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Abstract 
An approach to carrying out asynchronous distributed 
simulation of multiprocessor message passing architec-
tures is presented. Aiming at achieving better perform-
ance on Conservative DEVS-based simulations, we intro-
duce the GLM protocol which borrows the idea of safe 
processing intervals from the conservative time window 
algorithm and maintains global synchronization in a fash-
ion similar to the distributed snapshot technique. Under 
the GLM scheme, a central lookahead manager (LM) ex-
ists which is in charge of receiving every LP’s lookahead, 
identifying the global minimum lookahead of the system, 
and broadcasting it via null messages to all LPs. The 
simulation is divided into cycles of two phases: Parallel 
phase and Broadcast phase. The GLM protocol is asyn-
chronous and the central lookahead manager is not ex-
pected to be a bottleneck since the only message trans-
missions involving it take place when all LPs are blocked 
waiting for permission to advance their LVTs. The results 
presented in this paper show that the GLM protocol not 
only significantly reduces the total number of null mes-
sages, but it improves the performance and higher speed-
ups are achieved. 
 
1. INTRODUCTION 
 Modeling and simulation (M&S) has become a cost-
effective tool for analyzing and designing complex sys-
tems in a broad variety of fields. Varied parallel and dis-
tributed simulation (PADS) techniques have been pro-
posed to deal with large and complex models. In particu-
lar, parallel discrete event simulation (PDES) has become 
the technology of choice to speed up large-scale discrete-
event simulations. Various synchronization techniques 
have been proposed for PDES systems, and they generally 
fall into two major classes: conservative, which strictly 
avoid causality violations  [1]; and optimistic, which allow 
violations and recover from them by providing a rollback 
mechanism  [2]. The conservative approaches were the 
first synchronization algorithms proposed in the late 
1970s by R. E. Bryant  [3], K. M. Chandy and J. Misra  [4]. 

The Chandy-Misra-Bryant (CMB) algorithm prevents the 
occurrence of causality errors, and it prevents deadlocks 
by making use of null-messages. In order to improve per-
formance, these algorithms use lookahead information 
provided by the simulation designer. 
 Although PDES techniques have been very success-
ful, the methods do not address the definition of simula-
tion models. With this goal, we are trying to combine 
PDES algorithms with advanced modeling methods. In 
particular, we propose to use the DEVS (Discrete Event 
System Specification) formalism  [5], which provides a 
discrete-event approach to construct hierarchical and 
modular models. We focus on two extensions: P-DEVS 
 [6] , which allows adequate handling of simultaneous 
events in parallel and distributed environments, and Cell-
DEVS  [7], which allows representing complex discrete 
event spatial models. These formal methods have been 
implemented in the CD++ toolkit  [8], raising various 
issues related to performance, scalability, and complexity. 
In order to be able to deal with complex models, we im-
plemented optimistic PDES algorithms, and the first 
purely conservative simulator for Cell-DEVS, called Con-
servative CD++ (CCD++)  [9]. CCD++ uses a Conserva-
tive DEVS synchronization algorithm based on the classi-
cal CMB approach with deadlock avoidance  [9].  
 Conservative algorithms can distribute a large num-
ber of null messages throughout the simulation, degrading 
performance. In order to decrease the overhead of the 
original conservative DEVS algorithm, we propose the 
Global Lookahead Management (GLM) protocol which 
is based on the Conservative Time Window algorithm 
 [11] and the Distributed Snapshot mechanism [12]. GLM 
dramatically reduces the number of null messages by or-
ganizing the conservative execution in such a way that 
every logical process (LP) reports its lookahead only to 
the global manager rather than to every neighboring LP.  
 This work will present the details of the GLM proto-
col for conservative simulation of large scale DEVS-
based models. The implementation details and different 
strategies of the protocol such as scheduling, null message 
distribution mechanism, lookahead extraction, deadlock 
avoidance technique, as well as LP block and resume me-
chanism will be discussed thoroughly. Following the 



simulation overview, we present statistical analysis by 
running both communication- and computation-extensive 
large scale DEVS-based models. The experiments are 
conducted over both the original conservative DEVS pro-
tocol and the proposed GLM mechanism to show the per-
formance gain. The results shown by this research clarify 
the robustness of GLM protocol in terms of handling 
large and complex simulations while significant speedups 
are noticed, indicating that the protocol is well suited for 
simulating such models. 
 
2. BACKGROUND 
Although the field of PDES has advanced steadily in the 
last 20 years  [1], most existing techniques focus on the 
simulation algorithms only, making modeling of the sys-
tem of interest a difficult task. The DEVS formalism, in-
stead, focuses on modeling methods that can be executed 
by independent abstract simulation engines  [5]. DEVS is 
a sound formal M&S framework for discrete-event sys-
tems, which allows the construction of hierarchical mod-
els in a modular manner. A system defined by DEVS is 
described as a composition of behavioral (atomic) and 
structural (coupled) model components.  
 DEVS has been proven to be the most generic for-
malism to represent DEDS (Discrete Event Dynamic Sys-
tems), and it has been extended to deal with continuous 
and time-based models. P-DEVS  [6] provides an elegant 
mechanism for handling simultaneous events at the mod-
eling level, and it also prevents serialization constraints, 
allowing more efficient execution of models in parallel 
and distributed environments. Cell-DEVS  [7] makes use 
of DEVS for defining cellular models, by defining every 
cell as an atomic DEVS component. The formalism de-
fines complex cell behavior with simple instructions, al-
lowing the construction of n-dimensional cell spaces, 
providing advanced constructions to represent the cell’s 
timing behavior.  
 CD++  [8] is an open source M&S environment which 
implements DEVS, Cell-DEVS, and P-DEVS and sup-
ports standalone and parallel/distributed simulations on 
different platforms. A parallel optimistic simulator, called 
as PCD++  [14] was developed for high-performance 
simulation of these models. In  [9] we introduced the Con-
servative DEVS algorithm which is based on CMB null 
message protocol with deadlock avoidance. The algorithm 
overcomes the limitations of the original conservative 
DEVS  [5] by: (i) implementing the mechanism at the top 
most level of the DEVS abstract simulator hierarchy, thus 
reducing the frequency of information computation, and 
(ii) performing a single lookahead computation rather 
than two types of calculations (Earliest Input Time EIT 

and Earliest Output Time EOT as in  [5]). This  results in 
a significant reduction of number of null messages.  
 We are interested in improving the performance fur-
ther, thus, we introduce the Global Lookahead Man-
agement (GLM) protocol. GLM, based on the Conserva-
tive Time Window algorithm  [11] and the Distributed 
Snapshot mechanism  [12],  significantly reduces the 
number of null messages by directing them to a global 
manager rather than to neighboring LPs. The GLM proto-
col implements an asynchronous strategy  [13] in the sense 
that there is no global clock (every process maintains its 
own local clock) and GVT approximation is performed 
based on LPs’ lookahead information. The centralized 
fashion of the GLM protocol does not cause any overhead 
neither it is prone to bottleneck because the algorithm is 
only invoked when the simulation is suspended and LPs 
are blocked waiting for null messages. In fact, the GLM 
protocol is only active when there is nothing else going on 
in the simulation. 
 These new algorithms have been implemented in 
CCD++, a conservative DEVS and Cell-DEVS simulator 
 [9]. CCD++ supports both standalone and parallel conser-
vative simulations. The simulator is built on top of the 
WARPED kernel  [15], which provides services for defin-
ing different types of processes (simulation objects). 
Simulation objects on a physical processor are grouped 
into an LP, and they communicate through Message Pass-
ing Interface (MPI). WARPED has been used as 
middleware to provide scheduling, memory, file, event, 
communication and time management.  
  
3. ARCHITECTURE OF CCD++  
CCD++ simulation is carried out by two types of DEVS 
processors: Simulators and Coordinators. Simulators exe-
cute atomic DEVS models, and Coordinators are paired 
with coupled models. Simulators are in charge of invok-
ing the DEVS functions defined in their atomic models. 
On the other hand, Coordinators must route messages and 
schedule the imminent dependant(s). At the beginning of 
the simulation, one logical process (LP) is created on each 
machine (physical process). Then, each LP hosts one or 
more DEVS processors. CCD++ employs a flat structure 
by creating a Node Coordinator (NC), a Flat Coordinator 
(FC), and a set of Simulators on each node. A special Co-
ordinator, called Root is created on machine 0, which is in 
charge of starting the simulation and performing I/O op-
erations among the simulation system and the 
environment. Only one NC is created on each machine 
and acts as the local central controller on its hosting LP. 
The NC is the parent coordinator for FC and routes re-
mote messages received from the Root or from other re-
mote NCs to the FC. The Simulators are the child proces-



sors of the local FC representing the atomic components 
of DEVS and Cell-DEVS models. 
 DEVS processors exchange two categories of mes-
sages: content messages and control messages. The first 
category includes the external (x) and the output messages 
(y), and the second category includes the initialization (I), 
collect (@), internal (*), and done messages (D). To de-
scribe these messages, external and output messages are 
used to exchange simulation data between the models, ini-
tialization messages start the simulation, collect and in-
ternal messages trigger the output and the state transition 
functions respectively in the atomic DEVS models, done 
messages handle synchronization by carrying the model 
timing information. The simulation is executed in a mes-
sage-driven manner. Figure 1 illustrates CCD++ proces-
sors and the messaging among them.  

Figure 1. CCD++ processors and messages 
 The simulation starts by the Root Coordinator resid-
ing on node0 by sending an (I, t) message to all NCs. At 
any virtual time, the message flow among the LPs is or-
ganized into a multi-phased structure that includes an op-
tional collect phase and a mandatory transition phase, 
which in turn may involve multiple rounds of computa-
tion to execute state transitions incrementally. The collect 
phase starts with a collect message sent from the NC to 
the FC and ends with the following done message re-
ceived by the NC. The transition phase begins with the 
first internal message sent from the NC to the FC and 
ends at the last done message received by the NC at that 
time. The transition phase is mandatory for each individ-
ual simulation time. The output functions in the imminent 
atomic models are invoked during collect phases, the state 
transitions for the atomic models are performed in the 
transition phases (as defined in P-DEVS formalism).  
   
4. PHASE-BASED SIMULATION WITH GLM  
The GLM protocol borrows the idea of safe processing in-
tervals from the Conservative Time Window algorithm 
and maintains global synchronization in a fashion similar 

to the Distributed Snapshot technique. Under GLM, a 
central lookahead manager (LM) exists on LP0 which is 
in charge of three main tasks: 1) receiving every LP’s 
lookahead, 2) identifying the global minimum lookahead 
of the system, and 3) broadcasting it via null messages to 
all LPs. This implies that the LPs are no longer required 
to send their lookahead information directly to each other 
as in the Conservative DEVS algorithm [9]; rather, they 
now send their lookahead via null messages to the LM on-
ly. In fact, the sole function of the LM is to detect the 
suspension phase, and to initiate the resume phase by 
broadcasting the global minimum lookahead. The entire 
algorithm works using the following sequence: 

(i) Parallel phase: LPs run simulation until suspension. 
(ii)  Broadcast phase: LM broadcasts global minimum 

lookahead allowing LPs to advance their LVTs. 
 
 In the original conservative DEVS algorithm, each 
LP had to send a null message to every LP and block until 
all LPs send back their null messages accordingly. With 
the GLM protocol, each LP sends one null message to the 
LM and it blocks until the LM sends back a null message 
carrying the global minimum lookahead value. GLM not 
only reduces the number of null messages, but it also re-
duces the blocked time of LPs since they now wait for on-
ly a single null message to be received before they can re-
sume as opposed to the Conservative DEVS algorithm 
where each LP waits on (N-1) null messages every time it 
blocks. As the number of participating LPs increases, the 
performance achieved with GLM increases, merely be-
cause the total number of LPs has a direct impact on the 
synchronization overhead. The key characteristic of the 
GLM protocol is that it is asynchronous and the central 
LM is not expected to be a bottleneck since the only mes-
sage transmissions involving it take place at the end of 
Parallel phase and Broadcast phase. In fact, the LM does 
not carry out any computation and it is only invoked when 
all LPs are blocked and the simulation is suspended. 
Thus, the centralized fashion of the GLM does not intro-
duce any overhead. 
   
4.1. Lookahead and LVT Computation Strategy 
Both lookahead and LVT of the GLM protocol are com-
puted the same way as in the Conservative DEVS algo-
rithm. At every NC, the lookahead computation is per-
formed as follows [9]:  
 
lookahead = MIN( timestamp of most recently sent output 
to a remote LP, timestamp of first unprocessed input, 
closest state transition time).              (1)  
 The lookahead is then sent to the LM via a single null 
message and the LP suspends. Upon receiving the re-
sponse null message from the LM, the LP resumes by first 
calculating the new LVT as follows  [9]: 



 
LVT = MIN(timestamp of the input even from the envi-
ronment, timestamp of most recently sent output to a re-
mote LP, timestamp of first unprocessed input, closest 
state transition time, time of new global lookahead value 
received from LM).                (2) 
 Thus, the NC computes the new LVT as the mini-
mum value among: (i) the timestamp of the input event 
received from the environment; (ii) the timestamp of the 
external message recently sent to a remote LP; (iii) the 
time of the NC Message Bag (minimum timestamp 
among unprocessed input events); (iv) the closest state 
transition time of local child processors previously given 
by the FC in the done message; and (v) the new global 
lookahead value received from LM via null message. 
 Similar to the Conservative DEVS algorithm, the NC 
is the local synchronizer at the LP and invokes the GLM 
protocol at the beginning of every collect phase. The NC 
issues the collect phase by first performing lookahead 
computation according to Formula 1, then, it sends the 
calculated value via a single null message to the LM and 
blocks the LP. Upon receiving the response null message 
form the LM, the LP resumes and the NC performs a LVT 
computation, which will take into account the newly re-
ceived minimum global lookahead from the LM.  

4.2. Null Message Distribution 
Based on the strategy used to partition a DEVS/Cell-
DEVS model, each LP can only send/receive event mes-
sages (external messages) to/from those defined by DEVS 
neighboring. That is, according to DEVS neighborhood 
specified by the model, if an atomic component (repre-
sented by a Simulator) on an LP is a neighbor of another 
atomic component residing on a different LP, then these 
two LPs are neighbors and they can communicate to each 
other through inter-LP communication. Therefore, it is 
possible that some LPs are not direct neighbors of each 
other because the model’s partitions they hold are not 
DEVS-neighbors with each other. Figure 2-A illustrates 
the partitioning of an 8x8 Cell-DEVS model on four LPs. 
The partitioning mechanism divides the cell space into 
four equal portions (8x2 cells per LP).  Figure 2-B shows 
which LPs send x messages to each other (i.e. their child 
Simulators are DEVS neighbors), and Figure 2-C repre-
sents the conservative neighboring of LPs where each LP 
sends null messages to every other LP, and on the other 
hand, it receives null messages from them. The GLM pro-
tocol resolves this tight coupling of LPs by assigning a 
simple LP connectivity strategy. Under the new scheme, 
each LP is only coupled with the LP for which the LM re-
sides on (i.e. LP0). Hence, the LP neighborhood is con-
figured as in Figure 2-D. 
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Figure 2. LP Neighboring in Conservative DEVS vs. GLM Protocol. 
 

4.3. LP Block and Resume Mechanism 
The GLM block and resume mechanism is slightly differ-
ent from the Conservative DEVS algorithm in the sense 
that LPs are no longer distributing null messages to each 
other, neither they wait for reception of null messages 
from every LP. In return, each LP sends a single null 
message at the start of every collect phase to only the LM 
and stays blocked until the single null message reporting 

the new global minimum lookahead is received from the 
LM.  This strategy reduces the number of null messages.  
 
4.4. Dynamic Lookahead 
The lookahead computation is performed after each LVT 
computation; hence, it is updated and reported to the LM 
every time before the LP is suspended. This strategy en-
sures that the lookahead value of an LP represents the lat-



est LVT update, as there is at least one lookahead compu-
tation per LVT update. The dynamic lookahead mecha-
nism of the GLM protocol states that lookahead value is 
not fixed and every lookahead computation could result in 
a different value than the previous stage. Unlike other ex-
isting conservative algorithms, the modeler is not required 
to specify the lookahead of the system. The ability of the 
algorithm in dynamically extracting the lookahead infor-
mation from the model itself is a main advantage of this 
approach.  

 
4.5. Low-cost Lookahead Computation 
The lookahead computation is a fast, efficient, and low-
cost method that involves a simple comparison between 
existing parameters. In fact, there is neither an actual 
computation nor a significant computation time required 
to calculate the lookahead. Rather, the lookahead is ex-
tracted from already computed data that existed in the 
simulator before the conservative protocol was integrated 
with it. Compared to other existing conservative mecha-
nisms, this benefit reduces the overhead of the algorithm, 
especially the frequency of invoking lookahead computa-
tion, which increases as the model size grows. 

 
4.6. Deadlock Avoidance 
Since null message distribution of LPs to the LM occurs 
before LPs are suspended, deadlock is strictly avoided. 
NCs only suspend the LP after performing a lookahead 
computation and reporting it to the LM via a null mes-
sage. Thus, when an LP is suspended, it has already for-
warded its null message, and if every other LP is sus-
pended as well, they would all resume because all re-
quired null messages have been already sent to the LM 
before suspension has taken place.  
 
4.7. I/O Operation 
The only messages an LP sends out are external messages 
and null messages. The external messages are sent out to 
neighbor LPs defined by DEVS neighboring, while null-
messages are sent out to the LM on node 0. Similarly, an 
LP can only receive external messages from its DEVS 
neighbor LPs, and null messages from the LM. 
 
4.8. Termination 
The simulation terminates if the Stop Time (specified by 
the model) is reached or all LPs are idle and have no un-
processed event in their input queues. The NC sets the LP 
to idle when the LM sends a null message reporting infin-
ity as the global lookahead value, all local child Simula-
tors have next transition time of infinity, and there is no 
unprocessed event in the NC message bag. The last mes-
sage sent out by a NC before setting the LP to idle is a 

null messages carrying infinity lookahead. This ensures 
that other LPs do not stay blocked awaiting last null-
message from the idle LP.  
 
5. SUMMARY OF THE ALGORITHM 
Based on the LP structure and the division of functional-
ities in CCD++, the key features and assumptions of the 
simulation process are as follows: 
1. All messages originating form Simulators must go 

through the parent FC. Hence, there is no direct 
communication between Simulators (even local 
ones). FCs are always aware of the timing of state 
changes at their child Simulators. 

2. Outgoing inter-LP communication happens only in 
the collect phases, whereas incoming inter-LP com-
munication can occur in any phase. Since the output 
functions of imminent models are invoked only in the 
collect phases, at any given simulation time, all ex-
ternal messages going to remote NCs are sent out by 
the end of the collect phase. On the other hand, an ex-
ternal message from a remote source can arrive at the 
destination NC in any phase.  

3. The NC is the starter for every collect and transition 
phase. The NC is invoked when it receives a done 
message from the FC. The done message could be in 
response to a (I, t), (@, t), or (*, t) previously sent to 
the FC. 

4. On each node, the simulation time is advanced by on-
ly the NC. The NC calculates LVT of the LP at the 
beginning of every collect phase. The local FC and 
the Simulators do not send messages with a time-
stamp different than the current LVT. 

 
6. PERFORMANCE EVALUATION 
 
6.1. Experiment platform and metrics 
To analyze the performance of CCD++, extensive tests 
were carried out on a cluster of 26 compute nodes (dual 
3.2 GHz Intel Xeon processors, 1 GB PC2100 266 MHz 
DDR RAM) running Linux WS 2.4.21 interconnected 
through Gigabit Ethernet and communicating over 
MPICH 1.2.6. Table 1 lists the metrics collected in the 
experiments through extensive measurements.  

Table 1. Performance metrics 
Metrics Description 

T Total execution time of the simulation (sec) 

NMR Null event message reduction factor  
 Three Cell-DEVS models were tested in our experi-
ments. Two of them (namely Fire1 and Fire2) simulate 
forest fire propagation   [16] over 50 hours in a two dimen-
sional cell space based on Rothermel’s mathematical 
definition   [17]. Fire1 and Fire2 differ in the way the 
spread rates are calculated. The first model uses a prede-



termined rates at reduced runtime computation cost, while 
the second one invokes the fireLib   [18] library to calcu-
late spread rates dynamically based on a set of parameters 
such as fuel type, moisture, wind direction and speed. The 
spread rate computations are performed at the Simulators 
when executing (*, t) messages. Hence, the time for exe-
cuting a (*, t) message reflects the computation intensity 
of the state transition which was calculated to be 112 µs 
for Fire1, and 748 µs for Fire2. 
 The third model used, called as Watershed, was a 
simulation of environmental influence on hydrological 
dynamics of water accumulation over 30 minutes in a 
three dimensional cell space   [19]. Although Watershed 
model (with a 577 µs state transition time) is not as com-
pute-intensive as Fire2, it is a large 3D model with high 
communication requirements. 
 
6.2. Test results and analysis 
For all the three models, a simple partition strategy was 
used which evenly divides the cell space into horizontal 
rectangles. The fire propagation model (Fire1 and Fire2) 
was tested using different sizes of cell spaces: 100 x 100, 

200 x 200, and 300 x 300. The Watershed model was 
tested with 25 x 25 x 2, 30 x 30 x 2, and 50 x 50 x 2 cells. 
Each of these cases was tested on 2 to 26 nodes. 
 Figure 3, 5, and 7 illustrate the total execution time 
achieved on 1 to 26 nodes for Fire1 model with 100x100, 
200x200, and 300x300 cells respectively. As we can see, 
on each different size, the GLM protocol reduces the exe-
cution time compared to the Conservative DEVS algo-
rithm for every given number of nodes. Meaning that, for 
the three mentioned model sizes, the smallest execution 
time is always achieved by the GLM protocol. It is also 
shown that for any given number of nodes, the execution 
time always increases with the size of the model. While 
the Conservative DEVS protocol increases the execution 
time after it reaches the smallest execution time, the GLM 
keeps reducing the execution time as the number of nodes 
increase in most cases. In fact, the GLM protocol shows 
much better performance compared to the Conservative 
DEVS algorithm for all scenarios. This is merely due to 
the significant null message reduction that the GLM pro-
vides as shown in Figure 4, 6, and 8 for the three different 
model sizes. 
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Figure 3. Total Execution Time of Fire1 (100x100 cells)             Figure 4. Total Number of Null Messages of Fire1 (100x100 cells) 
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Figure 5. Total Execution Time of Fire1 (200x200 cells)             Figure 6. Total Number of Null Messages of Fire1 (200x200 cells)
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Figure 7. Total Execution Time of Fire1 (300x300 cells)             Figure 8. Total Number of Null Messages of Fire1 (300x300 cells) 
 The calculated null message reduction factor for 
Fire1 is given in Table 2. The speedups achieved with re-
spect to the sequential simulator (results obtained on 1 

node) are given in Table 3 where it is shown that the 
GLM protocol always results in better speedup compared 
to the Conservative DEVS algorithm. 

Table 2. NMR for Different Sizes of Fire1 Model 
Size Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 NMR 1.23 4.00 6.77 9.52 12.21 14.85 17.46 20.02 22.55 25.08 27.53 30.02 32.43
200x200 NMR 1.00 3.13 5.28 7.44 9.59 11.75 13.90 16.05 18.20 20.34 22.48 24.61 26.75
300x300 NMR 1.00 3.02 7.25 9.35 11.44 13.54 15.63 17.72 19.82 21.90 21.64 23.71 25.77  

Table 3. GLM vs. Conservative DEVS Speedups for Fire1 Model 
Size Protocol 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 GLM 1.16 1.21 1.19 1.17 1.17 1.14 1.14 1.08 1.08 1.07 1.04 0.98 0.95
100x100 Con.DEVS 1.16 1.19 1.12 1.04 0.94 0.89 0.81 0.73 0.66 0.61 0.55 0.49 0.45
200x200 GLM 1.35 1.57 1.63 1.62 1.64 1.64 1.63 1.56 1.57 1.55 1.56 1.55 1.53
200x200 Con.DEVS 1.33 1.49 1.49 1.48 1.45 1.41 1.36 1.32 1.26 1.20 1.16 1.12 1.06
300x300 GLM 1.25 1.50 1.59 1.63 1.65 1.68 1.69 1.67 1.68 1.68 1.68 1.67 1.64
300x300 Con.DEVS 1.25 1.51 1.59 1.61 1.62 1.59 1.55 1.54 1.51 1.48 1.48 1.37 1.30  

 Similarly, Figure 9, 11, and 13 illustrate the total 
execution time achieved on 1 to 26 nodes for Fire2 model 
with 100x100, 200x200, and 300x300 cells respectively. 
As in Fire1, on each different size, the GLM protocol re-
duces the execution time and total number of null mes-
sages significantly. The performance achieved by the 

GLM protocol stays high as the number of nodes are in-
creased which is not the case for the Conservative DEVS 
protocol where the performance starts to drop down as 
more nodes are engaged. The outstanding null message 
reductions are presented in Figure 10, 12, and 14 for the 
three different sizes of the model.  
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Figure 9. Total Execution Time of Fire2 (100x100 cells)             Figure 10. Total Number of Null Messages of Fire2 (100x100 cells) 
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Figure 11. Total Execution Time of Fire2 (200x200 cells)             Figure 12. Total Number of Null Messages of Fire2 (200x200 cells)
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Figure 13. Total Execution Time of Fire2 (300x300 cells)             Figure 14. Total Number of Null Messages of Fire2 (300x300 cells) 
 The calculated null message reduction factor for 
Fire2 is given in Table 4. Table 5 shows the speedups of 
both algorithms compared to the sequential results (run-

ning the simulation on a single node with a sequential 
simulator). It is shown that the GLM protocol always out-
performs the Conservative DEVS algorithm. 

Table 4. NMR for Different Sizes of Fire2 Model 
Size Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 NMR 1.23 4.00 6.77 9.52 12.21 14.85 17.46 20.02 22.55 25.08 27.53 30.01 32.43
200x200 NMR 1.00 3.13 5.28 7.44 9.59 11.75 13.90 16.05 18.20 20.34 22.48 24.61 26.75
300x300 NMR 1.00 3.02 5.09 7.15 9.23 11.30 13.36 15.44 17.50 19.57 21.64 23.71 25.77  

Table 5. GLM vs. Conservative DEVS Speedups for Fire2 Model 
Size Protocol 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 GLM 1.10 1.24 1.22 1.25 1.26 1.21 1.23 1.18 1.18 1.14 1.14 1.13 1.12
100x100 Con.DEVS 1.08 1.21 1.16 1.17 1.16 1.09 1.02 0.98 0.94 0.90 0.85 0.79 0.74
200x200 GLM 1.21 1.30 1.33 1.39 1.35 1.33 1.34 1.36 1.34 1.32 1.35 1.32 1.32
200x200 Con.DEVS 1.14 1.29 1.34 1.30 1.28 1.26 1.23 1.21 1.18 1.14 1.11 1.07 1.04
300x300 GLM 1.24 1.39 1.46 1.49 1.48 1.46 1.48 1.48 1.49 1.48 1.49 1.49 1.49
300x300 Con.DEVS 1.20 1.35 1.42 1.42 1.42 1.42 1.41 1.40 1.38 1.34 1.32 1.30 1.27

 The total execution time results for Watershed model 
are given in Figure 15, 17, and 19 for the three different 
sizes respectively. Watershed model is three dimensional 
and communication-intensive, thus, higher speedups are 
achieved with both protocols compared to Fire1 and 
Fire2. However, again the GLM protocol significantly 
shows better speedups (Table 7) in all scenarios. The total 

numbers of null messages for different Watershed simula-
tions are shown in Figure 16, 18, and 20. As presented by 
Table 6, the null message reduction factor is significantly 
high. 
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Figure 15. Watershed (25x25x2 cells) Execution Time             Figure 16. Watershed (25x25x2 cells) Total Number of Null Messages 
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Figure 17. Watershed (30x30x2 cells) Execution Time             Figure 18. Watershed (30x30x2 cells) Total Number of Null Messages 
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Figure 19. Watershed (50x50x2 cells) Execution Time             Figure 20. Watershed (50x50x2 cells) Total Number of Null Messages 
 

Table 6. NMR for Different Sizes of Watershed Model 
Size Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

25x25x2 NMR 1.33 4.00 6.67 9.33 12.00 14.66 17.33 19.96 22.62 25.32 27.98 30.31 -
30x30x2 NMR 1.33 4.00 6.67 9.33 12.00 14.66 17.33 20.00 22.65 25.32 27.96 30.61 33.22
50x50x2 NMR 1.33 4.00 6.67 9.33 12.00 14.66 17.33 20.00 22.66 25.33 27.99 30.66 33.33  

Table 7. GLM vs. Conservative DEVS Speedups for Watershed Model 
Size Protocol 2 4 6 8 10 12 14 16 18 20 22 24 26

25x25x2 GLM 1.69 2.48 3.08 3.53 4.07 4.19 4.89 4.81 4.74 4.65 4.79 4.85 -
25x25x2 Con.DEVS 1.69 2.49 3.02 3.34 3.72 3.52 4.09 3.87 3.71 3.57 3.39 3.30 -
30x30x2 GLM 1.75 2.62 3.61 4.00 4.75 4.69 4.73 5.51 5.48 5.47 5.36 5.40 5.47
30x30x2 Con.DEVS 1.72 2.68 3.61 3.94 4.40 4.23 4.01 4.70 4.47 4.27 4.08 3.95 3.78
50x50x2 GLM 1.75 2.69 3.44 3.89 4.68 4.94 5.20 5.71 5.95 6.07 6.03 7.66 8.92
50x50x2 Con.DEVS 1.77 2.66 3.27 3.87 4.43 4.55 4.84 5.19 5.19 5.09 4.74 5.34 6.21  

 
7. CONCLUSION AND FUTURE WORK 
 We presented the GLM protocol for parallel conser-
vative simulation of large scale DEVS-based models. The 
protocol overcomes the issue of large number of null 
messages of the Conservative DEVS algorithm by intro-

ducing a global lookahead manager that takes care of null 
message reception and distribution. The simulation is di-
vided into cycles of two distinguished phases: a parallel 
phase which corresponds to the duration where all LPs 
are busy performing parallel computations, and a broad-



cast phase where LPs are suspended and waiting for the 
global lookahead manager to allow them advance their 
LVTs. The GLM protocol is asynchronous and the central 
lookahead manager is not expected to be a bottleneck 
since the only message transmissions involving it take 
place at the end of Parallel phase and Broadcast phase. In 
fact, the LM does not carry out any computation and it is 
only invoked when all LPs are blocked and the simulation 
is suspended. Thus, the centralized fashion of the GLM 
does not introduce any overhead. The results presented in 
this paper showed that the GLM protocol not only reduces 
the total number of null messages, but it significantly im-
proves the performance and higher speedups are achieved. 
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