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Abstract 
 Today, model based simulation is a popular scheme for 
simulating real world events. There has been some effort to 
use the same models that have been developed for 
simulation purposes for control applications. This approach 
permits model reuse and reliability for critical embedded 
control applications. In this paper a simulation model of an 
autonomous robot has been used to control a simulated 
reconnaissance vehicle on battle field. Since it is very costly 
to construct a real battle field situation and to verify the 
performance of military devices, model continuity from 
simulation to embedded control is a cost-effective and easy 
process for developing military applications. We have used 
DEVS (Discrete EVent System specification) formalism to 
define the robotic vehicle model and conducted variety of 
tests by simulation variety of scenarios. The final model has 
been embedded on a tank shaped robot.  
 
1. INTRODUCTION AND MOTIVATION  
 Military application development is a very critical and 
expensive task in the engineering field. Verification and 
testing phase is also more critical as it is very difficult to 
practically simulate a battle field situation in reality. Testing 
military equipments in a real battle field condition would be 
very costly and risky. Instead, computer simulation methods 
can be a good replacement for real environment testing. 
Simulation proposes a cost-effective and easy way of 
modeling the real world events and calibrating different 
conditions in a virtual environment.  
 Formal methods are safe and easier techniques for 
modeling the environment under focus. Different formal 
methodologies have been presented in the area of modeling 
and simulation (M&S). Many state-based approaches, such 
as Verilog  [1], VHDL  [2], Petri Nets and Timed Petri Nets 
 [3], Timed Automata  [4], State Charts  [5] and Finite State 
Machines  [6] have been presented for M&S.  

 Model continuity from simulation to real-time 
embedded control application eases both design and 
verification phases of military control application 
development. The simulated models are tested in a risk free 
environment, and the transportation of these models to the 
real hardware environment is also straight forward. 
Deploying a formal methodology for the design phase and 
using an already available development tool speeds up 
application development and increases the reliability of the 
final product. Using a previously tested simulation model 
makes it portable on any hardware platform. Model reuse 
leads to a faster and reusable model development process as 
many already available sub-models can be integrated with 
the new ones. Formal techniques usually provide graphical 
representation for a model, helping model developer to 
better conceive the model behavior. Graphical 
representation also speeds up the design phase and assists in 
robust model development.  
 The cost and criticality of military application 
development is a major issue in choosing simulation 
methods to map battle field events onto virtual environment. 
The goal here is not only having a visual simulation of the 
battle field, but also developing a robust formal model of the 
control application that would be used on the real hardware 
platform. Several critical issues are brought up in real-time 
applications which can be verified with real-time 
simulation. The ability to simulate the model in virtual-time 
and real-time is a major motivation for this research. 
Portability of the simulated model on different hardware 
platforms lets us test the model on small scale robotic 
hardware.  
 
2. BACKGROUND  
 Discrete EVent System specification (DEVS)  [7] is a 
sound formal framework based on generic dynamic systems 
which provides a well-defined coupling of components and 
construction of hierarchical and  modular systems. It also 
supports discrete event approximation of continuous 
systems and repository reuse. DEVS theory provides a 
rigorous methodology for representing models, and it does 



present an abstract way of thinking about the world with 
independence of the simulation mechanisms, underlying 
hardware, and middleware. A real system modeled with 
DEVS is described as a composite of sub-models, each of 
them being behavioral (atomic) or structural (coupled).  
 A DEVS atomic model is formally defined by: 
M = <X, Y, S, δint, δext, λ, ta>, Where:  
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and 
values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports 
and values; 
S: is the set of sequential states; 
δint: S →→→→ S is the internal state transition function; 
δext: Q × X →→→→S is the external state transition function, 
where:  
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the 
time elapsed since the last state transition; 
λ: S →→→→Y is the output function; 
ta: S →→→→ R+

0, ∞  is the time advance function. 
 The semantics for this definition is given as follows. At 
any time, a DEVS coupled model is in a state s ∈ S. In the 
absence of external events, the model will stay in this state 
for the duration specified by ta(s). When the elapsed time e 
= ta(s), the state duration expires and the atomic model will 
send the output λ(s) and performs an internal transition to a 
new state specified by δint(s). Transitions that occur due to 
the expiration of ta(s) are called internal transitions. 
However, state transition can also happen due to arrival of 
an external event which will place the model into a new 
state specified by δext(s,e,x); where s is the current state, e is 
the elapsed time, and x is the input value. The time advance 
function ta(s) can take any real value from 0 to ∞. A state 
with ta(s) value of zero is called transient state, and on the 
other hand, if ta(s) is equal to ∞ the state is said to be 
passive, in which the system will remain in this state until 
receiving an external event. A DEVS coupled model is 
composed of several atomic or coupled sub-models and 
their couplings. 
 Figure 1 shows a hierarchical DEVS model. This model 
is composed of two atomic models (Generator, Buffer and 
Processor) and two coupled models: the top model that 
contains generator atomic model and BUF-PROC coupled 
mode, the BUF-PROC coupled model includes two atomic 
models: BUF and PROC. The port connections are also 
visible in the figure. For example the output port “out” of 
atomic model PROC is connected to the “done” input port 
of BUF atomic model within the same coupled model and 
also is connected to the output port of the its parent coupled 
model which connects this output to the Top model output 

port. 

 
Figure 1. Generator-Buffer-Processor hierarchical DEVS 

model 
  
 Embedded CD++ (E-CD++)  [8] is an extension to 
CD++  [9] toolkit that has been developed based on Parallel 
DEVS (P-DEVS)  [10] formalism which has converted the 
virtual time function of CD++ into a real-time function 
(using a time advance function tied to the real-time clock) 
and added hardware interaction capability to it. Model 
implementation in E-CD++ is done by writing C++ code in 
a text-based Linux environment with open source tools. In 
order to improve the development and simulation 
experience, an IDE is provided for the E-CD++ simulator as 
an Eclipse plug-in that contains E-CD++ functionalities. It 
also has a graphical model designer that supports GGAD 
(Generic Graphical Advanced environment for DEVS 
modeling and simulation) diagram  [11].  

 
3. AUTONOMOUS RECONNAISSANCE VEHICLE  
 Detective robot model is a sophisticated DEVS-based 
system which is able to explore battle field for any 
suspicious object. Using DEVS as a formal method for 
designing such a model provides a formal paradigm for 
military application design and reduction of application 
development cost. This methodology enabled us to design 
this model and test it using a small handcrafted robot in the 
lab. Figure 2 shows different views of the reconnaissance 
vehicle.  
  

 
Figure 2. Autonomous reconnaissance vehicle 



  
 The robot vehicle uses a radar device mounted on top of 
it which scans the area surrounding it. The radar is equipped 
with a sonar (ultra sonic) sensor and a compass sensor. The 
function of the sonar sensor is to detect an object and the 
compass sensor is responsible to detect the direction of the 
obstacle to report it to the movement controller of the robot. 
In a real scale design, the sonar sensor can be replaced with 
a more sophisticated one. There is another sonar sensor 
mounted on the robot body accompanied by another 
compass sensor. The idea behind this is to receive the 
direction angle of the object detected by the radar and steer 

the robot towards the target. The sonar sensor on the robot 
body helps avoiding obstacles in front of it in order to find 
the target. There is a motor mounted on the robot to turn the 
radar to accomplish 180 degrees clockwise and 
counterclockwise turns for scanning the area around. There 
are two more motors connected to the robot used for moving 
and steering.  
 
3.1. DEVS Model Specifications 
 Figure 3 illustrates DEVS model hierarchy defined for 
the robotic vehicle model. 

 
Figure 3. Detective robot DEVS model hierarchy 

 
 The model is constructed of a Top coupled model 
which contains two coupled models: Radar System and 
Movement System. The Radar System is responsible for 
controlling the radar hardware behavior. It is composed of 
four atomic models: Sonar1 sensor, Compass1 sensor, 
Motor1 and Radar controller. Radar controller is the main 
atomic model in Radar System coupled model which 
synchronizes the other three atomic models in the coupled 
model and talks to Movement System. As soon as the 

simulation/execution starts, Radar controller model receives 
a signal from Movement System coupled model; the former 
sends a signal to Motor1 model ordering the spinning 
action. Motor1 model performs the simple job of spinning 
the radar motor clockwise or counterclockwise. Radar 
controller periodically changes the direction of spinning of 
Motor1 model so that the radar turns 180 degrees clockwise 
and 180 degrees counterclockwise, scanning a certain radius 
surrounding the robot. Sonar1 sensor atomic model controls 



the sonar sensor which is mounted on the radar. It starts 
receiving periodic inputs from the sonar sensor hardware 
after obtaining the start signal from Radar controller and 
forwards them to Radar controller model. As soon as the 
Sonar1 sensor detects an object in the scan radius area, it 
forwards a signal to the Radar controller model. The latter 
sends three outputs: 1) one to Compass1 sensor, ordering 
the detection of the direction (based on the angle of 
deviation from the north direction) of the object. 2) A signal 
to the Motor1 to stop spinning. 3) A signal to the Movement 
System to stop the robot. Once Compass1 sensor model 
receives this signal, catches the angle from the sensor device 
and reports the value back to the Radar controller. The 
latter forwards this value to Movement System.  
 DEVS formal definition of Radar controller model is as 
follows: 
M = <X, S, Y, δext, δint, λ, ta>, Where 
X: (radar_in1, 1) Connected to Movement System start 
signal. (radar_in2, 1) connected to Sonar1 sensor object 
detection signal. (radar_in3, degree) connected to Compass1 
sensor angle of the object. 
S: ”Idle”, “Prepare for Working”, “Ask motor1 to turn 
right”, “Ask motor1 to turn left”, “Ask motor1 and MC to 
stop”, “Wait compass1 degree”, “Send mess. degree to 
MC”.  
Y: (radar_out1, 0, 1, 2) Connected to the Motor1, 0: stop, 1: 
spin clockwise, 2: spin counterclockwise. (radar_out2, 1, 
degree) connected to Movement System, 1: stop signal, 
degree: target degree, (radar_out3, 1) connected to 
Compass1 sensor angle detection signal.  
δext: Receives inputs from the input port and initiates 
appropriate state transitions. 
δint: defines state changes based current state. 
λ: based on the input value and the current state sends the 
output signals to the output ports.  
ta: real-time advance function. 
 Figure 4 illustrates the GGAD state diagram of the 
Radar controller atomic model. Note that each circle 
indicates a state and the continuous line connections show 
external transitions and dashed lines show internal 
transitions between states. The labels on external transitions 
show the input port and input value used by δext function and 
labels on internal transitions show output port and output 
value produced by λ function before δint function. The 
duration of each state (ta(s)) is indicated in the circle.  
 Movement System coupled model is composed of five 
atomic models:  
1) Motor2: Controls the function of the right motor which 

is connected to the right robot tread. Carries out the 
same functions as Motor1 model.  

2) Motor3: Controls the function of the left motor, 
connected to the left robot tread. Carries out the same 
functions as Motor1 and Motor2 models. 

 
Figure 4. Radar controller GGAD diagram 

 
3) Compass2 sensor: Controls the compass sensor 

mounted on the robot robot. It reports the current 
direction of the robot to the Movement controller 
model. It also matches the angle which the robot is 
heading with the angle that the target is located while 
the robot is turning towards the target.  

4) Sonar2 sensor: controls the sonar sensor mounted on 
the robot. The main function of this atomic model is to 
find the target when the robot is heading towards it. 

5) Movement controller: synchronizes the other five 
atomic models in Movement System coupled model. A 
predefined event coming from the event file to this 
model from input port In4 fires the 
simulation/execution process. Once this input is 
received, Movement controller starts both motors to 
move forward by sending signals to Motor2 and Motor3 
models and also the radar. As soon as it receives a 
signal from Radar controller confirming detection of an 
object, the former stops both motors and waits to obtain 
the target angle from the latter. After receiving the 
angle, Movement controller sends a signal to Compass2 
sensor to catch the current robot heading angle. Using 
these two values it calculates which direction to turn, 
then orders both motors to spin in a direction which 
accomplishes the calculated turning direction. It also 
informs the Compass2 sensor to start capturing the 
robot heading direction in a periodic manner and 
comparing it with the target direction. Once these two 
directions are matched Compass2 sensor informs 
Movement controller and the latter stops motors and 
orders them to move forward towards the target. While 
the robot is traveling towards the target, Movement 



controller listens to Sonar2 sensor to find out when it is 
close enough to the target to stop.  

 DEVS formal definition of Movement controller model 
is as follows: 
M = <X, S, Y, δext, δint, λ, ta> 
X: (move_in1, 1) Connected to event file to receive start 
signal. (move_in2, 1, degree1) Connected to Radar 
controller, 1: object detection signal, degree1: target angle. 
(move_in3, 1, degree2) Connected to Compass2 sensor, 1: 
target angle and robot angle matched signal, degree2: robot 
heading angle. (move_in4, 1) Connected to Sonar2 sensor, 
target detection signal.  
S: ”Stop”, “Prepare to move forward”, “Moving forward”, 
“Ask MC to stop”, “Wait radar mess”, “Prepare to receive”, 
“Wait to receive”, “Prepare to turn”, “Turn”, “Ask to 
prepare to Move forward”, “Move forward”, “Ask to 
prepare to stop”. 

Y: (move_out1, 1) Connected to the Radar controller, start 
signal. (move_out2, 0, 1, 2) Connected to Motor2, 0: stop, 
1: spin clockwise, 2: spin counterclockwise. (move_out3, 0, 
1, 2) Connected to Motor3, 0: stop, 1: spin clockwise, 2: 
spin counterclockwise. (move_out4, 1, degree1) Connected 
to Compass2 sensor, 1: catch tang heading angle, degree1: 
match target angle with robot angle. (move_out5, 1) 
connected to Sonar2 sensor, target detection signal. 
δext: Receives inputs from the input port and initiates 
appropriate state transitions. 
δint: defines state changes based current state. 
λ: based on the input value and the current state sends the 
following outputs signals to the output ports.  
ta: real-time advance function. 
 Figure 5 illustrates the GGAD state diagram of the 
Movement controller atomic model.  

 
Figure 5. GGAD state diagram of Movement controller 

 
3.2. Implementation on E-CD++  
 E-CD++ provides a simple framework for 
programming DEVS models. DEVS model hierarchical 
structure and couplings are provided in a model file with a 
specific format. DEVS main three functions δext, δint, λ are 
overridden by user in C++ language. This framework speeds 
up implementation process, and improves reliability of the 

final product to a high extent. The following code illustrates 
the model file of the detective robot model.  
 
1 [top] 
2 components : RadarSystem MovingSystem 
3 out : Out1 Out2 Out3 
4 in : In1 In2 In3 In4 In5 
5 Link : In1 MS_In1@MovingSystem 
6 Link : In2 RS_In2@RadarSystem 



7 … 
8 [RadarSystem] 
9 components : sonar1@Sonar1 

compass1@Compass1 motor1@Motor1 
radarcontroller@RadarController 

10  in : RS_In1 RS_In2 RS_In3 
11  out : RS_Out1 RS_Out2 
12  Link : RS_In1 radar_in1@radarcontroller 
13  Link : RS_In2 sonar1_in1@sonar1 
14  … 
15  [MovingSystem] 
16  components : motor2@Motor2 motor3@Motor3 

movementController@MovementController 
compass2@Compass2 sonar2@Sonar2 

17  in : MS_In1 MS_In2 MS_In3 MS_In4 
18  out : MS_Out1 MS_Out2 MS_Out3 
19  Link : MS_In1 move_in1@movementController 

20  Link : MS_In2 move_in2@movementController 
21  … 
 
 Line 1 starts the definition of Top model which 
contains two coupled components in line 2, Radar System 
and Movement System. Lines 3 and 4 declare output and 
input ports of the Top model. Lines 5 and 6 declare the 
internal couplings between the two coupled components 
inside the Top model. The same logic is repeated for the 
other two coupled models Radar System and Movement 
System.  
 The following code snippet shows a portion of the three 
DEVS functions implementation for Radar controller 
atomic model.  

 
1 Model &RadarController::externalFunction( const Ext ernalMessage &msg ) 
2 { 
3   if(state==Idle && msg.port() == radar_in1){ 
4     if(msg.value()==1){ 
5       state = Pr_Wrk; 
6       holdIn( Atomic::active, radarTime ); 
7     } 
8   } 
9   … 
10    return *this; 
11  } 
 
12  Model &RadarController::internalFunction( const Int ernalMessage & ) 
13  { 
14    switch (state){ 
15      case Pr_Wrk: 
16        state = Trn_Right; 
17        holdIn( Atomic::active, turnTime ); 
18        break; 
19    … 
20    } 
21    return *this; 
22  } 
 
23  Model &RadarController::outputFunction( const Inter nalMessage &msg ) 
24  { 
25    switch (state){ 
26      case Pr_Wrk: 
27        sendOutput( msg.time(), radar_out1, 1) ;//wor king 
28        break; 
29    … 
30    }; 
31    return *this ; 
32  }

 
 Lines 1 to 11 show a portion of the code for δext 
function in which the input value 1 from port “radar_in1” is 
being checked while the model is in “Idle” state and the 
state changes to “Prepare for Working”. The holdIn function 
in E-CD++ sets the time duration (ta(s)) of the state which is 
declared in model file. Line 12 to 22 show part of the δint 

function, which maps the dashed lines of the GGAD 
diagram. In this code the transition from state “Prepare for 
Working” to “Ask motor1 to turn right” is implemented. 
Lines 23 to 32 implement part of the λ function, which is 
producing output of the “Prepare for Working” state.  
 Code similar to this paradigm is used for the other 
atomic models in the system.  



 
3.3. Simulation Results  
 As mentioned before, E-CD++ provides virtual-time 
and real-time simulation framework for DEVS models as 
well as tools to add a hardware driver to the model to embed 
and execute it on the hardware. We ran variety of simulation 

scenarios both in virtual-time and real-time using the 
detective robot model. Figure 6 shows the event file of a 
simulation scenario versus the result of the simulation in E-
CD++.  
 

 
Figure 6. Snapshot of E-CD++ event file and output file for detective robot model  

 
 The first line of the Event file shows the value 1 which 
is passed to the input port “In1” of the Top model after 2 
seconds of the start of the simulation. Event file only 
accepts inputs to the Top coupled model ports. Port “In1” is 
hierarchically connected to the Movement controller atomic 
model; therefore this input is forwarded to this atomic mode 
and triggers the start of the simulation. Respectively, the 
first three lines in the outputfile are the outputs to the three 
motors (two robot motors and one radar motor) which are 
produces 20 to 30 milliseconds later based on the state 
durations. After the robot starts to move and the radar to 
scan, at the fifth second (line 2 of event file) an input is 
forwarded to port “In2” which is connected to Sonar1 
sensor model. Hence, the all three motors are stopped (line 
3 to 6 of output file) and the Radar controller waits for the 
target angle from Compass1 sensor. The angle of 200 
degrees is injected to the model at the 6th second and this 
triggers Movement controller to obtain the robot current 
heading angle. 50 degrees angle value is entered to port 
“In4” which is connected to Compass2 sensor atomic model 
and the latter forwards it to Movement controller, where the 
calculation of the turning direction happens and the outputs 
are shown in lines 7 and 8 of the output file. Once, one 
motor of the robot spins clockwise and the other one 
counterclockwise, the robot starts turning to either of the 
directions. After that, 5 inputs are entered to port “IN4” 
which simulate the periodic angle inputs while the robot is 
turning towards the target. As soon as 200 degrees is 
detected by Compass2 sensor model, the model notifies 
Movement controller model about this match and the latter 
orders both motors to move forward (only one motor which 
is not spinning clockwise will be ordered to spin clockwise). 
Finally the target detection signal is injected to port “In5” 
which is connected to Sonar2 sensor which notifies 
Movement controller and the latter stops both motors.  

 After building the robotic vehicle, the hardware driver 
was written for the connected ports and the model was run 
on the robot. Several tests have been carried out from 
different angles and the robot could pass all of them 
successfully. Two videos of the robot are provided online in 
 [12],  [13]. 
 
4. CONCLUSIONS   
 DEVS as a formal modeling and simulation 
methodology provides risk-free and easy-to-modify battle 
field simulation strategies where the validity of the system 
is guaranteed. In this work, a DEVS-based real-time and 
embedded control model was introduced for an autonomous 
reconnaissance robotic vehicle in the battle field. We have 
presented the DEVS model specifications for the robotic 
vehicle and discussed the implementation details of the 
model in E-CD++. The Simulation results were elaborated 
to explain the functionality of the vehicle. Also, to illustrate 
the functional behavior of the robotic vehicle, sample 
simulation scenarios were captured on videos and links were 
provided to clearly observe how the system works. The use 
of a formal method like DEVS improved reliability and 
portability of the model on different hardware platforms 
which enabled us to verify the model using virtual-time and 
real-time simulations. Model reuse feature of DEVS eases 
the use of many parts of this model for developing a more 
sophisticated and real control model of a military 
autonomous vehicle. This work also presented how the E-
CD++ toolkit provides an object oriented framework for 
programming DEVS-based speeding up the implementation 
phase and improving robustness of the final product.  
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