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ABSTRACT 
 
This paper presents a computing technique for efficient 
parallel simulation of large-scale discrete-event models 
on the IBM Cell Broadband Engine (CBE), which has one 
Power Processor Element (PPE) and eight Synergistic 
Processing Elements (SPE). Based on the general-
purpose Discrete Event System Specification (DEVS), the 
technique tackles all performance bottlenecks, combining 
multi-dimensional parallelism and various optimizations. 
Preliminary experiments have produced very promising 
results, attaining speedups up to 134.34 and 41.23 over 
the baseline implementation on PPE and on Intel Core2 
Duo E6400 processor respectively. The methods can also 
be applied to other multicore and shared-memory 
architectures. We conclude that the technique not only 
allows discrete-event simulation users to tap CBE 
potential without being distracted by multicore 
programming, but also provides insight on migration of 
legacy software to current and future multicore platforms. 
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1. INTRODUCTION 
 
Discrete-event simulation has been used to study complex 
systems in a broad array of domains. The Discrete Event 
System Specification (DEVS) [1], in particular, supports 
hierarchical construction of reusable models in a modular 
way. Numerous extensions to DEVS have been proposed 
in the literature. P-DEVS [2] extends DEVS to handle 
simultaneous events in the simulation. Cell-DEVS [3] 
defines n-dimensional cell spaces as discrete-event models 
where each cell is a basic DEVS model component. Both 
P-DEVS and Cell-DEVS have been implemented in 
CD++ [4], which is an object-oriented Modeling and 
Simulation (M&S) environment programmed in C++. 

Parallel Discrete-Event Simulation (PDES) is widely 
accepted as a viable approach to efficient discrete-event 
simulation [5]. Traditionally, parallelism is achieved by 
partitioning a simulation onto multiple nodes of a cluster 
to exploit concurrent activities at different model 
components. While these coarse-grained parallelization 
strategies have achieved success in improving simulation 
performance, most of them neglect to integrate with other 
fine-grained parallelism available on multicore platforms. 
 
As the monolithic approach to microprocessor design 
reaches a point of diminishing return, the industry is 
moving towards multicore Chip Multiprocessor (CMP) 
architectures. A latest example is the heterogeneous IBM 
Cell Broadband Engine (CBE) processor [6], which has a 
main Power Processor Element (PPE) and 8 specialized 
co-processors called Synergistic Processing Elements 
(SPEs). Each SPE can only directly access a fast, small, 
non-coherent local storage (LS) to execute the bulk of the 
workload in small chunks. Data sharing is achieved 
mainly through software-managed explicitly-addressed 
autonomous Direct Memory Access (DMA) transfers to 
and from the system main memory. In addition, the SPEs 
support 128-bit SIMD (Single Instruction, Multiple Data) 
operations that can be applied at different granularities. 
While the CBE processor offers a vast number of 
parallelization options at different levels, the asymmetric 
architecture of heterogeneous cores with explicit memory 
control requires innovative redesign of existing algorithms 
to achieve optimal execution efficiency.  
 
As multicore computing becomes pervasive, there is a 
growing need for novel PDES algorithms targeting CMP 
platforms. To this end, we propose a computing technique 
that combines multi-dimensional parallelism in large-scale 
discrete-event simulations, while hiding the technical 
details of multicore programming. Based on the general-
purpose DEVS and Cell-DEVS formalisms, the technique 
tackles all main performance bottlenecks in the simulation, 
incorporating various optimizations in a systematic way. 



A realistic wildfire propagation model is used to illustrate 
the impact of each optimization step. Although not all of 
the proposed algorithms are fully implemented, the ones 
currently available have already produced very promising 
results, attaining simulation speedups up to 134.34 and 
41.23 over the baseline implementation on the PPE and on 
the Intel Core2 Duo E6400 processor respectively. 
 
In the following, Section 2 and 3 review the challenges 
and DEVS simulation in CD++. The fire simulation 
profile is analyzed in Section 4. Section 5 and 6 cover the 
optimization and parallelization strategies. The computing 
technique is proposed in Section 7. Section 8 shows the 
experimental results, and Section 9 concludes the paper. 

 

2. CHALLENGES 
 

Existing PDES techniques usually adopt a coarse-grained 
parallelization strategy at the cluster level without paying 
much attention to other fine-grained parallelism available 
on multicore processors. Multi-grained parallelism has 
been recently exploited on CMP architectures in the 
context of scientific and multimedia applications [7]. New 
parallelization strategies for PDES are required to explore 
multi-dimensional parallelism at different levels on CBE. 
 
Different programming models were proposed to improve 
programmability on CBE [6]. Although these abstract 
models provide excellent guidelines for designing new 
computing techniques, significant efforts are still needed 
to address PDES peculiarities. 
 
Compiler-assisted vectorization is one way to facilitate 
software development on CBE [8]. Without understanding 
the application logic, nonetheless, this technique is still 
inadequate on its own for complex PDES systems 
involving highly irregular computation that must respect 
the causal dependency among individual events. 
 
Several middleware frameworks have also been developed 
on top of CBE programming primitives [9]. However, 
some of them assume a strict data parallel model or adhere 
to pure C programming, while others provide only a 
minimal set of functionality of a standard library for 
specific applications, greatly hindering their applicability 
to complex object-oriented PDES systems.  
 
Most existing CBE applications perform numerically-
intensive regular computation on a large array of data 
following the well-known SIMD model [10]. CBE is also 
used to host M&S applications to offload compute-
intensive functions to the SPEs [11]. It is, however, not 
straightforward to apply the methods employed in these 
applications in general-purpose PDES systems. 

3. PARALLEL SIMULATION IN CD++ 
 
P-DEVS defines a model as a hierarchy of atomic 
(behavioral) and coupled (structural) components. The 
simulation is executed by several logical processes (LPs), 
which are specialized into Simulators and Coordinators 
[2]. A Simulator is paired with an atomic model to trigger 
the model behavior; while a Coordinator is attached to a 
coupled model to schedule events in the model hierarchy. 
Cell-DEVS [3] describes dynamic systems as cell spaces 
where each cell is a P-DEVS atomic model. Both P-
DEVS and Cell-DEVS are realized in CD++ [4], which 
has been extended to support parallel simulation on 
distributed-memory clusters using a flat LP structure [12].  
 

 
 

Figure 1. Flat LP Structure 
 
Depicted in Figure 1, the sequential simulation on a node 
involves a Node Coordinator (NC), a Flat Coordinator 
(FC), and a set of Simulators. The NC is the local central 
controller and the endpoint of inter-node MPI messaging, 
whereas the FC synchronizes all child Simulators 
underneath. By eliminating the intermediate coordinators 
in the hierarchy, this flat LP structure significantly reduces 
communication overhead, while preserving the same 
hierarchical model definition [13]. As will be discussed 
later in Section 6 and 7, it also facilitates the exploitation 
of event-level and data-level parallelism on CBE. 
 

 
 

Figure 2. Multi-Phased Simulation Process 
 
The LPs exchange messages that fall in two categories: 
content messages include the external (X) and output (Y) 
events that encode the model input and output data, while 
control messages include the initialization (I), collect (@), 
internal (*), and done (D) events that control the 
simulation flow. Detailed event-processing algorithms can 
be found in [12]. Figure 2 shows a high-level structured 
view of the sequential simulation on a node. At any virtual 



time, the message flow between the LPs consists of an 
optional collect phase and a mandatory transition phase. 
The simulation starts with an initialization phase at virtual 
time 0. At the end of a transition phase, the NC advances 
the simulation to the next virtual time. This paper focuses 
on further parallelizing the sequential simulation on CBE 
so as to combine parallel simulation at cluster level with 
accelerated parallel simulation on each multicore node. 

 

4. FIRE SIMULATION PROFILE 
 
M&S has long been used to study wildfire phenomena. 
Cell-DEVS supports discrete-event simulation of wildfire, 
improving model accuracy and execution efficiency [14]. 
The CD++ environment allows for defining Cell-DEVS 
models using a built-in specification language, a feature 
that is especially valuable on CMP platforms since general 
users can focus on their modeling issues without being 
distracted by multicore programming details. 
 

 
 

Figure 3. Fire Model Definition in CD++ [14] 
 
The fire model introduced in [14] is used in this paper for 
performance evaluation. This model defines a 1024 by 
1024 cell space (over one million cells) to simulate a 
wildfire scenario based on predetermined spread rates. 
Figure 3 shows a skeleton of the fire model definition in 
CD++. The model behavior is specified using a set of 
transition rules, which are evaluated sequentially by active 
cells, also known as imminent cells, at each virtual time to 
determine their future states. Each rule has three 
expressions separated by spaces, defining a postcondition, 
a delay, and a precondition for the rule. A rule is fired 
when its precondition is evaluated to true; and the rule’s 
postcondition will define the cell’s next state, which is 
sent to the neighboring cells after a period calculated from 
the delay expression [4]. A full interpretation of the fire 
model can be found in [14]. Internally, these rules are 
represented as syntax trees in the main memory. 
 
The original CD++ was ported to the PPE using the flat 
LP structure, resulting in a baseline version. The fire 
model was executed on an IBM BladeCenter QS22 with 
two PowerXCell 8i processors. Table 1 gives the fire 
simulation profile with the baseline CD++ on one PPE. 

Table 1. Baseline Simulation Profile on PPE 
 
Components Msg. 

Type Simulator FC NC BT Other 
(I) 3.06 0.90 ─ 
(*) 515.69 16.96 ─ 
(@) 8.13 55816.60 ─ 
(X) 11.94 0 ─ 
(Y) ─ 94.41 ─ 
(D) ─ 112215.00 3.25 

─ ─ 

Sum (s) 538.82 168143.87 3.25 181.57 134.58 

Total (s) 169002.10 

 
It is clear that the main bottleneck resides at the FC, 
consuming more than 99% of the total execution time. 
The table also shows that the FC spends most of the time 
on processing (@) and (D) events, during which two 
functions are called respectively to synchronize the 
Simulators at each virtual time: 1) findImminents finds the 
imminent Simulator IDs; and 2) findMinTime computes 
the next global minimum state change time among the 
Simulators. This synchronization task becomes time-
consuming in large-scale simulations as a large amount of 
timing data needs to be processed. Another bottleneck 
resides at the Simulators, especially during the execution 
of (*) events where the transition rules are evaluated. It is 
relatively minor since the fire model uses simplified rules 
to approximate the real system. More complex rules 
would be required to obtain more precise approximation, 
increasing the computation intensity at the Simulators.  
 

5. OPTIMIZATION STRATEGIES 
 
5.1. Optimizing FC Synchronization Task 
 
The two synchronization functions are invoked regularly 
by the FC: findImminents is called at the beginning of a 
collect phase, whereas findMinTime is called at the end of 
each collect and transition phases. A closer examination 
shows that it is unnecessary to compute the next state 
change time in the collect phases as these transient phases 
do not advance virtual time at all, which allows us to 
safely reduce the number of invocations of findMinTime. 
This optimization is only possible by directly exploiting 
the multi-phased abstraction of the simulation process, a 
concept that has not yet been taken into account in the 
original CD++ and in many other DEVS simulators alike. 
 

Table 2. Optimized FC Synchronization Task 
 

Components Msg. 
Type Simulator FC NC BT Other 

(I) 3.07 0.91 ─ 
(*) 497.40 14.38 ─ 
(@) 7.66 55044.50 ─ 
(X) 11.79 0 ─ 
(Y) ─ 93.52 ─ 
(D) ─ 55526.50 2.32 

─ ─ 

Sum (s) 519.92 110679.81 2.32 180.65 121.89 

Total (s) 111504.59 



Table 2 shows the performance improvement. With the 
number of findMinTime invocations reduced roughly by 
half in the simulation, the time required for processing (D) 
events at the FC is decreased by 50.5% as a result. 
 
5.2. Preparing Simulation Data for CBE 
 
To expose the simulation data in a CBE-friendly way, the 
following strategies are applied. 
 
1. The Simulator IDs are allocated continuously from 0 
to (N-1), where N is the total number of Simulators. 
 
2. The FC uses an integer Time Array (TA) to hold the 
timing data of all child Simulators, where the array 
indexes serve as Simulator IDs. It also uses an integer 
Imminent ID Array (IA) to hold the imminent Simulator 
IDs found in findImminents. Both arrays are 128-byte 
aligned for efficient DMA transfer. 
 
3. Each type of CD++ events is encoded in 32 bytes, and 
a flat 128-byte aligned event buffer is used to pass events 
between the FC and Simulators. Each buffer entry has an 
adjustable size of 32 events, allowing multiple events to 
be sent to an SPE with one DMA transfer. This approach 
also removes most of the events from the central Future 
Event List (FEL), minimizing event queue operation cost. 
 
4. The state data included in the Simulator-atomic pairs 
are repacked in a flat 128-byte aligned state buffer, where 
each buffer entry has an adjustable size of 512 bytes. 
 
5. The syntax trees derived from the transition rules are 
converted to a sequence of floating-point values in postfix 
format and stored in a flat 128-byte aligned rule buffer 
for efficient rule evaluation on the SPEs. 
 
Table 3 gives the simulation profile with the optimized 
CD++, which runs 13.79 times faster than the baseline 
version. The biggest improvement comes from the FC 
whose data-intensive synchronization task benefits the 
most from the enhanced data locality. The bootstrap time 
(BT) is reduced by 50% as most of the simulation data are 
now allocated in batches with big arrays. Using the event 
buffer also accelerates Simulator event execution and FEL 
operations (“Other”) by 7.1% and 23.81% respectively. 
 

Table 3. Optimized Simulation Profile on PPE 
 

Components Msg. 
Type Simulator FC NC BT Other 

(I) 2.58 0.76 ─ 
(*) 491.68 12.60 ─ 
(@) 6.24 5650.61 ─ 
(X) ─ 0 ─ 
(Y) ─ 76.41 ─ 
(D) ─ 5821.37 1.62 

─ ─ 

Sum (s) 500.51 11561.75 1.62 89.10 102.53 

Total (s) 12255.51 

The FC synchronization task and the Simulator event 
execution remain the two dominant bottlenecks, referred 
to as FC Synchronization Kernel (FSK) and Simulator 
Event-processing Kernel (SEK), covering 93.61% and 
4.08% of the total execution time respectively. 
 

6. PARALLELIZATION STRATEGIES 
 
Figure 4 illustrates the parallelization strategy for the FSK. 
 

 
 

Figure 4. Parallelization Strategy for FSK 
 
Both TA and IA contain independent data, an ideal case 
for exploiting data-level parallelism. The arrays are 
divided into multiple chunks, each of which is handled by 
an SPE to realize thread-level parallelism across the SPEs. 
On each SPE, data-streaming parallelism is utilized to 
process the data as a stream of blocks with regular sizes, 
hiding memory latency with double-buffered DMA. The 
synchronization functions are implemented using SPE 
SIMD intrinsics to achieve vector parallelism. Function 
findMinTime uses a 128-bit, 4-way integer Min Vector to 
scan the timing data in the current chunk. The Min Vector 
is then compared horizontally to obtain the local chunk-
wise minimum, which is in turn sent to the PPE. Similarly, 
findImminents uses a 128-bit Index Vector to keep track 
of 4 indexes corresponding to the TA entries in the current 
chunk. The imminent Simulator IDs are sifted through the 
Index Vector using the PPE-determined global minimum 
time that has been replicated in the Min Vector. Moreover, 
the scanning process can be further accelerated by using 
multiple Min and Index Vectors as simultaneous logical 
threads to explore loop-level parallelism. 
 
Unlike the LP-oriented parallelization strategy adopted in 
most PDES techniques [5], the SEK directly exploits the 
inherent event-level parallelism in the simulation. Figure 5 
depicts a step-by-step view of message flow in the 
simulation phases, showing that two types of parallelism 
can be utilized without violating causal consistency. 



 
 

Figure 5. Event-Level Parallelism 
 
1. Event-embarrassing parallelism exists between the 
independent events executed within each step (shaded). 
As there is no causal dependency between them, these 
events can be executed concurrently in an arbitrary order.  
 
2. Event-streaming parallelism exists between the 
causally-dependant events executed in consecutive steps. 
As the output events from the preceding step serve as the 
inputs to the step that follows, these events can be 
executed concurrently in a pipelined manner. 
 
The first and last steps in each phase provide the fork and 
join points for simulation synchronization. The flat LP 
structure minimizes the number of synchronization points, 
exposing the maximum degree of event-level parallelism. 
 
To parallelize the SEK, the Simulator event-processing 
algorithms are implemented using SPE SIMD intrinsics 
whenever possible, and the performance is enhanced with 
loop unrolling, branch hints, and proper data alignment. 
Thread-level parallelism is applied across the SPEs where 
each SPE hosts an instance of the SEK, which processes a 
stream of events scheduled on the PPE. The PPE event-
scheduling algorithm dispatches one or more independent 
events targeting the same Simulator to an SEK at a time to 
achieve event-embarrassing parallelism, while event-
streaming parallelism is realized by executing causally-
dependent events between the SPEs and the PPE in a two-
stage pipeline. The simulation data are transferred with 
double-buffered DMA to tap data-streaming parallelism. 
 

7. COMPUTING TECHNIQUE 
 
Figure 6 shows an overview of the computing technique. 
During bootstrap, the PPE main thread spawns a helper 
thread, which in turn creates a set of SPE threads (one on 
each SPE). The SPEs are divided into two groups: one for 
the FSKs and the other for the SEKs. More SPEs should 
be reserved for the FSKs in large-scale simulations with 
moderate model complexity, while more SPEs are needed 
to speed up the SEKs for medium-sized models with 
complex behavior. The two PPE threads communicate 

with each other through the shared FEL, which only holds 
the events passed between the NC and the FC. With this 
computing technique, the Simulators are turned into 
virtual LPs in the sense that all of them share a limited 
group of SEKs, and the mapping of imminent Simulators 
to the SEKs is determined dynamically at each virtual 
time throughout the simulation. 
 
The FSKs are invoked in a RPC (Remote Procedure Call) 
style. Each synchronization function is assigned a unique 
integer ID, which is sent to the FSKs through the inbound 
mailbox channel. The local chunk-wise minimum times 
obtained in findMinTime are then returned to the PPE to 
be merged into the global minimum. Note that, before 
calling findImminents, the current global minimum is 
compared with the previously obtained local minimums to 
ensure that only those FSKs that actually found the global 
minimum value are involved in the computation.  
 
The SEKs are orchestrated as follows. After processing 
events in the FEL at the beginning of a simulation phase, 
the FC writes the generated events for the Simulators 
directly into the event buffer based on the Simulator IDs. 
The index of a modified buffer entry (Job ID) is inserted 
into a pending job queue, thus mapping a Simulator to a 
chosen SPE. As the events executed by the SEKs at any 
virtual time have similar compute intensity, simple yet 
effective policies (e.g., round-robin or shortest-queue-first) 
can be used to achieve fine-grained load-balancing among 
the SEKs. The FC then notifies the SEKs about the 
number of pending jobs via mailbox channel. As a result, 
the SEKs fetch the job IDs in groups, double-buffering the 
data of the next job while executing the current one. After 
each job execution, the updated state and output events 
are transferred back to the main memory buffers using 
double-buffered DMA. The SEKs send status signals to 
the PPE periodically during the execution, allowing the 
FC to process the output events in parallel. Finally, the FC 
sends events to the NC via the FEL at the end of the 
current phase. In the simulation, the PPE main thread 
handles file I/O and/or inter-node messaging, overlapping 
computation and communication to enhance performance. 



 
 

Figure 6. An Overview of the Computing Technique 
 

8. EXPERIMENTAL RESULTS 
 

This section analyzes the performance of the FSK, while 
the SEK is still under implementation. Figure 7 shows the 
speedups of the FSK itself over the optimized PPE 
version. Both functions attained super-linear speedups due 
to SIMD vectorization and reduced memory latency with 
double buffering. Function findImminents performed 
better for two reasons: 1) a FSK is called in findImminents 
only if it finds the global minimum, while all the FSKs are 
called in findMinTime; 2) findMinTime is called in place 
by the FC, whereas findImminents is called in advance by 
the NC once the next simulation time is determined, thus 
overlapping the computation at the PPE and the SPEs. 
Overall, the FSK achieved a speedup of 25.04 on 16 SPEs. 
 

Figure 8 shows the FSK impact on the overall simulation 
speedups over the PPE-optimized CD++. Super-linear 

speedups were attained on up to 7 SPEs. The speedup 
grows a bit slower after that for two reasons: 1) an 
increasing number of SPEs leads to higher orchestration 
overhead; 2) frequent DMA contention and channel stalls 
occur when all the FSKs transfer data at the same time. 
 

Figure 9 gives the overall simulation time attained on both 
CBE and Intel E6400. On CBE, the simulation time was 
reduced from over 3 hours with the PPE-optimized CD++ 
to just 20 minutes with FSK on 16 SPEs. Comparing to 
the baseline and optimized CD++, the simulation achieved 
speedups up to 134.34 and 9.74 on CBE and up to 41.23 
and 1.92 on E6400 respectively. The heavy-iron E6400 
has a much larger cache (64KB L1, 2MB L2) than the 
PPE (32KB L1, 512KB L2), allowing the E6400 to 
handle the FSK’s intensive memory I/O at much lower 
cache miss rates – a main reason for the performance 
difference between the two optimized versions. 

 
 

Figure 7. FSK Speedups over PPE Version                          Figure 8. FSK Impact on Overall Simulation 



 
 

Figure 9. Total Execution Time Attained on IBM CBE and Intel E6400 
 

9. CONCLUSION / FUTURE WORK 
 
This paper presents a computing technique for efficient 
parallel simulation of large-scale discrete-event models on 
the CBE platform. Based on the DEVS formalism, the 
technique tackles all major performance bottlenecks by 
combining multi-dimensional parallelism and various 
optimizations in the simulation. Moreover, the methods 
presented in this work can also be readily applied to other 
CMP and shared-memory multiprocessors. Promising 
results have been produced in our experiments, attaining 
speedups up to 134.34 and 41.23 over the baseline 
implementation on the PPE and on the Intel E6400 
processor respectively. The technique not only allows a 
broad community of discrete-event simulation users to 
harness CBE potential without being distracted by 
multicore programming, but also provides insight on 
porting legacy software to current and future multicore 
platforms. We are implementing the SEK in CD++ and 
integrating cluster-based parallel simulation with CBE-
accelerated parallel simulation on hybrid systems. 
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