Application of RT-DEVS in Military

Mohammad Moallemi, Gabriel Wainer, Antoine
Awad
Dept. of Systems and Computer Engineering,
Carleton University, Centre of Visualization and
Simulation (V-Sim)
1125 Colonel By Dr. Ottawa, ON, Canada.
{moallemi, gwainer}@sce.carleton.ca,
aawad3@connect.carleton.ca

Keywords: Discrete event simulation, DEVS, Military
application development, Real-Time Simulation amai@ol

Abstract
Today, model based simulation is a popular schieme
simulating real world events. There has been sdifoet ¢o

Dieynaba Alpha Tall,
Polytech Marseille — Departement de Genie Industrie
Domaine Universitaire de St Jérdme,
13397, MARSEILLE Cedex 20,
France
dieynaba-alpha.tall@etu.univ-provence.fr

Model continuity from simulation to real-time
embedded control application eases both design and
verification phases of military control application
development. The simulated models are tested iskdnee
environment, and the transportation of these mottekhe
real hardware environment is also straight forward.

use the same models that have been developed fBeploying a formal methodology for the design phasd

simulation purposes for control applications. Tapproach
permits model reuse and reliability for critical leedded
control applications. In this paper a simulationdsloof an

using an already available development tool speguls
application development and increases the reltgloli the
final product. Using a previously tested simulatimodel

autonomous robot has been used to control a sietllat makes it portable on any hardware platform. Modelse

reconnaissance vehicle on battle field. Since Veiy costly
to construct a real battle field situation and &rify the

performance of military devices, model continuitsorf

simulation to embedded control is a cost-effecind easy
process for developing military applications. Wevdnaised
DEVS (Discrete EVent System specification) fornmalito

define the robotic vehicle model and conductedetgrof

tests by simulation variety of scenarios. The fimaldel has
been embedded on a tank shaped robot.

1. INTRODUCTION AND MOTIVATION

Military application development is a very critiand
expensive task in the engineering field. Verifioatiand
testing phase is also more critical as it is veiffiadlt to
practically simulate a battle field situation irali¢y. Testing
military equipments in a real battle field conditivould be
very costly and risky. Instead, computer simulatioethods
can be a good replacement for real environmentntest

leads to a faster and reusable model developmentsgs as
many already available sub-models can be integraitd
the new ones. Formal techniques usually providetdcal
representation for a model, helping model develofer
better conceive the model behavior. Graphical
representation also speeds up the design phasasaists in
robust model development.

The cost and criticality of military application
development is a major issue in choosing simulation
methods to map battle field events onto virtualiemment.
The goal here is not only having a visual simulatid the
battle field, but also developing a robust formaldal of the
control application that would be used on the reabware
platform. Several critical issues are brought upeial-time
applications which can be verified with real-time
simulation. The ability to simulate the model imtwal-time
and real-time is a major motivation for this resbar
Portability of the simulated model on different dhaare

Simulation proposes a cost-effective and easy why oplatforms lets us test the model on small scaleotiob

modeling the real world events and calibrating etight
conditions in a virtual environment.

hardware.

Formal methods are safe and easier techniques f@ BACKGROUND

modeling the environment under focus. Differentniaf
methodologies have been presented in the area déling
and simulation (M&S). Many state-based approackesh

Discrete EVent System specification (DEV3] is a
sound formal framework based on generic dynamitegys
which provides a well-defined coupling of comporseahd

as Verilog[1], VHDL [2], Petri Nets and Timed Petri Nets construction of hierarchical and modular systethslso

[3], Timed Automatd4], State Chart$5] and Finite State
Machineg6] have been presented for M&S.

supports discrete event approximation of continuous
systems and repository reuse. DEVS theory provides
rigorous methodology for representing models, amtbes

present an abstract way of thinking about the wavith port.
independence of the simulation mechanisms, unadeylyi
hardware, and middleware. A real system modeledh wit out |
DEVS is described as a composite of sub-modeld) eac GEN |
them being behavioral (atomic) or structural (cealpl
A DEVS atomic model is formally defined by: ‘
M = <X, Y, S,int, Oexs A, ta>, Where: Figure 1. Generator-Buffer-Processor hierarchical DEVS
X ={(p,v) | pO IPorts, vI Xp} is the set of input ports and model
values;

Y ={(p,v) | pU OPorts, viJ Yp} is the set of output ports Embedded CD++ (E-CD++J8] is an extension to
and values; CD++ [9] toolkit that has been developed based on Rarall

S: !S the se_t of sgquentlal states; o _ DEVS (P-DEVS)[10] formalism which has converted the
dnt: S » S is the internal state transition function; . . : . . .
5 x X .S is the external state transition function virtual time function of CD++ into a real-time fuiimn
V\‘;ﬁ‘érg - "(using a time advance function tied to the reaktiohock)
L . . and added hardware interaction capability to it. delo
Q ={(s.e) | & S 0 < <ta(s)} is the tqtgl state set, e Is theimplementation in E-CD++ is done by writing C++ eoith
t'_me e'aPsed since the Iast' St"f‘te transition; a text-based Linux environment with open sourcdstoln
A _S ~Yis the output function; _ order to improve the development and simulation
ta: S~ R, is the time advance function. experience, an IDE is provided for the E-CD++ siatoit as
The semantics for this def|n|t|o.n is given asdols. At 45 Eclipse plug-in that contains E-CD++ functiotiedi. It
any time, a DEVS coupled model is in a stafé S. In the 3|50 has a graphical model designer that suppoBAS
absence of external events, the model will stathis state (Generic Graphical Advanced environment for DEVS

for the duration specified by ta(s). When the edapme e modeling and simulation) diagraji]
= ta(s), the state duration expires and the atonudel will '

send the outpuk(s) and performs an internal transition to a3 A yTONOMOUS RECONNAISSANCE VEHICLE
new state specified b.(s). Transitions that occur due to Detective robot model is a sophisticated DEVS-Hase
the expiration of ta(s) are called internal traps$. gystem which is able to explore battle field foryan
However, state transition can also happen duerteaaiof gy gpicious object. Using DEVS as a formal method fo
an external event which will place the model int@v gesigning such a model provides a formal paradigm f
state specified bg.(s,e,x); wheres is the current stateis mjlitary application design and reduction of apation
the elapsed time, andis the input value. The time advance deve|0pment cost. This meth0d0|ogy enabled us mde
function ta(s) can take any real value from OotoA state this model and test it using a small handcraftdmbtan the
with ta(s) value of zero is called transient stated on the |ab. Figure 2 shows different views of the recossance
other hand, if ta(s) is equal to the state is said to be vehicle.
passive, in which the system will remain in thiatstuntil
receiving an external event. A DEVS coupled model i}
composed of several atomic or coupled sub-modets ar
their couplings.

Figure 1 shows a hierarchical DEVS model. This etod
is composed of two atomic models (Generator, Budied
Processor) and two coupled models: the top modail th
contains generator atomic model and BUF-PROC caluple
mode, the BUF-PROC coupled model includes two atomi
models: BUF and PROC. The port connections are als
visible in the figure. For example the output pttt” of
atomic model PROC is connected to the “done” inmut
of BUF atomic model within the same coupled moddd a
also is connected to the output port of the itepacoupled
model which connects this output to the Top modgpot

BUF-PROC
BUF out, in prOC |out out

- .’
Figure 2. Autonomous reconnaissance vehicle

The robot vehicle uses a radar device mountedpot
it which scans the area surrounding it. The raslaquipped
with a sonar (ultra sonic) sensor and a compassosenhe
function of the sonar sensor is to detect an olgect the
compass sensor is responsible to detect the direofi the
obstacle to report it to the movement controllethaf robot.
In a real scale design, the sonar sensor can becegpwith

the robot towards the target. The sonar sensohemdbot
body helps avoiding obstacles in front of it in erdo find

the target. There is a motor mounted on the rabairmn the
radar to accomplish 180 degrees clockwise and
counterclockwise turns for scanning the area aroliheére
are two more motors connected to the robot usethfsing
and steering.

a more sophisticated one. There is another son@mose 3.1. DEVS Model Specifications
mounted on the robot body accompanied by another Figure 3 illustrates DEVS model hierarchy defirfed

compass sensor. The idea behind this is to rectiee
direction angle of the object detected by the rauatat steer

the robotic vehicle model.

In4
RS_In2
In2 = 1 motgri_out
s?n:am_in‘lr - e Motor1 ! » Outil
- RS_Out1
sonarl_ott1 A
motort_in1
radar_in2
radar_out1
compass1_inl Radar radar_out2
RS_In3 L | radar_outd . rtioiler ~___RS_Out2
In3 - .. 1
compass1_in2 1 radar_in3 P MS_In2 MS_In3y
compassi1_outl Vo ¥compass2_in1
compass2_out1| Compass2
RS_In1 - MS_out2
riove, Ing b motor2_lout
/ T - > Out2
move_in2 y Motor2
" /motorZ_inT
e e Movement ove_out2
Lt - move_out3
i mové_out] controller otordcind
A N
. N\ Motor3 motor3_puti
move_in1 \\\ or '~ » Out3
move_ind-_ & MS_Out3
sonar2_out1[Son;
move_outd - compass2_in2
move_out5 - sonar2_in1: outputs from MC A MS Inl
to compass2 and MC to sonar2 =

In1

Figure 3. Detective robot DEVS model hierarchy

The model is constructed of a Top coupled modekimulation/execution startRadar controller model receives

which contains two coupled modelRadar System and
Movement System. The Radar System is responsible for
controlling the radar hardware behavior. It is cosgd of
four atomic models:Sonarl sensor, Compassl sensor,
Motor1 and Radar controller. Radar controller is the main
atomic model inRadar System coupled model which
synchronizes the other three atomic models in theled
model and talks toMovement System. As soon as the

a signal fromMovement System coupled model; the former
sends a signal tiMotorl model ordering the spinning
action. Motor1l model performs the simple job of spinning
the radar motor clockwise or counterclockwideadar
controller periodically changes the direction of spinning of
Motor1 model so that the radar turns 180 degrees cloekwis
and 180 degrees counterclockwise, scanning a oegedius
surrounding the roboSonarl sensor atomic model controls

the sonar sensor which is mounted on the radastalts
receiving periodic inputs from the sonar sensordware
after obtaining the start signal froRadar controller and

forwards them tdRadar controller model. As soon as the
Sonarl sensor detects an object in the scan radius area, |

forwards a signal to thBadar controller model. The latter
sends three outputs: 1) one @ompassl sensor, ordering
the detection of the direction (based on the angfle
deviation from the north direction) of the obje2}.A signal
to theMotor1 to stop spinning. 3) A signal to tiéovement
System to stop the robot. Onc€ompassl sensor model

Prepare
for Working
10ms

radar_out1!1

radar_in1 21

radar_out1!12

Ask motor1
to turn right
3s

Ask motor1
to turn left
3s

| radr_out2idegree1

radar_out1!1

radar_in2?1

receives this signal, catches the angle from themedevice
and reports the value back to tRadar controller. The
latter forwards this value tdlovement System.

DEVS formal definition oRadar controller model is as
follows:

M=<X, S, Y,8ext Oints A, ta>, Where

X: (radar_inl, 1) Connected tMovement System start
signal. (radar_in2, 1) connected 8onarl sensor object
detection signal. (radar_in3, degree) connectdcbtopassl
sensor angle of the object.

S: "Idle”, “Prepare for Working”, “Ask motorl to tar
right”, “Ask motorl to turn left”, “Ask motorl anC to 3)
stop”, “Wait compassl degree”, “Send mess. degeee t
MC".

Y: (radar_outl, 0, 1, 2) Connected to Metor1, O: stop, 1:
spin clockwise, 2: spin counterclockwise. (radat2pul,
degree) connected tMovement System, 1. stop signal,
degree: target degree, (radar_out3, 1) connected [}
Compassl sensor angle detection signal.

dexw Receives inputs from the input port and initiates
appropriate state transitions. 5)
9. defines state changes based current state.

A: based on the input value and the current statdssthe
output signals to the output ports.

ta: real-time advance function.

Figure 4 illustrates the GGAD state diagram of the
Radar controller atomic model. Note that each circle
indicates a state and the continuous line connectghow
external transitions and dashed lines show internal
transitions between states. The labels on extéraasitions
show the input port and input value usedgyfunction and
labels on internal transitions show output port autput
value produced by function befored, function. The
duration of each state (ta(s)) is indicated indinele.

Movement System coupled model is composed of five
atomic models:

1) Motor2: Controls the function of the right motor which

is connected to the right robot tread. Carries thet

same functions aglotorl model.

2) Motor3: Controls the function of the left motor,
connected to the left robot tread. Carries outsame
functions asMotor1l andMotor2 models.

Send mess
degree to MC
10ms

Ask motor1
and MC to stop
10ms

radar_out1!0
radar_out2!1
radar_out3!t~

/

radar_in3?degree1

Figure 4. Radar controller GGAD diagram

Compass2 sensor: Controls the compass sensor
mounted on the robot robot. It reports the current
direction of the robot to theéVMlovement controller
model. It also matches the angle which the robot is
heading with the angle that the target is locatédewn
the robot is turning towards the target.

Sonar2 sensor: controls the sonar sensor mounted on
the robot. The main function of this atomic modeta
find the target when the robot is heading towatds i
Movement controller: synchronizes the other five
atomic models ifMovement System coupled model. A
predefined event coming from the event file to this
model from input port Ind fires the
simulation/execution process. Once this input is
received, Movement controller starts both motors to
move forward by sending signalshotor2 andMotor3
models and also the radar. As soon as it receives a
signal fromRadar controller confirming detection of an
object, the former stops both motors and waitshtaio

the target angle from the latter. After receivirte t
angle,Movement controller sends a signal tGompass2
sensor to catch the current robot heading angle. Using
these two values it calculates which direction umt
then orders both motors to spin in a direction \Whic
accomplishes the calculated turning direction. I#0a
informs the Compass2 sensor to start capturing the
robot heading direction in a periodic manner and
comparing it with the target direction. Once thése
directions are matchedCompass2 sensor informs
Movement controller and the latter stops motors and
orders them to move forward towards the target.|&Vhi
the robot is traveling towards the targéfpvement

controller listens toSonar2 sensor to find out when it is
close enough to the target to stop.
DEVS formal definition oMovement controller model
is as follows:
M =<X, S, Y,8ext Oints A, ta>
X: (move_inl, 1) Connected to event file to recestart
signal. (move_in2, 1, degreel) Connected Radar

Y: (move_outl, 1) Connected to tRadar controller, start
signal. (move_out2, 0, 1, 2) ConnectedMotor2, 0: stop,

1: spin clockwise, 2: spin counterclockwise. (mowgt3, O,

1, 2) Connected ttvotor3, 0: stop, 1: spin clockwise, 2:
spin counterclockwise. (move_out4, 1, degreel) €otad

to Compass2 sensor, 1: catch tang heading angle, degreel:
match target angle with robot angle. (move_out5, 1)

controller, 1: object detection signal, degreel: target angleconnected t&onar2 sensor, target detection signal.

(move_in3, 1, degree2) Connected@ompass2 sensor, 1:
target angle and robot angle matched signal, d2grebot
heading angle. (move_in4, 1) Connectedstoar2 sensor,
target detection signal.

S. "Stop”, “Prepare to move forward”, “Moving forwe,
“Ask MC to stop”, “Wait radar mess”, “Prepare tceéve”,
“Wait to receive”, “Prepare to turn”, “Turn”, “Asko

dex Receives inputs from the input port and initiates
appropriate state transitions.
& defines state changes based current state.
L. based on the input value and the current staidssthe
following outputs signals to the output ports.
ta: real-time advance function.

Figure 5 illustrates the GGAD state diagram of the

prepare to Move forward”, “Move forward”, “Ask to Movement controller atomic model.

prepare to stop”.

move_in3!1

/

[|deqree2 - degree1| >=180]
move_out2!2
mdve_ouﬁ”
mc\ve_uut 4

[Idegree2 - degree1|<180]

move_outid!
move_iout2!1 -
move_out3!2

Prepare to turn
10ms

move_in3?degree

Wyait to receive
fonward degree
inf

Prepare to receive
10ms

Aslcto prepare to
maove fanaard

—

move_in1?1

ove_in27degree

move_out3!1
move_out2!1
move_out5!1

10s

move_out2!0
__ move_out3!0

Ask to prepare to
stop
108

Prepare to
move forward
10ms

move_out1!
move_out2!1
move_out3!1

Mowing forward move_in271

inf

Wait radar mess
inf

.

move_out2!0
move_out3!0

Figure 5. GGAD state diagram of Movement controller

3.2. Implementation on E-CD++

E-CD++ provides a simple framework
structure and couplings are provided in a model iith a
specific format. DEVS main three functiobg,, 6., A are
overridden by user in C++ language. This framevepd&eds
up implementation process, and improves reliabiitythe

final product to a high extent. The following codlastrates

for the model file of the detective robot model.
programming DEVS models. DEVS model hierarchical

[top]

components : RadarSystem MovingSystem
out : Outl Out2 Out3

in:InlIn2In3 In4 In5

Link : In1 MS_In1@MovingSystem

Link : In2 RS_In2@RadarSystem

OUhWNPE

7 ..

8 [RadarSystem]

9 components : sonarl@Sonarl
compassl@Compassl motorl@Motorl

radarcontroller@RadarController
10 in:RS_In1 RS _In2 RS _In3
11 out: RS _Outl RS Out2
12 Link : RS_Inl radar_inl@radarcontroller
13 Link: RS_In2 sonarl_inl@sonarl

15 [MovingSystem]

16 components : motor2@Motor2 motor3@Motor3
movementController@MovementController
compass2@Compass2 sonar2@Sonar2

17 in:MS_In1 MS_In2 MS_In3 MS_In4

18 out: MS_Outl MS_Out2 MS_Out3

19 Link : MS_In1 move_inl@movementController

20 Link : MS_In2 move_in2@movementController
21

Line 1 starts the definition of Top model which
contains two coupled components in lineRadar System
and Movement System. Lines 3 and 4 declare output and
input ports of the Top model. Lines 5 and 6 decldre
internal couplings between the two coupled comptmen
inside the Top model. The same logic is repeatedte
other two coupled modelRadar System and Movement
System.

The following code snippet shows a portion of tifwee
DEVS functions implementation fomRadar controller
atomic model.

1 Model &RadarController::externalFunction(const Ext
2

3 if(state==Idle && msg.port() == radar_in1){
4 if(msg.value()==1){

5 state = Pr_Wrk;

6 holdIn(Atomic::active, radarTime);

7 }

8 }

9

10 return *this;

11 }

12 Model &RadarController::internalFunction(const Int

{
14 switch (state){
15 case Pr_Wrk:
16 state = Trn_Right;

17 holdIn(Atomic::active, turnTime);
18 break;

19 ..

20 }

21 return *this;

22 }

23 Model &RadarController::outputFunction(const Inter
24 {

25 switch (state){

26 case Pr_Wrk:

27 sendOutput(msg.time(), radar_out1, 1) ;//wor
28 break;

29 ..

30 }

31 return *this ;
32 }

ernalMessage &msg)

ernalMessage &)

nalMessage &msg)

king

Lines 1 to 11 show a portion of the code f
function in which the input value 1 from port “radal” is
being checked while the model is in “Idle” stated ahe
state changes to “Prepare for Working”. The hofdimction
in E-CD++ sets the time duration (ta(s)) of thdestahich is
declared in model file. Line 12 to 22 show parttiod 5;.;

function, which maps the dashed lines of the GGAD
diagram. In this code the transition from stateefiire for
Working” to “Ask motorl to turn right” is implemeed.
Lines 23 to 32 implement part of thefunction, which is
producing output of the “Prepare for Working” state

Code similar to this paradigm is used for the pthe
atomic models in the system.

3.3. Simulation Results

scenarios both in virtual-time and real-time usitige
detective robot model. Figure 6 shows the evesmt dil a

As mentioned before, E-CD++ provides virtual-time simulation scenario versus the result of the sitradan E-

and real-time simulation framework for DEVS modals CD++.

well as tools to add a hardware driver to the meéaleimbed

and execute it on the hardware. We ran varietyrofiktion

Simulation

Event file po:o0:02:020 ouez 1
Qo0:00:02:00 Ini 1 oo0:00:02:020 outi3 1
00:00:05:00 Inz 1 O0:00:02:030 outl 1
00:00:06:00 Inz zog D0i00:05:030 ouel D
00:00:09:00 Ind 50 oo0:00:05:040 outz2 0O
00:00:09:50 Tnd4 90 Q0:00:05:040 out3 O
00:00:10:00 Ind 150 2 0H:#00:08:030 outz 1
00:00:10:50 In4 1s0 2 D0i00:08:030 outd 2
00:00:11:00 In4 1gp 00:00:11:080 oucd 1
00:00:11:50 In4 zoo DHi00:15:030 ourz O
00:00:15:00 Ins 2 00:00:15:030 out3 O

Figure 6. Snapshot of E-CD++ event file and output file fetettive robot model

The first line of theEvent file shows the value 1 which
is passed to the input port “In1” of the Top modéker 2
seconds of the start of the simulation. Event filely
accepts inputs to the Top coupled model ports. ‘Pott’ is
hierarchically connected to thdovement controller atomic
model; therefore this input is forwarded to thismaic mode
and triggers the start of the simulation. Respebtivthe
first three lines in the outputfile are the outptdghe three
motors (two robot motors and one radar motor) whdoh
produces 20 to 30 milliseconds later based on thte s
durations. After the robot starts to move and théar to
scan, at the fifth second (line 2 of event file) iaput is
forwarded to port “In2” which is connected t®onarl
sensor model. Hence, the all three motors are stoppeé (li
3 to 6 of output file) and thRadar controller waits for the
target angle fromCompassl sensor. The angle of 200
degrees is injected to the model at tHesécond and this
triggers Movement controller to obtain the robot current
heading angle. 50 degrees angle value is entergubrto
“In4” which is connected t€ompass2 sensor atomic model
and the latter forwards it tdlovement controller, where the
calculation of the turning direction happens aral dtputs
are shown in lines 7 and 8 of the output file. Qnoee

After building the robotic vehicle, the hardwanevdr
was written for the connected ports and the moded win
on the robot. Several tests have been carried @m f
different angles and the robot could pass all ofnth
successfully. Two videos of the robot are providetine in

[12], [13].

4. CONCLUSIONS

DEVS as a formal modeling and simulation
methodology provides risk-free and easy-to-modiftle
field simulation strategies where the validity bBtsystem
is guaranteed. In this work, a DEVS-based real-tame
embedded control model was introduced for an auhous
reconnaissance robotic vehicle in the battle figlte have
presented the DEVS model specifications for theotiob
vehicle and discussed the implementation detailshef
model in E-CD++. The Simulation results were elaled
to explain the functionality of the vehicle. Aldo, illustrate
the functional behavior of the robotic vehicle, gden
simulation scenarios were captured on videos ankd hvere
provided to clearly observe how the system workee Tlise
of a formal method like DEVS improved reliabilityné
portability of the model on different hardware fbams

motor of the robot spins clockwise and the othee onyhich enabled us to verify the model using virttiale and

counterclockwise, the robot starts turning to eitbe the
directions. After that, 5 inputs are entered tot géoK4”

real-time simulations. Model reuse feature of DEY&es
the use of many parts of this model for develomngore

which simulate the periodic angle inputs while tbeot is sophisticated and real control model of a military
turning towards the target. As soon as 200 degiges autonomous vehicle. This work also presented havEh
detected byCompass2 sensor model, the model notifies CD++ toolkit provides an object oriented framewddc
Movement controller model about this match and the |atterprogramming DEVS-based Speeding up the |mp|emmtat|

orders both motors to move forward (only one metbich phase and improving robustness of the final praduct
is not spinning clockwise will be ordered to spiockwise).

Finally the target detection signal is injectedptart “In5”
which is connected toSonar2 sensor which notifies
Movement controller and the latter stops both motors.

Reference [8] YU, J.; WAINER, G. “E-CD++: a tool for modeling

[1] Thomas, Donald, Moorby, Phillip "The Verilog embedded applications”. In Proceedings of the 2007
Hardware Description Language" Kluwer Academic SCS Summer Computer Simulation Conference. San
Publishers, Norwell, MA. ISBN 0-7923-8166-1. Diego, CA. 2007.

[2] Peter J. Ashenden "The VHDL Cook Book" July, 1990,[9] Wainer, G. "CD++: a toolkit to define discrete-eten
available on line at: models". Software, Practice and Experience. Wiley.
http://www.comms.scitech.susx.ac.uk/fft/vhdl/VHDL- Vol. 32, No.3. pp. 1261-1306. November 2002.
Cookbook.pdf Accessed on Sep/16/2009. [10]Chow A, Kim D, Zeigler B. “Parallel DEVS: A

[3] Petri Nets: Properties, Analysis and Applicatidns, parallel, hierarchical, modular modeling formalism”
Tadao Murata, in: Proceedings of the IEEE, vol.ri&¥,, Proceedings of Winter Simulation Conference, 1994,
4, April 1989. Orlando, Florida.

[4] R. Alur D.L.; Dill “A theory of timed automata”, [11] G. Christen, A. Dobniewski and G. Wainer, "Modeling
Theoretical computer science, Vol. 126, No 2, pp-18 State-Based DEVS Models in CD++". In Proceedings
235, 1994, of MGA, Advanced Simulation Technologies

[5] D. Harel et al., "On the Formal Semantics of Conference 2004 (ASTC'04). Arlington, VA. U.S.A.
StateCharts", Proceedings of the Symposium on Logic [12] Detective Robot robot video 1 available online at:
in Computer Science, pp. 54-64, 1987. http://www.youtube.com/watch?v=w-bwwlI4CP4c

[6] Wagner, F., "Modeling Software with Finite State [13] Detective Robot robot video 2 available online at:
Machines: A Practical Approach”, Auerbach http://www.youtube.com/watch?v=61vXI9qujZI

Publications, 2006, ISBN 0-8493-8086-3.

[7] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modagj
and Simulation”. Academic Press 2000, ISBN-10:
0127784551.

