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Abstract

An approach to carrying out asynchronous distrithute
simulation of multiprocessor message passing achit
tures is presented. Aiming at achieving better qrart
ance on Conservative DEVS-based simulations, we-int
duce the GLM protocol which borrows the idea ofesaf
processing intervals from the conservative timedoein
algorithm and maintains global synchronization ifash-
ion similar to the distributed snapshot techniqueder
the GLM scheme, a centrilokahead manager (LM) ex-
ists which is in charge of receiving every LP’skabead,
identifying the global minimum lookahead of the teys,
and broadcasting it via null messages to all LPse T
simulation is divided into cycles of two phas€srallel
phase androadcast phase. The GLM protocol is asyn-
chronous and the central lookahead manager is xot e
pected to be a bottleneck since the only messages-tr
missions involving it take place when all LPs alecked
waiting for permission to advance their LVTs. Tlesults
presented in this paper show that the GLM protouil
only significantly reduces the total number of nulés-
sages, but it improves the performance and higheed:
ups are achieved.

1. INTRODUCTION

Modeling and simulation (M&S) has become a cost-
effective tool for analyzing and designing compkys-
tems in a broad variety of fields. Varied paradeld dis-
tributed simulation (PADS) techniques have been pro
posed to deal with large and complex models. Itiquar
lar, parallel discrete event simulation (PDES) basome
the technology of choice to speed up large-scaerelie-
event simulations. Various synchronization techagu
have been proposed for PDES systems, and theyadlgner
fall into two major classes: conservative, whichctly
avoid causality violationfl]; and optimistic, which allow
violations and recover from them by providing dbatk
mechanism[2]. The conservative approaches were the
first synchronization algorithms proposed in theela
1970s by R. E. Bryar8], K. M. Chandy and J. Misri&].

The Chandy-Misra-Bryant (CMB) algorithm prevente th
occurrence of causality errors, and it preventsibe&s
by making use of null-messages. In order to impnose
formance, these algorithms use lookahead informatio
provided by the simulation designer.

Although PDES techniques have been very success-
ful, the methods do not address the definitioniofuta-
tion models. With this goal, we are trying to combi
PDES algorithms with advanced modeling methods. In
particular, we propose to use the DEVS (Discretentv
System Specification) formalisiib], which provides a
discrete-event approach to construct hierarchicadl a
modular models. We focus on two extensions: P-DEVS

[6], which allows adequate handling of simultaneous
events in parallel and distributed environments| @ell-
DEVS [7], which allows representing complex discrete
event spatial models. These formal methods have bee
implemented in the CD++ toolkif8], raising various
issues related to performance, scalability, andptexity.

In order to be able to deal with complex models,ime
plemented optimistic PDES algorithms, and the first
purely conservative simulator for Cell-DEVS, callédn-
servative CD++ (CCD++])9]. CCD++ uses a Conserva-
tive DEVS synchronization algorithm based on tressi-

cal CMB approach with deadlock avoidar@g
Conservative algorithms can distribute a large num

ber of null messages throughout the simulationrattigg

performance. In order to decrease the overheadhef t

original conservative DEVS algorithm, we propose th

Global Lookahead M anagement (GLM) protocol which

is based on the Conservative Time Window algorithm

[11] and the Distributed Snapshot mechanism [12]MG
dramatically reduces the number of null messagesrby
ganizing the conservative execution in such a weat t
every logical process (LP) reports its lookahealy ¢o
the global manager rather than to every neighbdrihg
This work will present the details of the GLM poet
col for conservative simulation of large scale DEVS
based models. The implementation details and difer
strategies of the protocol such as scheduling,maelisage
distribution mechanism, lookahead extraction, decd|
avoidance technique, as well as LP block and resume
chanism will be discussed thoroughly. Following the



simulation overview, we present statistical analybiy
running both communication- and computation-extensi
large scale DEVS-based models. The experiments are
conducted over both the original conservative DEV&
tocol and the proposed GLM mechanism to show the pe
formance gain. The results shown by this reseadatifyc

the robustness of GLM protocol in terms of handling
large and complex simulations while significant exhaps

are noticed, indicating that the protocol is welited for
simulating such models.

2. BACKGROUND

Although the field of PDES has advanced steadilyhim
last 20 yearql], most existing techniques focus on the
simulation algorithms only, making modeling of thys-
tem of interest a difficult task. The DEVS formafisin-
stead, focuses on modeling methods that can beuckec
by independent abstract simulation engiffgs DEVS is

a sound formal M&S framework for discrete-event-sys
tems, which allows the construction of hierarchicedd-
els in a modular manner. A system defined by DEYS i
described as a composition of behaviorabrfic) and
structural ¢oupled) model components.

DEVS has been proven to be the most generic for-
malism to represent DEDS (Discrete Event Dynamis-Sy
tems), and it has been extended to deal with cootis
and time-based models. P-DEVY provides an elegant
mechanism for handling simultaneous events at thé-m
eling level, and it also prevents serialization stoaints,
allowing more efficient execution of models in diela
and distributed environments. Cell-DEVJH makes use
of DEVS for defining cellular models, by definingesy
cell as an atomic DEVS component. The formalism de-
fines complex cell behavior with simple instructoral-
lowing the construction of n-dimensional cell space
providing advanced constructions to represent #iEsc
timing behavior.

CD++[8] is an open source M&S environment which
implements DEVS, Cell-DEVS, and P-DEVS and sup-
ports standalone and parallel/distributed simutegtion
different platforms. A parallel optimistic simulataalled
as PCD++[14] was developed for high-performance

simulation of these models. |8] we introduced the Con-
servative DEVS algorithm which is based on CMB null
message protocol with deadlock avoidance. The igtgor
overcomes the limitations of the original consemet

DEVS [5] by: (i) implementing the mechanism at the top
most level of the DEVS abstract simulator hierarchys
reducing the frequency of information computatiand
(i) performing a single lookahead computation eath
than two types of calculation&drliest Input Time EIT

and Earliest Output Time EOT as in[5]). This results in
a significant reduction of number of null messages.

We are interested in improving the performance fur
ther, thus, we introduce th@lobal Lookahead Man-
agement (GLM) protocol. GLM, based on the Conserva-

tive Time Window algorithm[11] and the Distributed

Snapshot mechanisiil2], significantly reduces the
number of null messages by directing them to aajlob
manager rather than to neighboring LPs. The GLMro

col implements an asynchronous stratfg] in the sense
that there is no global clock (every process maistés
own local clock) and GVT approximation is performed
based on LPs’ lookahead information. The centrdlize
fashion of the GLM protocol does not cause any lowad
neither it is prone to bottleneck because the dlgoris
only invoked when the simulation is suspended aRd L
are blocked waiting for null messages. In fact, GleM
protocol is only active when there is nothing ejseng on
in the simulation.

These new algorithms have been implemented in
CCD++, a conservative DEVS and Cell-DEVS simulator

[9]. CCD++ supports both standalone and parallakeo
vative simulations. The simulator is built on toptbe
WARPED kernel[15], which provides services for defin-
ing different types of processes (simulation olggct
Simulation objects on a physical processor are ggdu
into an LP, and they communicate through Messags-Pa
ing Interface (MPI). WARPED has been used as
middleware to provide scheduling, memory, file, ®ye
communication and time management.

3. ARCHITECTURE OF CCD++

CCD++ simulation is carried out by two types of D&V
processorsSmulators andCoordinators. Simulators exe-
cute atomic DEVS models, and Coordinators are @aire
with coupled models. Simulators are in charge obka
ing the DEVS functions defined in their atomic misde
On the other hand, Coordinators must route messagks
schedule the imminent dependant(s). At the beggoin
the simulation, one logical process (LP) is create@ach
machine (physical process). Then, each LP hostsoone
more DEVS processors. CCD++ employs a flat strectur
by creating @Node Coordinator (NC), aFlat Coordinator
(FC), and a set cimulators on each node. A special Co-
ordinator, calledroot is created on machine 0, which is in
charge of starting the simulation and performin@ bp-
erations among the simulation system and the
environment. Only one NC is created on each machine
and acts as the local central controller on itgihgsLP.
The NC is the parent coordinator for FC and rouges
mote messages received from the Root or from oter
mote NCs to the FC. The Simulators are the chitetgs-



sors of the local FC representing the atomic coraptm
of DEVS and Cell-DEVS models.

DEVS processors exchange two categories of mes-
sages:content messages and control messages. The first
category includes thexternal (x) and theoutput messages
(y), and the second category includesitiigalization (1),
collect (@), internal (*), anddone messages (D). To de-
scribe these messagesternal and output messages are
used to exchange simulation data between the madiels
tialization messages start the simulatiaollect andin-
ternal messages trigger the output and the state tramsiti
functions respectively in the atomic DEVS modelsne
messages handle synchronization by carrying theemod
timing information. The simulation is executed inMmas-
sage-driven manner. Figure 1 illustrates CCD++ @soc
sors and the messaging among them.
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Figure 1. CCD++ processors and messages

The simulation starts by the Root Coordinatordesi
ing onnodel by sending anl{t) message to all NCs. At
any virtual time, the message flow among the LParis
ganized into a multi-phased structure that inclualeop-
tional collect phase and a mandatotyansition phase,
which in turn may involve multiple rounds of comaut
tion to execute state transitions incrementallye ddilect
phase starts with eollect message sent from the NC to
the FC and ends with the followingpne message re-
ceived by the NC. Théransition phase begins with the
first internal message sent from the NC to the FC and
ends at the lastone message received by the NC at that
time. Thetransition phase is mandatory for each individ-
ual simulation time. Theutput functions in the imminent
atomic models are invoked duriegllect phases, the state
transitions for the atomic models are performedha
transition phases (as defined in P-DEVS formalism).

4. PHASE-BASED SIMULATION WITH GLM

The GLM protocol borrows the idea of safe proceg#in
tervals from the Conservative Time Window algorithm
and maintains global synchronization in a fashiionilar

to the Distributed Snapshot technique. Under GLM, a
centrallookahead manager (LM) exists on LPO which is
in charge of three main tasks: 1) receiving eveB/sL
lookahead, 2) identifying thglobal minimum lookahead
of the system, and 3) broadcasting it via null ragss to
all LPs. This implies that the LPs are no longejuieed
to send their lookahead information directly toleather
as in the Conservative DEVS algorithm [9]; rathbey
now send their lookahead via null messages to -
ly. In fact, the sole function of the LM is to detethe
suspension phase, and to initiate the resume phgase
broadcasting thglobal minimum lookahead. The entire
algorithm works using the following sequence:

(i) Parallel phase: LPs run simulation until suspension.

(i) Broadcast phase: LM broadcasts global minimum

lookahead allowing LPs to advance their LVTs.

In the original conservative DEVS algorithm, each
LP had to send a null message to every LP and hiotk
all LPs send back their null messages accordingfiyh
the GLM protocol, each LP sends one null messadfeeto
LM and it blocks until the LM sends back a null mage
carrying the global minimum lookahead value. GLM no
only reduces the number of null messages, busd e-
duces the blocked time of LPs since they now vaaibh-
ly a single null message to be received before tiaeyre-
sume as opposed to the Conservative DEVS algorithm
where each LP waits on (N-1) null messages everg ii
blocks. As the number of participating LPs increasbe
performance achieved with GLM increases, merely be-
cause the total number of LPs has a direct impadhe
synchronization overhead. The key characteristi¢hef
GLM protocol is that it is asynchronous and thetn
LM is not expected to be a bottleneck since thg amts-
sage transmissions involving it take place at the ef
Parallel phase andBroadcast phase. In fact, the LM does
not carry out any computation and it is only invdkehen
all LPs are blocked and the simulation is suspended
Thus, the centralized fashion of the GLM does ntitor
duce any overhead.

4.1. Lookahead and LVT Computation Strategy

Both lookahead and LVT of the GLM protocol are com-
puted the same way as in the Conservative DEVS- algo
rithm. At every NC, the lookahead computation is-pe
formed as follows [9]:

lookahead = MIN( timestamp of most recently sent output
to a remote LP, timestamp of first unprocessed input,
closest state transition time). )

The lookahead is then sent to the LM via a singllé
message and the LP suspends. Upon receiving the re-
sponse null message from the LM, the LP resumdidiy

calculating the new LVT as follow9]:



LVT = MIN(timestamp of the input even from the envi-
ronment, timestamp of most recently sent output to a re-
mote LP, timestamp of first unprocessed input, closest
state transition time, time of new global lookahead value
received from LM). 2)
Thus, the NC computes the new LVT as the mini-
mum value among: (i) the timestamp of the inputnéve
received from the environment; (ii) the timestaniphe
external message recently sent to a remote LP; (iii) the
time of the NC Message Bag (minimum timestamp
among unprocessed input events); (iv) the closkede s
transition time of local child processors previgugiven
by the FC in thedone message; and (v) the new global
lookahead value received from LM via null message.
Similar to the Conservative DEVS algorithm, the NC
is the local synchronizer at the LP and invokes@hé/
protocol at the beginning of every collect phasiee NC
issues the collect phase by first performing lo@eah
computation according to Formula 1, then, it setids
calculated value via a single null message to theand
blocks the LP. Upon receiving the response nullsags
form the LM, the LP resumes and the NC perform&/a& L
computation, which will take into account the newtdy
ceived minimum global lookahead from the LM.

A. Partitioning of an 8x8 Cell-DEVS model

4.2. Null Message Distribution

Based on the strategy used to partition a DEVS/Cell
DEVS model, each LP can only send/receive event mes
sages éxternal messages) to/from those defined by DEVS
neighboring. That is, according to DEVS neighborhoo
specified by the model, if an atomic component rgep
sented by &mulator) on an LP is a neighbor of another
atomic component residing on a different LP, tHeesée
two LPs are neighbors and they can communicatac¢h e
other through inter-LP communication. Thereforejsit
possible that some LPs are not direct neighboreach
other because the model's partitions they hold reoe
DEVS-neighbors with each other. Figure 2-A illuttsa
the partitioning of an 8x8 Cell-DEVS model on fdups.
The partitioning mechanism divides the cell spau® i
four equal portions (8x2 cells per LP). Figure &ws
which LPs senc& messages to each other (i.e. their child
Smulators are DEVS neighbors), and Figure 2-C repre-
sents the conservative neighboring of LPs wheré &&c
sends null messages to every other LP, and onttie o
hand, it receives null messages from them. The QLdA
tocol resolves this tight coupling of LPs by assigna
simple LP connectivity strategy. Under the new sohe
each LP is only coupled with the LP for which thd ke-
sides on (i.e. LP0). Hence, the LP neighborhoodois-
figured as in Figure 2-D.
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Figure2. LP Neighboring in Conservative DEVSvs. GLM Protocol.

4.3. LP Block and Resume M echanism

The GLM block and resume mechanism is slightlyediff
ent from the Conservative DEVS algorithm in thessen
that LPs are no longer distributing null messagesach
other, neither they wait for reception of null megss
from every LP. In return, each LP sends a singlé nu
message at the start of every collect phase tothelyM
and stays blocked until the single null messagertim

the new global minimum lookahead is received frow t
LM. This strategy reduces the number of null mgesa

4.4. Dynamic Lookahead
The lookahead computation is performed after eaéh L

computation; hence, it is updated and reportedheoLtvi
every time before the LP is suspended. This styateg
sures that the lookahead value of an LP represieatst-



est LVT update, as there is at least one lookaheatpu-
tation per LVT update. The dynamic lookahead mecha-
nism of the GLM protocol states that lookahead @ahi
not fixed and every lookahead computation couldltes

a different value than the previous stage. Unliteepex-
isting conservative algorithms, the modeler isnmeguired

to specify the lookahead of the system. The abdftyhe
algorithm in dynamically extracting the lookaheadbr-
mation from the model itself is a main advantagehis
approach.

4.5. Low-cost Lookahead Computation

The lookahead computation is a fast, efficient, fowt-
cost method that involves a simple comparison betwe
existing parameters. In fact, there is neither atua
computation nor a significant computation time rieegl
to calculate the lookahead. Rather, the lookahsaglxi
tracted from already computed data that existedhen
simulator before the conservative protocol wasgrated
with it. Compared to other existing conservativechse
nisms, this benefit reduces the overhead of therighgn,
especially the frequency of invoking lookahead catap
tion, which increases as the model size grows.

4.6. Deadlock Avoidance

Since null message distribution of LPs to the LMuws
before LPs are suspended, deadlock is strictly demebi
NCs only suspend the LP after performing a lookdhea
computation and reporting it to the LM via a nulesa
sage. Thus, when an LP is suspended, it has alfeady
warded its null message, and if every other LPus-s
pended as well, they would all resume becauseeall r
quired null messages have been already sent thNhe
before suspension has taken place.

4.7. 1/0 Operation

The only messages an LP sends ouegenal messages
and null messages. Tlegternal messages are sent out to
neighbor LPs defined by DEVS neighboring, whilelnul
messages are sent out to the LM on node 0. Sigilanl
LP can only receivexternal messages from its DEVS
neighbor LPs, and null messages from the LM.

4.8. Termination

The simulation terminates if th&op Time (specified by
the model) is reached or all LPs are idle and haven-
processed event in their input queues. The NCitketsP

to idle when the LM sends a null message repoitifig-

ity as the global lookahead value, all local child @an
tors have next transition time @ffinity, and there is no
unprocessed event in the NC message bag. The é&sst m
sage sent out by a NC before setting the LP toiglie

null messages carryingnfinity lookahead. This ensures
that other LPs do not stay blocked awaiting ladi-nu
message from the idle LP.

5. SUMMARY OF THE ALGORITHM

Based on the LP structure and the division of fiometl-

ities in CCD++, the key features and assumptionthef

simulation process are as follows:

1. All messages originating fornsimulators must go
through the parent FC. Hence, there is no direct
communication betweenSmulators (even local
ones). FCs are always aware of the timing of state
changes at their chilimulators.

2. Outgoing inter-LP communication happens only in
the collect phases, whereas incoming inter-LP com-
munication can occur in any phase. Sincedhtput
functions of imminent models are invoked only ie th
collect phases, at any given simulation time, el
ternal messages going to remote NCs are sent out by
the end of theollect phase. On the other hand,exq
ternal message from a remote source can arrive at the
destination NC in any phase.

3. The NC is the starter for evecgllect andtransition
phase. The NC is invoked when it receivedoae
message from the FC. Thlene message could be in
response to a (I, t), (@, t), or (*, t) previousknt to
the FC.

4. On each node, the simulation time is advanced by on
ly the NC. The NC calculates LVT of the LP at the
beginning of everyollect phase. The local FC and
the Smulators do not send messages with a time-
stamp different than the current LVT.

6. PERFORMANCE EVALUATION

6.1. Experiment platform and metrics
To analyze the performance of CCD++, extensivestest
were carried out on a cluster of 26 compute nodesl(
3.2 GHz Intel Xeon processors, 1 GB PC2100 266 MHz
DDR RAM) running Linux WS 2.4.21 interconnected
through Gigabit Ethernet and communicating over
MPICH 1.2.6. Table 1 lists the metrics collectedtfive
experiments through extensive measurements.

Table 1. Performance metrics

Metrics Description
T Total execution time of the simulation (sec)
NMR | Null event message reduction factor

Three Cell-DEVS models were tested in our experi-
ments. Two of them (namely Firel and Fire2) sinalat
forest fire propagatiofii6] over 50 hours in a two dimen-
sional cell space based on Rothermel's mathematical
definition [17]. Firel and Fire2 differ in the way the
spread rates are calculated. The first model uggede-



termined rates at reduced runtime computation edste

the second one invokes the firel[it8] library to calcu-
late spread rates dynamically based on a set aefipgters
such as fuel type, moisture, wind direction ancespé&he
spread rate computations are performed at the Storsl
when executing (*, t) messages. Hence, the timefer
cuting a (*, t) message reflects the computatidansity
of the state transition which was calculated tolb& ps
for Firel, and 748s for Fire2.

The third model used, called as Watershed, was a
simulation of environmental influence on hydrolagic
dynamics of water accumulation over 30 minutes in a

three dimensional cell spad&9]. Although Watershed
model (with a 5771s state transition time) is not as com-

200 x 200, and 300 x 300. The Watershed model was
tested with 25 x 25 x 2, 30 x 30 x 2, and 50 x 5Dcells.
Each of these cases was tested on 2 to 26 nodes.

Figure 3, 5, and 7 illustrate the total executiione
achieved on 1 to 26 nodes for Firel model with 100X
200x200, and 300x300 cells respectively. As we sz
on each different size, the GLM protocol reducesdke-
cution time compared to the Conservative DEVS algo-
rithm for every given number of nodes. Meaning tlait
the three mentioned model sizes, the smallest &racu
time is always achieved by the GLM protocol. Itailso
shown that for any given number of nodes, the ei@tu
time always increases with the size of the moddhil&V
the Conservative DEVS protocol increases the ei@tut

pute-intensive as Fire2, it is a large 3D modehwitgh
communication requirements.

6.2. Test resultsand analysis

For all the three models, a simple partition stggteas
used which evenly divides the cell space into luoial
rectangles. The fire propagation model (Firel aimd2y
was tested using different sizes of cell space8:x1000,

Firel with 100x100 Cells
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time after it reaches the smallest execution titne GLM
keeps reducing the execution time as the numbeodés
increase in most cases. In fact, the GLM protobows

much better performance compared to the Conseevativ

DEVS algorithm for all scenarios. This is merelyedio
the significant null message reduction that the Ghd-
vides as shown in Figure 4, 6, and 8 for the tlifferent
model sizes.
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Figure 3. Total Execution Time of Firel (100x100 cells)

Figure 4. Total Number of Null M essages of Firel (100x100 cells)

Firel with 200x200 Cells

700

600
500
400
300
200
100

-/l/.

T

Execution Time (sec)

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

‘ ——GLM —=— Cons.DEVS ‘

Firel with 200x200 cells
1400000

1200000
1000000

800000

600000

400000 -

Number of Null Messages

200000 -

04
2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

o GLM m Cons.DEVS ‘

Figure5. Total Execution Time of Firel (200x200 cells)

Figure 6. Total Number of Null Messages of Firel (200x200 cells)



Firel with 300x300 Cells
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Figure 7. Total Execution Time of Firel (300x300 cells)

The calculated null message reduction factor for

Firel is given in Table 2. The speedups achieveld we-
spect to the sequential simulator (results obtaioedl

Figure 8. Total Number of Null M essages of Firel (300x300 cells)
node) are given in Table 3 where it is shown tlnet t
GLM protocol always results in better speedup camega
to the Conservative DEVS algorithm.

Table2. NMR for Different Sizesof Firel Modd

Size | Metric| 2 4 6 | 810 12 ] 14| 16 ] 18] 20 [ 22 ] 24| 26
100x100 | NMR ] 1.23] 4.00 6.77]9.52[12.21] 14.85] 17.46] 20.02] 22.55] 25.08[27.53[30.02| 32.43
200x200 | NMR ]1.00] 3.13]5.28]7.44] 9.59] 11.75]13.90{ 16.05[18.20] 20.34|22.48|24.61| 26.75
300x300 | NMR | 1.00] 3.02] 7.25[9.35/11.44] 13.54[15.63| 17.72|19.82] 21.90]21.64]23.71]{ 25.77

Table 3. GLM vs. Conservative DEV S Speedupsfor Firel M odel
Size Protocol 2 4 6 8 10 12 14 16 18 20 22 24 26
100x100 GLM 1.16]1.21]1.19]1.17]1.17] 1.14 [ 1.14| 1.08 [ 1.08 | 1.07 | 1.04 | 0.98 | 0.95
100x100 | Con.DEVS|1.16[1.19]1.12]1.04] 0.94] 0.89 [ 0.81] 0.73] 0.66 | 0.61 | 0.55] 0.49] 0.45
200x200 GLM 1.35]1.57]1.63[1.62]164]| 1.64]|163|156[1.57| 1.55]156] 1.55] 1.53
200x200 | Con.DEVS|[1.33]1.49]|1.49(1.48/ 145] 141 ]| 136[ 1.32[1.26] 1.20] 1.16] 1.12] 1.06
300x300 GLM 1.25]1.50]1.59]1.63] 1.65] 1.68 | 1.69]| 1.67 | 1.68] 1.68 | 1.68] 1.67 ] 1.64
300x300 | Con.DEVS|1.25] 1.51]1.59[1.61] 1.62]| 1.59 | 1.55| 1.54 [ 1.51]| 1.48 | 1.48] 1.37] 1.30

Similarly, Figure 9, 11, and 13 illustrate thealot

GLM protocol stays high as the number of nodesimre

execution time achieved on 1 to 26 nodesHioe2 model

with 100x100, 200x200, and 300x300 cells respelgtive
As in Firel, on each different size, the GLM protocol re-
duces the execution time and total nhumber of nidsm
sages significantly. The performance achieved by th
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creased which is not the case for the Conserva&iE¥S
protocol where the performance starts to drop dasn
more nodes are engaged. The outstanding null messag
reductions are presented in Figure 10, 12, andofi4hk
three different sizes of the model.
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Figure 9. Total Execution Time of Fire2 (100x100 cells)

Figure 10. Total Number of Null Messages of Fire2 (100x100 cells)
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The calculated null message reduction factor for ning the simulation on a single node with a seqgaknt
Fire2 is given in Table 4. Table 5 shows the speedups of simulator). It is shown that the GLM protocol alvsayut-
both algorithms compared to the sequential regults- performs the Conservative DEVS algorithm.

Table4. NMR for Different Sizes of Fire2 M odel

Size Metric 2 4 6 8 10 12 14 16 18 20 22 24 26
100x100 NMR 1.2314.00(6.77{9.52] 12.21|14.85]17.46] 20.02| 22.55] 25.08| 27.53]30.01] 32.43
200x200 NMR 1.00]3.13]5.28] 7.44] 9.59 |11.75]13.90] 16.05] 18.20 ] 20.34| 22.48]24.61]26.75
300x300 NMR 1.00]3.02|5.09| 7.15] 9.23 |11.30]13.36] 15.44| 17.50] 19.57| 21.64]23.71|25.77
Table5. GLM vs. Conservative DEV S Speedupsfor Fire2 M odel

Size [Protocol] 2 J 4] 6] 8] 1012 14T 16 18 20 [ 22 [ 24 T 26
100x100 | GLM ] 1.10]1.24|1.22]1.25] 1.26 | 1.21]1.23] 1.18 | 1.18 | 1.14 | 1.14 | 1.13] 1.12
100x100 |Con.DEVS 1.08]1.21]1.16[1.17] 1.16 | 1.09{ 1.02] 0.98 | 0.94 | 0.90 [ 0.85 | 0.79] 0.74
200x200 | GLM [ 1.21]1.30/1.33]1.39] 1.35[1.33[1.34]| 1.36 [ 1.34[ 132 ] 1.35]1.32] 1.32
200x200 |Con.DEVS 1.14]1.29|1.34|1.30] 1.28 | 1.26] 1.23| 1.21 [ 1.18 [ 1.14 | 1.11 | 1.07 | 1.04
300x300 | GLM [1.24]1.39[1.46]1.49] 1.48[1.46]1.48] 1.48] 149 1.48]1.49]1.49] 1.49
300x300 JCon.DEVY 1.20|1.35[1.42]1.42] 1.42 [ 1.42]1.41| 1.40] 1.38 ] 1.34 | 1.32 [ 1.30] 1.27

The total execution time results for Watershed ehod numbers of null messages for different Watersheulilsi-
are given in Figure 15, 17, and 19 for the thrdéint tions are shown in Figure 16, 18, and 20. As presehby
sizes respectively. Watershed model is three diropab Table 6, the null message reduction factor is Sicamtly
and communication-intensive, thus, higher speedirps high.

achieved with both protocols compared to Firel and
Fire2. However, again the GLM protocol significantl
shows better speedups (Table 7) in all scenarios.tdtal
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Table 6. NMR for Different Sizes of Water shed M odel

Size Metric 2 41 6 gl 1012 14] 16 ] 18 20] 22 ] 24| 26
25x25x2 | NMR | 1.33]4.00]6.67] 9.33]12.00]14.66[17.33]19.96[22.62|25.32| 27.98[30.31] -
30x30x2 | NMR | 1.33]4.00]6.67]9.33[12.00]14.66]17.33] 20.00]22.65] 25.32] 27.96]30.61] 33.22
50x50x2 | NMR | 1.33]4.00]6.67] 9.33]12.00] 14.66[17.33]| 20.00[22.66] 25.33| 27.99| 30.66] 33.33

Table7. GLM vs. Conservative DEV S Speedups for Water shed M odel

Size | Protocol| 2 | 4 ] 6 8 | 10 12| 14| 16 ] 18] 20 ] 22 | 24 | 26
25x25x2 GLM 1.69[2.48]3.08]3.53| 4.07|4.19]14.89]| 481 | 4.74| 4.65] 4.79] 4.85 -
25x25x2 |Con.DEVS| 1.69|2.49]3.02| 3.34] 3.72] 3.52| 4.09| 3.87 ] 3.71] 3.57] 3.39 | 3.30 -
30x30x2 GLM 1.75]12.62]3.61]14.00] 4.75| 4.69] 4.73] 5.51 | 5.48] 5.47| 5.36 | 5.40 | 5.47
30x30x2 |Con.DEVS| 1.72 |2.68] 3.61] 3.94| 4.40]| 4.23]| 4.01] 4.70 | 4.47| 4.27] 4.08 ] 3.95] 3.78
50x50x2 GLM 1.75]2.69]3.44]13.89| 4.68| 4941 5.20] 5.71 | 5.95| 6.07 | 6.03 | 7.66 | 8.92
50x50x2 |Con.DEVS| 1.77 | 2.66| 3.27| 3.87| 4.43| 455| 4.84] 519 | 5.19| 5.09| 4.74] 5.34] 6.21

7. CONCLUSION AND FUTURE WORK

We presented the GLM protocol for parallel conser-

vative simulation of large scale DEVS-based modEte

protocol overcomes the issue of large number of nul

messages of the Conservative DEVS algorithm byiintr

ducing a global lookahead manager that takes darallo
message reception and distribution. The simulaod-
vided into cycles of two distinguished phasegaeallel

phase which corresponds to the duration where all LPs

are busy performing parallel computations, art@ad-



cast phase where LPs are suspended and waiting for the
global lookahead manager to allow them advance thei
LVTs. The GLM protocol is asynchronous and the @nt
lookahead manager is not expected to be a bot#enec
since the only message transmissions involvingale t
place at the end dfarallel phase an@roadcast phase. In
fact, the LM does not carry out any computation #rnsl
only invoked when all LPs are blocked and the satioh

is suspended. Thus, the centralized fashion ofGh#
does not introduce any overhead. The results ptesém
this paper showed that the GLM protocol not onuees

the total number of null messages, but it signifibaim-
proves the performance and higher speedups arevachi
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