
Conservative DEVS - A Novel Protocol for Parallel Conservative Simulation of 
DEVS and Cell-DEVS Models  

 
Shafagh Jafer, Gabriel Wainer 

Dept. of Systems and Computer Engineering 
Carleton University Centre of Visualization and Simulation (V-Sim) 

1125 Colonel By Dr. Ottawa, ON, Canada 
{sjafer,gwainer}@sce.carleton.ca 

 
Keywords: Conservative DEVS, parallel DEVS protocol, 
Cell-DEVS models, DEVS models, dynamic look-ahead. 
  
Abstract 
We present a novel conservative algorithm based on the 
classical Chandy-Misra-Bryant (CMB) synchronization me-
chanism by extending DEVS abstract simulator to provide 
means for look-ahead computation and null-message distri-
bution. We integrate this mechanism into the CD++ simula-
tion toolkit, providing a purely conservative simulator for 
running large-scale DEVS and Cell-DEVS models. Our al-
gorithm is implemented on a revised DEVS abstract simula-
tor to reduce the frequency of look-ahead computation. It al-
so replaces time information estimations with a single loo-
kahead computation, causing reduction in the number of 
null-messages. The dynamic lookahead values of the pro-
posed algorithm are extracted from the model specification 
and the user is not required to provide lookahead values 
prior to the execution. In addition, the low-cost lookahead 
computation feature of the algorithm provides a fast and ef-
ficient method and reduces overhead. 
 
1. INTRODUCTION 
Modeling and simulation (M&S) methodologies have be-
come crucial for implementing, designing, and analyzing a 
broad variety of systems. Among the existing modeling and 
simulation techniques, the DEVS (Discrete Event System 
Specification) formalism  [1] provides a discrete-event ap-
proach to construct hierarchical models. This feature of 
DEVS enables the modeler to easily extend or expand the 
model by simply creating new components or duplicating 
the existing ones. P-DEVS  [2], allows adequate handling of 
simultaneous events, which is needed for efficient execution 
of models in parallel and distributed environments. Cell-
DEVS [3] combines DEVS with Cellular Automata  [4] to 
form an n-dimensional cell space to represent complicated 
discrete event spatial models. As the models become larger 
and more complex, the problems of limited resources within 
a single-processor arise. Not only the shortage of resources, 
but also the long execution times brought up the idea of Par-
allel discrete event simulation (PDES). Synchronization, as 
the key to parallel and distributed simulation, requires a ro-
bust mechanism to handle communication among concur-

rent processes. There are two major classes of synchroniza-
tion: conservative approaches, which strictly avoid causality 
violations  [5] and optimistic approaches, which allow viola-
tions and recover from them by providing rollback mecha-
nism  [6]. Conservative synchronization approach was the 
first synchronization algorithms proposed in the late 1970s 
by Bryant  [7], Chandy and Misra  [8]. This technique 
(known as the Chandy-Misra-Bryant (CMB) algorithm) 
prevents any occurrence of causality errors.  
 CD++  [9] is an M&S toolkit that implements DEVS 
and Cell-DEVS theories. PCD++  [10] supports optimistic 
parallel simulation of DEVS and Cell-DEVS models based 
on the Time Warp mechanism. In this article, we present a 
Conservative DEVS algorithm, implemented based on the 
classical CMB synchronization mechanism with deadlock 
avoidance. Our conservative algorithm extends the DEVS 
abstract simulator to provide means for look-ahead compu-
tation null-message distribution. Various issues related to 
performance, scalability, and complexity of the optimistic 
simulation algorithms motivated us to implement the first 
purely conservative simulator for Cell-DEVS, called Con-
servative CD++ (CCD++). CCD++ uses our Conservative 
DEVS synchronization algorithm.   
 
2. RELATED WORK AND MOTIVATION 
PDES synchronization techniques usually fall into two ma-
jor categories: conservative and optimistic approaches. In 
conservative schemes, a simulation entity (called a logical 
process - LP) does not allow causality errors. If the LP has 
an unprocessed event with timestamp t it guarantees that no 
event with earlier timestamp can be received (which pre-
vents causality errors). As long as there are unprocessed 
events from all other LPs, synchronization is guaranteed. 
However, if this condition is not met, deadlock may occur. 
A way to resolve deadlock is to find the model’s lookahead, 
which provides the smallest timestamp of any new events 
the LP can schedule in the future. Null messages are used to 
share lookahead information among LPs  [8]. 
 Numerous algorithms and tools have been built, includ-
ing varied parallel DEVS simulators (for instance, DEVS-
C++  [11], DEVS/CORBA  [12], DEVSCluster  [13], DEVS/ 
P2P  [14], DEVS/RMI [15], DEVSim++ [16], and P-
DEVSim++  [17]). In  [18] the authors presented a distributed 



simulation strategy for DEVS, which combines conservative 
and risk-free optimistic strategies. This optimistic PCD++ is 
purely optimistic, and based on the Time Warp mechanism. 
Likewise, in  [1], the authors introduced an approach to con-
servative parallel simulation of DEVS, which is mainly 
based on the classical CMB approach with deadlock avoid-
ance and the Yaddes  [19] algorithm. The principal idea be-
hind this conservative DEVS simulator is to maintain a net-
work of correlated earliest output time (EOT) and earliest 
input time (EIT) estimates, which matches the output-to-
input coupling structure of the DEVS coupled model. The 
EOT/EIT estimates represent the time information that is 
distributed with null-messages. Under this scheme, the loo-
kahead calculation is performed at each DEVS simulator 
(representing an atomic DEVS component) by looking at 
input and output ports. In fact, the conservative mechanism 
is implemented at the lowest level of the abstract simulator 
hierarchy and the coordinator sitting at the top of the hierar-
chy is only responsible for distributing the EIT and EOT in-
formation. Two main limitations of this algorithm are:   
1. A large number of EIT and EOT computations are re-

quired to implement the algorithm at the simulator level 
(the overhead of the algorithm increases as the DEVS 
model grows, since there must be one DEVS simulator 
for every DEVS atomic component). 

2. Large numbers of null-messages are sent among proc-
essors, since both EIT and EOT must be distributed, as 
opposed to sending only one type of information (i.e. 
only lookahead). 

 The need for a robust conservative simulator and the 
two limitations of the original conservative DEVS algorithm 
led us to propose a new representation of the conservative 
DEVS algorithm and the first purely conservative DEVS 
and Cell-DEVS simulator. Conservative CD++ (CCD++), 
was implemented at the topmost level of the DEVS abstract 
simulator hierarchy (i.e. the coordinator); thus, the fre-
quency of information computation is reduced. In addition, 
EIT/ EOT calculations are replaced with a single lookahead 
computation, reducing in the number of null-messages. 
 CCD++ was built on top of WARPED  [20], which pro-
vides services for defining different types of simulation ob-
jects on top of the Message Passing Interface (MPI). 
WARPED was chosen, as it allows comparing its numerous 
optimistic algorithms with conservative performance. 
 
3. CONSERVATIVE SIMULATION IN CCD++ 
CCD++ adopts a flat architecture with four DEVS proces-
sors  [21]: Simulator, Flat Coordinator (FC), Node Coordina-
tor (NC), and Root (Figure 1). The simulation is message-
driven and managed by a set of NCs running on different 
machines synchronizing through null-messages. CCD++ 
processors exchange messages carrying content or synchro-
nization information. The former includes the external (x, t) 
and output messages (y, t), while the latter includes the ini-

tialization (I, t), collect (@, t), internal (*, t), and done mes-
sages (D, t).  

 
Figure 1.  Distributed flat structure of CCD++ 

 
 Figure 1 illustrates the Processors hierarchy. Root is 
created only on LP0 (to start/end the simulation and perform 
I/O operations). NC and FC are created on each LP. FC is in 
charge of intra-LP communications between its child Simu-
lators. NC is the local central controller on its LP and the 
end of inter-LP communications. Simulator executes the 
DEVS functions defined in its atomic model. 
 

 
Figure 2. Structure of the parallel abstract simulator  

 
 Our conservative algorithm is mainly based on the orig-
inal CMB approach with deadlock avoidance. The key focus 
is on how to compute lookahead and send it via null-
messages and when to suspend the LP or resume. The algo-
rithm is implemented at the NC and thus the simulators are 
unaware of its existence (the NC is responsible for looka-
head calculation and sending null-messages). Figure 2 illus-
trates the proposed parallel abstract simulator. 
 After initialization, the execution of messages on an LP 
is either one of two distinct phases: The collect phase, and 
the transition phase. The collect starts with a collect mes-
sage sent from the NC to the FC and ends with the follow-
ing done message received by the NC.  The transition phase 



begins with the first internal message sent from the NC to 
the FC, and ends at the last done message received by the 
NC at that time. The transition phase is mandatory for each 
individual simulation time. The output functions in the im-
minent atomic models are invoked during the collect phase; 
the state transitions for the atomic models are performed in 
the transition phase (as defined in P-DEVS). Outgoing inter-
LP communication happens only in the collect phases, whe-
reas incoming inter-LP communication can occur in any 
phase. Since the output functions of the imminent models 
are invoked only in the collect phases, it is clear that at any 
given simulation time, all external messages going to remote 
NCs are sent out by the end of the collect phase. On the oth-
er hand, an external message from a remote source can ar-
rive at the destination NC during any phase.  
 The NC is the actual starter for every collect and transi-
tion phase, and this is why our conservative algorithm is 
implemented at the NC. The algorithm is invoked every 
time the NC receives a done message from the FC, which 
could be in response to messages (I, t), (@, t), or (*, t) pre-
viously sent to the FC. The lookahead computation is thus:  
 
lookahead = MIN( timestamp of the x msg recently sent to a  
 remote LP, time of the NC Message Bag,  tN)             (1)  
 
where tN is the closest state transition time given by the FC 
in the done message, and time of the NC Message Bag is the 
minimum timestamp of all unprocessed x messages received 
from other NCs. The NC then sends a null-message carrying 
the lookahead time to all remote NCs. The lookahead de-
scribes when other LPs should expect an external message 
from this LP. Thus, the sender LP is blocked waiting for 
other LPs to send their lookahead values. When the LP re-
ceives all remote null-messages, the LP resumes. Now the 
NC is responsible for driving the rest of the simulation by 
deciding if a transition or a collect phase has to be per-
formed. If the NC decides to send an internal message (*, t), 
then normal procedure takes. However, if the NC detects 
that a collect phase must be issued, rest of the conservative 
algorithm is carried out (mainly because simulation time is 
advanced during collect phase and this is when the synchro-
nization is required). First, the NC recalculates the Local 
Virtual Time (LVT) of the LP, which could result in ad-
vancement of the current time of the LP. The new LVT will 
be the minimum value among:  

(i) the timestamp of the first not-yet-sent external 
event in the event list as referred by the event-
pointer;  

(ii)  the timestamp of external message recently sent to 
a remote LP;  

(iii)  the time of the NC Message Bag;  
(iv) the minimum lookahead value from remote LPs;  
(v) the closest state transition time given by the FC in 

the done message. 

LVT = MIN(timestamp of the event pointed by event-
pointer, timestamp of the x msg recently sent to a remote 
LP, time of the NCMessageBag, minimum RemoteLooka-
head,  tN).                    (2)  
 
After this, according to the new LVT the NC chooses, one 
of the following five cases must be performed: 
1. If there are input messages received from outside envi-

ronment to the system, the NC issues an internal phase 
and sends a (*, t) message to the FC. 

2. If there are external messages sent to remote LPs at the 
recent collect phase, the NC must send its current loo-
kahead and block the LP, because the LP receiving the 
external message could generate a smaller lookahead 
than that of its previous stage. This will cause causality 
violations at this LP because it had updated its LVT 
based on a larger lookahead and when it receives the 
new lookahead which happens to be smaller than be-
fore, then the new LVT turns out to be smaller than the 
old LVT and this is strictly forbidden by the definition 
of conservative synchronization mechanism.  

3. If the new LVT is equal to the minimum of all looka-
head values received from other LPs, the LP must wait. 
Therefore, the NC recalculates the lookahead, sends 
null-messages, and the LP is suspended. 

4. If there are imminent children (Simulators) a collect 
phase is issued by sending a (@, t) message to the FC. 

5. If there are external messages received from other LPs 
with receive time equal to the new LVT, the NC issues 
an internal phase and sends a (*, t) message to the FC. 

 These cases have processing priority and the NC only 
processes one of them every time. Special tie breaking is 
performed when more than one case is true which is dis-
cussed in Section 3.1. 
 As presented by Formula (1), our lookahead computa-
tion is a fast, efficient, and low-cost method that involves a 
simple comparison of existing model parameters. Compared 
to other existing conservative mechanisms, this reduces the 
overhead of the algorithm especially when the frequency of 
lookahead computation increases as the model size grows. 
Likewise, the modeler is not required to specify the looka-
head of the system. Thus, the ability of the algorithm in dy-
namically extracting the lookahead information from the 
model itself stands as a remarkable point.   
 
3.1. Revised DEVS Abstract Simulator 
The abstract simulator implemented in CCD++ is based on a 
revised version  [10]  of the P-DEVS abstract simulator [2]. 
Herein, we present our modifications to the NC structure, 
which reflect the new conservative NC. The rest of the ab-
stract simulator remains unchanged from the one presented 
in  [10]. Figure 3 illustrates the description of the conserva-
tive NC functionalities when a (done, t) message is received 
from the FC. 



Figure 3. Conservative NC algorithm for done message 
 

 The NC starts by computing its lookahead according 
to Formula (1) (line 7). Each NC maintains a list of re-
mote NCs of LPs that will exchange messages with this 
LP. This list is initialized at the beginning of the simula-
tion and is used by the NC to send null-messages (line 7 
to 9). On every LP, the NC acts as the local controller of 

the simulation and carries on the event execution. The NC 
performs checks (line 11 to 14) to see if the LP must be 
suspended or finished (in this case, the LP will remain 
idle until the rest of LPs finish; the simulation terminates 
when all the LPs are idle). When the LP is suspended, it 
will wait for the lookahead of every LP in the RemoteN-



CList. When all the lookahead values are received, the 
NC resumes (line 14). The first Done message received 
by the NC is the response to the initialization message 
forwarded to the FC to start the simulation on that ma-
chine. Since next-message-type is initialized to @, the NC 
follows the second half part of the algorithm (line 6 to 
48). The NC first calculates min-time using Formula (2) 
(line 15 to 16). The resulting min-time is the next local 
simulation time (i.e. the LVT of this LP) to which the NC 
should advance. After calculation of min-time, the Loo-
kaheadInfoArray of the NC is reset so that it will be filled 
with new lookahead information (line 17). A special 
situation might occur (line 18 to 20) when the min-time is 
∞. This case arises when the LP is done with the simula-
tion, and there is no event to be received from other LPs 
(because they have all sent an ∞ lookahead value). There-
fore, the LP is done with the simulation. To finish the si-
mulation at the LP, the NC sets the min-time back to the 
previous value, which was the timestamp of the received 
done message and sends a done message to itself with 
D.ta equal to zero, where D.ta is the next transition time 
that is reported to the NC. When this done message is re-
ceived at the NC (line 7) the LP will be marked as idle 
and no further event execution will take place at that LP 
(line 9).  
 However, if the condition of line 18 is not met, the 
four cases mentioned earlier are checked (line 29 to 46). 
The tie-breaking mechanism is invoked as follows: 
1. Case 1 (line 29 to 31) is given the highest priority. 
2. If the minimum remote lookahead value is equal to 

the timestamp of the closest transition at this LP (i.e. 
tN), priority is given to processing the minimumRe-
moteLookahead (line 32 to 34).  

 The done messages sent from the NC to itself (line 
30, 33, and 45) are for synchronization purposes only. 
They are recognized by looking at the sender and receiver 
ID of the message (in this case, both are the NC itself). 
The D.ta value carried by these messages is calculated as 
the difference between the NC’s current tN and the LVT 
advancement: 
D.ta = tN  – (min-time – timestamp of the received D msg)  
where minTime is the new LVT, and timestamp of the re-
ceived D msg is the previous LVT.  
 When the NC receives this special done message it 
calculates its new lookahead, sends it across, and sus-
pends itself.  
 To summarize the Conservative DEVS algorithm, the 
key features and assumptions of the simulation process 
are highlighted as follows: 
1. All messages originating from Simulators must go 

through the parent FC. Hence, there is no direct 
communication between Simulators (even local 
ones), and FCs are always aware of the timing of 
state changes at their child Simulators. 

2. Outgoing inter-LP communication happens only in 
the collect phases, whereas incoming inter-LP com-
munication can occur in any phase. Since the output 
functions of imminent models are invoked only in the 
collect phases, at any given simulation time, all ex-
ternal messages going to remote NCs are sent out by 
the end of the collect phase. On the other hand, an ex-
ternal message from a remote source can arrive at the 
destination NC in any phase.  

3. The NC is the starter for every collect and transition 
phase. The NC is invoked when it receives a done 
message from the FC (in response to a (I, t), (@, t), or 
(*, t) previously sent to the FC). 

4. On each node, the NC advances the simulation time. 
The NC calculates the Local Virtual Time (LVT) of 
the LP at the beginning of every collect phase. The 
local FC and the Simulators do not send messages 
with a timestamp different from the current LVT. 

5. Dynamic Lookahead: lookahead computation is per-
formed after each LVT computation; hence, it is up-
dated and distributed among all remote LPs every 
time before the LP is suspended. This strategy en-
sures that the lookahead value of an LP represents the 
latest LVT update, as there is at least one lookahead 
computation per LVT update. The dynamic looka-
head mechanism states that lookahead value is not 
fixed and every lookahead computation could result 
in a different value than the previous stage. Unlike 
other conservative algorithms, the modeler is not re-
quired to specify the lookahead; instead, the algo-
rithm dynamically extracts the lookahead information 
from the model itself.   

6. Low-cost Lookahead Computation: as presented by 
Formula (1), our lookahead computation is a fast, ef-
ficient, and low-cost method, which involves a sim-
ple comparison of two existing parameters (tN and 
tNCMessageBag). There is neither an actual computation 
nor a significant computation time required to calcu-
late the lookahead. Rather, the lookahead is extracted 
from already computed data that existed in the simu-
lator before the conservative algorithm was inte-
grated with it. Compared to other existing conserva-
tive mechanisms, this benefit reduces the overhead of 
our algorithm outstandingly especially that the fre-
quency of invoking lookahead computation increases 
as the model size grows. 

7. Deadlock Avoidance: since null-message distribution 
occurs before LP suspension, deadlock is strictly 
avoided. NC only suspends the LP after performing a 
lookahead computation and propagating it to all re-
mote LPs via null-messages. Thus, when an LP is 
suspended, it has already forwarded its null-
messages, and if every other LP gets suspended as 
well, they would all resume because all required null-



messages have been already distributed among them 
before suspension has taken place. This property of 
our algorithm was borrowed form the classical CMB 
mechanism. 

 
4. IMPLEMENTATION DETAILS 
CCD++, developed in C++, implements the original and 
Parallel DEVS and Cell-DEVS formalisms. It supports 
both standalone and parallel conservative simulations. 
CCD++ uses the WARPED kernel as a middleware to 
provide scheduling, memory, file, event, communication 
and time management. The major part of our conservative 
algorithm was implemented at the CCD++ level. Some 
modifications were done at the WARPED kernel to com-
ply with the requirements of the conservative algorithm.  
 
4.1. Scheduling 
Each node maintains an input queue (inputQ, using linked 
lists provided by WARPED). Since causality violations 
are not allowed, inputQ is based on a FIFO mechanism. 
On every node, both DEVS messages and null-messages 
are treated as basic events and inserted into this queue.  
 

Figure 4. Conservative scheduler algorithm 
 

When the scheduler is invoked, it simply returns the head 
element of the inputQ and the event is deleted after execu-
tion. Our modifications to the scheduling mechanism are 
for the purpose of LP suspension. Recall the NC algo-
rithm: when the NC decides that the LP should be sus-
pended, it sends a special done message to itself. When 
the event returned by the scheduler happens to be this 
message, the event is not executed until all remote null-

messages are received and inserted into the LP’s inputQ. 
Figure 4 shows the conservative algorithm for the sched-
uler. The currentPos variable represents the first unproc-
essed element of inputQ. When a suspension event is de-
tected (line 11), it is not returned until all required null-
messages are received. The number of null-messages that 
must be received by an LP in order to resume is equal to 
the total number of LPs minus one (line 17), since the LP 
does not need a null-message from itself. In addition, the 
recvdNullMsg counter is only incremented once per null-
message sender (if there is more than one null-message 
from a remote LPi, only the first one is counted). 
 
4.2. Resuming a Blocked LP 
When the event returned by the scheduler is the suspen-
sion event (the special done message sent form a NC to it-
self), two actions must be performed before it can be exe-
cuted. First, all null-messages counted to increment 
recvdNullMsg must be executed. Second, all unprocessed 
remote external messages sent from other NCs to this LP, 
must be executed. Once they execute, the special done 
message is returned, and is serviced by the NC (Figure 5). 

 

1. when executeProcess() is invoked

2. event = Scheduler.getEvent()

3. if event != NULL then

4. if event is suspension event then

5. for each null-msg with checked = true 

6.                                 receive (null-msg)

7. end for

8. for each unprocessed remote x msg 

9.            receive (x)

10. end for

11.      receive (suspension)

12. end if

13. end if

14.  end when  
Figure 5. Suspension of event execution algorithm 

 
4.3. Null-message Handling 
When a null-message is received at the NC, a null-
message handling mechanism is invoked. Every NC 
maintains a queue named lookaheadInfoArray to store the 
lookahead value carried by the null-message.  
 

Figure 6. NC null-message handling algorithm 
 



The size of this queue is equal to the total number of LPs 
minus one (in a simulation with n LPs, every LP commu-
nicates at most directly with n – 1 LPs). When the null-
message is received, NC saves the lookahead content into 
lookaheadInfoArray and calculates the minimumRemote-
Lookahead as the smallest element of this queue. The mi-
nimumRemoteLookahead is updated every time the NC 
receives a null-message. Hence, it is always the minimum 
lookahead value of all remote LPs. This mechanism is 
shown in Figure 7. 
 
4.4. Simulation Termination 
The NC on each LP decides the simulation termination. 
We discussed the criterion under which an LP terminates 
and becomes idle. The WARPED kernel checks the status 
of LPs every specified period. When all participating LPs 
are idle, the simulation terminates and the rest of memory 
clean-ups will be taken care by the kernel. Figure 8 shows 
the termination algorithm modified to support conserva-
tive simulation. 
 

Figure 9. Simulation termination algorithm  
 
 An LP is not idle if it has an unprocessed event that is 
not a null-message in its inputQ. The restriction that the 
event should not be a null-message is for the case when 
the LP has finished its simulation and is idle waiting for 
other LPs to finish. While an LP is idle, it can still receive 
null-messages, however, they will not be executed. This 
null-message is the last one that the sender is distributing 
before it enters the idle state. The lookahead value carried 
by these null-messages is ∞ and it states that the originat-
ing LP has completed the simulation (there is nothing else 
to do on that machine). 
 
5. RESULTS AND DISCUSSION 
This section illustrates the performance of CCD++ by 
discussing the experiments we conducted on a cluster of 
32 compute nodes (dual 3.2 GHz Intel Xeon processors, 1 
GB PC2100 266 MHz DDR RAM) running Linux WS 
2.4.21 interconnected through Gigabit Ethernet and com-
municating over MPICH 1.2.6. The Cell-DEVS model 
tested in our experiments is a model for forest fire propa-
gation  [22] based on Rothermel’s model [19].  
 We are interested in evaluating the performance of 
the new CCD++ simulator in terms of the execution time 

and speedups. For all the Cell-DEVS models, a simple 
partition strategy evenly divides the cell space into hori-
zontal rectangles. The fire propagation model was tested 
using 6400 cells (80 x 80 cell space). Figure 10  illustrates 
the results for this model.   
 As we can see our conservative DEVS algorithm re-
duces the execution time of this model when more nodes 
are engaged in the simulation. The execution time de-
creases from 77.37 to 17.24 s when the number of nodes 
climbs from 1 to 8 achieving a speedup of 4.48. However, 
when the number of nodes increases beyond 6, the differ-
ence among execution times is not significant (the execu-
tion time decreases by only 3.3% from 6 to 8 nodes). This 
is merely because when a model, especially a small one, 
is partitioned onto more nodes, the increasing overhead 
involved in inter-LP communication and the null-
messages eventually degrade the performance. Hence, a 
tradeoff between the benefits of a higher degree of paral-
lelism and the associated overhead costs needs to be 
reached when we consider different partition strategies. 
 

Fire Propagation (80x80)

17.238317.422517.8223
23.625826.6511

30.8300

54.5910

77.3679

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8
Number of nodes

E
xe

cu
ti

o
n

 t
im

e 
(s

ec
)

 
Figure 10. CCD++ performance - fire model (80x80) 

 
6. CONCLUSION AND FUTURE WORK 
 We have presented a novel conservative algorithm 
for DEVS and Cell-DEVS models and have integrated 
this mechanism into the CD++ simulation toolkit. The re-
sulting parallel simulator, called, CCD++ is based on 
CMB null-messages and lookahead concept and serves as 
the first purely conservative simulation benchmark for 
running large-scale DEVS and Cell-DEVS model in par-
allel and distributed fashion. We presented how our algo-
rithm overcomes the limitations of the original DEVS 
conservative algorithm by implementing the mechanism 
at the top most level of the DEVS abstract simulator hier-
archy (i.e. the coordinator), thus, significantly reducing 
lookahead computation frequency. Also, by replacing EIT 
and EOT calculations with a single lookahead computa-
tion the number of null-messages distributed among 
nodes are reduced notably. 
 Performance analysis has been conducted to evaluate 
the conservative DEVS algorithm in simulating DEVS-
based models. We showed that CCD++ simulator mark-



edly improves execution times as the number of partici-
pating nodes increases. Considerable speedups were ob-
served in our experiments, indicating the conservative si-
mulator is well suited for simulating large and complex 
models. We are currently working on a thorough testing 
analysis by running intensive tests with larger and more 
complex models on both CCD++ and the purely optimis-
tic simulator (PCD++) to provide a reference guide on 
whether to use a conservative simulator or an optimistic 
one and under which circumstances one outperforms the 
other. 
 
7. REFERENCES 
[1] Zeigler, B., T. Kim, and H. Praehofer. 2000. Theory 
of modeling and simulation. San Diego: Academic Press. 
[2] Chow, A. C. and B. Zeigler. 1994. "Parallel DEVS: 
A parallel, hierarchical, modular modeling formalism". In 
Proceedings of the Winter Computer Simulation Confer-
ence, Orlando, FL. 
[3] Wainer, G. Discrete-Event Modeling and Simulation: 
a Practitioner’s approach. CRC Press. Taylor and Fran-
cis. 2009. 
[4] Wolfram, S. 1986. Theory and applications of cellu-
lar automata. Advances series on complex systems, 1. 
World Scientific: Singapore. 
[5] Fujimoto, R. M. Parallel and distributed simulation 
systems. New York: Wiley. 2000. 
[6] D. R. Jefferson. 1985. "Virtual time". ACM Trans. 
Program. Lang. Syst. 7(3), pp. 404-425. 
[7]  Bryant, R. E. "Simulation of packet communication 
architecture computer systems". Massachusetts Institute 
of Technology. Cambridge, MA. USA. 1977. 
[8] Chandy, K. M.; Misra J. "Distributed simulation: A 
case study in design and verification of distributed pro-
grams". IEEE Transactions on Software Engineering. 
pp.440-452. 1978. 
[9] Wainer, G. 2002. CD++: A toolkit to develop DEVS 
models. Software – Practice and Experience, 32:1261-
1306. 
[10] Q. Liu, G. Wainer, "Parallel environment for DEVS 
and Cell-DEVS models". SIMULATION 83(6), 2007, 
pp.449-471. 
[11] Zeigler, B.; Moon, Y.; Kim, D.; Kim, J. G. “DEVS-
C++: A high performance modeling and simulation envi-
ronment”. The 29th Hawaii International Conference on 
System Sciences. 1996. 
[12] Zeigler, B.; Kim, D.; Buckley, S. “Distributed supply 
chain simulation in a DEVS/CORBA execution environ-

ment”. Proceedings of the 1999 Winter Simulation Con-
ference. 1999. 
[13] Kim, K.; Kang, W. “CORBA-based, Multi-threaded 
Distributed Simulation of Hierarchical DEVS Models: 
Transforming Model Structure into a Non-hierarchical 
One”. International Conference on Computational Science 
and Its Applications (ICCSA).Assisi, Italy. 2004. 
[14] Cheon, S.; Seo, C.; Park, S.; Zeigler, B. “Design and 
implementation of distributed DEVS simulation in a peer 
to peer network system”. Advanced Simulation Tech-
nologies Conference. Arlington, VA, USA. 2004. 
[15] Zhang, M.; Zeigler, B.; Hammonds, P. “DEVS/RMI 
– An auto-adaptive and reconfigurable distributed simula-
tion environment for engineering studies”. DEVS Integra-
tive M&S Symposium. Huntsville, AL, USA. 2006. 
[16] T.G. Kim, S.B. Park, "The DEVS formalism: Hierar-
chical modular systems specification in C++". In Pro-
ceedings of European Simulation Multiconference. 1992.  
[17] Y.R. Seong, S.H. Jung, T.G. Kim, K.H. Park, "Paral-
lel simulation of hierarchical modular DEVS models: A 
modified Time Warp approach".  Internat. J. Comput. Si-
mulation 5 (3), 1995, pp.263-285. 
[18]  Praehofer, H., Reisinger, G.: "Distributed Simulation 
of DEVS-based Multiformalism Models". AIS '94, Gai-
nesville, FL, IEEE/CS Press, Dec. 1994, pp. 150-156. 
[19] E. DeBenedictus, S Ghosh, M.-L- Yu. "A Novel Al-
gorithm for Discrete Event Simulation". IEEE Computer, 
June 1991, pp. 21-33. 
[20] Radhakrishnan, R., D. E. Martin, M. Chetlur, D. M. 
Rao, and P. A. Wilsey. 1998. "An object-oriented time 
warp simulation kernel". In Proceedings of the Interna-
tional Symposium on Computing in Object-Oriented Par-
allel Environments, LNCS 1505, pp. 13-23. 
[21] Glinsky, E. and G. Wainer. 2006. "New parallel si-
mulation techniques of DEVS and Cell-DEVS in CD++". 
Proceedings of 39th Annual Simulation Symposium, 244–
251. 
[22] Ameghino, J., A. Troccoli, and G. Wainer. "Models 
of Complex Physical Systems Using Cell-DEVS". The 
34th IEEE/SCS Annual Simulation Symposium. 2001. 
[23] Rothermel, R. "A Mathematical Model for Predicting 
Fire Spread in Wild-land Fuels". Research Paper INT-
115. Ogden, UT: U.S. Department of Agriculture, Forest 
Service. 1972. 

 


