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Abstract— Rational Time-Advance DEVS (RTA-DEVS) is an exten-
sion to DEVS that enables formal verification of simulation models us-
ing standard model-checking algorithms and tools. In order to enable 
formal verification of DEVS models, we introduce a procedure to ap-
proximate DEVS with RTA-DEVS. We include conditions for valid 
approximation and a calculation method for approximation errors that 
may be introduced. The resulting RTA-DEVS models are behaviorally 
equivalent to the original DEVS. 
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I.  INTRODUCTION 
Real-time embedded systems (RTS) are highly computer re-
active systems where the decisions taken can lead to catas-
trophic consequences for goods or lives; hence, correctness, 
and the timing of the executing tasks are critical. This cor-
rectness must be verified, and Timed Automata (TA) [1] 
proved a established theory of formal verification and 
analysis through model-checking [2][3]. DEVS [5] provides 
a formal method to model and simulates discrete-event sys-
tems. We are interested in using DEVS for modeling RTS, 
and to model-check the specifications. However, DEVS 
does not yet have a sound theory for formal verification 
(thus, models are mainly studied through simulation).  
     We defined a subclass of DEVS called RTA-DEVS, that 
can be translated to equivalent TA models and formally 
verified [4]. RTA-DEVS removes many of the obstacles to 
formal verification, while retaining most of the expressive 
power of classic DEVS. We introduce here a methodology 
to abstract classic DEVS models to RTA-DEVS models, 
showing how to avoid modeling errors that may produce 
wrong RTA-DEVS models. We also show a method to es-
timate an upper bound of approximation errors that may be 
introduced during the abstraction process.  

 
II. BACKGROUND 

 
DEVS was originally defined in the '70s as a discrete-event 
modeling specification mechanism derived from systems 
theory. A system modeled with DEVS is described as a hi-
erarchical and modular composite of models, each of them 
being behavioral (atomic) or structural (coupled). [5]. A 
DEVS atomic model is formally described by: 
 

M = < X, S, Y, δint, δext, λ, ta > 
 

Each model uses input (X) and output (Y) ports to com-
municate with others. External inputs trigger the external 
transition function δext. The internal transition function δint 

is activated after the lifetime ta of the present state has been 
consumed. δint can lead to a state change. Results are spread 
through output ports by the output function (λ), which exe-
cutes before the internal transition.  

A DEVS coupled model is composed of several atomic 
or coupled sub models. They are formally defined as: 

 
CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 

 
Coupled models are defined as a set (D) of intercon-

nected components (Mi atomic or coupled). A coupled model 
uses input (X) and output (Y) ports to communicate with oth-
ers. The translation function (Zij) is in charge of converting 
the outputs of a model into inputs for the others. To do so, an 
index of influencees (Ii) is created for each model. This in-
dex defines that the outputs of the model Mi are connected to 
inputs in the model Mj, where j is an element of Ii. 

When trying to apply model-checking to classic DEVS, 
we are faced with a number of issues that make the problem 
undecidable (i.e., reachability analysis would not terminate). 
These difficulties are summarized as follows: 
• A model could have an infinite number of total states 
• The codomain of ta can be an irrational number. 
• The elapsed time e in the definition of external transition 

function could be an irrational number. 
RTA-DEVS [4] has changed the atomic model defini-

tions to avoid this problem. Now, ta has a codomain in the 
positive rational numbers, and its δext uses rational positive 
constants only for the elapsed time e. These changes enable 
the transformation of RTA-DEVS to equivalent TA models 
that are verifiable through model checking algorithms.  

III. MODEL-CHECKING DEVS 
To be able to model check a system with infinite number of 
states these would need to be over-approximated to a finite 
number of states. By converting DEVS models to RTA-
DEVS we remove the problems discussed above. To do so, 
we need to find a reasonable approximation for any irra-
tional values that may exist in the DEVS model, while 
building a valid RTA-DEVS.  

A. Irrational values in Time advance function 
DEVS irrational values for the ta need to be approximated 
when converting to RTA-DEVS. An example of such DEVS 
model is given in Figure 1(a). The equivalent transformed 
RTA-DEVS and TA models are shown in (b) and (c) 
respectively. In this figure, a DEVS model is approximated 
with RTA-DEVS model as shown in (b).  
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Figure 1: Approximation of Irrational time values. In-
ternal Transition. a) DEVS b) RTA-DEVS c) TA. 
 
 The irrational time advance value is converted to a ra-
tional value with approximation error ∆. This error propa-
gates on the equivalent TA. The questions here are: how is 
this approximation error ∆ going to affect the validity of 
RTA-DEVS and TA models? Are these valid models? Do we 
have the same conclusions on the original DEVS and the 
TA? 
 To answer the first question (i.e. to guarantee building 
valid RTA-DEVS and TA models), we show a piece of a 
coupled DEVS model in Figure 2. Component A waits in 
state S1 for √5 time units, then executes the internal transi-
tion function which sends event a, and then goes to state S2. 
 

 
 

Figure 2: A coupled DEVS model 
 

 Component B is in state S3 waiting for event a, which 
triggers the external transition function as follows: 

)0,4(),,3( SaeSext =δ    ∞≤ pe5  

)0,5(),,3( SaeSext =δ   50 pp e  
     By coupling components A and B together, the total be-
havior of the coupled DEVS component C would be: 

(S1,S3)  → = ad ,5  (S2,S4)  
 The coupled system starts in total state of (S1,S3), and 
after a delay of √5 time units, A sends event a to B which 
triggers a transition to total state of (S2,S4). We then con-

struct a behaviorally equivalent, approximated RTA-DEVS 
model (Figure 3) to the DEVS shown in Figure 2. 

 
 

Figure 3: Coupled RTA-DEVS model 
 
 In this model, the lifetime of S1 was approximated by a 
rational value with error ∆. The value of ∆ depends on the 
precision chosen; e.g., for 2 decimal digits, ∆ ≤ 0.005. The 
external transition function would be approximated as: 
Approximation 1: 

)0,4(),,3( SaeSext =δ                ∞≤∆+ pe23.2  
)0,5(),,3( SaeSext =δ    ∆+23.20 pp e  

Or Approximation 2: 
)0,4(),,3( SaeSext =δ                ∞≤∆− pe23.2  
)0,5(),,3( SaeSext =δ    ∆−23.20 pp e  

 However, the choice of the approximation would affect 
the validity of the RTA-DEVS model. For instance, if we 
approximate the ta of S1 with ta =2.23-∆, and we choose 
Approximation 1 for model B, the coupled model C’ would 
have a different behavior from the original DEVS model. 
Thus, component C’ behaviour now becomes:  
   (S1,S3)  → ∆−= ad ,23.2  (S2,S5) 
 
Proposition 1: When approximating an irrational value 
triggering an internal transition that is coupled with an ex-
ternal transition, the choice of approximation value should 
be consistent for all constants using this irrational number. 
 
Formally: if we have the following defined in DEVS: 

jirri
A SCS =),(intδ  , aSi

A =)(λ ,  irri
A CSta =)(  

)0,(),,( lkext
B SaeS =δ                ∞≤ peCirr  

)0,(),,( mkext
B SaeS =δ     irrCe pp0  

 
It should be approximated in RTA-DEVS as: 

jri
A SCS =),(intδ   , aSi

A =)(λ , ri
A CSta =)(  

)0,(),,( lkext
B SaeS =δ    ∞≤ peCr  

)0,(),,( mkext
B SaeS =δ   rCe pp0  
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Where: 
irrC : is an irrational real number. 

rC  : is a rational real number. 

int
Aδ , Aλ , Ata : Functions defined for component A. 

 

B. Irrational values in External Transition function 
For the example shown in Figure 4, a modeller may choose 
different approximations to form component B’’ 
 

 
Figure 4: RTA-DEVS component with External Input. 
 
Approximation 3: 

)0,4(),,3( SaeSext =δ           ∞≤∆+ pe23.2  
)0,5(),,3( SaeSext =δ   ∆−23.20 pp e  

Or Approximation 4: 
)0,4(),,3( SaeSext =δ     ∞≤∆+ pe23.2  
)0,5(),,3( SaeSext =δ   ∆−23.20 pp e  

Component C’’ in Figure 4 accepts an external input 
from its environment on input port IN1 and this is connected 
to go into component B’’ at its port IN2. In this case, the be-
haviour of C’’ would not match the behaviour of C, in that 
the external transition function is not defined in the inter-
val ∆+∆− 23.223.2 pp e . Thus, C’’ would contain an ac-
tion-lock [6] which is a special case of a deadlock in which 
the system would not progress due to lack of any enabled 
transitions at the exact point-in-time in which an event oc-
curs. This typically reflects a modelling error (or, in our case, 
a modelling fault due to the approximation error). 

 
Proposition 2: When approximating an irrational value for 
elapsed time in external transition function definition, the 
choice of approximation value should be consistent for all 
constants using this irrational number. 

Formally: If we have the following DEVS definition of 
external transition function 

)0,(),,( jiext SaeS =δ            ∞≤ peCirr  
)0,(),,( kiext SaeS =δ    irrCe pp0  

It should be approximated in RTA-DEVS model on the 
following form to avoid creating action-locks: 

)0,(),,( jiext SaeS =δ           ∞≤ peCr  

)0,(),,( kiext SaeS =δ   rCe pp0  

C. Effect of approximation error on model checking results 
The next question is how the approximation of irrational 
constants in ta or δext affect the formal verification of RTA-
DEVS models. Would a result obtained from model check-
ing RTA-DEVS models apply to the original DEVS? 

When we approximate an irrational constant Cirr with a 
rational constant Cr, we introduce an error ∆ such that Cirr = 
Cr ± ∆. This error appears then in constants used for time 
advance function or external transition functions. Verifica-
tion of RTA-DEVS through transforming it to equivalent 
TA is done with reachability analysis. Would this analysis 
differ by introducing the error ∆ when we move from DEVS 
to RTA-DEVS? Answering this question directly would re-
quire reachability analysis of the original DEVS with irra-
tional constant values, and for the transformed RTA-DEVS 
model with the rational values (then, comparing results). 
This approach however is not feasible as reachability analy-
sis for timed models with irrational constants is proven to be 
undecidable [7].  

Therefore, we need to use an approximate approach to 
estimate the effect of ∆ on the reachability analysis. This 
problem is equivalent to that of robustness of timed auto-
mata [8]. In robust timed automata, a robust model accepts 
an input sequence of events within a time interval. This is 
called a bundle of events that are close in time and the mod-
el still behaves the same with this bundle input. 

Puri [9] extended the notion of robust TA to be those 
models that their reachability analysis remains the same 
with small drifts in clock models. In this definition, a model 
is not robust if for any small drift in clock rate, the reach-
ability results change. In [10], it was proved that clock drifts 
in TA are equivalent to having a reaction delay by the im-
plementation that increases guard constants by a small posi-
tive value ∆. The robustness problem is then transformed to 
an implementation problem, in which one need to find a 
value ∆ that makes verification results correct. Further work 
in [11] showed a methodology to assess a model for imple-
mentability by using standard TA model checking tools, and 
proof that if a model is tolerant to a certain value ∆, it would 
also be correct with any value ∆’ such that ∆’ < ∆. 

The results from the robustness theory of TA would be 
useful to check if a RTA-DEVS model formal verification 
results correctly applies to the original DEVS model. Given 
an error ∆ introduced by approximation of irrational num-
bers in DEVS models, we non-deterministically model the 
possible transition from a state within an enlarged time in-
terval with ∆. For example: 

)0,(),,( jiext SaeS =δ           ∞≤ peCirr  
)0,(),,( kiext SaeS =δ   irrCe pp0  

and Cirr = Cr ± ∆, then, we enlarge the interval in which 
the external transition is enabled, i.e. to define it as: 

)0,(),,( jiext SaeS =δ           ∞≤∆− peCr  
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)0,(),,( kiext SaeS =δ   ∆+rCe pp0  
The model is transformed to an equivalent TA as in [4]. 

This model is then checked against the desired properties. 
With non-determinism in the model, UPPAAL checks the 
transition as if enabled during the interval, covering the point 
around the irrational number value. Hence, if the model 
checking results were correct, we conclude that the approxi-
mation did not introduce errors to the RTA-DEVS model.   

D. Elevator / Elevator-Controller Example. 
We use an example introduced in [12], which defines an 
elevator system composed of an elevator, elevator-controller 
and an environment representing a user pressing different 
buttons. This example was transformed from RTA-DEVS 
[4] to TA and verified to work correctly in UPPAAL. The 
example was extended by changing an irrational value in the 
controller model. State stdbyMov in Figure 5 have ta of 
√1000007 ≈ 1000.003 or √1000007 ≈ 1000.004; ∆= 0.001.  

 
Figure 5: Elevator-Controller in DEVS Graphs notation. 

 
The resulting TA models are shown in Figure 6.  

 
Figure 6: TA model with Non-deterministic behaviour. 

 
In this model, we added node E and a transition from 

StdByMov to E that is enabled at elapsed time of 
x>=1000003. This TA is semantically equivalent to the 
DEVS model in Figure 5. However, this TA allows the tran-
sition from node StdByMov to node Stopped to be taken non-
deterministically in the interval [0,1000004] while transition 
to E is enabled in [1000003, ∞ ]. This ensures covering the 
interval [0, √1000007] in UPPAAL model checking. 

We ran the model checker to verify the non-
deterministic version of the elevator-controller model along 
with the other components in the elevator system [4]. The 
results were successful and unchanged from results in [4]. 
The consistency of results in both non-deterministic and de-
terministic models indicates that the approximation error did 
not affect the verification results. Hence, for any value 
smaller than 0.001, the results would not be affected [11]. 

Although we could not verify the DEVS model in Figure 
5 as a result of the irrational value of time advance function, 
our methodology approximates this model to a behaviorally 
equivalent RTA-DEVS and then to an equivalent TA, which 
can be used to verify the equivalent TA model. 

IV. CONCLUSION 
We introduced some of the problems that prevent classic 
DEVS models from being verified, and the conditions to ob-
tain sound and behaviorally equivalent RTA-DEVS models 
from DEVS models. We also introduced a methodology 
based on recent theoretical work that can reveal if a given 
DEVS model being approximated by RTA-DEVS would 
have verification results unaffected by the approximation 
process. In reality, if a given DEVS model can not tolerate 
small approximation errors without changing its formal veri-
fication results, this DEVS model would be almost impossi-
ble to implement faithfully on a hardware platform as that 
platform would never be able to give exact timing due to 
digital clocks nature and transition delays. Inconsistency of 
verification results in our methodology would be an indica-
tion of such DEVS model. 
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