Novel Performance Optimization of L arge-Scale Discrete-Event Simulation on
the Cell Broadband Engine

Qi Liu, Gabriel Wainer
Department of Systems & Computer Engineering
Carleton University, Ottawa, ON, Canada
{liugi, gwainer} @sce.carleton.ca

ABSTRACT

This paper presents a computing technique for efficient
parallel simulation of large-scale discrete-event models
on the IBM Cell Broadband Engine (CBE), which has one
Power Processor Element (PPE) and eight Synergistic
Processing Elements (SPE). Based on the general-
purpose Discrete Event System Specification (DEVS), the
technique tackles all performance bottlenecks, combining
multi-dimensional parallelism and various optimizations.
Preliminary experiments have produced very promising
results, attaining speedups up to 134.34 and 41.23 over
the baseline implementation on PPE and on Intel Core2
Duo E6400 processor respectively. The methods can also
be applied to other multicore and shared-memory
architectures. We conclude that the technique not only
allows discrete-event simulation users to tap CBE
potential without being distracted by multicore
programming, but also provides insight on migration of
legacy software to current and future multicore platforms.

KEYWORDS: Discrete-event simulation, multicore
computing, DEVS formalism, Cell Broadband Engine

1. INTRODUCTION

Discrete-event simulation has been used to studhplax
systems in a broad array of domains. The DiscretnE
System Specification (DEVS) [1], in particular, papts
hierarchical construction of reusable models incautar

way. Numerous extensions to DEVS have been propose
in the literature. P-DEVS [2] extends DEVS to handl
simultaneous events in the simulation. Cell-DEVS [3

defines n-dimensional cell spaces as discrete-awedtls

where each cell is a basic DEVS model componenth Bo
P-DEVS and Cell-DEVS have been implemented in
CD++ [4], which is an object-oriented Modeling and

Simulation (M&S) environment programmed in C++.

Ligang Lu, Michael Perrone
IBM T. J. Watson Research Center
Yorktown Heights, NY, USA
{lul, mpp}@us.ibm.com

Parallel Discrete-Event Simulation (PDES) is widely
accepted as a viable approach to efficient diseredmt
simulation [5]. Traditionally, parallelism is ackied by
partitioning a simulation onto multiple nodes otlaster

to exploit concurrent activities at different model
components. While these coarse-grained paralladizat
strategies have achieved success in improving atioul
performance, most of them neglect to integrate witier
fine-grained parallelism available on multicoretfdems.

As the monolithic approach to microprocessor design
reaches a point of diminishing return, the indussy
moving towards multicore Chip Multiprocessor (CMP)
architectures. A latest example is the heterogenéBiv

Cell Broadband Engine (CBE) processor [6], whick ha
main Power Processor Element (PPE) and 8 spedalize
co-processors called Synergistic Processing Elesment
(SPEs). Each SPE can only directly access a fastll,s
non-coherent local storage (LS) to execute the biitke
workload in small chunks. Data sharing is achieved
mainly through software-managed explicitly-addrédsse
autonomous Direct Memory Access (DMA) transfers to
and from the system main memory. In addition, tRES
support 128-bit SIMD (Single Instruction, Multip2ata)
operations that can be applied at different graitida.
While the CBE processor offers a vast number of
parallelization options at different levels, therametric
architecture of heterogeneous cores with expligtory
control requires innovative redesign of existingoaithms

to achieve optimal execution efficiency.

As multicore computing becomes pervasive, thera is
cgrowing need for novel PDES algorithms targeting ZM
platforms. To this end, we propose a computingrteghe
that combines multi-dimensional parallelism in kugrale
discrete-event simulations, while hiding the techhi
details of multicore programming. Based on the gane
purpose DEVS and Cell-DEVS formalisms, the techaiqu
tacklesall main performance bottlenecks in the simulation,
incorporating various optimizations in a systematiy.

A realistic wildfire propagation model is used bostrate
the impact of each optimization step. Although albtof
the proposed algorithms are fully implemented, ¢dhes
currently available have already produced very o
results, attaining simulation speedups up to 13484
41.23 over the baseline implementation on the RiREoa
the Intel Core2 Duo E6400 processor respectively.

In the following, Section 2 and 3 review the chadles
and DEVS simulation in CD++. The fire simulation
profile is analyzed in Section 4. Section 5 and®et the
optimization and parallelization strategies. Thenpating
technique is proposed in Section 7. Section 8 shbess
experimental results, and Section 9 concludes ipep

2. CHALLENGES

Existing PDES techniques usually adopt a coarsexgpa
parallelization strategy at the cluster level withpaying
much attention to other fine-grained parallelismaikable
on multicore processors. Multi-grained parallelisras

been recently exploited on CMP architectures in the

context of scientific and multimedia applicatior§. [New
parallelization strategies for PDES are requiredxplore
multi-dimensional parallelism at different levels GBE.

Different programming models were proposed to inapro

3. PARALLEL SIMULATION IN CD++

P-DEVS defines a model as a hierarchy abmic
(behavioral) andcoupled (structural) components. The
simulation is executed by several logical proce¢kEs),
which are specialized int&mulators and Coordinators

[2]. A Simulator is paired with an atomic modelttmger

the model behavior; while a Coordinator is attacted
coupled model to schedule events in the model tubya
Cell-DEVS [3] describes dynamic systems as celcspa
where each cell is a P-DEVS atomic model. Both P-
DEVS and Cell-DEVS are realized in CD++ [4], which
has been extended to support parallel simulation on
distributed-memory clusters using a flat LP stroetjd 2].

Node 0 Node 1
NC ?: | MPT | :? NC
FC FC
Simulators Si}nu]ators

- Node Coordinator (NC) . Flat Coordinator (FC)

Figurel. Flat LP Structure

programmability on CBE [6]. Although these abstract Depicted in Figure 1, the sequential simulationaomode

models provide excellent guidelines for designirgyn
computing techniques, significant efforts are st#leded
to address PDES peculiarities.

Compiler-assisted vectorization is one way to fedé
software development on CBE [8]. Without undersiagd
the application logic, nonetheless, this techniggiestill

involves aNode Coordinator (NC), aFlat Coordinator
(FC), and a set diimulators. The NC is the local central
controller and the endpoint of inter-node MPI meggsg
whereas the FC synchronizes all child Simulators
underneath. By eliminating the intermediate coaattirs

in the hierarchy, this flat LP structure signifitignmeduces
communication overhead, while preserving the same

inadequate on its own for complex PDES systems hjerarchical model definition [13]. As will be disssed

involving highly irregular computation that mustspect
the causal dependency among individual events.

Several middleware frameworks have also been dpedlo
on top of CBE programming primitives [9]. However,
some of them assume a strict data parallel modatibere

to pure C programming, while others provide only a \Llnitializationphase z’Collectphase ITransitionphase

minimal set of functionality of a standard librafgr
specific applications, greatly hindering their apability
to complex object-oriented PDES systems.

Most existing CBE applications perform numerically-
intensive regular computation on a large array afad
following the well-known SIMD model [10]. CBE issad
used to host M&S applications to offload compute-
intensive functions to the SPEs [11]. It is, howevet
straightforward to apply the methods employed ieséh
applications in general-purpose PDES systems.

later in Section 6 and 7, it also facilitates thpleitation
of event-level and data-level parallelism on CBE.

c‘ T —b{C T HT = C

virtual time 0 virtual time t; virtual time t, virtual time t,

il

Time

Figure 2. Multi-Phased Simulation Process

The LPs exchange messages that fall in two categori
content messages include theexternal (X) andoutput (Y)
events that encode the model input and output cdtide
control messages include theinitialization (1), collect (@),
internal (*), and done (D) events that control the
simulation flow. Detailed event-processing algarithcan
be found in [12]. Figure 2 shows a high-level stinued
view of the sequential simulation on a node. At aintual

time, the message flow between the LPs consistanof Table 1. Baseline Simulation Profile on PPE
optional collect phase and a mandatortransition phase.

The simulation starts with dnitialization phase at virtual Q"y?é S = Com O”I\ngs = o
time 0. At the end of a transition phase, the N€aades 0 3.06 0.90 -
the simulation to the next virtual time. This paferuses) 515.69 16.96 -
on further parallelizing the sequential simulatmm CBE & Jas L Seees) - ~ ~
so as to combine parallel simulation at clusteellevith) - 94.41 —
accelerated parallel simulation on each multicareen ©) = 11221500 | 3.3
Sum (s) 538.82 168143.87 3.25 181.57 134.58
Total () 169002.10

4. FIRE SIMULATION PROFILE
It is clear that the main bottleneck resides at Ft&
M&S has long been used to study wildfire phenomena. consuming more than 99% of the total execution time
Cell-DEVS supports discrete-event simulation ofdfire, The table also shows that the FC spends most dfrttee
improving model accuracy and execution efficientg][on processing (@) and (D) events, during which two
The CD++ environment allows for defining Cell-DEVS functions are called respectively to synchronize th
models using a built-in specification language eatdire Simulators at each virtual time: fihdlmminents finds the

that is especially valuable on CMP platforms sigeaeral imminent Simulator IDs; and ZjndMinTime computes
users can focus on their modeling issues withoutigoe the next global minimum state change time among the
distracted by multicore programming details. Simulators. This synchronization task becomes time-
consuming in large-scale simulations as a largeuainof
type : cell dim : (1024,1024) timing data needs to be processed. Another botiene
delay: inertial border : nowrapped
neighbors : (-1,-1) (<1,0) (=1,1) (0,-1) resides at the Simulators, especially during thecetion
neighbors : (0,0) (0,1) (1,-1) (1,0) (1,1) of (*) events where the transition rules are evigdalt is
localtransition : FireBehavior e
relatively minor since the fire model uses simptifirules
[FireBehavior] to approximate the real system. More complex rules
rule : {(1,0)+(15.24/5.1069)}) {(15.24/5.1069)*60000} WOUId l?e required to Obtaln morg precise a_pproxcmat
{(0,0)=0 and 0<(1,0)} increasing the computation intensity at the Sinoukat
rule : {(0,-1)+(15.24/5.1069)} {(15.24/5.1069)*60000}
{(0,0)=0 and 0<(0,-1)}

5. OPTIMIZATION STRATEGIES

Figure 3. Fire M odel Definition in CD++ [14 oL o
g [24] 5.1. Optimizing FC Synchronization Task
The fire model introduced in [14] is used in thappr for .) .
performance evaluation. This model defines a 10g4 b |he two synchronization functions are invoked ragyl
1024 cell space (over one million cells) to simelat by the FC:flndImmmer_wts is ca_lled_at the beginning of a
wildfire scenario based on predetermined spreadsrat Ccollect phase, wheredimdMinTime is called at the end of
Figure 3 shows a skeleton of the fire model deéinitin each collect_and transition phases. A closer exaiioim
CD++. The model behavior is specified using a det o Shows that it is unnecessary to compute the nee st
transition rules, which are evaluated sequentiafactive ~ change time in the collect phases as these tramsheses
cells, also known asnminent cells, at each virtual time to ~ d0 not advance virtual time at all, which allows tos
determine their future states. Each rule has threesSafely reduce the number of invocationsfiatiMinTime.

expressions separated by spaces, definipasiaondition, This optimization is only possible by directly eafsing
a delay, and aprecondition for the rule. A rule is fired the multi-phased abstraction of the simulation pssc a

when itsprecondition is evaluated to true; and the rule’s CONCept that has not yet been taken into accoutitén
postcondition will define the cell's next state, which is ©riginal CD++ and in many other DEVS simulatorkeli

sent to the neighboring cells after a period cal®a from

the delay expression [4]. A full interpretation of the fire Table 2. Optimized FC Synchronization Task
model can be found in [14]. Internally, these rutee

: . Msg. Components
represented as syntax trees in the main memory. Type | Smulator FC NC BT | Other

(1) 3.07 0.91 -

The original CD++ was ported to the PPE using the f 5 R))
LP structure, resulting in a baseline version. Tine x) 11.79 0 -
model was executed on an IBM BladeCenter QS22 with g; - e
two PowerXCell 8i processors. Table 1 gives the fir Sum (s) 519.92 110679.81 232 180.65 121.89
simulation profile with the baseline CD++ on oneePP Total (9 111504.59

Table 2 shows the performance improvement. With the The FC synchronization task and the Simulator event
number offindMinTime invocations reduced roughly by execution remain the two dominant bottlenecks, rrete
half in the simulation, the time required for prssiag (D) to asFC Synchronization Kernel (FSK) and Smulator
events at the FC is decreased by 50.5% as a result. Event-processing Kernel (SEK), covering 93.61% and
4.08% of the total execution time respectively.
5.2. Preparing Simulation Data for CBE
6. PARALLELIZATION STRATEGIES
To expose the simulation data in a CBE-friendly wihe

following strategies are applied. Figure 4 illustrates the parallelization strategythe FSK.

1. The Simulator IDs are allocated continuously from 0

to (N-1), where N is the total number of Simulators THREAD PARALLELISM

2. The FC uses an integ@&ime Array (TA) to hold the y ! 1A
timing data of all child Simulators, where the srra G | G | . | &L @ e L E
indexes serve as Simulator IDs. It also uses aggant TA 4
Imminent ID Array (IA) to hold the imminent Simulator DATA- Y Double-
IDs found in findimminents. Both arrays are 128-byte piniAMING | [TAB, LIA8e: IABu | buffered DMA
aligned for efficient DMA transfer. \ fmdeTlmeU *\ fmdmmmentsU | cOmsplffaﬁon

| I
v

Timing Data [T, [T, [T, [T [T, [15 []

3. Each type of CD++ events is encoded in 32 byted, an

a flat 128-byte alignedvent buffer is used to pass events VECTOR _
between the FC and Simulators. Each buffer entsyama ParaLeis Minveco: TN =0 =
adjustable size of 32 events, allowing multiple reseto tndex: vector I <. scl) =

be sent to an SPE with one DMA transfer. This aagino

also removes most of the events from the centrairu Figure4. Parallelization Strategy for FSK

Event List (FEL), minimizing event queue operataust.

)))) _ Both TA and IA contain independent data, an ideslec

are repacked in a flat 128-byte aligretate buffer, where givided into multiple chunks, each of which is hietiby
each buffer entry has an adjustable size of 51@sbyt an SPE to realize thread-level parallelism acrossSPEs.
On each SPE, data-streaming parallelism is utilited
process the data as a stream of blocks with regides,
hiding memory latency with double-buffered DMA. The
synchronization functions are implemented using SPE
SIMD intrinsics to achieve vector parallelism. Ftioo
findMinTime uses a 128-bit, 4-way integer Min Vector to
scan the timing data in the current chunk. The Maéator

is then compared horizontally to obtain the lodalirk-
wise minimum, which is in turn sent to the PPE. iirty,
findimminents uses a 128-bit Index Vector to keep track
of 4 indexes corresponding to the TA entries indheent
chunk. The imminent Simulator IDs are sifted thrioulge
Index Vector using the PPE-determined global mimmu
time that has been replicated in the Min Vectorrétwer,
the scanning process can be further acceleratadsing

Table 3. Optimized Simulation Profile on PPE multiple Min and Index Vectors as simultaneous dadi
threads to explore loop-level parallelism.

5. The syntax trees derived from the transition rdes
converted to a sequence of floating-point valuegastfix
format and stored in a flat 128-byte alignede buffer
for efficient rule evaluation on the SPEs.

Table 3 gives the simulation profile with the optied
CD++, which runs 13.79 times faster than the baseli
version. The biggest improvement comes from the FC
whose data-intensive synchronization task bendfits
most from the enhanced data locality. The bootstirap
(BT) is reduced by 50% as most of the simulatiota dae
now allocated in batches with big arrays. Using ekient
buffer also accelerates Simulator event executichREL
operations (“Other”) by 7.1% and 23.81% respecyivel

Msg. Components

Type Simulator FC NC BT Other : ; ; : B

0 >3 558 — Unlike the LP-one_nted parallelization sFrategy ptdzcd_ln

*) 491.68 12.60 - most PDES techniques [5], the SEK directly expldits

((%) 6.24 565(?-51 = - - inherent event-level parallelism in the simulatiBigure 5

) - 76.41 - depicts a step-by-step view of message flow in the
— (EZ)) — flizll% 11622 — simulation phases, showing that two types of paliath

m (s . . . 5 . e . . : .
Totdl e can be utilized without violating causal consistenc

re @ [@n)

t ‘ v
FCO®) FC® Simulators @ | (@19 | (@) ‘ vee (@) ‘
v) N P I X R
Simulators@‘ () ‘ (I.t) ‘ (Is.t) ‘ vee | (D) | Simulators @ | (*1,0) | (*20) | (*s.0) ‘ voe | D) FC ® ‘ (Y1) ‘ D) ‘ (Yar) ‘ (D20) | yua| (Yad) | (DD) |
r v v v P v 2 g v D — 1
FC® |00 [@20 [@50] ... [@w0 | FC® | 0w | 0:0 [0 ,..[D | Simulators @ | X0 leee O [0660 s et | a0 [0600 [o0] X00)
NC® — NC@ -~ NC® I

Initialization Phase (t = 0)

Transition Phase at virtual time t

Collect Phase at virtual time t

Figureb5. Event-Level Parallelism

1. Event-embarrassing parallelism exists between the
independent events executedithin each step (shaded).

with each other through the shared FEL, which ¢wlgds
the events passed between the NC and the FC. With t

As there is no causal dependency between theme thescomputing technique, the Simulators are turned into

events can be executed concurrently in an arbitredgr.

2. Event-streaming parallelism exists between the
causally-dependant events executed iconsecutive steps.
As the output events from the preceding step sasvthe
inputs to the step that follows, these events can b
executed concurrently in a pipelined manner.

The first and last steps in each phase providdattkeand
join points for simulation synchronization. The flat LP
structure minimizes the number of synchronizatiom{s,
exposing the maximum degree of event-level pairsiiel

To parallelize the SEK, the Simulator event-protggs
algorithms are implemented using SPE SIMD intrigisic
whenever possible, and the performance is enhanitbd
loop unrolling, branch hints, and proper data atignt.
Thread-level parallelism is applied across the Skiere
each SPE hosts an instance of the SEK, which pseses

virtual LPs in the sense that all of them share a limited
group of SEKs, and the mapping of imminent Simukato
to the SEKs is determined dynamically at each alrtu
time throughout the simulation.

The FSKs are invoked in a RPC (Remote Procedurg Cal
style. Each synchronization function is assignathigiue
integer ID, which is sent to the FSKs through thigound
mailbox channel. The local chunk-wise minimum times
obtained infindMinTime are then returned to the PPE to
be merged into the global minimum. Note that, befor
calling findimminents, the current global minimum is
compared with the previously obtained local mininsuim
ensure that only those FSKs that actually foundgtbéal
minimum value are involved in the computation.

The SEKs are orchestrated as follows. After prangss
events in the FEL at the beginning of a simulatiiase,
the FC writes the generated events for the Simrgato

stream of events scheduled on the PPE. The PPH-evendirectly into the event buffer based on the SinarldDs.

scheduling algorithm dispatches one or more indépien
events targeting the same Simulator to an SEKtiateto
achieve event-embarrassing parallelism, while event
streaming parallelism is realized by executing aliys
dependent events between the SPEs and the PPtiin a
stage pipeline. The simulation data are transfewt
double-buffered DMA to tap data-streaming paradteli

7. COMPUTING TECHNIQUE

Figure 6 shows an overview of the computing teamiq
During bootstrap, the PPE main thread spawns aehelp
thread, which in turn creates a set of SPE thréawis on
each SPE). The SPEs are divided into two groupsfan
the FSKs and the other for the SEKs. More SPEsIdhou
be reserved for the FSKs in large-scale simulatioitls
moderate model complexity, while more SPEs are eded

The index of a modified buffer entry (Job ID) isénted
into a pending job queue, thus mapping a Simulata
chosen SPE. As the events executed by the SEKsyat a
virtual time have similar compute intensity, simplet
effective policies (e.g., round-robin or shortesege-first)
can be used to achieve fine-grained load-balarammgng
the SEKs. The FC then notifies the SEKs about the
number of pending jobs via mailbox channel. As sulte
the SEKSs fetch the job IDs in groups, double-bifigthe
data of the next job while executing the currerd.offter
each job execution, the updated state and outpertev
are transferred back to the main memory buffersgusi
double-buffered DMA. The SEKs send status signals t
the PPE periodically during the execution, allowihg
FC to process the output events in parallel. Rmn#le FC
sends events to the NC via the FEL at the end ef th
current phase. In the simulation, the PPE mainathre

to speed up the SEKs for medium-sized models with handles file I/O and/or inter-node messaging, @ging
complex behavior. The two PPE threads communicateCOmputation and communication to enhance performanc

PPE SPE,

I

PPE Main Thread : PPE Helper Thread | —Func ID— e SPE Thread FSK SPE,

Bootstrap & main loop/ | SPE synchronization /g Local min /| —
—————————————————————————————— | & FSK Invocation Status Synchronization
NC event-processing : FC event-processing findMinTime()
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | // Input” findImminents() /N
File I/O operation : /' SPE event-scheduling Job Notification | / ‘ — Output
| | TACBi | TAC,Bi | [TAC,B; | IAC,Bj,
o A /
Status ‘ — — oo

shred o || TA GGG |\, DMAgel DMAput Ls
(Read-Only) TN/ o e o DR SPE,
SPE Thread SPE,,

Pending job queues SEK
Shared FEL (R/W) ‘ 'J/obﬁlD] D:zj%%%i Synchronization
/4 ~77SEK)
e m Event-processing
Index !‘HTHO/ }—ml | m|—rmN’l —) (Simulator)
| Event Buffer (R/'W) \ i Input
y ¢ ~ Rule evaluation
Index [- i L | | — DMA put Input

AN|
Simulator State Buffer (R/W)- | Working Set 0 | Working Set 1| [Rule Cache 0 | Rule Cache 1 |
N ry | L | Ik \DM A ~
Transition Rules drr . get — —)
(Syntax trees) Rule Buffer (Read-only) DMA get LS
System memory
’ > DMA transfers —® Mailbox messages > Memory Accesses ‘

Figure 6. An Overview of the Computing Technique

8. EXPERIMENTAL RESULTS speedups were attained on up to 7 SPEs. The speedup
grows a bit slower after that for two reasons: 1) a
This section analyzes the performance of the FSilew increasing number of SPEs leads to higher orchasira
the SEK is still under implementation. Figure 7whdhe overhead; 2) frequent DMA contention and chanrelsst
speedups of the FSK itself over the optimized PPE occur when all the FSKs transfer data at the same t
version. Both functions attained super-linear sppsdiue
to SIMD vectorization and reduced memory |atenc§hwi Figure 9 gives the overall simulation time attailmedboth
double buffering. Functionfindimminents performed CBE and Intel E6400. On CBE, the simulation timeswa
better for two reasons: 1) a FSK is calledimlimminents ~ reduced from over 3 hours with the PPE-optimized+€D
only if it finds the global minimum, while all tHeSKs are t0 just 20 minutes with FSK on 16 SPEs. Comparmng t
called infindMinTime; 2) findMinTime is called in place the baseline and optimized CD++, the simulatiorieacd
by the FC, whereaindlmminents is called in advance by ~speedups up to 134.34 and 9.74 on CBE and up 8841.
the NC once the next simulation time is determirtads ~ and 1.92 on E6400 respectively. The heavy-iron B640
overlapping the computation at the PPE and the SPEshas a much larger cache (64KB L1, 2MB L2) than the
Overall, the FSK achieved a speedup of 25.04 o8RBs. PPE (32KB L1, 512KB L2), allowing the E6400 to
handle the FSK'’s intensive memory I/O at much lower
Figure 8 shows the FSK impact on the overall sitiia cache miss rates — a main reason for the perfornanc
speedups over the PPE-optimized CD++. Super-lineardifference between the two optimized versions.

30.60) Overall Simulation Speedups over PPE-Optimized CD++

39 9.70 9.74

927 9-

10.90 1218

£ 10.78

DMA transfer characteristics:

1) 16 KB per transfer

2) 768 transfers at each virtual time
3) 535548 virtual times in total

Number of SPEs
1 2 3 4 5 6 7 8 9 0 10121341516

—— findImminents—— findMinTime —— FSK Overall Number of SPEs 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16

Figure 7. FSK Speedupsover PPE Version Figure 8. FSK Impact on Overall Simulation

51866.84

E6400
(BASE)

2413.78

E6400
(OPT)

169002.1

12255.51

6872.50

3848.67

278631 228725 199091 1850.08 173554 1579.47 1467.03 146675 139917 134593 132247 130571 126310 1257.99

PPE
(BASE)

PPE
(OPT)

-

(NN ||] N . 1.1 1. 1.1 1.1 1. .1 1.1 1.1 1)

4 5 6 7 8 9 10 11 12 13 6

14 15 1
Number of SPEs

Figure9. Total Execution Time Attained on IBM CBE and I ntel E6400

9. CONCLUSION / FUTURE WORK

This paper presents a computing technique for ieffic
parallel simulation of large-scale discrete-eventieis on

Software: Practice and Experience, Vol. 32, No. 13, pp. 1261-
1306, 2002.

[5] R. M. Fujimoto, PARALLEL AND DISTRIBUTED
SIMULATION SYSTEMS, John Wiley & Sons, New York,

the CBE platform. Based on the DEVS formalism, the 2qgg.

technique tackles all major performance bottleneaks
combining multi-dimensional parallelism and various
optimizations in the simulation. Moreover, the noeth
presented in this work can also be readily appiedther

[6] J. A. Khale, M. N. Day, H. P. Hofstee, C. R. JohfsR.
Maeurer, D. Shippy, “Introducing to the Cell muttgessor”.
IBM Journal of Research and Development, Vol. 49, No. 4/5,

CMP and shared-memory multiprocessors. PromisingPP: 589-604, 2005.

results have been produced in our experimentsnisiia

speedups up to 134.34 and 41.23 over the baselin
implementation on the PPE and on the Intel E6400

processor respectively. The technique not onlywnsi@
broad community of discrete-event simulation uskrs

harness CBE potential without being distracted by

multicore programming, but also provides insight on
porting legacy software to current and future noolte
platforms. We are implementing the SEK in CD++ and
integrating cluster-based parallel simulation WEBE-
accelerated parallel simulation on hybrid systems.

ACKNOWLEDGEMENTS

This work was supported in part by NSERC, the MITAC
Accelerate Ontario Program, Canada, and by the TBML
Watson Research Center, NY. We would like to thank
D. P. Scarpazza and Dr. L. K. Liu from IBM Watson
Center for their insightful feedback.

REFERENCES

[1] B. P. Zeigler, H. Praehofer, T. G. Kim, THEORY OF
MODELING AND SIMULATION, 2™ Edition, Academic Press,
London, 2000.

[2] A. C. Chow, B. P. Zeigler, “Parallel DEVS: A pasdlll
hierarchical, modular, modeling formalism”. Procegd of
Winter Simulation Conference, Lake Buena Vista, ph, 716-
722,1994.

[3] G. Wainer, N. Giambiasi, “N-dimensional Cell-DEVS
models”. Discrete Event Dynamic Systems, Vol. 12, No. 2, pp.
135-157, 2002.

[4] G. Wainer. “CD++: a toolkit to develop DEVS models”

é?] F. Blagojevic, X. Feng, K. W. Cameron, D. S. Nikodulos,

Modeling multigrain parallelism on heterogeneousltincore
processors: A case study of the Cell BHigh Performance
Embedded Architectures and Compilers, LNCS 4917, pp. 38-52,
Springer, Berlin, 2008.

[8] T. J. Knight, J. Y. Park, M. Ren, M. Erez, K. Fathan, A.
Aiken, W. J. Dally, P. Hanrahan, “Compilation foxpdicitly
managed memory hierarchies”. Proceedings of ACMPRI&N
Symposium on Principles and Practice of ParallegRamming,
San Jose, CA, pp. 226-236, 2007.

[9] M. D. McCool, “Data-parallel programming on the CBE
and the GPU using the RapidMind development platfor
Proceedings of GSPx Multicore Applications ConferSanta
Clara, CA, 2006.

[10] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Huslis, K.
Yelick, “Scientific computing kernels on the Celiogessor”.
International Journal of Parallel Programming, Vol. 35, No. 3,
pp. 263-298, 2007.

[11] V. Agarwal, L. K. Liu, D. A. Bader, “Financial motieg

on the Cell Broadband Engine”. Proceedings of I|IEEE
International Symposium on Parallel and DistribuRrdcessing,
Miami, FL, pp. 1-12, 2008.

[12] Q. Liu, G. Wainer, “Parallel environment for DEV&d
Cell-DEVS models”SIMULATION, Vol. 83, No. 6, pp.449-471,
2007.

[13] E. Glinsky, G. Wainer, “New parallel simulation tetgques
of DEVS and Cell-DEVS in CD++". Proceedings of Amhu
Simulation Symposium, Huntsville, AL, pp. 244-22006.

[14] G. Wainer. “Applying Cell-DEVS methodology for
modeling the environmentS MULATION, Vol. 82, No. 10, pp.
635-660, 2006.

