". Research Paper-INT
115. Ogden, UT: U.S. Department of Agriculture, éstr
Service. 1972.

