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ABSTRACT  
The E-CD++ tool uses the RT-DEVS (real-time DEVS) 
formalism for modeling, simulation and execution of real-
time and embedded applications. This formal modelling 
and simulation approach can be used as a robust 
foundation for developing real-time and embedded 
applications. It eases verification of the product, as 
sometimes verifying an embedded application in the real 
environment can be very risky or impractical. We show the 
use of this methodology to model a real-time robotic 
application. We show the ease of integrating a simulated 
DEVS model using E-CD++, embedding it in a robotic 
device (consisting of a robotic arm with a claw to grab 
and load objects). The complete model design is done 
through DEVS graphs based on DEVS formal model 
specifications. E-CD++ allows one implement and execute 
the model on a RTLinux kernel.  

 
1. INTRODUCTION  
Real-Time System (RTS) design and implementation is a 
challenging process, the construction and verification of 
these systems need a tremendous effort because of the high 
risk factors existing in the environments these systems  
control. A RTS needs to be thoroughly tested before they 
can be integrated to the real environment they control, and 
Modeling and Simulation (M&S) methods offer a robust 
and cost-effective method to do it. Testing a virtual 
simulation of the actual RTS is easier, cheaper and less risky 
than testing on the target platform. M&S combined with 
formal methods and graphical notations can be used to test 
the system on a virtual mirror of the actual world.  

The use of a formal methodology like the Discrete Event 
System Specification (DEVS) formalism [1] can make this 
task even simpler. DEVS can be used to model any discrete 
system (for instance, those including RT constraints), while 
formally proving properties about the models developed 
and the execution engines. We show how this methodology 
has been used to build a DEVS-based robotic arm system. 
The robot application is first modeled using DEVS, and it is 
then simulated it in the CD++ toolkit [2] (a software tool for 
simulation of DEVS models ). Once the application is 
completely developed on the simulated environment, one 
can start deploying the actual software application in the 
target platform by running it on the E-CD++ tool [3]. After a 
second simulation round on the RT environment, is 
deployed on to the actual robotic arm for RT execution. We 
first show the design of this system using DEVS state 
diagrams and the importance of this stage in the 

development of the system. Then, the model implementation 
in CD++ is discussed in detail, and the testing and 
simulation in the virtual environment is analyzed. After, we 
show the actual execution results on the target platform.  

 
2. BACKGROUND 
The DEVS formalism is a systems -theoretical notation based 
on the concept of hierarchical model development. A DEVS 
model can be seen as composed of two parts: structural 
(coupled) and behavioural (atomic) models . Coupled models 
interconnect other models (coupled and atomic) while 
atomic models  perform the actual processing task. Atomic 
models are represented by DEVS state diagrams. Figure 1 
shows the formal behaviour of an atomic model. Each state 
has a duration which is controlled by the time advance 
function ta(s) . When this time expires the model can 
produce an output using the ? function, and the next state 
is calculated using the internal transition function dint. When 
the system receives an input, the external transition 
function dext, is invoked to determine how the internal state 
will change. Parallel DEVS (P-DEVS) [4] allows dealing with 
simultaneous events using a confluent function dcon which 
is activated when an external and an internal event occur at 
the same time. Inputs and outputs at the same time are 
stored into I/O bags, which save all the simultaneous inputs 
and outputs for the model. 

 

 
Figure 1. P-DEVS Atomic Model [1] 

 
The E-CD++ toolkit uses an extension to parallel-DEVS, 

called Real-time DEVS or RT-DEVS [5], which uses a real-
time advance function and the concept of driver for Top 
coupled model ports for interconnection with the 
environment. The model is therefore defined as:  

RTAM = < X, S, Y, dext, dint, dcon, ?, ta >, 
Where X, S, Y, dext, dint, dcon and ? are the same as P-

DEVS, and  



ta: S ?  R
+

0,8
 uses the actual wall clock time.  

Coupled models are depicted in Figure XXX. Atomic 
models  A1 and A1 construct coupled model A2, while A2, 
is coupled with A3 and A4 to make the top coupled model 
A5.  

 
Figure 2.Figure Example of Structural model [2] 

 
3. Related Works 

Model based approaches are considered reliable and 
promising methods for developing real-time and embedded 
applications. The methodology introduced in [6] 
demonstrates the potential of Model-Integrated Computing 
in providing a unified environment for multi-granular 
simulation of embedded systems. The authors illustrate 
many issues in computer automated multi-language 
modeling, using the Model-based Integrated Simulation 
Framework (MILAN) project as a vehicle. UML class 
diagram-based meta-models along with OCL constraints are 
used to define the syntax and static semantics of a highly 
domain-specific modeling language. Meta-model 
composition techniques were used to combine different 
modeling formalism, such as synchronous and 
asynchronous dataflow, data type systems, hardware 
architecture and behaviour modeling. We also 
demonstrated separation of concerns with multiple aspects, 
and how it could be utilized effectively in managing design 
complexity.   

There have been few attempts to use DEVS formalism in 
real-time and embedded control applications.  

In [7] a software development methodology for dynamic 
distributed real-time systems was presented. The 
methodology is based on DEVSJAVA modeling and 
simulation environment. It supports model continuity so 
that a dynamic distributed real-time system can be 
designed, analyzed and tested by simulation methods, and 
then migrated to execute in a distributed network while 
preserving its control models. To handle the dynamic 
properties of a distributed real-time system, the variable 
structure modeling capability is integrated into the 
proposed methodology. Stepwise simulation methods such 
as central simulation, distributed simulation, and hardware-
in-the-loop (HIL) simulation are developed to incrementally 
test the control models in a virtual environment. A 
distributed robotic “team formation” example was 
developed and presented in the paper to demonstrate how 
this dynamic system can be developed by applying the 
proposed methodology in different stages.  

In [8], RT-DEVS/CORBA, is presented as a modeling 
and simulation framework, to support the development of 
distributed real-time systems. The framework supports 
model continuity for real-rime software development from 
model design to performance evaluation and even to final 
real-time control. This approach is based on RT-DEVS 
formalism and maps activities to each state. The authors do 
not mention details about real-time control part and the 
focus is on real-time simulation and a case study is 
presented.  

In [9] a hybrid methodology has been developed for 
integrating different types of DEVS models using a 
Knowledge Interchange Broker (KIB). A supply-chain 
semiconductor application is describe where the KIB has 
been used as an integral part of developing and deploying a 
commercial Model Predictive Control model for use in 
operating a semiconductor manufacturing supply chain. 
The simulation based experiments facilitated developing 
and validating the controller design and data automation for 
a real-world semiconductor manufacturing system. 

In this paper the design and implementation of a real-
time and embedded application is presented, which is 
backed by DEVS formalism as a robust mathematical 
background. The E-CD++ software developed in our lab let 
us overcome the hardware integration limitation by 
providing open-source interface development environment. 
The interface development environment enables the 
designer to integrate any hardware or external environment 
driver with the DEVS run-time engine, in order to embed the 
final product in the real-environment. 

The other advantage of this method is the ease of 
verification (a critical challenge in hard real-time systems) 
which can be done in virtual-time or real-time using 
simulated inputs injected to the system and verifying the 
outputs and system behaviour.  

 
4. ROBOT ARM FORMAL SPECIFICATION AND 
MODELS  

DEVS modeling allows for modeling and simulating 
systems before using them in a RT environment. One of the 
primary steps in developing any system is to analyze the 
requirements for designing the system. GGAD diagrams are 
used to show states and transitions between the different 
states. If we refer to figure one which is the atomic model in 
a DEVS, each state has a specified duration and after that 
duration the state changes to the next state and produces 
an output, and if the state is interrupted by an external 
event, an external transition function determines the 
behaviour of the system and the next state transition. In a 
GGAD diagram these transition are shown and formalized. 
Each state is shown by a circle and the initial state is shown 
by a double circle, and the duration of each state is shown 
inside the circle as well. The dotted lines are used to show 



the internal transition function, and the required output is 
shown on each transition. The external transition function is 
shown by solid lines and the required input from an outside 
port is shown on top of each line.  

The robot arm is composed of 5 different atomic models. 
The structural model is shown in figure XXX.   

 
Figure xxx. RobotArm Structural Diagram  
 
The model is composed of five atomic models which are 

ArmController, SoundController, UltrasonicSensorC, 
ColorSensor and Claw. The sound controller waits until it 
gets an input from the sound sensor and it sends it to arm 
controller in order for the system to start. The arm controller 
is responsible for taking in values from each of the sensor 
and acting accordingly with the values it has received. The 
ultrasonic sensor is responsible for sending values to the 
ArmController to determine if the robot has found a ball. 
The color sensor is then activated to tell the ArmController 
that it has found a blue or red ball and the ArmController 
using this value tells the claw to either grab the ball or not. 
The inputs and outputs to the model are shown by arrows. 

 
4.1 Formal Specification:  
The formal specification for each of the models is 

included in this section.  
 
3.1.1 SoundController  
    M = <X, S, Y, d

ext
, d

int
,?, ta>, where:  

    X: IN_S   
    S: initial, sendToArm, stop  
   Y: OUT_S  
   d

ext
: Receives inputs from the input port and initiates 

appropriate state transitions.   
   d

int
: defines state changes based on current state.    

   ?: sends value of 1 to ArmController when a value 
greater than 25 is received from the sound sensor  

   ta: RT advance function for each state.   
  
3.1.2 ColorSensor  

 
     M = <X, S, Y, d

ext
, d

int
,?, ta>, where:  

     X: IN_C, IN_CS  
S: idle, sensing, send  
Y: OUT_C  
d

ext
: Receives inputs from the input port and initiates 

appropriate state transitions.   
d

int
: defines state changes based on current state.    

?: send the value of 1 if color is blue and 2 if color is red  
ta: RT advance function for each state.   
 
3.1.3 UltraSonicSensorC  
 
M = <X, S, Y, d

ext
, d

int
,?, ta>, where:  

X: IN_U1, IN_U   
S: idle,checksensor,godown,foundball  
Y: OUT_U  
d

ext
: Receives inputs from the input port and initiates 

appropriate state transitions.   
d

int
: defines state changes based on current state.    

?: if distance is less than 10 and greater than 2 it sends a 
2 and if distance is less than 2 it sends a 3 to ArmController.  

ta: RT advance function for each state.   
 
3.1.4 Claw  
  
   M = <X, S, Y, d

ext
, d

int
,?, ta>, where:  

      X: IN_AC  
      S: release, grab, idle, done  
     Y: OUT_Claw  
     d

ext
: Receives inputs from the input port and initiates 

appropriate state transitions.   
     d

int
: defines state changes based on current state.    

     ?: sends a 2 to claw if release required, sends 1 if grab 
is required and sends 3 is stop is required.  

    ta: RT advance function for each state.   
 
3.1.5 ArmController  
 
    M = <X, S, Y, d

ext
, d

int
,?, ta>, where:  

     X: IN_S, IN_U, IN_AC.   
     S: idle, informsensor,goingDown,goDown checkball, 

informcolor, checkingColor, closeclaw, closingclaw, goUp, 
stop  

     Y: OUT_U, OUT_TC, OUT_M,OUT_H,OUT_Claw    
    d

ext
: Receives inputs from the input port and initiates 

appropriate state transitions.   
    d

int
: defines state changes based on current state.    

    ?: Sends values to ColorSensor and UltraSonicSensor 
when it requires a value (value is 1 for both), sends outputs 



to horizontal and vertical motors when it requires the motor 
to move. (sends 1 to h when moving left, 0 when stop is 
required, 1 to arm to move up, 2 to move down and 0 to 
stop.)  

ta: RT advance function for each state.   
 
4.2 GGAD Diagrams  
A GGAD diagram is used to show the state transitions 

for each of the atomic models. This is the most important 
step in the modeling of the robot arm. Since DEVS is 
formalism for modeling systems, if the requirements and 
state transitions are known using this formalism is straight 
forward. The GGAD diagram uses circles to represent states 
in the atomic model. To show an internal transition dotted 
lines are used and the output of the state is also shown in 
the diagram. The duration of the particular state is also 
shown inside the circle. Solid lines between states are used 
for external transition function which happens when an 
input is received and the state is changed.   

The state diagram for each of the atomic models has 
been produced in figures xxx.  

Figure xxx shows the diagram for the ArmController 
model. The arm controller is in idle state for an infinite 
amount of time until it receives an input from the ultrasonic 
sensor. When a value of 1 is received from the ultrasonic 
sensor the arm goes into the informsonar state. The 
duration of this state is 1 ms, which means that after 1 ms, 
an output of 1 is sent to ultrasonic sensor and a value of 1 
is sent to start horizontal movement. The ArmController 
then goes to the next state which is checkball and waits for 
an input of 1 from the ultrasonic sensor. 

 
Figure3.1.1 ArmController GGAD Diagram  
 
The message is sent to UltraSonicSensorC, shown in 

figure yyy. The UltraSonicSensorC, which was in idle state 
goes to checksensor state upon receiving this message. If 
the value is 2 meaning the ball is found but not close 
enough, it goes to the goDown state and sends a value of 1 
to motor and to ultrasonic sensor to start moving down and 
check sensor again for values. The state is not goingDown 

and it waits for an input from the ultrasonic sensor. When 
the value of 3 is received the ArmController goes into the 
informColor state. If a value of 3 is received instead of 2 
while in the checkball state the same procedure is done, and 
a message is sent to horizontal and vertical motors to stop 
moving. When in the informColor state, a message is sent to 
the ColorSensor to get values for color. The ColorSensor 
shown in figure zzz receives values from the color sensor on 
the robot and forwards them to the ArmController. A value 
of 2 indicates blue and a value of 9 indicates red. The color 
sensor forwards a value of 1 if blue is found and 2 if red is 
found. The ArmController, upon receiving a value of 1 
moves to the goUp state, sending values to the arm to move 
up, since the ball is blue. If the value received is 2 it 
indicates that the ball is red therefore it sends a value to 
Claw, shown in figure www, to close the claw and then it 
moves up and goes to the idle state. 

 

 
 
Figure xxx. SoundController GGAD Diagram  
 

 
 
Figure yyy. UltraSonicSensorC GGAD Diagram  
 



 
Figure www. Claw GGAD diagram 
 

 
Figure zzz. ColorSensor GGAD diagram 
 
4.3 CD++ Coding  
After the structural model and the GGAD diagrams are 

drawn, the CD++ code can be written to simulate the model 
in a virtual environment. As explained the internal transition 
functions are shown by dotted lines and the external 
transition functions are shown with solid lines.  

This step in the modeling should be straight forward if 
the GGAD diagram is drawn correctly. CD++ is a formalized 
language, allowing users to map their design to the CD++ 
structure.   

CD++ is implemented using C++ language in an eclipse 
based environment. The time for each of the states can be 
defined as a Time variable, in virtual time. Each atomic 
model has an initFunction, used for initialization of the 
atomic model, an internalFunction used for the internal 
transition function of the model, an externalFunction used 
for the ext ernal transition function and an outputFunction, 
used for the output function. The holdIn() function is used 
to define how long the system stays in a particular state and 
it the system should stay in that state for a long period of 
time, the passivate() function is used. When the system 
receives an input from an external source, i.e. External event, 
the state is changed. Using the registerNewAtomic 
function, each atomic model is registered and these models 
each contain input and output ports which can be 
connected using an .ma file. The .ma file connects all the 
models through their ports using the Link function.   

After all the atomic models, their internal, external and 

output functions and links are defined, an event file can be 
defined by the user. The external event and the time at 
which they are sent is included in the event file.   

In order to simulate the behaviour of the model different 
event files were created. The models were tested 
individually to ensure correct results.   

 
4.4 E-CD++  
As mentioned in section 2, after the model has been 

formalized using GGAD diagram, and the implementation of 
the model in CD++ the model can be transferred to E-CD++, 
a language used for RT modeling of systems.  

 
 
Figure3.2.1 Main Runtime System Class Diagram [2]  
 
 

 
Figure3.2.2. Messaging Subsystem Class Diagram [2]  
 



 
Figure3.2.3. Modeling Subsystem Class Diagram [2]  
 
Figure 3.2.4, shows the connection between all the class 

diagrams for E-CD++.  
 

 
 
 
Figure3.2.4. Runtime System Subsystem Class 

Diagram [2] 
 
E-CD++ is  composed of four main components: Main 

Run Simulator (Figure 3.2.1), Modeling Subsystem (Figure 
3.2.2), Runtime System Subsystem (Figure 3.2.3) and 
Messaging Subsystem (Figure 3.2.4).  

The Main Run simulator, as the name suggests is the 
main program that runs. In this component, the Atomic 
model objects are registered, the external events are read 
and an external events table is built, the model file is read 
and a model hierarchy is built and a Root Coordinator is 
created and triggers it to run.  

The Runtime System Subsystems consists of 
coordinators, and processors manager. The processor class 
objects are managed by the Processor Manager, which is 
implemented by the ProcessorAdmin class.   

The processor class implements the DEVS Realtime 
System framework.   

The Messaging Subsystem consists of Message 
manager class and other message objects. Processors and 
coordinators send messages via the Messages Manager, 
which is implemented by the MessageAdmin class.  

The Modeling subsystem is a logical representation of 
the DEVS models defined by the modeller. It is composed of 
the Models manager and the DEVS Models Hierarchy tree. 
The Models manager manages the models hierarchy [2].  

 
This part can be modified by the used to connect the 

model to the hardware. The ports in the model developed 
earlier can be connected to the ports defined in E-CD++.   

When transferring the model from CD++ to E-CD++, 
ports have to be defined using the Port class. In the case of 
the robot, these ports include the ports to the sensors and 
motors. The ports should also be registered in the register 
file, using registerPort() function in PortAdmin.  To be able 
to define ports, each of port can be defined in a header file 
and the port extends the port class. The specific port 
number on the microcontroller of the robot can be defined 
using inithardware() and extending the pDriver class, 
specific instructions can be given fir each port.  

The functions that can be used to get the values from 
the hardware are, GetValue(port number) and 
GetSonarValue(port number), for ports that are ultrasonic.  

 
 

 
 
Figure3.2.5. Class Diagram of E-CD++[2] 



 
The color sensor and the ultrasonic sensor, the 

GetSonarValue() is used.   
To be able to have horizontal and vertical movement in 

the arm and movement in the claw, the Stop(),SetReverse(), 
and SetForward() command can be used. These commands 
can be sent to the port that is desired. For example if port B 
is used for horizontal motor and the motor has to go left, the 
command SetReverse(B,90), can be used.  In the robot arm 
example, there were six header files, three for the sensors, 
color, ultrasonic and sound; two for the horizontal and 
vertical movement for motors and one for the claw. These 
files are simple header files which are ports and use the 
pDriver class.   

 
The next step is to define the specific functionality for 

each of the ports. The nxtdriver.cpp file is used to define the 
specific functionality of each port. As discussed earlier the 
GetSonarValue(port number) is used to get inputs from the 
color and ultrasonic sensor, and the GetValue(port number) 
is used to get inputs from the sound sensor. The 
programmer can send only the required values to the model. 
The Stop, SetReverse and SetForward functions are used to 
the motors according to the specific value sent by the 
programmer. For example, if the programmer sends a 1 to the 
horizontal the motor has to move left, so the command 
SetReverse(port, 90) is used. 

 
 
 

5. SIMULATION AND RESULTS  
To simulate the models designed for the robot arm, the 

models had to be tested individually first, using CD++ 
eclipse simulator. The models were also tested as a whole 
using this simulator as well. The next step was to transfer 
these results to E-CD++ and test them using this simulator.   

E-CD++ allows two types of simulation, one is in virtual 
time and the other is in RT. After the models have been 
tested in both environments, the models can then be tested 
on the actual environment which is the robot.  

The makefile in the E-CD++ has to be modified to 
include the robot arm model. The make command is used to 
prepare the simulator for running the model. the following 
commands can be used to simulate results for virtual, RT 
and hardware, in order.  

../../simu –m –e -o –t –l   
The m is for the ma file, the e is for the event file, the o is 

for the output file, the t is for simulation time and l is for log 
file  

../../simu –m –e –o –r –l –W  
This command is similar to the virtual time, the 

difference is that a –w is added for RT and the event file has 
to be modified. The event file contains a RT and a deadline 

for the task to be completed.  
../../simu –m –e –o –t –l –w –g  
This command is used for executing the model on the 

hardware. There is no event file and the –g is added for the 
time at which signals are received from hardware, i.e. 
sensors.   

  
The testing strategy is to test each of the atomic models 

separately, then test the models as a whole in CD++, move 
the models and test them in virtual and RT in E-CD++. The 
last step would be to connect the robot and execute the 
code on the robot to see the final results.  

This section includes testing of each unit and the 
results in CD++ and ECD++ in virtual and RT.  

 
5.1 Testing of different units:  
5.1.1 Testing SoundController  
5.1.1.1 CD++  
The model to be tested is the soundController to make 

sure that when a sound is heard (greater than 25 decibels in 
this case), the soundController sends an output to the 
armController to start execution. The input to the 
soundController atomic model is IN_S as seen in figure 2, 
and the output is OUT_S to the arm controller. The event 
file and the .ma file are shown in figures 4.1.1.1.1 to 4.1.1.13.  

 
Figur4.1.1.1.1. SoundController.ma file  
 

 
Figure4.1.1.1.2 Events to test SoundController  
 

 
Figure4.1.1.1.3. Output file for sound controller  
 
To test Sound Controller we have provided an event file 

with external events defined. At time 5 and 7 there are 
inputs of 2 and 3 into the system, but since these are less 
than 25 we see that there is no output produced in figure 10. 
But at time 10 there is an input of 25 to the soundController 
and therefore the value of 1 is sent through the port OUT_S 
after 1 ms. This shows that the correct result is produced.  

 
5.1.1.2 E-CD++  
The files used are the same for testing the unit. When 

testing in virtual time we get the exact same results as 



CD++, therefore they are not shown. The results in RT 
however are shown here since they are different and have 
to be tested. Figure 15 shows the RT event file used to test 
SoundController. The deadline can be any time and it 
doesn’t have to be exact because we are not dealing with 
RTSs, where deadlines have to be met. A “dummy” output 
port has to be defined as well. OUT_S has been used as the 
output port in this case. 

 
Figure4.1.1.2.1. Realtime Event file for 

SoundController ‘ 
 

 
Figure4.1.1.2.2. Realtime output file for 

SoundController  
 
The results can be seen in figure 4.1.1.2.2 As we can see 

the results obtained are the same as in virtual time, so this 
unit is functional and we can move on to the next unit for 
testing.  

 
5.1.2 Testing UltraSonicSensorC  
5.1.2.1 CD++  
The UltraSonicSensorC model is responsible for sending 

values received from the ultrasonic sensor to the 
ArmController according to the distance it has received. As 
seen in figure 2, the UltraSonicSensorC has two inputs and 
one output port. The input ports  are from the ArmController 
and the ultrasonic sensor. When the model receives a 1 
from the ArmController it has to send a value received from 
the sensor to the ArmController. If the UltraSonicSensorC 
receives a value that is greater than 10, it sends a value of 1 
to the ArmController, meaning that it is still very far from the 
ball and the arm has to move horizontal. If the distance is 
less than 10 and greater than 2 it means the arm is not close 
enough to the ball therefore it has to move down and a 
value of 2 is sent to the armController. When the arm is 
close enough to the ball the value is less than 2cm, 
therefore the arm has to stop and a value of 3 is sent to the 
arm controller. Figures 4.1.2.1.1 to 4.1.2.1.3 show the .ma, 
event and output files for the tested results.   

 
Figure4.1.2.1.1. UltraSonicSensorC .ma file  

 

 
Figure4.1.2.1.2 UltraSonicSensorC event file  
 

 
Figure4.1.2.1.3. UltraSonicSensorC output file 
 
The UltraSonicSensorC waits for an input from 

ArmController, and sends the value through port OUT_U. 
As seen in the event file another input is received at time 
0:07 through port IN_U, but this input is ignored because 
no value is received from the ArmController. The output is 1 
since the value of 19 is greater than 10. To show that the 
rest of the model is functional, other inputs are provided 
and every time a value of 1 is received from ArmController, 
the input is from ultrasonic sensor is analyzed to send 
output to the ArmController. Values of 9 and 2 are received 
and values of 2 and 3 are sent through output port OUT_U, 
to ArmController.  

 
5.1.2.2 E-CD++  
The unit was tested in E-CD++ RT simulation. The event 

file used is shown in figure 4.1.2.2.1, and the output is 
shown in figure 4.1.2.2.2. As can be seen the results are the 
same as virtual time, therefore the unit has been tested and 
it functions correctly.  

 

 
Figure4.1.2.2.1. Realtime event file to test 

UltraSonicSensorC  
 

 
Figure4.1.2.2.2. Realtime output file for 

UltraSonicSensorC  
 
 
5.1.3 Testing ColorSensor  
5.1.3.1 CD++  
The ColorSensor gets the value from the color sensor 

and returns it to the ArmController whenever it receives a 1 



from ArmController. If the value that it receives is 2, the ball 
is red and it returns a value of 1 to the ArmController. If the 
value received from the sensor is 9, the ball is blue and the 
value of 2 is sent to ArmController. Figures 4.1.3.1.1 to 
4.1.3.1.3 show the .ma file, the event file, and the output file 
for the particular event file.  

 
Figure4.1.3.1.1. ColorSensor .ma file  
 

 
Figure4.1.3.1.2. ColorSensor event file  
 
 

 
Figure4.1.3.1.3. ColorSensor output file  
 
The model returns a value every time ArmController 

requests a value. In the first case the color sensor sends a 
value of 2 therefore the ball is red and a value of 1 is sent to 
ArmController. In the second case a value of 9 is sent, 
meaning the ball is blue, therefore a value of 2 is sent to 
ArmController. The results are therefore correct.  

 
5.1.3.2 E-CD++  
The ColorSensor was tested in E-CD++ using the event 

file shown in figure 4.1.3.2.1, and the results are shown in 
figure 4.1.3.2.2. The results are the same as in CD++ results 
and it behaves correctly when given an input.  

 
Figure4.1.3.2.1. Realtime event file to test ColorSensor  
 

 
 
Figure4.1.3.2.2. Realtime output file for ColorSensor  
 
5.1.4 Testing Claw  
5.1.4.1 CD++  
When the claw receives a value of 1 from ArmController 

it has to grab the ball, when it receives a 2 it has to release 
the ball and when it receives a 0 it has to stop the claw from 
moving. Figure 4.1.4.1.1 to 4.1.4.1.3 show the .ma file, the 
event file and the output for the given event file.  

 
Figure4.1.4.1.1. Claw.ma file 
 

 
Figure4.1.4.1.2. Claw event file  
 

 
Figure4.1.4.1.3. Claw output file  
 
As can be seen by the result, the right values are sent to 

the claw’s motor to get the corresponding action.  
  
4.1.4.2 E-CD++  
The Claw unit was tested in E-CD++ and the same 

results as CD++ were maintained. 4.1.4.2.1 shows the event 
file for testing claw in RT and figure 4.1.4.2.2 shows the 
results which are the same as the results in CD++.  

 

 
Figure4.1.4.2.1. Realtime event file for Testing Claw  
 

 
 
Figure4.1.4.2.2. Realtime output file of Claw  
 
5.2 Testing the ArmController  
5.2.1 CD++  
The next step in testing is to test the model as a whole. 

The ArmController is the main model that receives inputs 
from sensors and sends outputs to the motors to act 
accordingly to the situation.  

The arm controller’s functionality was discussed in the 
GGAD diagram, or state diagram. The reader can refer to 



section 3.2 for detail.  
Figures 4.2.1.1 to 4.2.1.3 show the .ma file, the event file 

and the corresponding output values received.   
 

Figur4.2.1.1. ArmController .ma file  
 

 
Figure4.2.1.2. ArmController event file  

 
Figure 4.2.1.3. ArmController output file  
 
It is very easy to see the flow of events using COUT 

statements in CD++. In this scenario a red ball was found 
therefore the ball was grabbed by the arm and brought up 
for 2 seconds. The outputs are seen in figure 22, where a 
value of 1 is sent to claw to grab the ball, a value of 1 is sent 
to arm to move up, and after 2 seconds a value of 0 is sent 
to arm to stop the arm from moving up.  

  
In a second scenario where a blue ball is found, the 

event file would be different in that the input to ColorSensor 
should be 2 instead of 9. The output is shown in Figure 
4.2.1.5.  

 
Figure4.2.1.5 ArmController output, Blue ball found  
 

5.2.2 E-CD++  
The Arm controller was tested in E-CD++ to see the 

results. Figure 4.2.2.1 shows the event file and the case 
were the ball is red and 4.2.2.2 shows the output result of 
the event file. Figure 4.2.2.3 shows the event file and the 
case were the ball is blue and 4.2.2.4 shows the output 
result of the event file.  

 

 
Figure 4.2.2.1 Realtime event file for ArmController: 

Red Ball  
 
 
 

 
Figure 4.2.2.2 Realtime Output for ArmController: 

Red ball  
 

 
Figure 4.2.2.3 Realtime event file for ArmController: 

Blue Ball  
 

 
Figure 4.2.2.4 Realtime Output for ArmController: 

Blue Ball  
 
5.3 Execution of Code in Realtime –Robot connected  
The code was executed on the robot and as can be seen 

in figure 4.3.1 when the ball was red, the robot grabbed the 
ball. This figure also shows a picture of blue ball. It was not 
grabbed since it is blue [7][8]. 

 



 
Figure 4.3.1 Robot arm grabbing red ball and not 

grabbing blue ball  
 

6. CONCLUSION 
DEVS modeling is a useful modeling technique that can 

be used to model different systems. In this paper we have 
presented a way to model a RTS using DEVS and simulating 
and running the model using E-CD++ which is an extension 
to CD++ for RT environments.  

The first step in developing the system was to define 
each model and their functionality and formalization. These 
steps included the formalization of the model, structural 
diagram and state diagrams for each of the models. This 
step is the most important step in developing a model since 
the actual implementation is straight forward if the state 
diagrams are drawn correctly.  

The next step was to write the code for the model in 
CD++ and ECD++. This step was done incrementally and 
each step was tested during the development of the code.  

After the implementation of each unit, they were tested 
individually to ensure correct behaviour of the unit. The 
models were then connected and tested as a whole, and the 
results were shown.  

We have shown that with DEVS formalization, it is very 
straight forward to develop models, in this case in RTSs. 
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