
Modeling and Controlling a Robotic Arm with E-CD++
Faezeh Rafsanjani Sadeghi, Gabriel Wainer, Mohammad Moallemi

Department of Systems and Computer Engineering, Carleton University
Ottawa, ON, Canada

frsadegh@connect.carleton.ca , {gwainer, moallemi}@sce.carleton.ca

ABSTRACT
The E-CD++ tool uses the RT-DEVS (real-time DEVS)
formalism for modeling, simulation and execution of real-
time and embedded applications. This formal modelling
and simulation approach can be used as a robust
foundation for developing real-time and embedded
applications. It eases verification of the product, as
sometimes verifying an embedded application in the real
environment can be very risky or impractical. We show the
use of this methodology to model a real-time robotic
application. We show the ease of integrating a simulated
DEVS model using E-CD++, embedding it in a robotic
device (consisting of a robotic arm with a claw to grab
and load objects). The complete model design is done
through DEVS graphs based on DEVS formal model
specifications. E-CD++ allows one implement and execute
the model on a RTLinux kernel.

1. INTRODUCTION
Real-Time System (RTS) design and implementation is a
challenging process, the construction and verification of
these systems need a tremendous effort because of the high
risk factors existing in the environments these systems
control. A RTS needs to be thoroughly tested before they
can be integrated to the real environment they control, and
Modeling and Simulation (M&S) methods offer a robust
and cost-effective method to do it. Testing a virtual
simulation of the actual RTS is easier, cheaper and less risky
than testing on the target platform. M&S combined with
formal methods and graphical notations can be used to test
the system on a virtual mirror of the actual world.

The use of a formal methodology like the Discrete Event
System Specification (DEVS) formalism [1] can make this
task even simpler. DEVS can be used to model any discrete
system (for instance, those including RT constraints), while
formally proving properties about the models developed
and the execution engines. We show how this methodology
has been used to build a DEVS-based robotic arm system.
The robot application is first modeled using DEVS, and it is
then simulated it in the CD++ toolkit [2] (a software tool for
simulation of DEVS models). Once the application is
completely developed on the simulated environment, one
can start deploying the actual software application in the
target platform by running it on the E-CD++ tool [3]. After a
second simulation round on the RT environment, is
deployed on to the actual robotic arm for RT execution. We
first show the design of this system using DEVS state
diagrams and the importance of this stage in the

development of the system. Then, the model implementation
in CD++ is discussed in detail, and the testing and
simulation in the virtual environment is analyzed. After, we
show the actual execution results on the target platform.

2. BACKGROUND
The DEVS formalism is a systems -theoretical notation based
on the concept of hierarchical model development. A DEVS
model can be seen as composed of two parts: structural
(coupled) and behavioural (atomic) models . Coupled models
interconnect other models (coupled and atomic) while
atomic models perform the actual processing task. Atomic
models are represented by DEVS state diagrams. Figure 1
shows the formal behaviour of an atomic model. Each state
has a duration which is controlled by the time advance
function ta(s) . When this time expires the model can
produce an output using the ? function, and the next state
is calculated using the internal transition function dint. When
the system receives an input, the external transition
function dext, is invoked to determine how the internal state
will change. Parallel DEVS (P-DEVS) [4] allows dealing with
simultaneous events using a confluent function dcon which
is activated when an external and an internal event occur at
the same time. Inputs and outputs at the same time are
stored into I/O bags, which save all the simultaneous inputs
and outputs for the model.

Figure 1. P-DEVS Atomic Model [1]

The E-CD++ toolkit uses an extension to parallel-DEVS,

called Real-time DEVS or RT-DEVS [5], which uses a real-
time advance function and the concept of driver for Top
coupled model ports for interconnection with the
environment. The model is therefore defined as:

RTAM = < X, S, Y, dext, dint, dcon, ?, ta >,
Where X, S, Y, dext, dint, dcon and ? are the same as P-

DEVS, and

ta: S ? R
+

0,8
 uses the actual wall clock time.

Coupled models are depicted in Figure XXX. Atomic
models A1 and A1 construct coupled model A2, while A2,
is coupled with A3 and A4 to make the top coupled model
A5.

Figure 2.Figure Example of Structural model [2]

3. Related Works

Model based approaches are considered reliable and
promising methods for developing real-time and embedded
applications. The methodology introduced in [6]
demonstrates the potential of Model-Integrated Computing
in providing a unified environment for multi-granular
simulation of embedded systems. The authors illustrate
many issues in computer automated multi-language
modeling, using the Model-based Integrated Simulation
Framework (MILAN) project as a vehicle. UML class
diagram-based meta-models along with OCL constraints are
used to define the syntax and static semantics of a highly
domain-specific modeling language. Meta-model
composition techniques were used to combine different
modeling formalism, such as synchronous and
asynchronous dataflow, data type systems, hardware
architecture and behaviour modeling. We also
demonstrated separation of concerns with multiple aspects,
and how it could be utilized effectively in managing design
complexity.

There have been few attempts to use DEVS formalism in
real-time and embedded control applications.

In [7] a software development methodology for dynamic
distributed real-time systems was presented. The
methodology is based on DEVSJAVA modeling and
simulation environment. It supports model continuity so
that a dynamic distributed real-time system can be
designed, analyzed and tested by simulation methods, and
then migrated to execute in a distributed network while
preserving its control models. To handle the dynamic
properties of a distributed real-time system, the variable
structure modeling capability is integrated into the
proposed methodology. Stepwise simulation methods such
as central simulation, distributed simulation, and hardware-
in-the-loop (HIL) simulation are developed to incrementally
test the control models in a virtual environment. A
distributed robotic “team formation” example was
developed and presented in the paper to demonstrate how
this dynamic system can be developed by applying the
proposed methodology in different stages.

In [8], RT-DEVS/CORBA, is presented as a modeling
and simulation framework, to support the development of
distributed real-time systems. The framework supports
model continuity for real-rime software development from
model design to performance evaluation and even to final
real-time control. This approach is based on RT-DEVS
formalism and maps activities to each state. The authors do
not mention details about real-time control part and the
focus is on real-time simulation and a case study is
presented.

In [9] a hybrid methodology has been developed for
integrating different types of DEVS models using a
Knowledge Interchange Broker (KIB). A supply-chain
semiconductor application is describe where the KIB has
been used as an integral part of developing and deploying a
commercial Model Predictive Control model for use in
operating a semiconductor manufacturing supply chain.
The simulation based experiments facilitated developing
and validating the controller design and data automation for
a real-world semiconductor manufacturing system.

In this paper the design and implementation of a real-
time and embedded application is presented, which is
backed by DEVS formalism as a robust mathematical
background. The E-CD++ software developed in our lab let
us overcome the hardware integration limitation by
providing open-source interface development environment.
The interface development environment enables the
designer to integrate any hardware or external environment
driver with the DEVS run-time engine, in order to embed the
final product in the real-environment.

The other advantage of this method is the ease of
verification (a critical challenge in hard real-time systems)
which can be done in virtual-time or real-time using
simulated inputs injected to the system and verifying the
outputs and system behaviour.

4. ROBOT ARM FORMAL SPECIFICATION AND
MODELS

DEVS modeling allows for modeling and simulating
systems before using them in a RT environment. One of the
primary steps in developing any system is to analyze the
requirements for designing the system. GGAD diagrams are
used to show states and transitions between the different
states. If we refer to figure one which is the atomic model in
a DEVS, each state has a specified duration and after that
duration the state changes to the next state and produces
an output, and if the state is interrupted by an external
event, an external transition function determines the
behaviour of the system and the next state transition. In a
GGAD diagram these transition are shown and formalized.
Each state is shown by a circle and the initial state is shown
by a double circle, and the duration of each state is shown
inside the circle as well. The dotted lines are used to show

the internal transition function, and the required output is
shown on each transition. The external transition function is
shown by solid lines and the required input from an outside
port is shown on top of each line.

The robot arm is composed of 5 different atomic models.
The structural model is shown in figure XXX.

Figure xxx. RobotArm Structural Diagram

The model is composed of five atomic models which are

ArmController, SoundController, UltrasonicSensorC,
ColorSensor and Claw. The sound controller waits until it
gets an input from the sound sensor and it sends it to arm
controller in order for the system to start. The arm controller
is responsible for taking in values from each of the sensor
and acting accordingly with the values it has received. The
ultrasonic sensor is responsible for sending values to the
ArmController to determine if the robot has found a ball.
The color sensor is then activated to tell the ArmController
that it has found a blue or red ball and the ArmController
using this value tells the claw to either grab the ball or not.
The inputs and outputs to the model are shown by arrows.

4.1 Formal Specification:
The formal specification for each of the models is

included in this section.

3.1.1 SoundController
 M = <X, S, Y, d

ext
, d

int
,?, ta>, where:

 X: IN_S
 S: initial, sendToArm, stop
 Y: OUT_S
 d

ext
: Receives inputs from the input port and initiates

appropriate state transitions.
 d

int
: defines state changes based on current state.

 ?: sends value of 1 to ArmController when a value
greater than 25 is received from the sound sensor

 ta: RT advance function for each state.

3.1.2 ColorSensor

 M = <X, S, Y, d

ext
, d

int
,?, ta>, where:

 X: IN_C, IN_CS
S: idle, sensing, send
Y: OUT_C
d

ext
: Receives inputs from the input port and initiates

appropriate state transitions.
d

int
: defines state changes based on current state.

?: send the value of 1 if color is blue and 2 if color is red
ta: RT advance function for each state.

3.1.3 UltraSonicSensorC

M = <X, S, Y, d

ext
, d

int
,?, ta>, where:

X: IN_U1, IN_U
S: idle,checksensor,godown,foundball
Y: OUT_U
d

ext
: Receives inputs from the input port and initiates

appropriate state transitions.
d

int
: defines state changes based on current state.

?: if distance is less than 10 and greater than 2 it sends a
2 and if distance is less than 2 it sends a 3 to ArmController.

ta: RT advance function for each state.

3.1.4 Claw

 M = <X, S, Y, d

ext
, d

int
,?, ta>, where:

 X: IN_AC
 S: release, grab, idle, done
 Y: OUT_Claw
 d

ext
: Receives inputs from the input port and initiates

appropriate state transitions.
 d

int
: defines state changes based on current state.

 ?: sends a 2 to claw if release required, sends 1 if grab
is required and sends 3 is stop is required.

 ta: RT advance function for each state.

3.1.5 ArmController

 M = <X, S, Y, d

ext
, d

int
,?, ta>, where:

 X: IN_S, IN_U, IN_AC.
 S: idle, informsensor,goingDown,goDown checkball,

informcolor, checkingColor, closeclaw, closingclaw, goUp,
stop

 Y: OUT_U, OUT_TC, OUT_M,OUT_H,OUT_Claw
 d

ext
: Receives inputs from the input port and initiates

appropriate state transitions.
 d

int
: defines state changes based on current state.

 ?: Sends values to ColorSensor and UltraSonicSensor
when it requires a value (value is 1 for both), sends outputs

to horizontal and vertical motors when it requires the motor
to move. (sends 1 to h when moving left, 0 when stop is
required, 1 to arm to move up, 2 to move down and 0 to
stop.)

ta: RT advance function for each state.

4.2 GGAD Diagrams
A GGAD diagram is used to show the state transitions

for each of the atomic models. This is the most important
step in the modeling of the robot arm. Since DEVS is
formalism for modeling systems, if the requirements and
state transitions are known using this formalism is straight
forward. The GGAD diagram uses circles to represent states
in the atomic model. To show an internal transition dotted
lines are used and the output of the state is also shown in
the diagram. The duration of the particular state is also
shown inside the circle. Solid lines between states are used
for external transition function which happens when an
input is received and the state is changed.

The state diagram for each of the atomic models has
been produced in figures xxx.

Figure xxx shows the diagram for the ArmController
model. The arm controller is in idle state for an infinite
amount of time until it receives an input from the ultrasonic
sensor. When a value of 1 is received from the ultrasonic
sensor the arm goes into the informsonar state. The
duration of this state is 1 ms, which means that after 1 ms,
an output of 1 is sent to ultrasonic sensor and a value of 1
is sent to start horizontal movement. The ArmController
then goes to the next state which is checkball and waits for
an input of 1 from the ultrasonic sensor.

Figure3.1.1 ArmController GGAD Diagram

The message is sent to UltraSonicSensorC, shown in

figure yyy. The UltraSonicSensorC, which was in idle state
goes to checksensor state upon receiving this message. If
the value is 2 meaning the ball is found but not close
enough, it goes to the goDown state and sends a value of 1
to motor and to ultrasonic sensor to start moving down and
check sensor again for values. The state is not goingDown

and it waits for an input from the ultrasonic sensor. When
the value of 3 is received the ArmController goes into the
informColor state. If a value of 3 is received instead of 2
while in the checkball state the same procedure is done, and
a message is sent to horizontal and vertical motors to stop
moving. When in the informColor state, a message is sent to
the ColorSensor to get values for color. The ColorSensor
shown in figure zzz receives values from the color sensor on
the robot and forwards them to the ArmController. A value
of 2 indicates blue and a value of 9 indicates red. The color
sensor forwards a value of 1 if blue is found and 2 if red is
found. The ArmController, upon receiving a value of 1
moves to the goUp state, sending values to the arm to move
up, since the ball is blue. If the value received is 2 it
indicates that the ball is red therefore it sends a value to
Claw, shown in figure www, to close the claw and then it
moves up and goes to the idle state.

Figure xxx. SoundController GGAD Diagram

Figure yyy. UltraSonicSensorC GGAD Diagram

Figure www. Claw GGAD diagram

Figure zzz. ColorSensor GGAD diagram

4.3 CD++ Coding
After the structural model and the GGAD diagrams are

drawn, the CD++ code can be written to simulate the model
in a virtual environment. As explained the internal transition
functions are shown by dotted lines and the external
transition functions are shown with solid lines.

This step in the modeling should be straight forward if
the GGAD diagram is drawn correctly. CD++ is a formalized
language, allowing users to map their design to the CD++
structure.

CD++ is implemented using C++ language in an eclipse
based environment. The time for each of the states can be
defined as a Time variable, in virtual time. Each atomic
model has an initFunction, used for initialization of the
atomic model, an internalFunction used for the internal
transition function of the model, an externalFunction used
for the ext ernal transition function and an outputFunction,
used for the output function. The holdIn() function is used
to define how long the system stays in a particular state and
it the system should stay in that state for a long period of
time, the passivate() function is used. When the system
receives an input from an external source, i.e. External event,
the state is changed. Using the registerNewAtomic
function, each atomic model is registered and these models
each contain input and output ports which can be
connected using an .ma file. The .ma file connects all the
models through their ports using the Link function.

After all the atomic models, their internal, external and

output functions and links are defined, an event file can be
defined by the user. The external event and the time at
which they are sent is included in the event file.

In order to simulate the behaviour of the model different
event files were created. The models were tested
individually to ensure correct results.

4.4 E-CD++
As mentioned in section 2, after the model has been

formalized using GGAD diagram, and the implementation of
the model in CD++ the model can be transferred to E-CD++,
a language used for RT modeling of systems.

Figure3.2.1 Main Runtime System Class Diagram [2]

Figure3.2.2. Messaging Subsystem Class Diagram [2]

Figure3.2.3. Modeling Subsystem Class Diagram [2]

Figure 3.2.4, shows the connection between all the class

diagrams for E-CD++.

Figure3.2.4. Runtime System Subsystem Class

Diagram [2]

E-CD++ is composed of four main components: Main

Run Simulator (Figure 3.2.1), Modeling Subsystem (Figure
3.2.2), Runtime System Subsystem (Figure 3.2.3) and
Messaging Subsystem (Figure 3.2.4).

The Main Run simulator, as the name suggests is the
main program that runs. In this component, the Atomic
model objects are registered, the external events are read
and an external events table is built, the model file is read
and a model hierarchy is built and a Root Coordinator is
created and triggers it to run.

The Runtime System Subsystems consists of
coordinators, and processors manager. The processor class
objects are managed by the Processor Manager, which is
implemented by the ProcessorAdmin class.

The processor class implements the DEVS Realtime
System framework.

The Messaging Subsystem consists of Message
manager class and other message objects. Processors and
coordinators send messages via the Messages Manager,
which is implemented by the MessageAdmin class.

The Modeling subsystem is a logical representation of
the DEVS models defined by the modeller. It is composed of
the Models manager and the DEVS Models Hierarchy tree.
The Models manager manages the models hierarchy [2].

This part can be modified by the used to connect the

model to the hardware. The ports in the model developed
earlier can be connected to the ports defined in E-CD++.

When transferring the model from CD++ to E-CD++,
ports have to be defined using the Port class. In the case of
the robot, these ports include the ports to the sensors and
motors. The ports should also be registered in the register
file, using registerPort() function in PortAdmin. To be able
to define ports, each of port can be defined in a header file
and the port extends the port class. The specific port
number on the microcontroller of the robot can be defined
using inithardware() and extending the pDriver class,
specific instructions can be given fir each port.

The functions that can be used to get the values from
the hardware are, GetValue(port number) and
GetSonarValue(port number), for ports that are ultrasonic.

Figure3.2.5. Class Diagram of E-CD++[2]

The color sensor and the ultrasonic sensor, the

GetSonarValue() is used.
To be able to have horizontal and vertical movement in

the arm and movement in the claw, the Stop(),SetReverse(),
and SetForward() command can be used. These commands
can be sent to the port that is desired. For example if port B
is used for horizontal motor and the motor has to go left, the
command SetReverse(B,90), can be used. In the robot arm
example, there were six header files, three for the sensors,
color, ultrasonic and sound; two for the horizontal and
vertical movement for motors and one for the claw. These
files are simple header files which are ports and use the
pDriver class.

The next step is to define the specific functionality for

each of the ports. The nxtdriver.cpp file is used to define the
specific functionality of each port. As discussed earlier the
GetSonarValue(port number) is used to get inputs from the
color and ultrasonic sensor, and the GetValue(port number)
is used to get inputs from the sound sensor. The
programmer can send only the required values to the model.
The Stop, SetReverse and SetForward functions are used to
the motors according to the specific value sent by the
programmer. For example, if the programmer sends a 1 to the
horizontal the motor has to move left, so the command
SetReverse(port, 90) is used.

5. SIMULATION AND RESULTS
To simulate the models designed for the robot arm, the

models had to be tested individually first, using CD++
eclipse simulator. The models were also tested as a whole
using this simulator as well. The next step was to transfer
these results to E-CD++ and test them using this simulator.

E-CD++ allows two types of simulation, one is in virtual
time and the other is in RT. After the models have been
tested in both environments, the models can then be tested
on the actual environment which is the robot.

The makefile in the E-CD++ has to be modified to
include the robot arm model. The make command is used to
prepare the simulator for running the model. the following
commands can be used to simulate results for virtual, RT
and hardware, in order.

../../simu –m –e -o –t –l
The m is for the ma file, the e is for the event file, the o is

for the output file, the t is for simulation time and l is for log
file

../../simu –m –e –o –r –l –W
This command is similar to the virtual time, the

difference is that a –w is added for RT and the event file has
to be modified. The event file contains a RT and a deadline

for the task to be completed.
../../simu –m –e –o –t –l –w –g
This command is used for executing the model on the

hardware. There is no event file and the –g is added for the
time at which signals are received from hardware, i.e.
sensors.

The testing strategy is to test each of the atomic models

separately, then test the models as a whole in CD++, move
the models and test them in virtual and RT in E-CD++. The
last step would be to connect the robot and execute the
code on the robot to see the final results.

This section includes testing of each unit and the
results in CD++ and ECD++ in virtual and RT.

5.1 Testing of different units:
5.1.1 Testing SoundController
5.1.1.1 CD++
The model to be tested is the soundController to make

sure that when a sound is heard (greater than 25 decibels in
this case), the soundController sends an output to the
armController to start execution. The input to the
soundController atomic model is IN_S as seen in figure 2,
and the output is OUT_S to the arm controller. The event
file and the .ma file are shown in figures 4.1.1.1.1 to 4.1.1.13.

Figur4.1.1.1.1. SoundController.ma file

Figure4.1.1.1.2 Events to test SoundController

Figure4.1.1.1.3. Output file for sound controller

To test Sound Controller we have provided an event file

with external events defined. At time 5 and 7 there are
inputs of 2 and 3 into the system, but since these are less
than 25 we see that there is no output produced in figure 10.
But at time 10 there is an input of 25 to the soundController
and therefore the value of 1 is sent through the port OUT_S
after 1 ms. This shows that the correct result is produced.

5.1.1.2 E-CD++
The files used are the same for testing the unit. When

testing in virtual time we get the exact same results as

CD++, therefore they are not shown. The results in RT
however are shown here since they are different and have
to be tested. Figure 15 shows the RT event file used to test
SoundController. The deadline can be any time and it
doesn’t have to be exact because we are not dealing with
RTSs, where deadlines have to be met. A “dummy” output
port has to be defined as well. OUT_S has been used as the
output port in this case.

Figure4.1.1.2.1. Realtime Event file for

SoundController ‘

Figure4.1.1.2.2. Realtime output file for

SoundController

The results can be seen in figure 4.1.1.2.2 As we can see

the results obtained are the same as in virtual time, so this
unit is functional and we can move on to the next unit for
testing.

5.1.2 Testing UltraSonicSensorC
5.1.2.1 CD++
The UltraSonicSensorC model is responsible for sending

values received from the ultrasonic sensor to the
ArmController according to the distance it has received. As
seen in figure 2, the UltraSonicSensorC has two inputs and
one output port. The input ports are from the ArmController
and the ultrasonic sensor. When the model receives a 1
from the ArmController it has to send a value received from
the sensor to the ArmController. If the UltraSonicSensorC
receives a value that is greater than 10, it sends a value of 1
to the ArmController, meaning that it is still very far from the
ball and the arm has to move horizontal. If the distance is
less than 10 and greater than 2 it means the arm is not close
enough to the ball therefore it has to move down and a
value of 2 is sent to the armController. When the arm is
close enough to the ball the value is less than 2cm,
therefore the arm has to stop and a value of 3 is sent to the
arm controller. Figures 4.1.2.1.1 to 4.1.2.1.3 show the .ma,
event and output files for the tested results.

Figure4.1.2.1.1. UltraSonicSensorC .ma file

Figure4.1.2.1.2 UltraSonicSensorC event file

Figure4.1.2.1.3. UltraSonicSensorC output file

The UltraSonicSensorC waits for an input from

ArmController, and sends the value through port OUT_U.
As seen in the event file another input is received at time
0:07 through port IN_U, but this input is ignored because
no value is received from the ArmController. The output is 1
since the value of 19 is greater than 10. To show that the
rest of the model is functional, other inputs are provided
and every time a value of 1 is received from ArmController,
the input is from ultrasonic sensor is analyzed to send
output to the ArmController. Values of 9 and 2 are received
and values of 2 and 3 are sent through output port OUT_U,
to ArmController.

5.1.2.2 E-CD++
The unit was tested in E-CD++ RT simulation. The event

file used is shown in figure 4.1.2.2.1, and the output is
shown in figure 4.1.2.2.2. As can be seen the results are the
same as virtual time, therefore the unit has been tested and
it functions correctly.

Figure4.1.2.2.1. Realtime event file to test

UltraSonicSensorC

Figure4.1.2.2.2. Realtime output file for

UltraSonicSensorC

5.1.3 Testing ColorSensor
5.1.3.1 CD++
The ColorSensor gets the value from the color sensor

and returns it to the ArmController whenever it receives a 1

from ArmController. If the value that it receives is 2, the ball
is red and it returns a value of 1 to the ArmController. If the
value received from the sensor is 9, the ball is blue and the
value of 2 is sent to ArmController. Figures 4.1.3.1.1 to
4.1.3.1.3 show the .ma file, the event file, and the output file
for the particular event file.

Figure4.1.3.1.1. ColorSensor .ma file

Figure4.1.3.1.2. ColorSensor event file

Figure4.1.3.1.3. ColorSensor output file

The model returns a value every time ArmController

requests a value. In the first case the color sensor sends a
value of 2 therefore the ball is red and a value of 1 is sent to
ArmController. In the second case a value of 9 is sent,
meaning the ball is blue, therefore a value of 2 is sent to
ArmController. The results are therefore correct.

5.1.3.2 E-CD++
The ColorSensor was tested in E-CD++ using the event

file shown in figure 4.1.3.2.1, and the results are shown in
figure 4.1.3.2.2. The results are the same as in CD++ results
and it behaves correctly when given an input.

Figure4.1.3.2.1. Realtime event file to test ColorSensor

Figure4.1.3.2.2. Realtime output file for ColorSensor

5.1.4 Testing Claw
5.1.4.1 CD++
When the claw receives a value of 1 from ArmController

it has to grab the ball, when it receives a 2 it has to release
the ball and when it receives a 0 it has to stop the claw from
moving. Figure 4.1.4.1.1 to 4.1.4.1.3 show the .ma file, the
event file and the output for the given event file.

Figure4.1.4.1.1. Claw.ma file

Figure4.1.4.1.2. Claw event file

Figure4.1.4.1.3. Claw output file

As can be seen by the result, the right values are sent to

the claw’s motor to get the corresponding action.

4.1.4.2 E-CD++
The Claw unit was tested in E-CD++ and the same

results as CD++ were maintained. 4.1.4.2.1 shows the event
file for testing claw in RT and figure 4.1.4.2.2 shows the
results which are the same as the results in CD++.

Figure4.1.4.2.1. Realtime event file for Testing Claw

Figure4.1.4.2.2. Realtime output file of Claw

5.2 Testing the ArmController
5.2.1 CD++
The next step in testing is to test the model as a whole.

The ArmController is the main model that receives inputs
from sensors and sends outputs to the motors to act
accordingly to the situation.

The arm controller’s functionality was discussed in the
GGAD diagram, or state diagram. The reader can refer to

section 3.2 for detail.
Figures 4.2.1.1 to 4.2.1.3 show the .ma file, the event file

and the corresponding output values received.

Figur4.2.1.1. ArmController .ma file

Figure4.2.1.2. ArmController event file

Figure 4.2.1.3. ArmController output file

It is very easy to see the flow of events using COUT

statements in CD++. In this scenario a red ball was found
therefore the ball was grabbed by the arm and brought up
for 2 seconds. The outputs are seen in figure 22, where a
value of 1 is sent to claw to grab the ball, a value of 1 is sent
to arm to move up, and after 2 seconds a value of 0 is sent
to arm to stop the arm from moving up.

In a second scenario where a blue ball is found, the

event file would be different in that the input to ColorSensor
should be 2 instead of 9. The output is shown in Figure
4.2.1.5.

Figure4.2.1.5 ArmController output, Blue ball found

5.2.2 E-CD++
The Arm controller was tested in E-CD++ to see the

results. Figure 4.2.2.1 shows the event file and the case
were the ball is red and 4.2.2.2 shows the output result of
the event file. Figure 4.2.2.3 shows the event file and the
case were the ball is blue and 4.2.2.4 shows the output
result of the event file.

Figure 4.2.2.1 Realtime event file for ArmController:

Red Ball

Figure 4.2.2.2 Realtime Output for ArmController:

Red ball

Figure 4.2.2.3 Realtime event file for ArmController:

Blue Ball

Figure 4.2.2.4 Realtime Output for ArmController:

Blue Ball

5.3 Execution of Code in Realtime –Robot connected
The code was executed on the robot and as can be seen

in figure 4.3.1 when the ball was red, the robot grabbed the
ball. This figure also shows a picture of blue ball. It was not
grabbed since it is blue [7][8].

Figure 4.3.1 Robot arm grabbing red ball and not

grabbing blue ball

6. CONCLUSION
DEVS modeling is a useful modeling technique that can

be used to model different systems. In this paper we have
presented a way to model a RTS using DEVS and simulating
and running the model using E-CD++ which is an extension
to CD++ for RT environments.

The first step in developing the system was to define
each model and their functionality and formalization. These
steps included the formalization of the model, structural
diagram and state diagrams for each of the models. This
step is the most important step in developing a model since
the actual implementation is straight forward if the state
diagrams are drawn correctly.

The next step was to write the code for the model in
CD++ and ECD++. This step was done incrementally and
each step was tested during the development of the code.

After the implementation of each unit, they were tested
individually to ensure correct behaviour of the unit. The
models were then connected and tested as a whole, and the
results were shown.

We have shown that with DEVS formalization, it is very
straight forward to develop models, in this case in RTSs.

6. REFERENCES
[1] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modeling
and Simulation”. Academic Press 2000, ISBN-10:
0127784551.
[2] G. Wainer, “Discrete-Event Modeling and Simulation: a
Practitioner’s approach”. CRC Press. Taylor and Francis.
2009.
[3] Y. H. Yu, and G. Wainer, "eCD++: an engine for
executing DEVS models in embedded platforms"
Proceedings of the 2007 SCS Summer Computer Simulation
Conference, San Diego, pp. 323-330. CA - 2007

[4] Chow A, Kim D, Zeigler B. “Parallel DEVS: A parallel,
hierarchical, modular modeling formalism” In Proceedings of
Winter Simulation Conference, 1994, Orlando, Florida.
[5] "Designing an Interface for RT and Embedded DEVS",
Mohammad Moallemi, Gabriel A. Wainer, Proceedings of
2010 Spring Simulation Conference (SpringSim10), DEVS
Symposium - April 2010
[6] Ledeczi, A.; Davis, J.; Neema, S.; Agrawal, A.
“Modeling methodology for integrated simulation of
embedded systems”. ACM TOMACS 13(1), 82-103. 2003.
[7] Hu, X.; Zeigler, B.P. “Model Continuity in the Design of
Dynamic Distributed Real-Time Systems”, IEEE
Transactions On Systems, Man And Cybernetics— Part A:
Systems And Humans, 35: 6, pp. 867- 878, November, 2005.
[8] Cho, Y. K.; Hu, X.; Zeigler, B.P. “The RTDEVS/CORBA
Environment for Simulation-Based Design of Distributed
Real-Time Systems”, SIMULATION: Transactions of The
Society for Modeling and Simulation International, Volume
79, Number 4, 2003.
[9] Godding, G., H.S. Sarjoughian, K. Kempf, (2007) .
“Application of Combined Discrete-event Simulation and
Optimization Models in Semiconductor Enterprise
Manufacturing Systems", Winter Simulation Conference.
[10] Discrete Event Modelling and Simulation A
practitioner’s Approach, Gabriel W.Wainer, 2009, Taylor &
Francis Group,
[11] Video of Blue ball
http://www.youtube.com/watch?v=j5QhX4QFER8
[12] http://www.youtube.com/watch?v=R1MT8OLu8Co
Video of Red Ball

