
Application of RT-DEVS in Military

Mohammad Moallemi, Gabriel Wainer, Antoine
Awad

Dept. of Systems and Computer Engineering,
Carleton University, Centre of Visualization and

Simulation (V-Sim)
1125 Colonel By Dr. Ottawa, ON, Canada.

{moallemi, gwainer}@sce.carleton.ca,
aawad3@connect.carleton.ca

Dieynaba Alpha Tall,
Polytech Marseille – Departement de Genie Industriel

Domaine Universitaire de St Jérôme,
13397, MARSEILLE Cedex 20,

France
dieynaba-alpha.tall@etu.univ-provence.fr

Keywords: Discrete event simulation, DEVS, Military
application development, Real-Time Simulation and Control

Abstract
 Today, model based simulation is a popular scheme for
simulating real world events. There has been some effort to
use the same models that have been developed for
simulation purposes for control applications. This approach
permits model reuse and reliability for critical embedded
control applications. In this paper a simulation model of an
autonomous robot has been used to control a simulated
reconnaissance vehicle on battle field. Since it is very costly
to construct a real battle field situation and to verify the
performance of military devices, model continuity from
simulation to embedded control is a cost-effective and easy
process for developing military applications. We have used
DEVS (Discrete EVent System specification) formalism to
define the robotic vehicle model and conducted variety of
tests by simulation variety of scenarios. The final model has
been embedded on a tank shaped robot.

1. INTRODUCTION AND MOTIVATION
 Military application development is a very critical and
expensive task in the engineering field. Verification and
testing phase is also more critical as it is very difficult to
practically simulate a battle field situation in reality. Testing
military equipments in a real battle field condition would be
very costly and risky. Instead, computer simulation methods
can be a good replacement for real environment testing.
Simulation proposes a cost-effective and easy way of
modeling the real world events and calibrating different
conditions in a virtual environment.
 Formal methods are safe and easier techniques for
modeling the environment under focus. Different formal
methodologies have been presented in the area of modeling
and simulation (M&S). Many state-based approaches, such
as Verilog [1], VHDL [2], Petri Nets and Timed Petri Nets
 [3], Timed Automata [4], State Charts [5] and Finite State
Machines [6] have been presented for M&S.

 Model continuity from simulation to real-time
embedded control application eases both design and
verification phases of military control application
development. The simulated models are tested in a risk free
environment, and the transportation of these models to the
real hardware environment is also straight forward.
Deploying a formal methodology for the design phase and
using an already available development tool speeds up
application development and increases the reliability of the
final product. Using a previously tested simulation model
makes it portable on any hardware platform. Model reuse
leads to a faster and reusable model development process as
many already available sub-models can be integrated with
the new ones. Formal techniques usually provide graphical
representation for a model, helping model developer to
better conceive the model behavior. Graphical
representation also speeds up the design phase and assists in
robust model development.
 The cost and criticality of military application
development is a major issue in choosing simulation
methods to map battle field events onto virtual environment.
The goal here is not only having a visual simulation of the
battle field, but also developing a robust formal model of the
control application that would be used on the real hardware
platform. Several critical issues are brought up in real-time
applications which can be verified with real-time
simulation. The ability to simulate the model in virtual-time
and real-time is a major motivation for this research.
Portability of the simulated model on different hardware
platforms lets us test the model on small scale robotic
hardware.

2. BACKGROUND
 Discrete EVent System specification (DEVS) [7] is a
sound formal framework based on generic dynamic systems
which provides a well-defined coupling of components and
construction of hierarchical and modular systems. It also
supports discrete event approximation of continuous
systems and repository reuse. DEVS theory provides a
rigorous methodology for representing models, and it does

present an abstract way of thinking about the world with
independence of the simulation mechanisms, underlying
hardware, and middleware. A real system modeled with
DEVS is described as a composite of sub-models, each of
them being behavioral (atomic) or structural (coupled).
 A DEVS atomic model is formally defined by:
M = <X, Y, S, δint, δext, λ, ta>, Where:
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and
values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports
and values;
S: is the set of sequential states;
δint: S →→→→ S is the internal state transition function;
δext: Q × X →→→→S is the external state transition function,
where:
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the
time elapsed since the last state transition;
λ: S →→→→Y is the output function;
ta: S →→→→ R+

0, ∞ is the time advance function.
 The semantics for this definition is given as follows. At
any time, a DEVS coupled model is in a state s ∈ S. In the
absence of external events, the model will stay in this state
for the duration specified by ta(s). When the elapsed time e
= ta(s), the state duration expires and the atomic model will
send the output λ(s) and performs an internal transition to a
new state specified by δint(s). Transitions that occur due to
the expiration of ta(s) are called internal transitions.
However, state transition can also happen due to arrival of
an external event which will place the model into a new
state specified by δext(s,e,x); where s is the current state, e is
the elapsed time, and x is the input value. The time advance
function ta(s) can take any real value from 0 to ∞. A state
with ta(s) value of zero is called transient state, and on the
other hand, if ta(s) is equal to ∞ the state is said to be
passive, in which the system will remain in this state until
receiving an external event. A DEVS coupled model is
composed of several atomic or coupled sub-models and
their couplings.
 Figure 1 shows a hierarchical DEVS model. This model
is composed of two atomic models (Generator, Buffer and
Processor) and two coupled models: the top model that
contains generator atomic model and BUF-PROC coupled
mode, the BUF-PROC coupled model includes two atomic
models: BUF and PROC. The port connections are also
visible in the figure. For example the output port “out” of
atomic model PROC is connected to the “done” input port
of BUF atomic model within the same coupled model and
also is connected to the output port of the its parent coupled
model which connects this output to the Top model output

port.

Figure 1. Generator-Buffer-Processor hierarchical DEVS

model

 Embedded CD++ (E-CD++) [8] is an extension to
CD++ [9] toolkit that has been developed based on Parallel
DEVS (P-DEVS) [10] formalism which has converted the
virtual time function of CD++ into a real-time function
(using a time advance function tied to the real-time clock)
and added hardware interaction capability to it. Model
implementation in E-CD++ is done by writing C++ code in
a text-based Linux environment with open source tools. In
order to improve the development and simulation
experience, an IDE is provided for the E-CD++ simulator as
an Eclipse plug-in that contains E-CD++ functionalities. It
also has a graphical model designer that supports GGAD
(Generic Graphical Advanced environment for DEVS
modeling and simulation) diagram [11].

3. AUTONOMOUS RECONNAISSANCE VEHICLE
 Detective robot model is a sophisticated DEVS-based
system which is able to explore battle field for any
suspicious object. Using DEVS as a formal method for
designing such a model provides a formal paradigm for
military application design and reduction of application
development cost. This methodology enabled us to design
this model and test it using a small handcrafted robot in the
lab. Figure 2 shows different views of the reconnaissance
vehicle.

Figure 2. Autonomous reconnaissance vehicle

 The robot vehicle uses a radar device mounted on top of
it which scans the area surrounding it. The radar is equipped
with a sonar (ultra sonic) sensor and a compass sensor. The
function of the sonar sensor is to detect an object and the
compass sensor is responsible to detect the direction of the
obstacle to report it to the movement controller of the robot.
In a real scale design, the sonar sensor can be replaced with
a more sophisticated one. There is another sonar sensor
mounted on the robot body accompanied by another
compass sensor. The idea behind this is to receive the
direction angle of the object detected by the radar and steer

the robot towards the target. The sonar sensor on the robot
body helps avoiding obstacles in front of it in order to find
the target. There is a motor mounted on the robot to turn the
radar to accomplish 180 degrees clockwise and
counterclockwise turns for scanning the area around. There
are two more motors connected to the robot used for moving
and steering.

3.1. DEVS Model Specifications
 Figure 3 illustrates DEVS model hierarchy defined for
the robotic vehicle model.

Figure 3. Detective robot DEVS model hierarchy

 The model is constructed of a Top coupled model
which contains two coupled models: Radar System and
Movement System. The Radar System is responsible for
controlling the radar hardware behavior. It is composed of
four atomic models: Sonar1 sensor, Compass1 sensor,
Motor1 and Radar controller. Radar controller is the main
atomic model in Radar System coupled model which
synchronizes the other three atomic models in the coupled
model and talks to Movement System. As soon as the

simulation/execution starts, Radar controller model receives
a signal from Movement System coupled model; the former
sends a signal to Motor1 model ordering the spinning
action. Motor1 model performs the simple job of spinning
the radar motor clockwise or counterclockwise. Radar
controller periodically changes the direction of spinning of
Motor1 model so that the radar turns 180 degrees clockwise
and 180 degrees counterclockwise, scanning a certain radius
surrounding the robot. Sonar1 sensor atomic model controls

the sonar sensor which is mounted on the radar. It starts
receiving periodic inputs from the sonar sensor hardware
after obtaining the start signal from Radar controller and
forwards them to Radar controller model. As soon as the
Sonar1 sensor detects an object in the scan radius area, it
forwards a signal to the Radar controller model. The latter
sends three outputs: 1) one to Compass1 sensor, ordering
the detection of the direction (based on the angle of
deviation from the north direction) of the object. 2) A signal
to the Motor1 to stop spinning. 3) A signal to the Movement
System to stop the robot. Once Compass1 sensor model
receives this signal, catches the angle from the sensor device
and reports the value back to the Radar controller. The
latter forwards this value to Movement System.
 DEVS formal definition of Radar controller model is as
follows:
M = <X, S, Y, δext, δint, λ, ta>, Where
X: (radar_in1, 1) Connected to Movement System start
signal. (radar_in2, 1) connected to Sonar1 sensor object
detection signal. (radar_in3, degree) connected to Compass1
sensor angle of the object.
S: ”Idle”, “Prepare for Working”, “Ask motor1 to turn
right”, “Ask motor1 to turn left”, “Ask motor1 and MC to
stop”, “Wait compass1 degree”, “Send mess. degree to
MC”.
Y: (radar_out1, 0, 1, 2) Connected to the Motor1, 0: stop, 1:
spin clockwise, 2: spin counterclockwise. (radar_out2, 1,
degree) connected to Movement System, 1: stop signal,
degree: target degree, (radar_out3, 1) connected to
Compass1 sensor angle detection signal.
δext: Receives inputs from the input port and initiates
appropriate state transitions.
δint: defines state changes based current state.
λ: based on the input value and the current state sends the
output signals to the output ports.
ta: real-time advance function.
 Figure 4 illustrates the GGAD state diagram of the
Radar controller atomic model. Note that each circle
indicates a state and the continuous line connections show
external transitions and dashed lines show internal
transitions between states. The labels on external transitions
show the input port and input value used by δext function and
labels on internal transitions show output port and output
value produced by λ function before δint function. The
duration of each state (ta(s)) is indicated in the circle.
 Movement System coupled model is composed of five
atomic models:
1) Motor2: Controls the function of the right motor which

is connected to the right robot tread. Carries out the
same functions as Motor1 model.

2) Motor3: Controls the function of the left motor,
connected to the left robot tread. Carries out the same
functions as Motor1 and Motor2 models.

Figure 4. Radar controller GGAD diagram

3) Compass2 sensor: Controls the compass sensor

mounted on the robot robot. It reports the current
direction of the robot to the Movement controller
model. It also matches the angle which the robot is
heading with the angle that the target is located while
the robot is turning towards the target.

4) Sonar2 sensor: controls the sonar sensor mounted on
the robot. The main function of this atomic model is to
find the target when the robot is heading towards it.

5) Movement controller: synchronizes the other five
atomic models in Movement System coupled model. A
predefined event coming from the event file to this
model from input port In4 fires the
simulation/execution process. Once this input is
received, Movement controller starts both motors to
move forward by sending signals to Motor2 and Motor3
models and also the radar. As soon as it receives a
signal from Radar controller confirming detection of an
object, the former stops both motors and waits to obtain
the target angle from the latter. After receiving the
angle, Movement controller sends a signal to Compass2
sensor to catch the current robot heading angle. Using
these two values it calculates which direction to turn,
then orders both motors to spin in a direction which
accomplishes the calculated turning direction. It also
informs the Compass2 sensor to start capturing the
robot heading direction in a periodic manner and
comparing it with the target direction. Once these two
directions are matched Compass2 sensor informs
Movement controller and the latter stops motors and
orders them to move forward towards the target. While
the robot is traveling towards the target, Movement

controller listens to Sonar2 sensor to find out when it is
close enough to the target to stop.

 DEVS formal definition of Movement controller model
is as follows:
M = <X, S, Y, δext, δint, λ, ta>
X: (move_in1, 1) Connected to event file to receive start
signal. (move_in2, 1, degree1) Connected to Radar
controller, 1: object detection signal, degree1: target angle.
(move_in3, 1, degree2) Connected to Compass2 sensor, 1:
target angle and robot angle matched signal, degree2: robot
heading angle. (move_in4, 1) Connected to Sonar2 sensor,
target detection signal.
S: ”Stop”, “Prepare to move forward”, “Moving forward”,
“Ask MC to stop”, “Wait radar mess”, “Prepare to receive”,
“Wait to receive”, “Prepare to turn”, “Turn”, “Ask to
prepare to Move forward”, “Move forward”, “Ask to
prepare to stop”.

Y: (move_out1, 1) Connected to the Radar controller, start
signal. (move_out2, 0, 1, 2) Connected to Motor2, 0: stop,
1: spin clockwise, 2: spin counterclockwise. (move_out3, 0,
1, 2) Connected to Motor3, 0: stop, 1: spin clockwise, 2:
spin counterclockwise. (move_out4, 1, degree1) Connected
to Compass2 sensor, 1: catch tang heading angle, degree1:
match target angle with robot angle. (move_out5, 1)
connected to Sonar2 sensor, target detection signal.
δext: Receives inputs from the input port and initiates
appropriate state transitions.
δint: defines state changes based current state.
λ: based on the input value and the current state sends the
following outputs signals to the output ports.
ta: real-time advance function.
 Figure 5 illustrates the GGAD state diagram of the
Movement controller atomic model.

Figure 5. GGAD state diagram of Movement controller

3.2. Implementation on E-CD++
 E-CD++ provides a simple framework for
programming DEVS models. DEVS model hierarchical
structure and couplings are provided in a model file with a
specific format. DEVS main three functions δext, δint, λ are
overridden by user in C++ language. This framework speeds
up implementation process, and improves reliability of the

final product to a high extent. The following code illustrates
the model file of the detective robot model.

1 [top]
2 components : RadarSystem MovingSystem
3 out : Out1 Out2 Out3
4 in : In1 In2 In3 In4 In5
5 Link : In1 MS_In1@MovingSystem
6 Link : In2 RS_In2@RadarSystem

7 …
8 [RadarSystem]
9 components : sonar1@Sonar1

compass1@Compass1 motor1@Motor1
radarcontroller@RadarController

10 in : RS_In1 RS_In2 RS_In3
11 out : RS_Out1 RS_Out2
12 Link : RS_In1 radar_in1@radarcontroller
13 Link : RS_In2 sonar1_in1@sonar1
14 …
15 [MovingSystem]
16 components : motor2@Motor2 motor3@Motor3

movementController@MovementController
compass2@Compass2 sonar2@Sonar2

17 in : MS_In1 MS_In2 MS_In3 MS_In4
18 out : MS_Out1 MS_Out2 MS_Out3
19 Link : MS_In1 move_in1@movementController

20 Link : MS_In2 move_in2@movementController
21 …

 Line 1 starts the definition of Top model which
contains two coupled components in line 2, Radar System
and Movement System. Lines 3 and 4 declare output and
input ports of the Top model. Lines 5 and 6 declare the
internal couplings between the two coupled components
inside the Top model. The same logic is repeated for the
other two coupled models Radar System and Movement
System.
 The following code snippet shows a portion of the three
DEVS functions implementation for Radar controller
atomic model.

1 Model &RadarController::externalFunction(const Ext ernalMessage &msg)
2 {
3 if(state==Idle && msg.port() == radar_in1){
4 if(msg.value()==1){
5 state = Pr_Wrk;
6 holdIn(Atomic::active, radarTime);
7 }
8 }
9 …
10 return *this;
11 }

12 Model &RadarController::internalFunction(const Int ernalMessage &)
13 {
14 switch (state){
15 case Pr_Wrk:
16 state = Trn_Right;
17 holdIn(Atomic::active, turnTime);
18 break;
19 …
20 }
21 return *this;
22 }

23 Model &RadarController::outputFunction(const Inter nalMessage &msg)
24 {
25 switch (state){
26 case Pr_Wrk:
27 sendOutput(msg.time(), radar_out1, 1) ;//wor king
28 break;
29 …
30 };
31 return *this ;
32 }

 Lines 1 to 11 show a portion of the code for δext
function in which the input value 1 from port “radar_in1” is
being checked while the model is in “Idle” state and the
state changes to “Prepare for Working”. The holdIn function
in E-CD++ sets the time duration (ta(s)) of the state which is
declared in model file. Line 12 to 22 show part of the δint

function, which maps the dashed lines of the GGAD
diagram. In this code the transition from state “Prepare for
Working” to “Ask motor1 to turn right” is implemented.
Lines 23 to 32 implement part of the λ function, which is
producing output of the “Prepare for Working” state.
 Code similar to this paradigm is used for the other
atomic models in the system.

3.3. Simulation Results
 As mentioned before, E-CD++ provides virtual-time
and real-time simulation framework for DEVS models as
well as tools to add a hardware driver to the model to embed
and execute it on the hardware. We ran variety of simulation

scenarios both in virtual-time and real-time using the
detective robot model. Figure 6 shows the event file of a
simulation scenario versus the result of the simulation in E-
CD++.

Figure 6. Snapshot of E-CD++ event file and output file for detective robot model

 The first line of the Event file shows the value 1 which
is passed to the input port “In1” of the Top model after 2
seconds of the start of the simulation. Event file only
accepts inputs to the Top coupled model ports. Port “In1” is
hierarchically connected to the Movement controller atomic
model; therefore this input is forwarded to this atomic mode
and triggers the start of the simulation. Respectively, the
first three lines in the outputfile are the outputs to the three
motors (two robot motors and one radar motor) which are
produces 20 to 30 milliseconds later based on the state
durations. After the robot starts to move and the radar to
scan, at the fifth second (line 2 of event file) an input is
forwarded to port “In2” which is connected to Sonar1
sensor model. Hence, the all three motors are stopped (line
3 to 6 of output file) and the Radar controller waits for the
target angle from Compass1 sensor. The angle of 200
degrees is injected to the model at the 6th second and this
triggers Movement controller to obtain the robot current
heading angle. 50 degrees angle value is entered to port
“In4” which is connected to Compass2 sensor atomic model
and the latter forwards it to Movement controller, where the
calculation of the turning direction happens and the outputs
are shown in lines 7 and 8 of the output file. Once, one
motor of the robot spins clockwise and the other one
counterclockwise, the robot starts turning to either of the
directions. After that, 5 inputs are entered to port “IN4”
which simulate the periodic angle inputs while the robot is
turning towards the target. As soon as 200 degrees is
detected by Compass2 sensor model, the model notifies
Movement controller model about this match and the latter
orders both motors to move forward (only one motor which
is not spinning clockwise will be ordered to spin clockwise).
Finally the target detection signal is injected to port “In5”
which is connected to Sonar2 sensor which notifies
Movement controller and the latter stops both motors.

 After building the robotic vehicle, the hardware driver
was written for the connected ports and the model was run
on the robot. Several tests have been carried out from
different angles and the robot could pass all of them
successfully. Two videos of the robot are provided online in
 [12], [13].

4. CONCLUSIONS
 DEVS as a formal modeling and simulation
methodology provides risk-free and easy-to-modify battle
field simulation strategies where the validity of the system
is guaranteed. In this work, a DEVS-based real-time and
embedded control model was introduced for an autonomous
reconnaissance robotic vehicle in the battle field. We have
presented the DEVS model specifications for the robotic
vehicle and discussed the implementation details of the
model in E-CD++. The Simulation results were elaborated
to explain the functionality of the vehicle. Also, to illustrate
the functional behavior of the robotic vehicle, sample
simulation scenarios were captured on videos and links were
provided to clearly observe how the system works. The use
of a formal method like DEVS improved reliability and
portability of the model on different hardware platforms
which enabled us to verify the model using virtual-time and
real-time simulations. Model reuse feature of DEVS eases
the use of many parts of this model for developing a more
sophisticated and real control model of a military
autonomous vehicle. This work also presented how the E-
CD++ toolkit provides an object oriented framework for
programming DEVS-based speeding up the implementation
phase and improving robustness of the final product.

Reference
[1] Thomas, Donald, Moorby, Phillip "The Verilog

Hardware Description Language" Kluwer Academic
Publishers, Norwell, MA. ISBN 0-7923-8166-1.

[2] Peter J. Ashenden "The VHDL Cook Book" July, 1990,
available on line at:
http://www.comms.scitech.susx.ac.uk/fft/vhdl/VHDL-
Cookbook.pdf Accessed on Sep/16/2009.

[3] Petri Nets: Properties, Analysis and Applications, by
Tadao Murata, in: Proceedings of the IEEE, vol. 77, no.
4, April 1989.

[4] R. Alur D.L.; Dill “A theory of timed automata”,
Theoretical computer science, Vol. 126, No 2, pp 183-
235, 1994.

[5] D. Harel et al., "On the Formal Semantics of
StateCharts", Proceedings of the Symposium on Logic
in Computer Science, pp. 54-64, 1987.

[6] Wagner, F., "Modeling Software with Finite State
Machines: A Practical Approach", Auerbach
Publications, 2006, ISBN 0-8493-8086-3.

[7] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modeling
and Simulation”. Academic Press 2000, ISBN-10:
0127784551.

[8] YU, J.; WAINER, G. “E-CD++: a tool for modeling
embedded applications”. In Proceedings of the 2007
SCS Summer Computer Simulation Conference. San
Diego, CA. 2007.

[9] Wainer, G. "CD++: a toolkit to define discrete-event
models". Software, Practice and Experience. Wiley.
Vol. 32, No.3. pp. 1261-1306. November 2002.

[10] Chow A, Kim D, Zeigler B. “Parallel DEVS: A
parallel, hierarchical, modular modeling formalism” In
Proceedings of Winter Simulation Conference, 1994,
Orlando, Florida.

[11] G. Christen, A. Dobniewski and G. Wainer, "Modeling
State-Based DEVS Models in CD++". In Proceedings
of MGA, Advanced Simulation Technologies
Conference 2004 (ASTC'04). Arlington, VA. U.S.A.

[12] Detective Robot robot video 1 available online at:
http://www.youtube.com/watch?v=w-bwwl4CP4c

[13] Detective Robot robot video 2 available online at:
http://www.youtube.com/watch?v=61vXI9qujZI

