
Novel Performance Optimization of Large-Scale Discrete-Event Simulation on
the Cell Broadband Engine

Qi Liu, Gabriel Wainer
Department of Systems & Computer Engineering

Carleton University, Ottawa, ON, Canada
{liuqi, gwainer}@sce.carleton.ca

Ligang Lu, Michael Perrone

IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

{lul, mpp}@us.ibm.com

ABSTRACT

This paper presents a computing technique for efficient
parallel simulation of large-scale discrete-event models
on the IBM Cell Broadband Engine (CBE), which has one
Power Processor Element (PPE) and eight Synergistic
Processing Elements (SPE). Based on the general-
purpose Discrete Event System Specification (DEVS), the
technique tackles all performance bottlenecks, combining
multi-dimensional parallelism and various optimizations.
Preliminary experiments have produced very promising
results, attaining speedups up to 134.34 and 41.23 over
the baseline implementation on PPE and on Intel Core2
Duo E6400 processor respectively. The methods can also
be applied to other multicore and shared-memory
architectures. We conclude that the technique not only
allows discrete-event simulation users to tap CBE
potential without being distracted by multicore
programming, but also provides insight on migration of
legacy software to current and future multicore platforms.

KEYWORDS: Discrete-event simulation, multicore
computing, DEVS formalism, Cell Broadband Engine

1. INTRODUCTION

Discrete-event simulation has been used to study complex
systems in a broad array of domains. The Discrete Event
System Specification (DEVS) [1], in particular, supports
hierarchical construction of reusable models in a modular
way. Numerous extensions to DEVS have been proposed
in the literature. P-DEVS [2] extends DEVS to handle
simultaneous events in the simulation. Cell-DEVS [3]
defines n-dimensional cell spaces as discrete-event models
where each cell is a basic DEVS model component. Both
P-DEVS and Cell-DEVS have been implemented in
CD++ [4], which is an object-oriented Modeling and
Simulation (M&S) environment programmed in C++.

Parallel Discrete-Event Simulation (PDES) is widely
accepted as a viable approach to efficient discrete-event
simulation [5]. Traditionally, parallelism is achieved by
partitioning a simulation onto multiple nodes of a cluster
to exploit concurrent activities at different model
components. While these coarse-grained parallelization
strategies have achieved success in improving simulation
performance, most of them neglect to integrate with other
fine-grained parallelism available on multicore platforms.

As the monolithic approach to microprocessor design
reaches a point of diminishing return, the industry is
moving towards multicore Chip Multiprocessor (CMP)
architectures. A latest example is the heterogeneous IBM
Cell Broadband Engine (CBE) processor [6], which has a
main Power Processor Element (PPE) and 8 specialized
co-processors called Synergistic Processing Elements
(SPEs). Each SPE can only directly access a fast, small,
non-coherent local storage (LS) to execute the bulk of the
workload in small chunks. Data sharing is achieved
mainly through software-managed explicitly-addressed
autonomous Direct Memory Access (DMA) transfers to
and from the system main memory. In addition, the SPEs
support 128-bit SIMD (Single Instruction, Multiple Data)
operations that can be applied at different granularities.
While the CBE processor offers a vast number of
parallelization options at different levels, the asymmetric
architecture of heterogeneous cores with explicit memory
control requires innovative redesign of existing algorithms
to achieve optimal execution efficiency.

As multicore computing becomes pervasive, there is a
growing need for novel PDES algorithms targeting CMP
platforms. To this end, we propose a computing technique
that combines multi-dimensional parallelism in large-scale
discrete-event simulations, while hiding the technical
details of multicore programming. Based on the general-
purpose DEVS and Cell-DEVS formalisms, the technique
tackles all main performance bottlenecks in the simulation,
incorporating various optimizations in a systematic way.

A realistic wildfire propagation model is used to illustrate
the impact of each optimization step. Although not all of
the proposed algorithms are fully implemented, the ones
currently available have already produced very promising
results, attaining simulation speedups up to 134.34 and
41.23 over the baseline implementation on the PPE and on
the Intel Core2 Duo E6400 processor respectively.

In the following, Section 2 and 3 review the challenges
and DEVS simulation in CD++. The fire simulation
profile is analyzed in Section 4. Section 5 and 6 cover the
optimization and parallelization strategies. The computing
technique is proposed in Section 7. Section 8 shows the
experimental results, and Section 9 concludes the paper.

2. CHALLENGES

Existing PDES techniques usually adopt a coarse-grained
parallelization strategy at the cluster level without paying
much attention to other fine-grained parallelism available
on multicore processors. Multi-grained parallelism has
been recently exploited on CMP architectures in the
context of scientific and multimedia applications [7]. New
parallelization strategies for PDES are required to explore
multi-dimensional parallelism at different levels on CBE.

Different programming models were proposed to improve
programmability on CBE [6]. Although these abstract
models provide excellent guidelines for designing new
computing techniques, significant efforts are still needed
to address PDES peculiarities.

Compiler-assisted vectorization is one way to facilitate
software development on CBE [8]. Without understanding
the application logic, nonetheless, this technique is still
inadequate on its own for complex PDES systems
involving highly irregular computation that must respect
the causal dependency among individual events.

Several middleware frameworks have also been developed
on top of CBE programming primitives [9]. However,
some of them assume a strict data parallel model or adhere
to pure C programming, while others provide only a
minimal set of functionality of a standard library for
specific applications, greatly hindering their applicability
to complex object-oriented PDES systems.

Most existing CBE applications perform numerically-
intensive regular computation on a large array of data
following the well-known SIMD model [10]. CBE is also
used to host M&S applications to offload compute-
intensive functions to the SPEs [11]. It is, however, not
straightforward to apply the methods employed in these
applications in general-purpose PDES systems.

3. PARALLEL SIMULATION IN CD++

P-DEVS defines a model as a hierarchy of atomic
(behavioral) and coupled (structural) components. The
simulation is executed by several logical processes (LPs),
which are specialized into Simulators and Coordinators
[2]. A Simulator is paired with an atomic model to trigger
the model behavior; while a Coordinator is attached to a
coupled model to schedule events in the model hierarchy.
Cell-DEVS [3] describes dynamic systems as cell spaces
where each cell is a P-DEVS atomic model. Both P-
DEVS and Cell-DEVS are realized in CD++ [4], which
has been extended to support parallel simulation on
distributed-memory clusters using a flat LP structure [12].

Figure 1. Flat LP Structure

Depicted in Figure 1, the sequential simulation on a node
involves a Node Coordinator (NC), a Flat Coordinator
(FC), and a set of Simulators. The NC is the local central
controller and the endpoint of inter-node MPI messaging,
whereas the FC synchronizes all child Simulators
underneath. By eliminating the intermediate coordinators
in the hierarchy, this flat LP structure significantly reduces
communication overhead, while preserving the same
hierarchical model definition [13]. As will be discussed
later in Section 6 and 7, it also facilitates the exploitation
of event-level and data-level parallelism on CBE.

Figure 2. Multi-Phased Simulation Process

The LPs exchange messages that fall in two categories:
content messages include the external (X) and output (Y)
events that encode the model input and output data, while
control messages include the initialization (I), collect (@),
internal (*), and done (D) events that control the
simulation flow. Detailed event-processing algorithms can
be found in [12]. Figure 2 shows a high-level structured
view of the sequential simulation on a node. At any virtual

time, the message flow between the LPs consists of an
optional collect phase and a mandatory transition phase.
The simulation starts with an initialization phase at virtual
time 0. At the end of a transition phase, the NC advances
the simulation to the next virtual time. This paper focuses
on further parallelizing the sequential simulation on CBE
so as to combine parallel simulation at cluster level with
accelerated parallel simulation on each multicore node.

4. FIRE SIMULATION PROFILE

M&S has long been used to study wildfire phenomena.
Cell-DEVS supports discrete-event simulation of wildfire,
improving model accuracy and execution efficiency [14].
The CD++ environment allows for defining Cell-DEVS
models using a built-in specification language, a feature
that is especially valuable on CMP platforms since general
users can focus on their modeling issues without being
distracted by multicore programming details.

Figure 3. Fire Model Definition in CD++ [14]

The fire model introduced in [14] is used in this paper for
performance evaluation. This model defines a 1024 by
1024 cell space (over one million cells) to simulate a
wildfire scenario based on predetermined spread rates.
Figure 3 shows a skeleton of the fire model definition in
CD++. The model behavior is specified using a set of
transition rules, which are evaluated sequentially by active
cells, also known as imminent cells, at each virtual time to
determine their future states. Each rule has three
expressions separated by spaces, defining a postcondition,
a delay, and a precondition for the rule. A rule is fired
when its precondition is evaluated to true; and the rule’s
postcondition will define the cell’s next state, which is
sent to the neighboring cells after a period calculated from
the delay expression [4]. A full interpretation of the fire
model can be found in [14]. Internally, these rules are
represented as syntax trees in the main memory.

The original CD++ was ported to the PPE using the flat
LP structure, resulting in a baseline version. The fire
model was executed on an IBM BladeCenter QS22 with
two PowerXCell 8i processors. Table 1 gives the fire
simulation profile with the baseline CD++ on one PPE.

Table 1. Baseline Simulation Profile on PPE

Components Msg.

Type Simulator FC NC BT Other
(I) 3.06 0.90 ─
(*) 515.69 16.96 ─
(@) 8.13 55816.60 ─
(X) 11.94 0 ─
(Y) ─ 94.41 ─
(D) ─ 112215.00 3.25

─ ─

Sum (s) 538.82 168143.87 3.25 181.57 134.58

Total (s) 169002.10

It is clear that the main bottleneck resides at the FC,
consuming more than 99% of the total execution time.
The table also shows that the FC spends most of the time
on processing (@) and (D) events, during which two
functions are called respectively to synchronize the
Simulators at each virtual time: 1) findImminents finds the
imminent Simulator IDs; and 2) findMinTime computes
the next global minimum state change time among the
Simulators. This synchronization task becomes time-
consuming in large-scale simulations as a large amount of
timing data needs to be processed. Another bottleneck
resides at the Simulators, especially during the execution
of (*) events where the transition rules are evaluated. It is
relatively minor since the fire model uses simplified rules
to approximate the real system. More complex rules
would be required to obtain more precise approximation,
increasing the computation intensity at the Simulators.

5. OPTIMIZATION STRATEGIES

5.1. Optimizing FC Synchronization Task

The two synchronization functions are invoked regularly
by the FC: findImminents is called at the beginning of a
collect phase, whereas findMinTime is called at the end of
each collect and transition phases. A closer examination
shows that it is unnecessary to compute the next state
change time in the collect phases as these transient phases
do not advance virtual time at all, which allows us to
safely reduce the number of invocations of findMinTime.
This optimization is only possible by directly exploiting
the multi-phased abstraction of the simulation process, a
concept that has not yet been taken into account in the
original CD++ and in many other DEVS simulators alike.

Table 2. Optimized FC Synchronization Task

Components Msg.
Type Simulator FC NC BT Other

(I) 3.07 0.91 ─
(*) 497.40 14.38 ─
(@) 7.66 55044.50 ─
(X) 11.79 0 ─
(Y) ─ 93.52 ─
(D) ─ 55526.50 2.32

─ ─

Sum (s) 519.92 110679.81 2.32 180.65 121.89

Total (s) 111504.59

Table 2 shows the performance improvement. With the
number of findMinTime invocations reduced roughly by
half in the simulation, the time required for processing (D)
events at the FC is decreased by 50.5% as a result.

5.2. Preparing Simulation Data for CBE

To expose the simulation data in a CBE-friendly way, the
following strategies are applied.

1. The Simulator IDs are allocated continuously from 0
to (N-1), where N is the total number of Simulators.

2. The FC uses an integer Time Array (TA) to hold the
timing data of all child Simulators, where the array
indexes serve as Simulator IDs. It also uses an integer
Imminent ID Array (IA) to hold the imminent Simulator
IDs found in findImminents. Both arrays are 128-byte
aligned for efficient DMA transfer.

3. Each type of CD++ events is encoded in 32 bytes, and
a flat 128-byte aligned event buffer is used to pass events
between the FC and Simulators. Each buffer entry has an
adjustable size of 32 events, allowing multiple events to
be sent to an SPE with one DMA transfer. This approach
also removes most of the events from the central Future
Event List (FEL), minimizing event queue operation cost.

4. The state data included in the Simulator-atomic pairs
are repacked in a flat 128-byte aligned state buffer, where
each buffer entry has an adjustable size of 512 bytes.

5. The syntax trees derived from the transition rules are
converted to a sequence of floating-point values in postfix
format and stored in a flat 128-byte aligned rule buffer
for efficient rule evaluation on the SPEs.

Table 3 gives the simulation profile with the optimized
CD++, which runs 13.79 times faster than the baseline
version. The biggest improvement comes from the FC
whose data-intensive synchronization task benefits the
most from the enhanced data locality. The bootstrap time
(BT) is reduced by 50% as most of the simulation data are
now allocated in batches with big arrays. Using the event
buffer also accelerates Simulator event execution and FEL
operations (“Other”) by 7.1% and 23.81% respectively.

Table 3. Optimized Simulation Profile on PPE

Components Msg.
Type Simulator FC NC BT Other

(I) 2.58 0.76 ─
(*) 491.68 12.60 ─
(@) 6.24 5650.61 ─
(X) ─ 0 ─
(Y) ─ 76.41 ─
(D) ─ 5821.37 1.62

─ ─

Sum (s) 500.51 11561.75 1.62 89.10 102.53

Total (s) 12255.51

The FC synchronization task and the Simulator event
execution remain the two dominant bottlenecks, referred
to as FC Synchronization Kernel (FSK) and Simulator
Event-processing Kernel (SEK), covering 93.61% and
4.08% of the total execution time respectively.

6. PARALLELIZATION STRATEGIES

Figure 4 illustrates the parallelization strategy for the FSK.

Figure 4. Parallelization Strategy for FSK

Both TA and IA contain independent data, an ideal case
for exploiting data-level parallelism. The arrays are
divided into multiple chunks, each of which is handled by
an SPE to realize thread-level parallelism across the SPEs.
On each SPE, data-streaming parallelism is utilized to
process the data as a stream of blocks with regular sizes,
hiding memory latency with double-buffered DMA. The
synchronization functions are implemented using SPE
SIMD intrinsics to achieve vector parallelism. Function
findMinTime uses a 128-bit, 4-way integer Min Vector to
scan the timing data in the current chunk. The Min Vector
is then compared horizontally to obtain the local chunk-
wise minimum, which is in turn sent to the PPE. Similarly,
findImminents uses a 128-bit Index Vector to keep track
of 4 indexes corresponding to the TA entries in the current
chunk. The imminent Simulator IDs are sifted through the
Index Vector using the PPE-determined global minimum
time that has been replicated in the Min Vector. Moreover,
the scanning process can be further accelerated by using
multiple Min and Index Vectors as simultaneous logical
threads to explore loop-level parallelism.

Unlike the LP-oriented parallelization strategy adopted in
most PDES techniques [5], the SEK directly exploits the
inherent event-level parallelism in the simulation. Figure 5
depicts a step-by-step view of message flow in the
simulation phases, showing that two types of parallelism
can be utilized without violating causal consistency.

Figure 5. Event-Level Parallelism

1. Event-embarrassing parallelism exists between the
independent events executed within each step (shaded).
As there is no causal dependency between them, these
events can be executed concurrently in an arbitrary order.

2. Event-streaming parallelism exists between the
causally-dependant events executed in consecutive steps.
As the output events from the preceding step serve as the
inputs to the step that follows, these events can be
executed concurrently in a pipelined manner.

The first and last steps in each phase provide the fork and
join points for simulation synchronization. The flat LP
structure minimizes the number of synchronization points,
exposing the maximum degree of event-level parallelism.

To parallelize the SEK, the Simulator event-processing
algorithms are implemented using SPE SIMD intrinsics
whenever possible, and the performance is enhanced with
loop unrolling, branch hints, and proper data alignment.
Thread-level parallelism is applied across the SPEs where
each SPE hosts an instance of the SEK, which processes a
stream of events scheduled on the PPE. The PPE event-
scheduling algorithm dispatches one or more independent
events targeting the same Simulator to an SEK at a time to
achieve event-embarrassing parallelism, while event-
streaming parallelism is realized by executing causally-
dependent events between the SPEs and the PPE in a two-
stage pipeline. The simulation data are transferred with
double-buffered DMA to tap data-streaming parallelism.

7. COMPUTING TECHNIQUE

Figure 6 shows an overview of the computing technique.
During bootstrap, the PPE main thread spawns a helper
thread, which in turn creates a set of SPE threads (one on
each SPE). The SPEs are divided into two groups: one for
the FSKs and the other for the SEKs. More SPEs should
be reserved for the FSKs in large-scale simulations with
moderate model complexity, while more SPEs are needed
to speed up the SEKs for medium-sized models with
complex behavior. The two PPE threads communicate

with each other through the shared FEL, which only holds
the events passed between the NC and the FC. With this
computing technique, the Simulators are turned into
virtual LPs in the sense that all of them share a limited
group of SEKs, and the mapping of imminent Simulators
to the SEKs is determined dynamically at each virtual
time throughout the simulation.

The FSKs are invoked in a RPC (Remote Procedure Call)
style. Each synchronization function is assigned a unique
integer ID, which is sent to the FSKs through the inbound
mailbox channel. The local chunk-wise minimum times
obtained in findMinTime are then returned to the PPE to
be merged into the global minimum. Note that, before
calling findImminents, the current global minimum is
compared with the previously obtained local minimums to
ensure that only those FSKs that actually found the global
minimum value are involved in the computation.

The SEKs are orchestrated as follows. After processing
events in the FEL at the beginning of a simulation phase,
the FC writes the generated events for the Simulators
directly into the event buffer based on the Simulator IDs.
The index of a modified buffer entry (Job ID) is inserted
into a pending job queue, thus mapping a Simulator to a
chosen SPE. As the events executed by the SEKs at any
virtual time have similar compute intensity, simple yet
effective policies (e.g., round-robin or shortest-queue-first)
can be used to achieve fine-grained load-balancing among
the SEKs. The FC then notifies the SEKs about the
number of pending jobs via mailbox channel. As a result,
the SEKs fetch the job IDs in groups, double-buffering the
data of the next job while executing the current one. After
each job execution, the updated state and output events
are transferred back to the main memory buffers using
double-buffered DMA. The SEKs send status signals to
the PPE periodically during the execution, allowing the
FC to process the output events in parallel. Finally, the FC
sends events to the NC via the FEL at the end of the
current phase. In the simulation, the PPE main thread
handles file I/O and/or inter-node messaging, overlapping
computation and communication to enhance performance.

Figure 6. An Overview of the Computing Technique

8. EXPERIMENTAL RESULTS

This section analyzes the performance of the FSK, while
the SEK is still under implementation. Figure 7 shows the
speedups of the FSK itself over the optimized PPE
version. Both functions attained super-linear speedups due
to SIMD vectorization and reduced memory latency with
double buffering. Function findImminents performed
better for two reasons: 1) a FSK is called in findImminents
only if it finds the global minimum, while all the FSKs are
called in findMinTime; 2) findMinTime is called in place
by the FC, whereas findImminents is called in advance by
the NC once the next simulation time is determined, thus
overlapping the computation at the PPE and the SPEs.
Overall, the FSK achieved a speedup of 25.04 on 16 SPEs.

Figure 8 shows the FSK impact on the overall simulation
speedups over the PPE-optimized CD++. Super-linear

speedups were attained on up to 7 SPEs. The speedup
grows a bit slower after that for two reasons: 1) an
increasing number of SPEs leads to higher orchestration
overhead; 2) frequent DMA contention and channel stalls
occur when all the FSKs transfer data at the same time.

Figure 9 gives the overall simulation time attained on both
CBE and Intel E6400. On CBE, the simulation time was
reduced from over 3 hours with the PPE-optimized CD++
to just 20 minutes with FSK on 16 SPEs. Comparing to
the baseline and optimized CD++, the simulation achieved
speedups up to 134.34 and 9.74 on CBE and up to 41.23
and 1.92 on E6400 respectively. The heavy-iron E6400
has a much larger cache (64KB L1, 2MB L2) than the
PPE (32KB L1, 512KB L2), allowing the E6400 to
handle the FSK’s intensive memory I/O at much lower
cache miss rates – a main reason for the performance
difference between the two optimized versions.

Figure 7. FSK Speedups over PPE Version Figure 8. FSK Impact on Overall Simulation

Figure 9. Total Execution Time Attained on IBM CBE and Intel E6400

9. CONCLUSION / FUTURE WORK

This paper presents a computing technique for efficient
parallel simulation of large-scale discrete-event models on
the CBE platform. Based on the DEVS formalism, the
technique tackles all major performance bottlenecks by
combining multi-dimensional parallelism and various
optimizations in the simulation. Moreover, the methods
presented in this work can also be readily applied to other
CMP and shared-memory multiprocessors. Promising
results have been produced in our experiments, attaining
speedups up to 134.34 and 41.23 over the baseline
implementation on the PPE and on the Intel E6400
processor respectively. The technique not only allows a
broad community of discrete-event simulation users to
harness CBE potential without being distracted by
multicore programming, but also provides insight on
porting legacy software to current and future multicore
platforms. We are implementing the SEK in CD++ and
integrating cluster-based parallel simulation with CBE-
accelerated parallel simulation on hybrid systems.

ACKNOWLEDGEMENTS

This work was supported in part by NSERC, the MITACS
Accelerate Ontario Program, Canada, and by the IBM T. J.
Watson Research Center, NY. We would like to thank Dr.
D. P. Scarpazza and Dr. L. K. Liu from IBM Watson
Center for their insightful feedback.

REFERENCES

[1] B. P. Zeigler, H. Praehofer, T. G. Kim, THEORY OF
MODELING AND SIMULATION, 2nd Edition, Academic Press,
London, 2000.

[2] A. C. Chow, B. P. Zeigler, “Parallel DEVS: A parallel,
hierarchical, modular, modeling formalism”. Proceedings of
Winter Simulation Conference, Lake Buena Vista, FL, pp. 716-
722, 1994.

[3] G. Wainer, N. Giambiasi, “N-dimensional Cell-DEVS
models”. Discrete Event Dynamic Systems, Vol. 12, No. 2, pp.
135-157, 2002.

[4] G. Wainer. “CD++: a toolkit to develop DEVS models”.

Software: Practice and Experience, Vol. 32, No. 13, pp. 1261-
1306, 2002.

[5] R. M. Fujimoto, PARALLEL AND DISTRIBUTED
SIMULATION SYSTEMS, John Wiley & Sons, New York,
2000.

[6] J. A. Khale, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, D. Shippy, “Introducing to the Cell multiprocessor”.
IBM Journal of Research and Development, Vol. 49, No. 4/5,
pp. 589-604, 2005.

[7] F. Blagojevic, X. Feng, K. W. Cameron, D. S. Nikolopoulos,
“Modeling multigrain parallelism on heterogeneous multi-core
processors: A case study of the Cell BE”. High Performance
Embedded Architectures and Compilers, LNCS 4917, pp. 38-52,
Springer, Berlin, 2008.

[8] T. J. Knight, J. Y. Park, M. Ren, M. Erez, K. Fatahalian, A.
Aiken, W. J. Dally, P. Hanrahan, “Compilation for explicitly
managed memory hierarchies”. Proceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
San Jose, CA, pp. 226-236, 2007.

[9] M. D. McCool, “Data-parallel programming on the Cell BE
and the GPU using the RapidMind development platform”.
Proceedings of GSPx Multicore Applications Conference, Santa
Clara, CA, 2006.

[10] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K.
Yelick, “Scientific computing kernels on the Cell processor”.
International Journal of Parallel Programming, Vol. 35, No. 3,
pp. 263-298, 2007.

[11] V. Agarwal, L. K. Liu, D. A. Bader, “Financial modeling
on the Cell Broadband Engine”. Proceedings of IEEE
International Symposium on Parallel and Distributed Processing,
Miami, FL, pp. 1-12, 2008.

[12] Q. Liu, G. Wainer, “Parallel environment for DEVS and
Cell-DEVS models”. SIMULATION, Vol. 83, No. 6, pp.449-471,
2007.

[13] E. Glinsky, G. Wainer, “New parallel simulation techniques
of DEVS and Cell-DEVS in CD++”. Proceedings of Annual
Simulation Symposium, Huntsville, AL, pp. 244-251, 2006.

[14] G. Wainer. “Applying Cell-DEVS methodology for
modeling the environment”. SIMULATION, Vol. 82, No. 10, pp.
635-660, 2006.

