
Global Lookahead Management (GLM) Protocol for Conservative DEVS
 Simulation

Shafagh Jafer, Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University Centre of Visualization and Simulation (VSIM),

1125 Colonel By Dr. Ottawa, ON, Canada
{sjafer,gwainer}@sce.carleton.ca

Keywords: dynamic lookahead, conservative DEVS, dis-
tributed systems, message-passing systems, discrete event
simulation, parallel algorithms.

Abstract
An approach to carrying out asynchronous distributed
simulation of multiprocessor message passing architec-
tures is presented. Aiming at achieving better perform-
ance on Conservative DEVS-based simulations, we intro-
duce the GLM protocol which borrows the idea of safe
processing intervals from the conservative time window
algorithm and maintains global synchronization in a fash-
ion similar to the distributed snapshot technique. Under
the GLM scheme, a central lookahead manager (LM) ex-
ists which is in charge of receiving every LP’s lookahead,
identifying the global minimum lookahead of the system,
and broadcasting it via null messages to all LPs. The
simulation is divided into cycles of two phases: Parallel
phase and Broadcast phase. The GLM protocol is asyn-
chronous and the central lookahead manager is not ex-
pected to be a bottleneck since the only message trans-
missions involving it take place when all LPs are blocked
waiting for permission to advance their LVTs. The results
presented in this paper show that the GLM protocol not
only significantly reduces the total number of null mes-
sages, but it improves the performance and higher speed-
ups are achieved.

1. INTRODUCTION
 Modeling and simulation (M&S) has become a cost-
effective tool for analyzing and designing complex sys-
tems in a broad variety of fields. Varied parallel and dis-
tributed simulation (PADS) techniques have been pro-
posed to deal with large and complex models. In particu-
lar, parallel discrete event simulation (PDES) has become
the technology of choice to speed up large-scale discrete-
event simulations. Various synchronization techniques
have been proposed for PDES systems, and they generally
fall into two major classes: conservative, which strictly
avoid causality violations [1]; and optimistic, which allow
violations and recover from them by providing a rollback
mechanism [2]. The conservative approaches were the
first synchronization algorithms proposed in the late
1970s by R. E. Bryant [3], K. M. Chandy and J. Misra [4].

The Chandy-Misra-Bryant (CMB) algorithm prevents the
occurrence of causality errors, and it prevents deadlocks
by making use of null-messages. In order to improve per-
formance, these algorithms use lookahead information
provided by the simulation designer.
 Although PDES techniques have been very success-
ful, the methods do not address the definition of simula-
tion models. With this goal, we are trying to combine
PDES algorithms with advanced modeling methods. In
particular, we propose to use the DEVS (Discrete Event
System Specification) formalism [5], which provides a
discrete-event approach to construct hierarchical and
modular models. We focus on two extensions: P-DEVS
 [6] , which allows adequate handling of simultaneous
events in parallel and distributed environments, and Cell-
DEVS [7], which allows representing complex discrete
event spatial models. These formal methods have been
implemented in the CD++ toolkit [8], raising various
issues related to performance, scalability, and complexity.
In order to be able to deal with complex models, we im-
plemented optimistic PDES algorithms, and the first
purely conservative simulator for Cell-DEVS, called Con-
servative CD++ (CCD++) [9]. CCD++ uses a Conserva-
tive DEVS synchronization algorithm based on the classi-
cal CMB approach with deadlock avoidance [9].
 Conservative algorithms can distribute a large num-
ber of null messages throughout the simulation, degrading
performance. In order to decrease the overhead of the
original conservative DEVS algorithm, we propose the
Global Lookahead Management (GLM) protocol which
is based on the Conservative Time Window algorithm
 [11] and the Distributed Snapshot mechanism [12]. GLM
dramatically reduces the number of null messages by or-
ganizing the conservative execution in such a way that
every logical process (LP) reports its lookahead only to
the global manager rather than to every neighboring LP.
 This work will present the details of the GLM proto-
col for conservative simulation of large scale DEVS-
based models. The implementation details and different
strategies of the protocol such as scheduling, null message
distribution mechanism, lookahead extraction, deadlock
avoidance technique, as well as LP block and resume me-
chanism will be discussed thoroughly. Following the

simulation overview, we present statistical analysis by
running both communication- and computation-extensive
large scale DEVS-based models. The experiments are
conducted over both the original conservative DEVS pro-
tocol and the proposed GLM mechanism to show the per-
formance gain. The results shown by this research clarify
the robustness of GLM protocol in terms of handling
large and complex simulations while significant speedups
are noticed, indicating that the protocol is well suited for
simulating such models.

2. BACKGROUND
Although the field of PDES has advanced steadily in the
last 20 years [1], most existing techniques focus on the
simulation algorithms only, making modeling of the sys-
tem of interest a difficult task. The DEVS formalism, in-
stead, focuses on modeling methods that can be executed
by independent abstract simulation engines [5]. DEVS is
a sound formal M&S framework for discrete-event sys-
tems, which allows the construction of hierarchical mod-
els in a modular manner. A system defined by DEVS is
described as a composition of behavioral (atomic) and
structural (coupled) model components.
 DEVS has been proven to be the most generic for-
malism to represent DEDS (Discrete Event Dynamic Sys-
tems), and it has been extended to deal with continuous
and time-based models. P-DEVS [6] provides an elegant
mechanism for handling simultaneous events at the mod-
eling level, and it also prevents serialization constraints,
allowing more efficient execution of models in parallel
and distributed environments. Cell-DEVS [7] makes use
of DEVS for defining cellular models, by defining every
cell as an atomic DEVS component. The formalism de-
fines complex cell behavior with simple instructions, al-
lowing the construction of n-dimensional cell spaces,
providing advanced constructions to represent the cell’s
timing behavior.
 CD++ [8] is an open source M&S environment which
implements DEVS, Cell-DEVS, and P-DEVS and sup-
ports standalone and parallel/distributed simulations on
different platforms. A parallel optimistic simulator, called
as PCD++ [14] was developed for high-performance
simulation of these models. In [9] we introduced the Con-
servative DEVS algorithm which is based on CMB null
message protocol with deadlock avoidance. The algorithm
overcomes the limitations of the original conservative
DEVS [5] by: (i) implementing the mechanism at the top
most level of the DEVS abstract simulator hierarchy, thus
reducing the frequency of information computation, and
(ii) performing a single lookahead computation rather
than two types of calculations (Earliest Input Time EIT

and Earliest Output Time EOT as in [5]). This results in
a significant reduction of number of null messages.
 We are interested in improving the performance fur-
ther, thus, we introduce the Global Lookahead Man-
agement (GLM) protocol. GLM, based on the Conserva-
tive Time Window algorithm [11] and the Distributed
Snapshot mechanism [12], significantly reduces the
number of null messages by directing them to a global
manager rather than to neighboring LPs. The GLM proto-
col implements an asynchronous strategy [13] in the sense
that there is no global clock (every process maintains its
own local clock) and GVT approximation is performed
based on LPs’ lookahead information. The centralized
fashion of the GLM protocol does not cause any overhead
neither it is prone to bottleneck because the algorithm is
only invoked when the simulation is suspended and LPs
are blocked waiting for null messages. In fact, the GLM
protocol is only active when there is nothing else going on
in the simulation.
 These new algorithms have been implemented in
CCD++, a conservative DEVS and Cell-DEVS simulator
 [9]. CCD++ supports both standalone and parallel conser-
vative simulations. The simulator is built on top of the
WARPED kernel [15], which provides services for defin-
ing different types of processes (simulation objects).
Simulation objects on a physical processor are grouped
into an LP, and they communicate through Message Pass-
ing Interface (MPI). WARPED has been used as
middleware to provide scheduling, memory, file, event,
communication and time management.

3. ARCHITECTURE OF CCD++
CCD++ simulation is carried out by two types of DEVS
processors: Simulators and Coordinators. Simulators exe-
cute atomic DEVS models, and Coordinators are paired
with coupled models. Simulators are in charge of invok-
ing the DEVS functions defined in their atomic models.
On the other hand, Coordinators must route messages and
schedule the imminent dependant(s). At the beginning of
the simulation, one logical process (LP) is created on each
machine (physical process). Then, each LP hosts one or
more DEVS processors. CCD++ employs a flat structure
by creating a Node Coordinator (NC), a Flat Coordinator
(FC), and a set of Simulators on each node. A special Co-
ordinator, called Root is created on machine 0, which is in
charge of starting the simulation and performing I/O op-
erations among the simulation system and the
environment. Only one NC is created on each machine
and acts as the local central controller on its hosting LP.
The NC is the parent coordinator for FC and routes re-
mote messages received from the Root or from other re-
mote NCs to the FC. The Simulators are the child proces-

sors of the local FC representing the atomic components
of DEVS and Cell-DEVS models.
 DEVS processors exchange two categories of mes-
sages: content messages and control messages. The first
category includes the external (x) and the output messages
(y), and the second category includes the initialization (I),
collect (@), internal (*), and done messages (D). To de-
scribe these messages, external and output messages are
used to exchange simulation data between the models, ini-
tialization messages start the simulation, collect and in-
ternal messages trigger the output and the state transition
functions respectively in the atomic DEVS models, done
messages handle synchronization by carrying the model
timing information. The simulation is executed in a mes-
sage-driven manner. Figure 1 illustrates CCD++ proces-
sors and the messaging among them.

Figure 1. CCD++ processors and messages
 The simulation starts by the Root Coordinator resid-
ing on node0 by sending an (I, t) message to all NCs. At
any virtual time, the message flow among the LPs is or-
ganized into a multi-phased structure that includes an op-
tional collect phase and a mandatory transition phase,
which in turn may involve multiple rounds of computa-
tion to execute state transitions incrementally. The collect
phase starts with a collect message sent from the NC to
the FC and ends with the following done message re-
ceived by the NC. The transition phase begins with the
first internal message sent from the NC to the FC and
ends at the last done message received by the NC at that
time. The transition phase is mandatory for each individ-
ual simulation time. The output functions in the imminent
atomic models are invoked during collect phases, the state
transitions for the atomic models are performed in the
transition phases (as defined in P-DEVS formalism).

4. PHASE-BASED SIMULATION WITH GLM
The GLM protocol borrows the idea of safe processing in-
tervals from the Conservative Time Window algorithm
and maintains global synchronization in a fashion similar

to the Distributed Snapshot technique. Under GLM, a
central lookahead manager (LM) exists on LP0 which is
in charge of three main tasks: 1) receiving every LP’s
lookahead, 2) identifying the global minimum lookahead
of the system, and 3) broadcasting it via null messages to
all LPs. This implies that the LPs are no longer required
to send their lookahead information directly to each other
as in the Conservative DEVS algorithm [9]; rather, they
now send their lookahead via null messages to the LM on-
ly. In fact, the sole function of the LM is to detect the
suspension phase, and to initiate the resume phase by
broadcasting the global minimum lookahead. The entire
algorithm works using the following sequence:

(i) Parallel phase: LPs run simulation until suspension.
(ii) Broadcast phase: LM broadcasts global minimum

lookahead allowing LPs to advance their LVTs.

 In the original conservative DEVS algorithm, each
LP had to send a null message to every LP and block until
all LPs send back their null messages accordingly. With
the GLM protocol, each LP sends one null message to the
LM and it blocks until the LM sends back a null message
carrying the global minimum lookahead value. GLM not
only reduces the number of null messages, but it also re-
duces the blocked time of LPs since they now wait for on-
ly a single null message to be received before they can re-
sume as opposed to the Conservative DEVS algorithm
where each LP waits on (N-1) null messages every time it
blocks. As the number of participating LPs increases, the
performance achieved with GLM increases, merely be-
cause the total number of LPs has a direct impact on the
synchronization overhead. The key characteristic of the
GLM protocol is that it is asynchronous and the central
LM is not expected to be a bottleneck since the only mes-
sage transmissions involving it take place at the end of
Parallel phase and Broadcast phase. In fact, the LM does
not carry out any computation and it is only invoked when
all LPs are blocked and the simulation is suspended.
Thus, the centralized fashion of the GLM does not intro-
duce any overhead.

4.1. Lookahead and LVT Computation Strategy
Both lookahead and LVT of the GLM protocol are com-
puted the same way as in the Conservative DEVS algo-
rithm. At every NC, the lookahead computation is per-
formed as follows [9]:

lookahead = MIN(timestamp of most recently sent output
to a remote LP, timestamp of first unprocessed input,
closest state transition time). (1)
 The lookahead is then sent to the LM via a single null
message and the LP suspends. Upon receiving the re-
sponse null message from the LM, the LP resumes by first
calculating the new LVT as follows [9]:

LVT = MIN(timestamp of the input even from the envi-
ronment, timestamp of most recently sent output to a re-
mote LP, timestamp of first unprocessed input, closest
state transition time, time of new global lookahead value
received from LM). (2)
 Thus, the NC computes the new LVT as the mini-
mum value among: (i) the timestamp of the input event
received from the environment; (ii) the timestamp of the
external message recently sent to a remote LP; (iii) the
time of the NC Message Bag (minimum timestamp
among unprocessed input events); (iv) the closest state
transition time of local child processors previously given
by the FC in the done message; and (v) the new global
lookahead value received from LM via null message.
 Similar to the Conservative DEVS algorithm, the NC
is the local synchronizer at the LP and invokes the GLM
protocol at the beginning of every collect phase. The NC
issues the collect phase by first performing lookahead
computation according to Formula 1, then, it sends the
calculated value via a single null message to the LM and
blocks the LP. Upon receiving the response null message
form the LM, the LP resumes and the NC performs a LVT
computation, which will take into account the newly re-
ceived minimum global lookahead from the LM.

4.2. Null Message Distribution
Based on the strategy used to partition a DEVS/Cell-
DEVS model, each LP can only send/receive event mes-
sages (external messages) to/from those defined by DEVS
neighboring. That is, according to DEVS neighborhood
specified by the model, if an atomic component (repre-
sented by a Simulator) on an LP is a neighbor of another
atomic component residing on a different LP, then these
two LPs are neighbors and they can communicate to each
other through inter-LP communication. Therefore, it is
possible that some LPs are not direct neighbors of each
other because the model’s partitions they hold are not
DEVS-neighbors with each other. Figure 2-A illustrates
the partitioning of an 8x8 Cell-DEVS model on four LPs.
The partitioning mechanism divides the cell space into
four equal portions (8x2 cells per LP). Figure 2-B shows
which LPs send x messages to each other (i.e. their child
Simulators are DEVS neighbors), and Figure 2-C repre-
sents the conservative neighboring of LPs where each LP
sends null messages to every other LP, and on the other
hand, it receives null messages from them. The GLM pro-
tocol resolves this tight coupling of LPs by assigning a
simple LP connectivity strategy. Under the new scheme,
each LP is only coupled with the LP for which the LM re-
sides on (i.e. LP0). Hence, the LP neighborhood is con-
figured as in Figure 2-D.

LP0

LP1

LP2

LP3
LP1 LP2

LP3LP0

LP1 LP2

LP3LP0

D. GLM Neighboring of LPs

A. Partitioning of an 8x8 Cell-DEVS model B. DEVS Neighboring of LPs

GLM

inter-LP messaging

intra-LP messaging

LP1 LP2

LP3LP0

C. Conservative DEVS Neighboring of LPs

Figure 2. LP Neighboring in Conservative DEVS vs. GLM Protocol.

4.3. LP Block and Resume Mechanism
The GLM block and resume mechanism is slightly differ-
ent from the Conservative DEVS algorithm in the sense
that LPs are no longer distributing null messages to each
other, neither they wait for reception of null messages
from every LP. In return, each LP sends a single null
message at the start of every collect phase to only the LM
and stays blocked until the single null message reporting

the new global minimum lookahead is received from the
LM. This strategy reduces the number of null messages.

4.4. Dynamic Lookahead
The lookahead computation is performed after each LVT
computation; hence, it is updated and reported to the LM
every time before the LP is suspended. This strategy en-
sures that the lookahead value of an LP represents the lat-

est LVT update, as there is at least one lookahead compu-
tation per LVT update. The dynamic lookahead mecha-
nism of the GLM protocol states that lookahead value is
not fixed and every lookahead computation could result in
a different value than the previous stage. Unlike other ex-
isting conservative algorithms, the modeler is not required
to specify the lookahead of the system. The ability of the
algorithm in dynamically extracting the lookahead infor-
mation from the model itself is a main advantage of this
approach.

4.5. Low-cost Lookahead Computation
The lookahead computation is a fast, efficient, and low-
cost method that involves a simple comparison between
existing parameters. In fact, there is neither an actual
computation nor a significant computation time required
to calculate the lookahead. Rather, the lookahead is ex-
tracted from already computed data that existed in the
simulator before the conservative protocol was integrated
with it. Compared to other existing conservative mecha-
nisms, this benefit reduces the overhead of the algorithm,
especially the frequency of invoking lookahead computa-
tion, which increases as the model size grows.

4.6. Deadlock Avoidance
Since null message distribution of LPs to the LM occurs
before LPs are suspended, deadlock is strictly avoided.
NCs only suspend the LP after performing a lookahead
computation and reporting it to the LM via a null mes-
sage. Thus, when an LP is suspended, it has already for-
warded its null message, and if every other LP is sus-
pended as well, they would all resume because all re-
quired null messages have been already sent to the LM
before suspension has taken place.

4.7. I/O Operation
The only messages an LP sends out are external messages
and null messages. The external messages are sent out to
neighbor LPs defined by DEVS neighboring, while null-
messages are sent out to the LM on node 0. Similarly, an
LP can only receive external messages from its DEVS
neighbor LPs, and null messages from the LM.

4.8. Termination
The simulation terminates if the Stop Time (specified by
the model) is reached or all LPs are idle and have no un-
processed event in their input queues. The NC sets the LP
to idle when the LM sends a null message reporting infin-
ity as the global lookahead value, all local child Simula-
tors have next transition time of infinity, and there is no
unprocessed event in the NC message bag. The last mes-
sage sent out by a NC before setting the LP to idle is a

null messages carrying infinity lookahead. This ensures
that other LPs do not stay blocked awaiting last null-
message from the idle LP.

5. SUMMARY OF THE ALGORITHM
Based on the LP structure and the division of functional-
ities in CCD++, the key features and assumptions of the
simulation process are as follows:
1. All messages originating form Simulators must go

through the parent FC. Hence, there is no direct
communication between Simulators (even local
ones). FCs are always aware of the timing of state
changes at their child Simulators.

2. Outgoing inter-LP communication happens only in
the collect phases, whereas incoming inter-LP com-
munication can occur in any phase. Since the output
functions of imminent models are invoked only in the
collect phases, at any given simulation time, all ex-
ternal messages going to remote NCs are sent out by
the end of the collect phase. On the other hand, an ex-
ternal message from a remote source can arrive at the
destination NC in any phase.

3. The NC is the starter for every collect and transition
phase. The NC is invoked when it receives a done
message from the FC. The done message could be in
response to a (I, t), (@, t), or (*, t) previously sent to
the FC.

4. On each node, the simulation time is advanced by on-
ly the NC. The NC calculates LVT of the LP at the
beginning of every collect phase. The local FC and
the Simulators do not send messages with a time-
stamp different than the current LVT.

6. PERFORMANCE EVALUATION

6.1. Experiment platform and metrics
To analyze the performance of CCD++, extensive tests
were carried out on a cluster of 26 compute nodes (dual
3.2 GHz Intel Xeon processors, 1 GB PC2100 266 MHz
DDR RAM) running Linux WS 2.4.21 interconnected
through Gigabit Ethernet and communicating over
MPICH 1.2.6. Table 1 lists the metrics collected in the
experiments through extensive measurements.

Table 1. Performance metrics
Metrics Description

T Total execution time of the simulation (sec)

NMR Null event message reduction factor
 Three Cell-DEVS models were tested in our experi-
ments. Two of them (namely Fire1 and Fire2) simulate
forest fire propagation [16] over 50 hours in a two dimen-
sional cell space based on Rothermel’s mathematical
definition [17]. Fire1 and Fire2 differ in the way the
spread rates are calculated. The first model uses a prede-

termined rates at reduced runtime computation cost, while
the second one invokes the fireLib [18] library to calcu-
late spread rates dynamically based on a set of parameters
such as fuel type, moisture, wind direction and speed. The
spread rate computations are performed at the Simulators
when executing (*, t) messages. Hence, the time for exe-
cuting a (*, t) message reflects the computation intensity
of the state transition which was calculated to be 112 µs
for Fire1, and 748 µs for Fire2.
 The third model used, called as Watershed, was a
simulation of environmental influence on hydrological
dynamics of water accumulation over 30 minutes in a
three dimensional cell space [19]. Although Watershed
model (with a 577 µs state transition time) is not as com-
pute-intensive as Fire2, it is a large 3D model with high
communication requirements.

6.2. Test results and analysis
For all the three models, a simple partition strategy was
used which evenly divides the cell space into horizontal
rectangles. The fire propagation model (Fire1 and Fire2)
was tested using different sizes of cell spaces: 100 x 100,

200 x 200, and 300 x 300. The Watershed model was
tested with 25 x 25 x 2, 30 x 30 x 2, and 50 x 50 x 2 cells.
Each of these cases was tested on 2 to 26 nodes.
 Figure 3, 5, and 7 illustrate the total execution time
achieved on 1 to 26 nodes for Fire1 model with 100x100,
200x200, and 300x300 cells respectively. As we can see,
on each different size, the GLM protocol reduces the exe-
cution time compared to the Conservative DEVS algo-
rithm for every given number of nodes. Meaning that, for
the three mentioned model sizes, the smallest execution
time is always achieved by the GLM protocol. It is also
shown that for any given number of nodes, the execution
time always increases with the size of the model. While
the Conservative DEVS protocol increases the execution
time after it reaches the smallest execution time, the GLM
keeps reducing the execution time as the number of nodes
increase in most cases. In fact, the GLM protocol shows
much better performance compared to the Conservative
DEVS algorithm for all scenarios. This is merely due to
the significant null message reduction that the GLM pro-
vides as shown in Figure 4, 6, and 8 for the three different
model sizes.

Fire1 with 100x100 Cells

0

10

20

30

40

50

60

70

80

90

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Fire1 with 100x100 cells

0

50000

100000

150000

200000

250000

300000

350000

400000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

 M
es

sa
g

es

GLM Cons.DEVS

Figure 3. Total Execution Time of Fire1 (100x100 cells) Figure 4. Total Number of Null Messages of Fire1 (100x100 cells)

Fire1 with 200x200 Cells

0

100

200

300

400

500

600

700

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Fire1 with 200x200 cells

0

200000

400000

600000

800000

1000000

1200000

1400000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

GLM Cons.DEVS

Figure 5. Total Execution Time of Fire1 (200x200 cells) Figure 6. Total Number of Null Messages of Fire1 (200x200 cells)

Fire1 with 300x300 Cells

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Fire1 with 300x300 cells

0

500000

1000000

1500000

2000000

2500000

3000000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

GLM Cons.DEVS

Figure 7. Total Execution Time of Fire1 (300x300 cells) Figure 8. Total Number of Null Messages of Fire1 (300x300 cells)
 The calculated null message reduction factor for
Fire1 is given in Table 2. The speedups achieved with re-
spect to the sequential simulator (results obtained on 1

node) are given in Table 3 where it is shown that the
GLM protocol always results in better speedup compared
to the Conservative DEVS algorithm.

Table 2. NMR for Different Sizes of Fire1 Model
Size Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 NMR 1.23 4.00 6.77 9.52 12.21 14.85 17.46 20.02 22.55 25.08 27.53 30.02 32.43
200x200 NMR 1.00 3.13 5.28 7.44 9.59 11.75 13.90 16.05 18.20 20.34 22.48 24.61 26.75
300x300 NMR 1.00 3.02 7.25 9.35 11.44 13.54 15.63 17.72 19.82 21.90 21.64 23.71 25.77

Table 3. GLM vs. Conservative DEVS Speedups for Fire1 Model
Size Protocol 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 GLM 1.16 1.21 1.19 1.17 1.17 1.14 1.14 1.08 1.08 1.07 1.04 0.98 0.95
100x100 Con.DEVS 1.16 1.19 1.12 1.04 0.94 0.89 0.81 0.73 0.66 0.61 0.55 0.49 0.45
200x200 GLM 1.35 1.57 1.63 1.62 1.64 1.64 1.63 1.56 1.57 1.55 1.56 1.55 1.53
200x200 Con.DEVS 1.33 1.49 1.49 1.48 1.45 1.41 1.36 1.32 1.26 1.20 1.16 1.12 1.06
300x300 GLM 1.25 1.50 1.59 1.63 1.65 1.68 1.69 1.67 1.68 1.68 1.68 1.67 1.64
300x300 Con.DEVS 1.25 1.51 1.59 1.61 1.62 1.59 1.55 1.54 1.51 1.48 1.48 1.37 1.30

 Similarly, Figure 9, 11, and 13 illustrate the total
execution time achieved on 1 to 26 nodes for Fire2 model
with 100x100, 200x200, and 300x300 cells respectively.
As in Fire1, on each different size, the GLM protocol re-
duces the execution time and total number of null mes-
sages significantly. The performance achieved by the

GLM protocol stays high as the number of nodes are in-
creased which is not the case for the Conservative DEVS
protocol where the performance starts to drop down as
more nodes are engaged. The outstanding null message
reductions are presented in Figure 10, 12, and 14 for the
three different sizes of the model.

Fire2 with 100x100 Cells

0

20

40

60

80

100

120

140

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Fire2 with 100x100 Cells

0

50000

100000

150000

200000

250000

300000

350000

400000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

Figure 9. Total Execution Time of Fire2 (100x100 cells) Figure 10. Total Number of Null Messages of Fire2 (100x100 cells)

Fire2 with 200x200 Cells

0

100

200

300

400

500

600

700

800

900

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Fire2 with 200x200 Cells

0

200000

400000

600000

800000

1000000

1200000

1400000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

Figure 11. Total Execution Time of Fire2 (200x200 cells) Figure 12. Total Number of Null Messages of Fire2 (200x200 cells)

Fire2 with 300x300 Cells

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Fire2 with 300x300 Cells

0

500000

1000000

1500000

2000000

2500000

3000000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

Figure 13. Total Execution Time of Fire2 (300x300 cells) Figure 14. Total Number of Null Messages of Fire2 (300x300 cells)
 The calculated null message reduction factor for
Fire2 is given in Table 4. Table 5 shows the speedups of
both algorithms compared to the sequential results (run-

ning the simulation on a single node with a sequential
simulator). It is shown that the GLM protocol always out-
performs the Conservative DEVS algorithm.

Table 4. NMR for Different Sizes of Fire2 Model
Size Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 NMR 1.23 4.00 6.77 9.52 12.21 14.85 17.46 20.02 22.55 25.08 27.53 30.01 32.43
200x200 NMR 1.00 3.13 5.28 7.44 9.59 11.75 13.90 16.05 18.20 20.34 22.48 24.61 26.75
300x300 NMR 1.00 3.02 5.09 7.15 9.23 11.30 13.36 15.44 17.50 19.57 21.64 23.71 25.77

Table 5. GLM vs. Conservative DEVS Speedups for Fire2 Model
Size Protocol 2 4 6 8 10 12 14 16 18 20 22 24 26

100x100 GLM 1.10 1.24 1.22 1.25 1.26 1.21 1.23 1.18 1.18 1.14 1.14 1.13 1.12
100x100 Con.DEVS 1.08 1.21 1.16 1.17 1.16 1.09 1.02 0.98 0.94 0.90 0.85 0.79 0.74
200x200 GLM 1.21 1.30 1.33 1.39 1.35 1.33 1.34 1.36 1.34 1.32 1.35 1.32 1.32
200x200 Con.DEVS 1.14 1.29 1.34 1.30 1.28 1.26 1.23 1.21 1.18 1.14 1.11 1.07 1.04
300x300 GLM 1.24 1.39 1.46 1.49 1.48 1.46 1.48 1.48 1.49 1.48 1.49 1.49 1.49
300x300 Con.DEVS 1.20 1.35 1.42 1.42 1.42 1.42 1.41 1.40 1.38 1.34 1.32 1.30 1.27

 The total execution time results for Watershed model
are given in Figure 15, 17, and 19 for the three different
sizes respectively. Watershed model is three dimensional
and communication-intensive, thus, higher speedups are
achieved with both protocols compared to Fire1 and
Fire2. However, again the GLM protocol significantly
shows better speedups (Table 7) in all scenarios. The total

numbers of null messages for different Watershed simula-
tions are shown in Figure 16, 18, and 20. As presented by
Table 6, the null message reduction factor is significantly
high.

Watershed with 25x25x2 Cells

0

200

400

600

800

1 2 4 6 8 10 12 14 16 18 20 22 24

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Watershed with 25x25x2 Cells

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 4 6 8 10 12 14 16 18 20 22 24

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

GLM Cons.DEVS

Figure 15. Watershed (25x25x2 cells) Execution Time Figure 16. Watershed (25x25x2 cells) Total Number of Null Messages

Watershed with 30x30x2 Cells

0

200

400

600

800

1000

1200

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Watershed with 30x30x2 Cells

0
20000

40000

60000

80000
100000

120000

140000

160000

180000

200000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

GLM Cons.DEVS

Figure 17. Watershed (30x30x2 cells) Execution Time Figure 18. Watershed (30x30x2 cells) Total Number of Null Messages

Watershed with 50x50x2 Cells

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GLM Cons.DEVS

Watershed with 50x50x2 Cells

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2 4 6 8 10 12 14 16 18 20 22 24 26

Number of nodes

N
u

m
b

er
 o

f
N

u
ll

M
es

sa
g

es

GLM Cons.DEVS

Figure 19. Watershed (50x50x2 cells) Execution Time Figure 20. Watershed (50x50x2 cells) Total Number of Null Messages

Table 6. NMR for Different Sizes of Watershed Model
Size Metric 2 4 6 8 10 12 14 16 18 20 22 24 26

25x25x2 NMR 1.33 4.00 6.67 9.33 12.00 14.66 17.33 19.96 22.62 25.32 27.98 30.31 -
30x30x2 NMR 1.33 4.00 6.67 9.33 12.00 14.66 17.33 20.00 22.65 25.32 27.96 30.61 33.22
50x50x2 NMR 1.33 4.00 6.67 9.33 12.00 14.66 17.33 20.00 22.66 25.33 27.99 30.66 33.33

Table 7. GLM vs. Conservative DEVS Speedups for Watershed Model
Size Protocol 2 4 6 8 10 12 14 16 18 20 22 24 26

25x25x2 GLM 1.69 2.48 3.08 3.53 4.07 4.19 4.89 4.81 4.74 4.65 4.79 4.85 -
25x25x2 Con.DEVS 1.69 2.49 3.02 3.34 3.72 3.52 4.09 3.87 3.71 3.57 3.39 3.30 -
30x30x2 GLM 1.75 2.62 3.61 4.00 4.75 4.69 4.73 5.51 5.48 5.47 5.36 5.40 5.47
30x30x2 Con.DEVS 1.72 2.68 3.61 3.94 4.40 4.23 4.01 4.70 4.47 4.27 4.08 3.95 3.78
50x50x2 GLM 1.75 2.69 3.44 3.89 4.68 4.94 5.20 5.71 5.95 6.07 6.03 7.66 8.92
50x50x2 Con.DEVS 1.77 2.66 3.27 3.87 4.43 4.55 4.84 5.19 5.19 5.09 4.74 5.34 6.21

7. CONCLUSION AND FUTURE WORK
 We presented the GLM protocol for parallel conser-
vative simulation of large scale DEVS-based models. The
protocol overcomes the issue of large number of null
messages of the Conservative DEVS algorithm by intro-

ducing a global lookahead manager that takes care of null
message reception and distribution. The simulation is di-
vided into cycles of two distinguished phases: a parallel
phase which corresponds to the duration where all LPs
are busy performing parallel computations, and a broad-

cast phase where LPs are suspended and waiting for the
global lookahead manager to allow them advance their
LVTs. The GLM protocol is asynchronous and the central
lookahead manager is not expected to be a bottleneck
since the only message transmissions involving it take
place at the end of Parallel phase and Broadcast phase. In
fact, the LM does not carry out any computation and it is
only invoked when all LPs are blocked and the simulation
is suspended. Thus, the centralized fashion of the GLM
does not introduce any overhead. The results presented in
this paper showed that the GLM protocol not only reduces
the total number of null messages, but it significantly im-
proves the performance and higher speedups are achieved.

8. REFERENCES
[1] Fujimoto, R. M. Parallel and distributed simulation sys-
tems. New York: Wiley. 2000.
[2] D. R. Jefferson. 1985. "Virtual time". ACM Trans. Pro-
gram. Lang. Syst. 7(3), pp. 404-425.
[3] Bryant, R. E. "Simulation of packet communication archi-
tecture computer systems". Massachusetts Institute of Technol-
ogy. Cambridge, MA. USA. 1977.
[4] Chandy, K. M.; Misra J. "Distributed simulation: A case
study in design and verification of distributed programs". IEEE
Transactions on Software Engineering. pp.440-452. 1978.
[5] Zeigler, B., T. Kim, and H. Praehofer. 2000. Theory of
modeling and simulation: Integrating discrete event and con-
tinuous complex dynamic systems. San Diego: Academic Press.
[6] Chow, A. C. and B. Zeigler. 1994. "Parallel DEVS: A par-
allel, hierarchical, modular modeling formalism". In Proceed-
ings of the Winter Computer Simulation Conference, Orlando,
FL.
[7] Wainer, G.; Giambiasi, N. "Specification, modeling and
simulation of timed Cell-DEVS spaces". Technical Report n.:
98-007. Departamento de Computación. Facultad de Ciencias
Exactas y Naturales. Universidad de Buenos Aires. Argentina.
1998.
[8] Wainer, G. 2002. CD++: A toolkit to develop DEVS mod-
els. Software – Practice and Experience, 32:1261-1306.
[9] Jafer, S., Wainer, G., “Conservative DEVS - A Novel Pro-
tocol for Parallel Conservative Simulation of DEVS and Cell-
DEVS Models”. Submitted to DEVS Symposium - Spring-
sim’10. Florida. USA. 2010.
[10] Jafer, S., Wainer, G., "A Performance Evaluation of the
Conservative DEVS Protocol in Parallel Simulation of DEVS-
based Models". SummerSim’10, Ottawa. 2010.
[11] Lubachevsky, B.D. "Efficient distributed event-driven
simulations of multiple-loop networks". Communication. ACM
32, (January 1989), 111-123.
[12] L Lamport, KM Chandy. "Distributed snapshots: Determin-
ing global states of distributed systems". ACM Transactions on
Computer Systems, 1985.
[13] Chandy, K., and Misra, J. "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations". Comm. of
the ACM 24, 2 (1981), 198-205.
[14] Q. Liu, G. Wainer, "Parallel environment for DEVS and
Cell-DEVS models". SIMULATION 83(6), 2007, pp.449-471.
[15] Radhakrishnan, R., D. E. Martin, M. Chetlur, D. M. Rao,
and P. A. Wilsey. 1998. "An object-oriented time warp simula-

tion kernel". In Proceedings of the International Symposium on
Computing in Object-Oriented Parallel Environments, LNCS
1505, pp. 13-23.
[16] Ameghino, J., A. Troccoli, and G. Wainer. "Models of
Complex Physical Systems Using Cell-DEVS". The 34th
IEEE/SCS Annual Simulation Symposium. 2001.
[17] Rothermel, R. "A Mathematical Model for Predicting Fire
Spread in Wild-land Fuels". Research Paper INT-115. Ogden,
UT: U.S. Department of Agriculture, Forest Service, Intermoun-
tain Forest and Range Experiment Station. 1972.
[18] C. D. Bevins, “fireLib User Manual and Technical Refer-
ence”. http://www.fire.org/, accessed in Dec. 2008.
[19] G. Wainer, “Applying Cell-DEVS methodology for model-
ing the environment”. SIMULATION 82(10), 2006, pp.635-660.

