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ABSTRACT

The ECD++ tool uses the RT-DEVS (real-time DEVS)
formalism for modeling, simulation and execution of real-
time and embedded applications. This formal modelling
and simulation approach can be used as a robust
foundation for developing real-time and embedded
applications. It eases verification of the product, as
sometimes verifying an embedded application in the real
environment can be very risky or impractical. We show the
use of this methodology to model a real-time robotic
application. We show the ease of integrating a simulated
DEVS model using E-CD++, embedding it in a robotic
device (consisting of a robotic arm with a claw to grab
and load objects). The complete model design is done
through DEVS graphs based on DEVS formal model
specifications. E-CD++ allows one implement and execute
the model on a RTLinux kernel.

1. INTRODUCTION

Rea-Time System (RTS) design and implementation is a
challenging process, the construction and verification of
these systems need atremendous effort because of the high
risk factors existing in the environments these systems
control. A RTS needs to be thoroughly tested before they
can be integrated to the real environment they control, and
Modeling and Smulation (M&S) methods offer a robust
and cost-effective method to do it. Testing a virtual
simulation of the actual RTSis easier, cheaper and less risky
than testing on the target platform. M&S combined with
formal methods and graphical notations can be used to test
the system on avirtual mirror of the actual world.

The use of aformal methodology like the Discrete Event
System Specification (DEVS) formdism [1] can make this
task even simpler. DEV'S can be used to model any discrete
system (for instance, those including RT constraints), while
formally proving properties about the models developed
and the execution engines. We show how this methodology
has been used to build a DEVS-based robotic arm system.
The robot application is first modeled using DEVS, and it is
then simulated it in the CD++ toolkit [2] (a software tool for
smulation of DEVS models). Once the application is
completely developed on the simulated environment, one
can start deploying the actual software application in the
target platform by running it on the E-CD++tool [3]. After a
second simulation round on the RT environment, is
deployed on to the actual robotic armfor RT execution. We
first show the design of this system using DEVS state
diagrams and the importance of this stage in the

development of the system. Then, the model implementation
in CD++ is discussed in detail, and the testing and
simulation in the virtual environment is analyzed. After, we
show the actual execution results on the target platform.

2. BACKGROUND

The DEVSformdism is a systems-theoretical notation based
on the concept of hierarchical model development. A DEVS
model can be seen as composed of two parts: structural
(coupled) and behavioural (atomic) models. Coupled models
interconnect other models (coupled and atomic) while
atomic models perform the actual processing task. Atomic
models are represented by DEVS state diagrams. Figure 1
shows the formal behaviour of an atomic model. Each state
has a duration which is controlled by the time advance
function ta(s). When this time expires the model can
produce an output using the ? function, and the next state
is calculated using the internal transition function d,.. When
the system receives an input, the external transition
function dy, is invoked to determine how the internal state
will change. Pardld DEVS (P-DEVS) [4] alows dealing with
simultaneous events using a confluent function d.,, which
is activated when an external and an internal event occur at
the same time. Inputs and outputs at the same time are
stored into 1/0 bags, which save all the simultaneous inputs
and outputs for the model.
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Figure 1. P-DEVS Atomic Modd [1]

The E-CD++ toolkit uses an extension to parallel-DEVS,
caled Real-time DEVS or RT-DEVS [5], which uses a real-
time advance function and the concept of driver for Top
coupled model ports for interconnection with the
environment. The model is therefore defined as:

RTAM =< X, S, Y, deq, Qiny deony 2, ta>,

Where X, S Y, ty G Geon and ? are the same as P

DEVS, and
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taaS? R 08 uses the actua wall clock time.

Coupled models are depicted in Figure XXX. Atomic
models A1 and A1 construct coupled model A2, while A2,
is coupled with A3 and A4 to make the top coupled model
Ab.
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Figure 2.Figure Example of Structural modd [2]

3. Related Works

Model based approaches are considered reliable and
promising methods for developing real-time and embedded
applications. The methodology introduced in [6]
demonstrates the potential of Model-Integrated Computing
in providing a unified environment for multi-granular
simulation of embedded systems. The authors illustrate
many issues in computer automated multi-language
modeling, using the Model-based Integrated Simulation
Framework (MILAN) project as a vehicle. UML class
diagram-based meta-models along with OCL constraints are
used to define the syntax and static semantics of a highly
domain-specific  modeling language. M eta-model
composition techniques were used to combine different
modeling formalism, such as synchronous and
asynchronous dataflow, data type systems, hardware
architecture and behaviour modeling. We aso
demonstrated separation of concerns with multiple aspects,
and how it could be utilized effectively in managing design
complexity.

There have been few attemptsto use DEV S formaismin
real-time and embedded control applications.

In [7] a software development methodology for dynamic
distributed real-time systems was presented. The
methodology is based on DEVSJAVA modeling and
simulation environment. It supports model continuity so
that a dynamic distributed real-time system can be
designed, analyzed and tested by simulation methods, and
then migrated to execute in a distributed network while
preserving its control models. To handle the dynamic
properties of a distributed real-time system, the variable
structure modeling capability is integrated into the
proposed methodology. Stepwise simulation methods such
as central simulation, distributed simulation, and hardware-
in-the-loop (HIL) simulation are developed to incrementally
test the control models in a virtual environment. A
distributed robotic “team formation” example was
developed and presented in the paper to demonstrate how
this dynamic system can be developed by applying the
proposed methodology in different stages.

In [8], RT-DEVS/CORBA, is presented as a modeling
and simulation framework, to support the development of
distributed real-time systems. The framework supports
model continuity for real-rime software development from
model design to performance evaluation axd even to final
real-time control. This approach is based on RT-DEVS
formalism and maps activities to each state. The authors do
not mention details about real-time control part and the
focus is on real-time simulation and a case study is
presented.

In [9] a hybrid methodology has been developed for
integrating different types of DEVS models using a
Knowledge Interchange Broker (KIB). A supply-chain
semiconductor application is describe where the KIB has
been used as an integral part of developing and deploying a
commercial Model Predictive Control model for use in
operating a semiconductor manufacturing supply chain.
The simulation based experiments facilitated developing
and validating the controller design and data automation for
areal-world semiconductor manufacturing system.

In this paper the design and implementation of a real-
time and embedded application is presented, which is
backed by DEVS formalism as a robust mathematical
background. The ECD++ software developed in our lab let
us overcome the hardware integration limitation by
providing open-source interface development environment.
The interface development environment enables the
designer to integrate any hardware or external environment
driver with the DEV S run-time engine, in order to embed the
final product in the real-environment.

The other advantage of this method is the ease of
verification (a critica challenge in hard real-time systems)
which can be done in virtual-time or rea-time using
simulated inputs injected to the system and verifying the
outputs and system behaviour.

4. ROBOT ARM FORMAL SPECIFICATION AND
MODELS

DEVS modeling alows for modeling and simulating
systems before using them in a RT environment. One of the
primary steps in developing any system is to analyze the
requirements for designing the system. GGAD diagrams are
used to show states and transitions between the different
states. If we refer to figure one which is the atomic model in
a DEVS, each state has a specified duration and after that
duration the state changes to the next state and produces
an output, and if the state is interrupted by an external
event, an external transition function determines the
behaviour of the system and the next state transition. In a
GGAD diagram these transition are shown and formalized.
Each state is shown by acircle and the initial state is shown
by a double circle, and the duration of each state is shown
inside the circle as well. The dotted lines are used to show



the internal transition function, and the required output is
shown on each transition. The external transition function is
shown by solid lines and the required input from an outside
port is shown on top of each line.

The robot arm is composed of 5 different atomic models.
The structural model is shown in figure XXX.
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Figure xxx. RobotArm Structural Diagram

The model is composed of five atomic models which are
ArmController, SoundController, UltrasonicSensorC,
ColorSensor and Claw. The sound controller waits until it
gets an input from the sound sensor and it sendsit to arm
controller in order for the system to start. The arm controller
is responsible for taking in values from each of the sensor
and acting accordingly with the values it has received. The
ultrasonic sensor is responsible for sending values to the
ArmController to determine if the robot has found a ball.
The color sensor is then activated to tell the ArmController
that it has found a blue or red ball and the ArmController
using this value tells the claw to either grab the ball or not.
The inputs and outputs to the model are shown by arrows.

4.1 Formal Specification:
The formal specification for each of the modelsis
included in this section.

3.1.1 SoundController
M=<X,SY, dext, d_m,?, ta>, where:

X:IN_S

S: initial, sendToArm, stop

Y:OUT_S

d ; Receives inputs from the input port and initiates

€ex
appropriate state transitions.
dim: defines state changes based on current state.

? sends value of 1 to ArmController when a value
greater than 25 is received from the sound sensor
ta. RT advance function for each state.

3.1.2 ColorSensor

M=<X,SY, dext, dim,?, ta>, where:
X:IN_C,IN_CS
S: idle, sensing, send
Y:OUT_C
dext: Receives inputs from the input port and initiates
appropriate state transitions.
dim: defines state changes based on current state.

?. send the value of 1 if color isblueand 2 if color isred
ta. RT advance function for each state.

3.1.3 UltraSonicSensorC

M=<X,SY, dext, dim,?, ta>, where;

X:IN_UL IN_U

S: idle,checksensor,godown,foundbal |

Y:OUT U

dext: Receives inputs from the input port and initiates
appropriate state transitions.

dim: defines state changes based on current state.

?. if distanceislessthan 10 and greater than 2 it sendsa
2 andif distanceislessthan 2 it sendsa 3 to ArmController.

ta: RT advance function for each state.

3.1.4 Claw

M=<X,SY, dext, dim,?, ta>, where:
X:IN_AC
S: release, grab, idle, done
Y: OUT_Claw
dext: Receives inputs from the input port and initiates
appropriate state transitions.
dim: defines state changes based on current state.
?: sendsa2to claw if release required, sends 1 if grab
isrequired and sends 3 is stop isrequired.
ta: RT advance function for each state.

3.1.5 ArmController

M=<X,SY, dext, dim,?, ta>, where:

X:IN_S,IN_U, IN_AC.

S: idle, informsensor,goingDown,goDown checkball,
informcolor, checkingColor, closeclaw, closingclaw, goUp,
stop

Y:OUT_U, OUT_TC, OUT_M,0OUT_H,0UT_Claw

dext: Receives inputs from the input port and initiates

appropriate state transitions.
dim: defines state changes based on current state.

?: Sends values to ColorSensor and UltraSonicSensor
when it requires avalue (valueis 1 for both), sends outputs



to horizontal and vertical motors when it requires the motor
to move. (sends 1 to h when moving left, O when stop is
required, 1 to arm to move up, 2 to move down and O to
stop.)

ta: RT advance function for each state.

4.2 GGAD Diagrams

A GGAD diagram is used to show the state transitions
for each of the atomic models. This is the most important
step in the modeling of the robot arm. Since DEVS is
formalism for modeling systems, if the requirements and
state transitions are known using this formalism is straight
forward. The GGAD diagram uses circles to represent states
in the atomic model. To show an internal transition dotted
lines are used and the output of the state is also shown in
the diagram. The duration of the particular state is also
shown inside the circle. Solid lines between states are used
for externa transition function which happens when an
input is received and the state is changed.

The state diagram for each of the atomic models has
been produced in figuresxxx.

Figure xx shows the diagram for the ArmController
model. The arm controller is in idle state for an infinite
amount of time until it receives an input from the ultrasonic
sensor. When a value of 1 is received from the ultrasonic
sensor the arm goes into the informsonar state. The
duration of this state is 1 ms, which means that after 1 ms,
an output of 1 is sent to ultrasonic sensor and a value of 1
is sent to start horizontal movement. The ArmController
then goes to the next state which is checkball and waits for
an input of 1 from the ultrasonic sensor.
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Figurewww. Claw GGAD diagram
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Figure zzz. Color Sensor GGAD diagram

4.3 CD++ Coding

After the structural model and the GGAD diagrams are
drawn, the CD++ code can be written to simulate the model
in avirtual environment. As explained the internal transition
functions are shown by dotted lines and the external
transition functions are shown with solid lines.

This step in the modeling should be straight forward if
the GGAD diagram is drawn correctly. CD++ is a formalized
language, allowing users to map their design to the CD++
structure.

CD++ isimplemented using C++ language in an eclipse
based environment. The time for each of the states can be
defined as a Time variable, in virtual time. Each atomic
model has an initFunction, used for initialization of the
atomic model, an internalFunction used for the internal
transition function of the model, an externalFunction used
for the external transition function and an outputFunction,
used for the output function. The holdin() function is used
to define how long the system staysin a particular state and
it the system should stay in that state for a long period of
time, the passivate() function is used. When the system
receives an input from an external source, i.e. External event,
the state is changed. Using the register NewAtomic
function, each atomic model is registered and these models
each contain input and output ports which can be
connected using an .ma file. The .ma file connects all the
model s through their ports using the Link function.

After all the atomic models, their internal, external and

output functions and links are defined, an event file can be
defined by the user. The eterna event and the time at
which they are sent isincluded in the event file.

In order to simulate the behaviour of the model different
event files were created. The models were tested
individually to ensure correct results.

4.4 E-CD++

As mentioned in section 2, after the model has been
formalized using GGAD diagram, and the implementation of
the model in CD++ the model can be transferred to E-CD++,
alanguage used for RT modeling of systems.
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Figure3.2.1 Main Runtime System Class Diagram [2]
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Beatifieng Suliyskern

Figure3.2.3. Modeling Subsystem Class Diagram [2]

Figure 3.2.4, shows the connection between all the class
diagramsfor E-CD++.
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Figure3.24. Runtime System Subsystem Class
Diagram [2]

E-CD++ is composed of four main components. Main
Run Simulator (Figure 3.2.1), Modding Subsystem (Figure
3.2.2), Runtime System Subsystem (Figure 3.2.3) and
Messaging Subsystem (Figure 3.2.4).

The Main Run simulator, as the name suggests is the
main program that runs. In this component, the Atomic
model objects are registered, the external events are read
and an external events table is built, the model file is read
and a model hierarchy is built and a Root Coordinator is
created and triggersit to run.

The Runtime System Subsystems consists of
coordinators, and processors manager. The processor class
objects are managed by the Processor Manager, which is
implemented by the ProcessorAdmin class.

The processor class implements the DEVS Reatime
System framework.

The Messaging Subsystem consists of Message
manager class and other message objects. Processors and
coordinators send messages via the Messages Manager,
which isimplemented by the MessageAdmin class.

The Modeling subsystem is a logical representation of
the DEV S models defined by the modeller. It is composed of
the Models manager and the DEVS Models Hierarchy tree.
The Models manager manages the models hierarchy [2].

This part can be modified by the used to connect the
model to the hardware. The ports in the model developed
earlier can be connected to the ports defined in E-CD++.

When transferring the model from CD++ to ECD++,
ports have to be defined using the Port class. In the case of
the robot, these ports include the ports to the sensors and
motors. The ports should also be registered in the register
file, using registerPort() function in PortAdmin. To be able
to define ports, each of port can be defined in a header file
and the port extends the port class. The specific port
number on the microcontroller of the robot can be defined
using inithardware() and extending the pDriver class,
specific instructions can be given fir each port.

The functions that can be used to get the values from
the hardware are, GetVaue(port number) and
GetSonarValue(port number), for ports that are ultrasonic.
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Figure3.2.5. Class Diagram of E-CD++[2]



The color sensor and the ultrasonic sensor, the
GetSonarValue() is used.

To be able to have horizontal and vertical movement in
the arm and movement in the claw, the Stop(),SetReverse(),
and SetForward() command can be used. These commands
can be sent to the port that is desired. For example if port B
is used for horizontal motor and the motor hasto go left, the
command SetReverse(B,90), can be used. In the robot am
example, there were six header files, three for the sensors,
color, ultrasonic and sound; two for the horizontal and
vertical movement for motors and one for the claw. These
files are simple header files which are ports and use the
pDriver class.

The next step is to define the specific functionality for
each of the ports. The nxtdriver.cpp fileis used to define the
specific functionality of each port. As discussed earlier the
GetSonarValue(port number) is used to get inputs from the
color and ultrasonic sensor, and the GetV alue(port number)
is used to get inputs from the sound sensor. The
programmer can send only the required values to the model.
The Stop, SetReverse and SetForward functions are used to
the motors according to the specific value sent by the
programmer. For example, if the programmer sendsa 1 to the
horizontal the motor has to move left, so the command
SetReverse(port, 90) is used.

5. SMULATIONAND RESULTS

To simulate the models designed for the robot arm, the
models had to be tested individualy first, using CD++
eclipse simulator. The models were also tested as a whole
using this simulator as well. The next step was to transfer
these results to E-CD++ and test them using this simulator.

E-CD++ alows two types of simulation, oneisin virtua
time and the other is in RT. After the models have been
tested in both environments, the models can then be tested
on the actual environment which isthe robot.

The makefile in the E-CD++ has to be modified to
include the robot arm model. The make command is used to
prepare the simulator for running the model. the following
commands can be used to simulate results for virtual, RT
and hardware, in order.

./lsmu—-m—e-o—t -l

Themisfor the mafile, the eisfor the event file, theo is
for the output file, thet isfor simulation time and | isfor log
file

. lsmu—-m—e—o —r - -W

This command is similar to the virtual time, the
differenceisthat a—w isadded for RT and the event file has
to be modified. The event file contains a RT and a deadline

for the task to be compl eted.

.. /smu—-m-e—o—t—-l-w-g

This command is used for executing the model on the
hardware. There is no event file and the —g is added for the
time at which signals are received from hardware, i.e.
SEeNsors.

The testing strategy isto test each of the atomic models
separately, then test the models as a whole in CD++, move
the models and test them in virtual and RT in ECD++. The
last step would be to connect the robot and execute the
code on the robot to see the final results.

This section includes testing of each unit and the
resultsin CD++ and ECD++ in virtual and RT.

5.1 Testing of different units:

5.1.1 Testing SoundController

5111 CD++

The model to be tested is the soundController to make
sure that when a sound is heard (greater than 25 decibelsin
this case), the soundController sends an output to the
armController to start execution. The input to the
soundController atomic model is IN_S as seen in figure 2,
and the output is OUT_S to the arm controller. The event

fileand the . mafileare showninfigures4.1.1.1.1t04.1.1.13.
rten]

componants

in : IN
ot 3

Link & IN &

Link :

soundprocessingtime @ . L H bl
Figur4.1.1.1.1. SoundController.mafile

WE Z
TH 5 3
IN 5 25

Figure4.1.1.1.2 Eventsto test SoundController

o0 a0s 000l ont 3 L

Figured.1.1.1.3. Output filefor sound controller

To test Sound Controller we have provided an event file
with external events defined. At time 5 and 7 there are
inputs of 2 and 3 into the system, but since these are less
than 25 we see that there is no output produced in figure 10.
But at time 10 thereis an input of 25 to the soundController
and therefore the value of 1 is sent through the port OUT_S
after 1 ms. This shows that the correct result is produced.

51.12 E-CD++
The files used are the same for testing the unit. When
testing in virtual time we get the exact same results as



CD++, therefore they are not shown. The results in RT
however are shown here since they are different and have
to be tested. Figure 15 shows the RT event file used to test
SoundController. The deadline can be any time and it
doesn’'t have to be exact because we are not dealing with
RTSs, where deadlines have to be met. A “dummy” output
port has to be defined as well. OUT_S has been used as the

output port in this case.
00:00:05:00 00:00:06:00 IN S OUT_S 2
00:00:07:00 00:00:08:00 IN § OUT § 3
00:00:10:00 00:00:11:00 IN § OUT S 25

Figure4.1.1.2.1. Realtime Event file for
SoundContraller *

Cur Time: 00;00:10:001 Deadline: 00:00:06:000
{HOT succeeded) OutPort: put_s PortValues: 1
Figure4.1.1.2.2. Realtime  output file  for

SoundController

Theresults can be seenin figure 4.1.1.2.2 Aswe can see
the results obtained are the same as in virtual time, so this
unit is functional and we can move on to the next unit for
testing.

5.1.2 Testing UltraSonicSensorC

5.12.1 CD++

The UltraSonicSensorC model is responsible for sending
values received from the ultrasonic sensor to the
ArmController according to the distance it has received. As
seen in figure 2, the UltraSonicSensorC has two inputs and
one output port. The input ports are from the ArmController
and the ultrasonic sensor. When the model receives a 1
from the ArmController it has to send a value received from
the sensor to the ArmController. If the UltraSonicSensorC
receives avalue that is greater than 10, it sends avalueof 1
to the ArmController, meaning that it is still very far from the
ball and the arm has to move horizontal. If the distance is
less than 10 and greater than 2 it means the arm is not close
enough to the ball therefore it has to move down and a
value of 2 is sent to the armController. When the arm is
close enough to the ball the value is less than 2cm,
therefore the arm has to stop and a value of 3 is sent to the
arm controller. Figures 4.1.2.1.1 to 4.1.2.1.3 show the .ma,
event and output files for the tested results.

componants ¢

in ¢ IN
im ¢

out :
Link :
Link :

1
Lins i

Figure4.1.2.1.1. UltraSonicSensor C .mafile

00:00:05.00 IN_U1 1
00:00:06:00 IN_U 19
00:00:07:00 IN_U 2
00:00:08:00 IN_U1 1
00:00:08:00 IN_U S
00:00: 10000 IN_U1 1
00001100 IN_U 2

Figure4.1.2.1.2 UltraSonicSensor C event file

00:00:06:C01 out_u 1
00:00:09:C01 out_u 2
00:00:11:C01 out_u 3

Figure4.1.2.1.3. UltraSonicSensor C output file

The UltraSonicSensorC waits for an input from
ArmController, and sends the value through port OUT_U.
As seen in the event file another input is received at time
0:07 through port IN_U, but this input is ignored because
no value isreceived from the ArmController. The output is 1
since the value of 19 is greater than 10. To show that the
rest of the model is functional, other inputs are provided
and every time avaue of 1 is received from ArmController,
the input is from ultrasonic sensor is analyzed to send
output to the ArmController. Values of 9 and 2 are received
and values of 2 and 3 are sent through output port OUT_U,
to ArmController.

5122 E-CD++

The unit was tested in E-CD++ RT simulation. The event
file used is shown in figure 4.1.2.2.1, and the output is
shown in figure 4.1.2.2.2. As can be seen the results are the
same as virtual time, therefore the unit has been tested and
it functions correctly.

:00 DO:00:06:00 IN U1 OOT U 1
100 00:00:07:00 IN_ U QUT_U 1%
100 00:00:08:00 IN U OUT T 2
00:00:09:00 1IN UL OOT U 1
00 00:00:30:00 IN O OUT U 5
10-00 O0:00-11:00 IN Ul O0T U 1
O0:11:00 00:00:12:00 IN U QUT_U 2

Figure4.1.2.2.1. Realtime event fileto test
UltraSonicSensorC

SO oo O

O WD =1
=
=

i
[ I
= -
-y

Cur Time: 00:00: ODeadline: 00:30:0&:000

O6:001
[(HOT succeeded} CutPort: cut u Portvalus: 1
Cur Time: 00:00:08:001 Deadline: 00:00:07:000
Dart: cut u Dazt a2

[(HOT succesdad] E:
Cur Time: 00:00:1]
[HOT szucceeded] CutPart:
Figure4.1.2.2.2. Realtime output file for

UltraSonicSensor C

001 Deadline: 00 :
cut u PortValue: 3

5.1.3 Testing Color Sensor

5131 CD++

The ColorSensor gets the value from the color sensor
and returns it to the ArmController whenever it receivesa 1



from ArmController. If the value that it receivesis 2, the ball
isred and it returns a value of 1 to the ArmController. If the
value received from the sensor is 9, the ball is blue and the
value of 2 is sent to ArmController. Figures 4.1.3.1.1 to
4.1.3.1.3 show the .mafile, the event file, and the output file

for the particular event file.
top]

C IT"I nenta

Figure4.1.3.1.1. Color Sensor .mafile

00:00:05:00 IN_C 1
00:00:05:03 IN_CS 2
00:00:07:00 IN_C 1
00:00:07:02 IN_C5 &

Figure4.1.3.1.2. Color Sensor event file

00:00:05:004 out_c 1
00:00:07:003 out_ c 2

Figure4.1.3.1.3. Color Sensor output file

The model returns a value every time ArmController
requests a value. In the first case the color sensor sends a
value of 2 therefore the ball isred and avalue of 1 issent to
ArmController. In the second @se a value of 9 is sent,
meaning the ball is blue, therefore a value of 2 is sent to
ArmController. Theresults are therefore correct.
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The ColorSensor was tested in E-CD++ using the event
fileshownin figure 4.1.3.2.1, and the results are shown in
figure 4.1.3.2.2. The results are the same asin CD++ results

and it behaves correctly when given an input.
00:00:05:00 00:00:05:30 IN ¢ OUT ¢ 1
¥z 0

0 00 IN_ G5 OUT 2 2
i 0 06 IN < OUT < 1
00:00:08:00 IN_CE OUT 2 9

Figure4.1.3.2.1. Realtime event fileto test Color Sensor

Cur Tima: CG0:00:05:00E Deadlina: 00:00:05:030
[Succeesdsd]} OutPor out_c Portva - |

Cur Time: G3:00:07:00B Deadlin=: 00:00:0&:000
[HOT =ucome=ded) SutPoct: ozt o PortWalu=: 2

Figure4.1.3.2.2. Realtime output filefor Color Sensor

5.1.4 Testing Claw
5141 CD++
When the claw receives avalue of 1 from ArmController

it has to grab the ball, when it receives a 2 it has to release
the ball and when it receives a0 it has to stop the claw from
moving. Figure 4.1.4.1.1 to 4.1.4.1.3 show the .mafile, the
event file and the output for the given event file.

o]

components ¢

Figure4.1.4.1.1. Claw.mafile
Q0:00:05:00 Hac 1
00:00:06:00 TN AC 2
00:00:11:00 IN RC O
Figured.1.4.1.2. Claw event file
:00:05:010 out claw 1

:00:06:010 out claw 2
:00:11:010 out claw O

a
a
0

o Y e e |

L

Figure4.1.4.1.3. Claw output file

As can be seen by the result, the right values are sent to
the claw’s motor to get the corresponding action.

4.1.4.2 E-CD++

The Claw unit was tested in ECD++ and the same
results as CD++ were maintained. 4.1.4.2.1 shows the event
file for testing claw in RT and figure 4.1.4.2.2 shows the
results which are the same astheresultsin CD++.

00:00:05:00 00:00:06:00 IN_AC OUT Claw 1
00:00:06:00 00:00:07:00 IN AC OQUT Claw 2
00:00:07:00 00:00:08:00 IN AC OUT Claw 0O

Figured.1.4.2.1. Realtime event filefor Testing Claw

Cur Time: 00:00:05:010 Deadline: 00:00:06:000
(Succeeded) QutPort: out claw Portvalue: 1
Cur Time: 00:00:06:010 Deadline: 00:00:07:000
(Succeeded) OutPort: out claw PortValue: 2
Cur Time: 00:00:07:010 Deadline: 00:00:08:000
(Succeeded) OutPort: out claw Portvalue: 0

Figure4.1.4.2.2. Realtimeoutput file of Claw

5.2 Testingthe ArmController
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The next step in testing is to test the model as awhole.
The ArmController is the main model that receives inputs
from sensors and sends outputs to the motorsto act
accordingly to the situation.

The arm controller’s functionality was discussed in the
GGAD diagram, or state diagram. The reader can refer to



section 3.2 for detail.
Figures 4.2.1.1 to 4.2.1.3 show the .mafile, the event file
and the corresponding output val ues received.

0:05:00 IN 3 2
0:06:00 IN S5 2
:06:00 IN U 1
:07:00 ITH O 2
102:00 IN U 1
Q:09:00 IN C5 9

Figure4.2.1.2. ArmController event file
00:00:06:002 out_h 1
00:00:07:002 cout m O
0O:00:07:002 out h O
00:00:10:021 out_claw 1
00:00:11:021 cut m 1
00:00:13:021 out m O

Figure4.2.1.3. ArmController output file

It is very easy to see the flow of events using COUT
statements in CD++. In this scenario a red ball was found
therefore the ball was grabbed by the arm and brought up
for 2 seconds. The outputs are seen in figure 22, where a
value of 1issent to claw to grab the ball, avalue of 1is sent
toarm to move up, and after 2 seconds a value of 0 is sent
to arm to stop the arm from moving up.

In a second scenario where a blue ball is found, the
event file would be different in that the input to Col or Sensor
should be 2 instead of 9. The output is shown in Figure
4215.

00:00:06:002 out_h 1
00:00:07:002 out m O
00:00:07:002 out_h 0O
00:00:09:002 out m 1
00:00:11:002 out_m 0O

Figured.2.1.5 ArmController output, Blueball found
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The Arm controller was tested in ECD++ to see the
results. Figure 4.2.2.1 shows the event file and the case
were the ball is red and 4.2.2.2 shows the output result of
the event file. Figure 4.2.2.3 shows the event file and the
case were the ball is blue and 4.2.2.4 shows the output
result of the event file.

00:00:05:00 00:00:06:00 IN 5 OUT M 30
00:00:07:00 00:00:08:00 IN U OUT M 4
00:00:09:00 00:00:10:00 IN U OUT M 2
00:00:10:00 00:00:11:00 IN CS OQUT M 9

Figure 4.2.2.1 Realtime event file for ArmController:
Red Ball

Cur Time: 00:00:05:002 (no dealine specified)
OutPart: I.'l".'ill_r". PartValue: 1

Cur Tim=: 00:00:07:002 Deadline: O00:00:06:000 [NOT
succeaded) SutPoct: out_m BartWValu=: O
cur Tima: [no dealina specificd)

QutPort: out_h Portvalue: 0

Cur Time: 00:00:11:025 (no dealine specified)
QuUtBortT: l.'l'L'I.:_l'_‘la.'ﬂ: PortValue: 1

Sur Tim=: 00:00:12:025 Deadline: O00:00:08:000 (HOT
succe=sd=d) JutPorct: out_m PortValu=: 1

Cur Tims: 00:00:17:025 Desdl:zne: 00:00:10:000 [HOT
succaedsd) OutPoct: out m PartWalus: O

Figure 4.2.22 Realtime Output for ArmController:
Red ball

00:00:05:00 00:00:06:00 IN S5 OUT_M 30
00:00:07:00 00:00:08:00 IN U OUT M 4
00:00:09:00 00:00:10:00 IN U OUT M 2
00:00:10:00 00:00:11:00 IN CS OUT M 2

Figure 4.2.2.3 Realtime event file for ArmController:
Blue Ball

Cur Time: OJ0:00:05:002 (no dealine specifiad)
outPort: out_h Fortvalue: 1

Cur Time: 00:00:07:002 Deadline; O0;00: 06000
{NOT succeedaed] CutParct: out_m PoctValum: 0O
Cur Taime: 0D0:-00:07:002 (no dealina spacifiad)
OutPart: oput h PortValue: D

Cur Taime: OD:00:13:006 Deadlzne: O0:00:28:000
(HOT succeeded] CutPorti: out m PortValue: 1
Cur Pima: Q0D:00:15:006 Deadliine: OD:QO:10:000
({HOT succeesded] OutPort: out_m PortValue: 0

Figure 4.2.24 Realtime Output for ArmController:
Blue Ball

5.3 Execution of Codein Realtime—Robot connected

The code was executed on the robot and as can be seen
in figure 4.3.1 when the ball was red, the robot grabbed the
ball. This figure also shows a picture of blue ball. It was not
grabbed sinceitisblue[7][8].




Figure 4.3.1 Robot arm grabbing red ball and not
grabbing blue ball

6. CONCLUSION

DEVS modding is a useful modeling technique that can
be used to model different systems. In this paper we have
presented away to model aRTSusing DEV S and simulating
and running the model using ECD++ which isan extension
to CD++ for RT environments.

The first step in developing the system was to define
each model and their functionality and formalization. These
steps included the formalization of the model, structural
diagram and state diagrams for each of the models. This
step is the most important step in developing amodel since
the actual implementation is straight forward if the state
diagrams are drawn correctly.

The next step was to write the code for the model in
CD++ and ECD++. This step was done incrementally and
each step was tested during the development of the code.

After the implementation of each unit, they were tested
individually to ensure correct behaviour of the unit. The
models were then connected and tested as awhole, and the
results were shown.

We have shown that with DEV S formalization, it isvery
straight forward to develop models, in this case in RTSs.
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