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Abstract 
The conservative Parallel DEVS protocol offers a novel 
approach that allows conservative simulation of DEVS-
based PDES systems. The protocol is based on the classi-
cal Chandy-Misra-Bryant synchronization mechanism, 
and it extends the DEVS abstract simulator to provide 
means for lookahead computation and null-messages. We 
present a purely conservative simulator, called CCD++, 
designed for running large-scale DEVS and Cell-DEVS 
models in parallel and distributed fashion. A comparative 
performance analysis is presented, analyzing the perform-
ance of CCD++ compared to an optimistic DEVS simula-
tor. Several DEVS-based environmental models with dif-
ferent characteristics are studied. The experiments indi-
cate that the conservative simulator improves perform-
ance in terms of execution time, memory usage, opera-
tional cost, and system stability for very large models. 
 
1. INTRODUCTION 
Many studies have been carried out to show the differ-
ences between parallel synchronization mechanisms. 
Conservative and optimistic approaches are the two major 
classes of parallel synchronization techniques proposed 
for parallel discrete event simulation (PDES). Conserva-
tive synchronization  [1] has more limited parallelism 
when compared to optimistic algorithms. Conservative 
approaches strictly avoid causality violations while opti-
mistic approaches  [2] allow violations and recover from 
them by providing a rollback mechanism (which is more 
costly in rollback and state saving overhead). The 
Chandy-Misra-Bryant (CMB) [3,4] conservative mecha-
nism prevents deadlocks by introducing null-messages 
and the notion of lookahead.  

We are interested in combining advanced parallel 
simulation algorithms for large scale simulations. We 
want to combine the formal advantages of the DEVS 

                                                           
 

(Discrete Event System Specification)  [5] formal model-
ing and simulation (M&S) frame work  with parallel 
simulation algorithms. DEVS provides a discrete-event 
approach to construct hierarchical models, and P-DEVS 
 [6] provides a more elegant mechanism for handling si-
multaneous events (allowing efficient execution of paral-
lel models). Cell-DEVS  [7] allows defining n-
dimensional cell spaces to represent complex discrete 
event spatial models where each cell is a DEVS compo-
nent.  

Parallel simulation of complex DEVS-based models 
requires a robust simulator with low synchronization 
overhead. PCD++  [8] is an optimistic simulator for DEVS 
and Cell-DEVS which implements the Lightweight Time 
Warp (LTW) protocol. Although PCD++ reduced the 
overhead of optimistic protocols to minimum, the issue of 
enormous memory consumption due to state savings and 
rollbacks still remains. This is especially apparent when 
the number of participating nodes increases; resulting in 
cascaded rollbacks, and in further memory and computa-
tion overhead. In order to experiment with both methods 
within the DEVS modeling framework, we introduced a 
conservative DEVS protocol and implemented a purely 
conservative simulator for DEVS and Cell-DEVS  [9]. 
This simulator, called CCD++ (Conservative CD++), is 
based on the classical CMB approach with deadlock 
avoidance. As we will show, the dynamic lookahead 
(which can be automatically derived from the model 
specification) and the efficient low-cost lookahead com-
putation strategy of CCD++ have outperformed our re-
sults obtained for the optimistic algorithm (PCD++) when 
large models are simulated (some of them with 250,000 
cells in total).  In this paper we present a comparative 
study of the performance of conservative and optimistic 
simulation of DEVS-based environmental systems in 
terms of memory consumption and execution speedup.   

The rest of the paper is organized as follows. Section 
2 introduces the motivation and related work. Section 3 
recaps the conservative DEVS protocol in the context of 
CCD++. Section 4 gives the performance analysis. Con-
clusion and future work are presented in Section 5. 
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2. RELATED WORK AND GOALS 
A real system modeled using DEVS is described as a 
composition of behavioral (atomic) and structural (cou-
pled) model components. A DEVS atomic model is for-
mally defined by: 

M = <X, Y, S, δint, δext, λ, ta> 
At any time, a DEVS atomic model is in a state s ∈ 

S. In the absence of external events, the model will stay in 
this state for the duration specified by ta(s). When the 
elapsed time e, is equal to ta(s), the state duration expires 
and the atomic model sends the output λ(s) and performs 
an internal transition to a new state specified by δint(s). 
Transitions that occur due to the expiration of ta(s) are 
called internal transitions. However, the arrival of an ex-
ternal event can also cause state transition, which places 
the model into a new state specified by δext(s,e,x); where s 
is the current state, e is the elapsed time, and x is the input 
value. Atomic models can be integrated into larger cou-
pled models, which can include one or more atomic or 
coupled models hierarchically composed. DEVS Abstract 
simulation algorithm defines two different simulation en-
tities (called DEVS Processors): Simulators and Coordi-
nators. Simulators execute atomic DEVS models, and 
Coordinators are paired with coupled models. In fact, 
Simulators are in charge of invoking the internal and ex-
ternal functions, while the Coordinators must route in-
put/output events and schedule the imminent dependant(s) 
in the model hierarchy. 
 Various parallel DEVS M&S toolkits have been im-
plemented by different researchers including: DEVS-C++ 
 [10], DEVS/CORBA  [11], DEVSCluster  [12], DEVS/P2P 
 [13], DEVS/RMI  [14], DEVSim++  [15], and P-
DEVSim++  [16]. In  [17] a distributed simulation strategy 
for DEVS is presented which combines conservative and 
risk-free optimistic strategies.  [18] presents an implemen-
tation of the parallel DEVS simulation protocol that uses 
a modified Time Warp optimistic algorithm  [19] for 
shared memory multiprocessor machine. In terms of con-
servative DEVS-based simulations, there has been a large 
number of work done by integrating DEVS with HLA 
 [20], allowing DEVS tools to use the synchronization ser-
vices provided by HLA. In this case, DEVS atomic com-
ponents are defined as HLA federates communicating by 
exchanging messages through the RTI. In  [21] Ziegler 
proposed the first integrating algorithm of DEVS models 
into a HLA-compliant environment, which was based on 
the classical CMB synchronization mechanism, and used 
the conservative algorithm provided by HLA. However, 
this approach was prone to deadlock which was later re-
solved in  [22]. Other HLA-based DEVS conservative 
simulators were proposed in [23-25].  

There has been some research done outside the HLA 
domain. For instance, Zeigler  [5]  introduced conservative 

parallel simulation of DEVS models based on the classi-
cal CMB approach with deadlock avoidance and the Yad-
des  [26] algorithm. The principal idea behind this method 
is to maintain a network of correlated earliest output time 
(EOT) and earliest input time (EIT) estimates, which 
matches the output-to-input coupling structure of the 
DEVS coupled model. The EOT/EIT estimates represent 
the time information distributed via null-messages. Under 
this scheme, the lookahead calculation is performed at 
each DEVS Simulator, by looking at input and output 
ports. There are two limitations associated with this tech-
nique: a) a large number of EIT and EOT computations 
are required (since the algorithm is implemented at the 
Simulator level, the overhead increases as the model size 
grows; we need one Simulator per atomic component); b) 
a large number of null-messages are sent among proces-
sors, since both EIT and EOT must be distributed, as op-
posed to sending only one type of information (i.e. only 
lookahead). 
 The need for a robust conservative simulator and the 
limitations of the original conservative DEVS algorithm 
led us to propose a novel representation of the conserva-
tive DEVS algorithm, and the first conservative Cell-
DEVS simulator, namely, CCD++. Our algorithm is im-
plemented at the topmost level of the abstract simulator 
hierarchy (i.e. the Coordinator), reducing the frequency 
of computation. Also, EIT and EOT calculations are re-
placed with a single lookahead computation, reducing the 
total number of null-messages significantly. Deadlock 
avoidance is maintained through a simple strategy which 
ensures that a process first sends its latest calculated loo-
kahead and then suspends. In this way, it is guaranteed 
that a suspended process does not cause deadlock. An-
other advantage of the algorithm is the dynamic looka-
head calculation, done at low-cost and extracted from al-
ready existing data (derived from the model specifica-
tion).  

3. DEVS-BASED CONSERVATIVE SIMULATION 

This section briefly recaps the conservative DEVS proto-
col in the context of CCD++, while details of the algo-
rithm can be found in  [9]. 

3.1. CCD++ Architecture 
CCD++ is built on top of the WARPED  kernel  [11], 
which serves as a service provider for defining different 
types of processes (simulation objects). Simulation ob-
jects mapped on a physical processor are grouped by a 
logical process (LP). WARPED relies on the Message 
Passing Interface (MPI) and serves as a middleware to 
provide scheduling, memory, file, event, communication 
and time management. The major part of our conservative 
algorithm was implemented at the CCD++ level. Some 



  

modifications were made at the WARPED layer to com-
ply with the requirements of the conservative algorithm.  

Figure 1. CCD++ Processors Hierarchy and Messaging. 
The simulation is executed in a message-driven fash-

ion. Figure 1 represents the processors hierarchy as well 
as the messages interchanged. At the beginning of the 
simulation, one LP is created on each machine (physical 
process). Then, each LP hosts one or more DEVS Proces-
sors. CCD++ employs a flat architecture, including a 
Node Coordinator (NC), a Flat Coordinator (FC), and a 
set of Simulators on each node. A special Coordinator, 
called Root is created on node 0, which interacts with 
other NCs using inter-process messaging (for remote 
NCs) and intra-process messaging (for local NCs). Root is 
in charge of starting the simulation, and performing I/O 
operations among the simulation system and the sur-
rounding environment. Only one NC is created on each 
machine, acting as the central controller on the hosting 
LP. The NC is the parent coordinator for the FC, and 
routes remote messages received from Root or other re-
mote NCs to the FC. The Simulators are the child proces-
sors of the local FC. Our conservative algorithm is im-
plemented at the NC. 

The DEVS processors exchange content and control 
messages. The first category includes the external (x) and 
the output messages (y); the second category includes the 
initialization (I), the collect (@), the internal (* ), and the 
done messages (D). In order to describe these messages, 
external and output messages are used to exchange simu-
lation data between the models; initialization messages 
start the simulation, collect and internal messages trigger 
the output and the state transition functions in the atomic 
models, and done messages carry scheduling information.  

3.2. Conservative Mechanism 
In  [9] we proposed our Conservative DEVS algorithm 
where processes communicate only through messages 
with their neighbors; there are no shared variables and 
there is no central process for message routing or process 
scheduling. Although each LP has its own Local Virtual 
Time (LVT) no events are received at the virtual past 
time. Synchronization is merely maintained through null-
messages carrying out lookahead information. The 
mechanism is based on the classical CMB approach with 
deadlock avoidance. Here, we provide a summarized re-
port on the conservative simulation in CCD++ while the 
details have been reported earlier in    [9].    

In CCD++, the conservative algorithm is imple-
mented at the NC which is the central synchronizer for 
driving the simulation on that machine. The key focus of 
the algorithm is on computing the lookahead and sending 
it via null-messages and the decision to suspend or re-
sume the LP. Thus, the NC is responsible for lookahead 
calculation and sending it via null-messages, suspending 
the LP, receiving null-messages from other LPs while the 
LP is blocked, and resuming the LP when all remote null-
messages are received. Hence, the NC drives the simula-
tion at the LP while other DEVS processors (i.e. FC, 
Simulator, Root) are unaware of the algorithm.  

The Root Coordinator residing on node0 starts the 
simulation by sending an (I, t) message to all NCs. The 
simulation is organized into a multi-phased structure that 
includes an optional collect phase and a mandatory transi-
tion phase, which in turn may involve multiple rounds of 
computation to execute state transitions incrementally. 
The collect phase starts with a collect message sent from 
the NC to the FC and ends with the following done mes-
sage received by the NC.  The transition phase begins 
with the first internal message sent from the NC to the FC 
and ends at the last done message received by the NC at 
that time. The transition phase is mandatory for each in-
dividual simulation time. The output functions in the im-
minent atomic models are invoked during collect phases, 
the state transitions for the atomic models are performed 
in the transition phases (as defined in P-DEVS formal-
ism). The conservative mechanism is invoked at the be-
ginning of every collect phase at the NC. The LP suspen-
sion also takes place during the collect phase.  

Simulators can only communicate with their parent 
FC, which means there is no direct communication be-
tween Simulators (even local ones), and FCs are always 
aware of the timing of state changes of their child Simula-
tors. When a Simulator sends a (y, t) message to its parent 
FC, the FC knows if the recipient is a local Simulator or a 
remote one (residing on another LP). In case the destina-
tion Simulator is a local one, it simply translates it into an 



  

(x, t) message and sends it to the recipient Simulator.  
However, if the destination is a remote one, the FC for-
wards the received message (y, t) to the parent NC. The 
NC translates it into an (x, t) message and sends it through 
inter-LP communication to the parent NC of the recipient. 
Note that outgoing inter-LP communication happens only 
during the collect phases, whereas incoming inter-LP 
communication can occur at any phase. This implies that 
since output functions of imminent components are in-
voked only at collect phases, at any given simulation 
time, all external messages going to remote NCs are sent 
out by the end of the collect phase. On the other hand, an 
external message from a remote source can arrive at the 
destination NC at any phase.  

The NC is invoked when it receives a done message 
from the FC. The done message could be in response to 
an (I, t), (@, t), or (* , t) message previously sent to the 
FC. On each node, the simulation time is advanced by the 
NC. The NC updates the LVT of the LP at the beginning 
of every collect phase. The local FC and the Simulators 
do not send messages with a timestamp different than the 
current LVT.  

When the NC receives a (done, t) message form the 
FC, it checks if the next phase of the simulation is a col-
lect or internal. The conservative algorithm is only in-
voked if the next phase to take place is a collect one. If 
the NC decides to issue an internal phase, it first sends an 
(* , t) message to the FC. The FC will then forward this 
message to all imminent child Simulators. Internal transi-
tions are triggered at these Simulators followed by done 
messages emitted to the FC reporting their next state tran-
sition time (tN). The FC sends the closest state transition 
time (minimum among all tN values) to the NC through a 
done message. In processing (done, t), the NC issues a 
collect phase and invokes the conservative mechanism. 
First, it performs lookahead computation. Then, the NC 
propagates the lookahead value to other NCs via null-
messages null (lookahead, LVT) and gets suspended. Dur-
ing the suspension, the LP is still able to receive mes-
sages; however, these are only inter-LP events which are 
either remote x messages or null-messages. When the NC 
receives all null-messages it resumes and first calculates 
the new LVT. 
 
4. PERFORMANCE EVALUATION 

4.1. Experimental Platform and Metrics 
To obtain a comparative study between the conservative 
and the optimistic DEVS simulator, both CCD++ and 
PCD++ were used to run extensive tests. The optimistic 
simulator, PCD++, implements the LTW protocol which 
was proposed for high-performance parallel optimistic 

simulation of large-scale DEVS and Cell-DEVS models 
 [8]. The LTW protocol includes a rule-based event-
scheduling mechanism using two types of event queues, 
an aggregated state-saving technique for optimal risk-free 
state management, and a new rollback algorithm that re-
covers lightweight LPs from causality errors without 
sending anti-messages. Tests were carried out on a cluster 
of 26 compute nodes (dual 3.2 GHz Intel Xeon proces-
sors, 1 GB PC2100 266 MHz DDR RAM) running Linux 
WS 2.4.21 interconnected through Gigabit Ethernet and 
communicating over MPICH 1.2.6. Table 1 lists the met-
rics collected in the experiments through extensive meas-
urements. For the test cases executed on multiple nodes, 
the results were also averaged over the participating nodes 
to obtain a per-node evaluation (i.e. MEM). 

TABLE 1. PERFORMANCE METRICS 

Metrics Description 

T Total execution time of the simulation (sec) 

MEM Maximum memory consumption (MB) 

4.2. Simulation Models 
Three Cell-DEVS models were tested in our experiments. 
Two of them (namely Fire1 and Fire2) simulate forest 
fire propagation  [27] in a two dimensional cell space 
based on Rothermel’s mathematical definition  [28]. Fire1 
and Fire2 differ in the way the spread rates are calculated. 
The first model uses a predetermined rates at reduced run-
time computation cost, while the second one invokes the 
fireLib  [29] library to calculate spread rates dynamically 
based on a set of parameters such as fuel type, moisture, 
wind direction and speed. The spread rate computations 
are performed at the Simulators when executing (* , t) 
messages. Hence, the time for executing a (* , t) message 
reflects the computation intensity of the state transition 
which was calculated to be 112 µs for Fire1, and 748 µs 
for Fire2. 
The third model used, called as Watershed, was a simula-
tion of environmental influence on hydrological dynamics 
of water accumulation in a three dimensional cell space 
 [30]. Although Watershed model (with a 577 µs state 
transition time) is not as compute-intensive as Fire2, it is 
a large 3D model with high communication requirements. 
In the next section, we will show that our conservative 
DEVS protocol is well-suited for improving simulation 
performance in such scenarios. 

4.3. Test Results and Analysis 
For all the three models, a simple partition strategy was 
used which evenly divides the cell space into horizontal 
rectangles. In the following tables, the best execution time 
(T) in each series is shown in bold. The fire propagation 
models (Fire1 and Fire2) were tested using different sizes 



  

of cell spaces: 100 x 100, 200 x 200, 300 x 300, and 500 x 
500. The Watershed model was tested with 25 x 25 x 2, 
30 x 30 x 2, 50 x 50 x 2, and 100 x 100 x 2 cells. Each of 
these cases was tested on 2 to 26 nodes for both conserva-
tive (CCD++) and optimistic (PCD++) simulators. A “−” 
mark stands for a case where the model cannot be divided 
further with the given partition scheme. The highlighted 
entries of the table show the poor performance due to se-
vere memory swapping, while an “x” mark indicates an 
out-of-memory scenario resulting a failed test case.  Table 
2 gives the resulting total execution time and maximum 
memory consumption for Fire1 of varied sizes on differ-
ent number of nodes. It is clearly shown that the conser-
vative simulator outperforms the optimistic one in terms 
of memory consumption in all cases and execution time in 
most cases. Meaning that, significantly lower memory 
consumption is obtained with the conservative simulator 
and minimum execution times are achieved at smaller 
number of nodes for the four different sizes. Although the 
smallest execution time for different series was achieved 
by the optimistic simulator, but this was gained at the cost 
of a significantly larger memory consumption and larger 
number of participating nodes. The memory consumption 
by the optimistic simulator tends to increase as the model 
size increases leading to failed test cases due to memory 
exhaustion such that the simulator was unable to run the 
tests for 300 x 300 cells on 2, 6, and 8 nodes, and for 500 
x 500 cells for any number of nodes. 

With the conservative simulator, the maximum mem-
ory usage on each node is reduced by 50% up to 95%, 
making it possible to execute the model using smaller 
number of nodes at a remarkably lower simulation cost. 
An outstanding improvement is achieved in terms of the 
total execution time where a reduction of 40% up to 90% 
is observed while a much smaller memory is consumed at 

the same time. 
As we can see, in each different size, using the con-

servative simulator reduces the execution time as the 
number of nodes increases until it reaches the best execu-
tion time (the T value in bold). Meaning that, for the four 
mentioned model sizes, the smallest execution time is 
achieved at 4, 6, 12, and 16 nodes respectively and after 
that the execution time starts to increase as more nodes 
are engaged. Therefore, for each scenario, the number of 
nodes at the smallest execution time represents the 
threshold value where adding more nodes would not re-
duce the execution time. This is merely due to the fact 
that when a model, especially a small one, is partitioned 
onto more and more nodes, the increasing overhead in-
volved with inter-LP communication and null-messages 
eventually degrades the performance. On the other hand, 
with the optimistic simulator, the smallest execution time 
for each size is achieved at larger number of nodes (20, 
22, and 24 nodes for 100x100, 200x200, and 300x300 
cells respectively). This indicates the high memory con-
sumption drawback of the optimistic mechanism resulting 
the need for a larger number of nodes to obtain smaller 
execution times, making it impossible to execute very 
large models (in case of Fire1, the simulator fails to run 
sizes larger than 300 x 300 cells).  

Figure 2 illustrates the speedups for different sizes of 
Fire1 with respect to the results of the sequential simula-
tor. From the speedup graphs of the conservative simula-
tor it is clearly observed that the simulator shows better 
performance as the model size grows. That is, the highest 
speedups are achieved when the model size is 500x500 
cells. Also, for each particular size, the speedup starts 
dropping after the threshold node. The optimistic simula-
tor behaves differently where better speedups are 
achieved at smaller model size. 

TABLE 2. FIRE1 EXECUTION RESULTS 
Size Sequential Simulator Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

T 29.42 28.73 30.58 32.79 36.27 38.61 42.46 46.91 52.06 56.01 62.82 70.22 76.21
34.25 (T) MEM 32.63 22.49 19.16 17.32 16.36 15.71 15.29 14.95 14.67 14.43 14.27 14.14 14.01

50.68(MEM) T 48.06 27.15 24.23 22.68 22.32 21.36 21.03 21.34 21.21 20.66 21.44 21.32 21.44
MEM 373.25 271.62 160.26 110.94 82.65 66.75 55.65 48.18 43.55 38.92 36.22 34.05 32.30

T 438.57 392.55 391.26 394.09 404.56 416.14 428.58 444.41 462.60 487.74 502.43 522.99 552.16
584.759(T) MEM 122.00 83.42 69.85 62.80 58.70 56.03 54.00 52.61 51.48 50.54 49.81 49.16 48.67
196(MEM) T 5149.62 971.42 1729.93 794.50 411.21 382.92 360.69 340.97 338.66 334.94 329.54 333.14 334.64

MEM 1589.5 1065.5 1531.33 1035.63 731.3 582.417 459.571 373.375 316.667 272.5 240.545 218.125 199.077
T 2280.49 1883.65 1818.61 1787.42 1766.11 1754.99 1784.68 1839.56 1849.42 1882.57 1924.10 2077.70 2182.76

2846.37(T) MEM 273.00 184.75 153.67 138.50 128.80 122.75 118.29 114.81 112.33 110.45 108.64 107.46 106.15
456(MEM) T x 19440.20 x 5820.52 x 4996.71 5639.72 3977.63 3471.41 2447.56 1919.28 1669.19 1678.89

MEM x 1960.75 x 1483.00 x 1994.92 1904.57 1489.31 1273.72 1064.60 921.96 810.63 717.04
T 16555.50 13843.60 13199.50 12841.20 12621.10 12451.00 12385.70 12259.50 12297.20 12492.70 12534.00 12671.70 13009.60

22883.3(T) MEM 757.00 510.00 425.00 381.63 355.90 338.83 326.43 317.31 310.06 304.00 299.46 295.58 292.42
1272(MEM) T x x x x x x x x x x x x x

MEM x x x x x x x x x x x x x
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Fire1 Speedups of the Conservative Simulator 
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Fire1 Speedups of the Optimistic Simulator 
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Figure 2. Fire1 Speedups for Both Simulators. 

This is clearly due to its high memory consumption na-
ture especially when a small number of nodes are used. 
High speedups for large sizes are only observed at large 

number of nodes. A speedup value of zero represents the 
case where the test was failed due to memory exhaustion.  

TABLE 3. FIRE2 EXECUTION RESULTS 
Size Sequential Simulator Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

T 84.07 75.05 78.27 77.51 78.51 83.25 88.69 92.30 96.99 101.36 107.42 115.56 122.60
90.82 (T) MEM 31.13 22.32 19.05 17.47 16.35 15.82 15.33 15.00 14.72 14.50 14.32 14.19 14.08

51.1(MEM) T 87.33 60.13 50.82 45.59 43.46 41.10 39.50 38.93 36.83 35.28 35.74 35.19 35.18
MEM 300.50 212.50 140.50 105.47 79.13 66.57 55.12 49.22 46.32 44.05 38.19 35.63 34.29

T 705.98 624.75 600.65 617.68 624.96 638.27 651.11 664.20 683.26 702.83 725.35 749.18 772.63
802.99(T) MEM 123.50 82.88 69.89 62.67 58.87 55.94 54.11 52.63 51.41 50.51 49.80 49.22 48.65
205(MEM) T 6274.18 1182.70 2184.47 542.37 478.81 458.11 445.64 431.67 425.30 420.36 409.15 406.10 397.81

MEM 1555.50 1065.00 1428.00 640.75 541.20 478.33 451.93 376.31 321.56 275.70 244.23 216.88 198.35
T 2773.40 2475.07 2357.55 2350.39 2350.56 2349.30 2364.75 2387.60 2424.94 2482.67 2520.49 2560.70 2618.25

3338.18(T) MEM 275.00 184.50 153.67 138.00 128.70 122.67 118.14 115.06 112.56 110.55 108.64 107.33 106.15
459(MEM) T x x x x x 6662.50 7130.92 4684.61 3414.41 2172.08 2109.37 1852.18 1835.47

MEM x x x x x 2157.92 1921.00 1490.94 1269.94 1042.05 922.91 792.63 743.35
T 18792.60 16091.50 15155.40 14762.50 14603.40 14412.00 14453.90 14508.10 14624.60 14686.50 14606.60 14926.90 15051.10

24013.2(T) MEM 768.50 510.75 424.83 381.88 356.00 338.75 326.43 317.25 310.06 304.45 299.46 295.63 292.39
1279(MEM) T x x x x x x x x x x x x x

MEM x x x x x x x x x x x x x

20
0x

20
0

10
0x

10
0

30
0x

30
0

50
0x

50
0

Cons.

Optim.

Cons.

Optim.

Cons.

Optim.

Cons.

Optim.
 

 
Fire2 Speedups of the Conservative Simulator 
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Fire2 Speedups of the Optimistic Simulator 
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Figure 3. Fire2 Speedups for Both Simulators. 

The results for Fire2 are shown in Table 3. Similar to 
Fire1 the conservative simulator reduces memory consump-
tion dramatically in all cases. Also, it starts reducing execu-
tion time at much smaller number of nodes compared to the 
optimistic one where minimum execution times are 
achieved at the cost of engaging more nodes. The larger the 
model is the better results are achieved by the conservative 
one such that when the optimistic simulator is still unable to 

execute the simulation for the 300x300 cells with up to 10 
nodes, the conservative simulator is successfully reducing 
the execution time starting with 2 nodes. The results show 
that the smallest execution times reported by the conserva-
tive simulator for the first three sizes are almost 1.5 times of 
the minimum execution times achieved by the optimistic 
one (i.e. 75.05 vs. 35.18, 600.65 vs. 397.81, and 2349.30 vs. 
1835.47 for the first three model sizes respectively). This is 



  

mainly because Fire2 is computation intensive and each 
computation takes longer time compared to Fire1, resulting 
longer LP suspensions, thus, longer execution times. Since 
the suspension-free nature of the optimistic simulator is not 
affected by this characteristic of the model, the optimistic 
simulator achieves lower execution times but at the cost of 
much more number of nodes. The speedups achieved by 
both simulators are presented in Figure 3. The speedup 
graphs clearly show higher speedups are achieved by the 
conservative simulator as the model becomes larger. Similar 
to Fire1 the highest speedups are obtained at the 500x500 
cells model. As in Fire1 the optimistic simulator shows 
higher speedups when a smaller model is simulated. The 
larger the model is the lower speed up is observed for this 
simulator. Table 4 gives the results for Watershed model. 
Outstanding performance is achieved by the conservative 
simulator with high speedups compared to the sequential 

simulator for the four different model sizes. As in other 
models presented here, the conservative simulator reduces 
memory consumption remarkably in all cases compared to 
the optimistic one. Also, lower execution times are achieved 
when a small number of nodes are used. Since the Water-
shed model is communication intensive, the simulation re-
quires numerous number of inter-LP messages limiting the 
parallelism of the conservative simulator as the LPs are re-
quired to suspend more often which would result in more 
null-messages produced and longer suspension periods. 
This behavior degrades the performance of the conservative 
simulator resulting higher execution time compared to the 
optimistic one when larger number of nodes are used. The 
speedups graphs shown in Figure 4 illustrate the perform-
ance achieved by the two simulators compared with the se-
quential results. 

TABLE 4. WATERSHED EXECUTION RESULTS 
Size Sequential Simulator Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

T 419.53 285.01 234.89 212.73 190.93 201.82 173.80 183.52 191.39 198.77 209.62 215.12 -
710.24 (T) MEM 48.70 31.96 24.24 19.94 17.38 15.33 14.13 13.01 12.14 11.45 10.88 10.41 -

91.88(MEM) T 469.65 306.25 257.18 195.16 176.19 172.39 136.18 136.37 142.69 143.86 139.54 141.85 -
MEM 70.46 164.86 128.68 131.07 132.81 132.27 153.82 141.87 128.25 114.39 113.95 103.44 -

T 596.24 383.29 284.21 260.23 232.97 242.63 255.48 218.45 229.69 240.14 251.47 259.83 271.28
1025.64(T) MEM 69.18 40.08 30.88 25.19 21.82 19.18 17.31 16.17 15.03 14.13 13.39 12.78 12.26
131(MEM) T 616.28 390.68 293.33 237.82 208.26 204.82 198.27 169.12 168.45 168.01 165.54 165.64 166.55

MEM 89.69 163.07 164.18 151.55 171.62 148.91 138.31 117.57 139.45 156.50 149.91 130.20 122.69
T 1621.89 1079.23 877.52 741.16 648.49 631.08 593.39 552.99 553.24 563.53 605.10 537.63 462.34

2871.02(T) MEM 188.00 99.26 69.58 54.80 46.32 40.33 36.55 33.27 31.09 29.02 27.32 25.91 24.97
364(MEM) T 1749.99 1193.27 921.26 755.63 621.20 544.48 465.78 442.03 349.26 346.71 352.51 358.92 282.79

MEM 241.00 244.25 191.67 161.25 147.60 141.67 149.93 150.81 169.00 156.50 147.09 139.54 170.61
T 6583.68 3960.89 3059.01 2637.42 2298.66 2204.79 2111.54 1998.58 1902.31 1779.51 1853.76 1864.00 1734.73

11601.8(T) MEM 746.00 388.00 267.83 207.38 171.40 147.50 130.21 117.50 107.48 99.48 93.11 87.81 83.25
1462(MEM) T x 5650.52 3353.21 2679.50 2217.38 2060.85 1866.57 1761.43 1625.72 1467.14 1468.35 1434.94 1298.03

MEM x 692.75 485.33 392.88 336.60 305.50 277.71 255.44 241.33 228.55 223.27 211.67 206.92
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Watershed Speedups of the Optimistic Simulator 
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Figure 4. Watershed Speedups for Both Simulators. 

As in Fire1 and Fire2, the conservative simulator shows 
higher speedups when the model size is larger. In fact, 
much higher speedups are achieved at all cases of the Wa-

tershed model due to its complexity and size. For the opti-
mistic simulator, unlike in Fire1 and Fire2, better speedups 
are achieved for larger sizes. However, when the number of 



  

nodes increases beyond a level, the speedups star to drop due to increased number of rollbacks. 
 

5. CONCLUSION 
A comparative performance analysis has been conducted to 
analyze the performance of CCD++ compared to an opti-
mistic DEVS simulator (PCD++) by simulating several 
DEVS-based environmental models with different charac-
teristics. The experimental results presented in this paper 
showed that the optimistic simulator outperforms the con-
servative one when the model size is small. As the model 
size increases better performance is achieved in terms of 
lower memory consumption and lower execution time by 
the conservative simulator. Although the optimistic simula-
tor shows better performance at large models but this is 
only achieved at the cost of more participating nodes, and it 
is limited to a certain size. Meaning that, the optimistic 
simulator fails to execute very large models making the 
conservative one the simulator of the choice when limited 
memory is available and also when very large models are to 
be executed. We are currently working on optimizing the 
conservative simulator to reduce the overhead of the syn-
chronization mechanism. We are also investigating dynamic 
load balancing by introducing dynamic process creation and 
deletion into the conservative simulator to achieve higher 
performance.   
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