
Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

 [Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains], Edited by

[John A. Sokolowski, Catherine M. Banks].

ISBN 0-471-XXXXX-X Copyright © 2009 Wiley [Imprint], Inc.

Chapter xx

An Introduction to Distributed

Simulation

Gabriel A. Wainer Khaldoon Al-Zoubi

Introduction

Distributed simulation technologies were created to execute simulations on

distributed computer systems (i.e., on multiple processors connected via communication

networks) [23]. Distributed Simulation is a computer program that models real or

imagined systems over time. On the other hand, distributed computer systems

interconnect various computers (e.g. personal computers) across a communication

network. Therefore, distributed simulation deals with executing simulation correctly over

inter-connected multiple processors. Correctness means that the simulation should

produce the same results as if it was executed sequentially using single processor.

Fujimoto [23] distinguishes parallel from distributed simulation by their physical

existence, used processors, communication network and latency. Parallel systems usually

exist in a machine room, employ homogeneous processors and communication latency is

measured with less than 100 microseconds. In contrast, distributed computers can expand

from a single building to global networks, often employ heterogeneous processors (and

software), and communication latency is measured with hundreds of microseconds to

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

seconds. The simulation is divided spatially (or temporally) and mapped to participated

processors. Our focus here is on distributed simulation, which employs multiple

distributed computers to execute the same simulation run over a wide geographical area.

A focus of distributed simulation software has been on how to achieve model

reuse via interoperation of heterogeneous simulation components. Other benefits include

reducing execution time, connecting geographically distributed simulation components

(without relocating people/equipment to other locations), interoperating different vendor

simulation toolkits, providing fault tolerance and information hiding – including the

protection of intellectual property rights - [6] [23].

Trends and Challenges of Distributed Simulation

The defense sector is currently one of the largest users of distributed simulation

technology. On the other hand, the current adoption of distributed simulation in the

industry is still limited. In recent years, there have been some studies (conducted in the

form of surveys) to analyze these issues [5][6][56]. The surveys collected opinions,

comments and interviews of experts from different background in the form of

questionnaires, and showed that there is now an opportunity for distributed simulation in

industry. It has been predicted that in the coming years, the sectors that will drive future

advancement in distributed simulation are not only the defense sector, but also gaming

industry, the high-tech industry (e.g. auto, manufacturing and working training),

emergency and security management [56].

The High Level Architecture (HLA) is the preferred middleware standard in the

defense sector [28]. However, its popularity in industry is limited. The HLA started as a

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

large project mainly funded by the military, in order to provide the means for reusing

legacy simulations in military training operations, so that exercised could be conducted

between remote parties in different fields, reusing existing simulation assets. On the other

hand, the adoption of these technologies in industry is based on return-of-investment

policies. Therefore, most commercial-off-the-shelf (COTS) simulation packages do not

usually support distributed simulation due to a cost/benefit issue. In [6], the authors

suggested that, in order to make distributed simulation more attractive to the industrial

community, we need a lightweight COTS-based architecture with higher cost/benefit

ratio. The middleware should be easy to understand (e.g. programming interface, fast

development and debugging), and interoperable with other vendor’s simulation

components. Distributed simulation might become a necessity when extending the

product development beyond factory walls, particularly when such organizations prefer

to hide detailed information [25]. New standards (for instance, Commercial Off-the-Shelf

Simulation Package Interoperability, Core Manufacturing Simulation Data and DEVS)

can contribute to achieve these goals [62].

Another recent study, carried out by Strassburger, Schulze and Fujimoto, focused

on surveying experts from the area of distributed simulation and distributed virtual

environment [56]. This study found out that the highest rated applications in future

distributed simulation efforts include the integration of heterogeneous resources, and

joining computer resources for complex simulations and training sessions. The study also

identified some research challenges:

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

• Plug-and-Play capability: the middleware should be able to support coupling

simulation models in such a way that the technical approach and standards gain

acceptance in industry. In other words, interoperability should be achieved effortlessly.

• Automated semantic interoperability between domains: to achieve the plug-and-play

challenge, interoperability must be achieved at the semantic level.

A Brief History of Distributed Simulation

Simulations have been used for war games by the U.S Department of Defense

(DoD) since 1950s. However, until 1980s, simulators were developed as a standalone

with single-task purpose (such as landing on the deck of an aircraft carrier). Those

standalone simulators were extremely expensive comparing to the systems that they

suppose to mimic. For example, the cost of a tank simulator in the 1970s was $18

million, while the cost of an advanced aircraft was around $18 million (and a tank was

significantly less). By the 1980s, the need of performing cost-effective distributed

simulation started to be used at the DoD to simulate war games [38].

The first large project in this area, the SIMulator NETworking program

(SIMNET) was initiated in 1983 by the Defense Advanced Research Projects Agency

(DARPA) in order to provide virtual world environment for military training

[10][38][58][59]. SIMNET was different from previous simulators in a sense that many

objects played together in the same virtual war-game. During a SIMNET exercise, a

simulator sent/received messages to/from other simulators using a Local Area Network

(LAN). This distributed simulation environment enabled various simulation components

to interact with each other over the communication network. Cost played as a major

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

factor for developing SIMNET. However, the ability of having different type of

simulations interacting with each other was another major factor. For example, warships,

tanks, and aircraft simulators worked together, enhancing the individual systems’ ability

to interact with others in a real-world scenario. Further, the design of SIMNET was

different from previous simulators. The goal became to derive the simulation

requirements, and only then decide the hardware needed for the simulation environment.

This caused many required hardware in the actual systems to be rolled out from

simulation training.

The success of SIMNET led to developing standards for Distributed Interactive

Simulation (DIS) during the 1990s [22][27][53]. DIS is an open standard (realized in

[31][32][33][34]) for conducting interactive and distributed simulations mainly within

military organizations. DIS evolved from SIMNET and applied many of SIMNET's basic

concepts. Therefore, DIS can be viewed as a standardized version of SIMNET. The DIS

standards introduced the concept of interoperability in distributed simulation, meaning

that one can interface a simulator with other compliant DIS simulators, if they follow the

DIS standards. Interoperability via simulation standards was a major step forward

provided by SIMNET, but it only permitted distributed simulations in homogeneous

environments. DIS was aimed to provide consistency (from human observation and

behavior) in an interactive simulation composed by different connected components.

Consistency in these human-in-the-loop simulators was achieved via data exchange

protocols and a common database. DIS exchanged data using standardized units called

the Protocol Data Unit (PDU), which allowed DIS simulations to be independent of the

network protocol used to transmit those PDUs [27]. DIS was successful in providing

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

distributed simulation in LANs, but it only supported interactive simulations restricted to

military training [56]. These simulations did not scale well in Wide Area Networks.

SIMNET and DIS use an approach in which a single virtual environment is

created by a number of interacting simulations, each of which controls the local objects

and communicates its state to other simulations. This approach led to new methods for

integrating existing simulations into a single environment, and during the 1990s, the

Aggregate Level Simulation Protocol (ALSP) was built. ALSP was designed to allow

legacy military simulations to interact with each other over LANs and WANs. ALSP, for

example, enabled Army, Air Force and Navy war game simulations to be integrated in

single exercise [3][21] [63].

The next major progress in the defense simulation community occurred in 1996

with the development of the High Level Architecture (HLA) [28][29][30]. HLA was a

major improvement because it combined both analytic simulations with virtual

environment technologies in single framework [23]. The HLA replaced SIMNET and

DIS, and all simulations in DoD are required to be HLA compliant since 1999 [23].

The distributed simulation success in the defense community along with the

popularity of the Internet in the early 1990s led to the emergence of non-military

distributed virtual environments, for instance, the Distributed Interactive Virtual

Environment (DIVE) (which still in use since 1991). DIVE allows a number of users to

interact with each other in a virtual world [19]. The central feature in DIVE is the shared,

distributed database where all interactions occur through this common medium.

Another environment that became popular during 1990s was the Common Object

Request Broker Architecture (CORBA) [26]. CORBA introduced new interoperability

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

improvements since it was independent of the programming language used. On the other

hand, CORBA use had sharply declined in new projects since 2000. Some reflect this for

being very complicated to developers or by the process CORBA standard was created

(e.g., the process did not require a reference implementation for a standard before being

adopted). Further, Web Services became popular in the 2000’s as an alternative approach

to achieve interoperability among heterogeneous applications (which also contributed to

CORBA’s decline).

Web Services standards were fully finalized in 2000. However, TCP/IP, HTTP,

and XML (which are the major Web Services standards), had matured since the 1990s.

These standards have opened the way for Simple Object Access Protocol (SOAP) version

1.0 [39], which was developed in 1999 by Userland Software and Microsoft. SOAP

provided a common language (based on XML) to interface different applications. A

major breakthrough came when IBM backed up the SOAP proposal in early 2000 and

joined the effort for producing the SOAP standard version 1.1 [8]. It was followed in the

same year by the definition of the standards version 1.0 of the Web Services Description

Language (WSDL), which is used to describe exposed services [14]. The final boost for

making Web Services popular came when five major companies (Sun, IBM, Oracle, HP

and Microsoft) announced their support for Web Services in their products in 2000. It did

not take long for the distributed simulation community to take advantage of Web

Services technology. Web Services are being now even used to wrap the HLA interfaces

to overcome its interoperability shortcomings, or to perform pure distributed simulation

across WAN/Internet. Web Services presented the Service Oriented Architecture (SOA)

concept, which means services are deployed in interoperable units in order to be

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

consumed by other applications. The US DoD Global Information Grid (GIG) is based on

SOA to interoperate the DoD heterogeneous systems. At the time of this writing, Web

Service is the technology of choice for interoperating heterogeneous systems across the

Internet [67].

Synchronization Algorithms for Parallel and

Distributed Simulation

Parallel/distributed simulations are typically composed of a number of sequential

simulations where each is responsible of part of the entire model. In parallel and

distributed simulations, the execution of a system is subdivided in smaller, simpler parts

that run on different processors or nodes. Each of these subparts is a sequential

simulation, which is usually referred to as a logical process (LP). Those LPs interact with

each other using message passing to notify each other of a simulation event. In other

words, LPs use messages to coordinate the entire simulation [23]. The main purpose of

synchronization algorithms is to produce the same results as if the simulation were

preformed sequentially in a single processor. The second purpose is to optimize the

simulation speed by executing the simulation as fast as possible.

In order to reduce the execution times, the parallel simulator tries to execute

events received on different LPs concurrently (in order to exploit parallelism).

Nevertheless, this might cause errors in a simulation. Consider the scenario presented in

Figure 1, in which two LPs are processing different events. Consider that the LPs receive

two events: E200 is received by LP2 (with timestamp 200), and event E300 is received by

LP1 (with timestamp 300). Suppose that LP2 has no events before time 200, and LP1 has

no events before time 300. It thus seems reasonable to process E200 and E300. Suppose

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

that, when we execute E200, it generates a new event, E250 (with timestamp 250), which

must be sent to LP1. When LP1 receives the event E250, it was already processing (or had

processed) the event E300 with timestamp 300. As we can see, we receive an event from

the past in the future (an event that requires immediate attention, and might affect the

results of processing event E300). This is called a causality error.

Simulation time

LP2

LP1

100 200 300

Processed event

Unprocessed event

E200

E250 E300

Figure 1. Causality error in a distributed simulation

The local causality constraint guarantees the conditions under which one cannot

have causality errors [23]: if each LP processes events and messages in non-decreasing

timestamp order, causality errors cannot occur. This brings us to a fundamental issue in

synchronization algorithms: should we avoid or deal with local causality constraints?

Based on these ideas, two kinds of algorithms were defined. Conservative (pessimistic)

algorithms avoid local causality errors by carefully executing safe events, not permitting

local causality errors. On the other hand, Optimistic algorithms allow causality errors to

occur, but fix them when detected. It is difficult to decide which type is better than the

other one, because simulation is application dependent. In fact, the support for both types

of algorithms may exist within one system.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Conservative Algorithms

Conservative algorithms were introduced in late 1970s by Chandy-Misra [12] and Bryant

[9]. This approach always satisfies local causality constraint via ensuring safe timestamp-

ordered processing of simulation events within each LP [12][13]. Figure 2 shows the data

structures used: input and output queues on each LP, and a Local Virtual Time (LVT)

representing the time of the last processed event. For instance, LP-B uses two input

queues: one from LP-A, and one from a different LP (not showed in the figure). At this

point, it has processed an event at time 4, and has advanced the LVT=4. Its output queue

is connected to LP-A.

Figure 2: Deadlock situation. Each LP is waiting for an event from another LP

For instance, LP-B has received an event with timestamp = 27, thus we know that

it will never receive an event with a smaller timestamp from the same LP. If at that point

it receives an event with timestamp 4 from LP-C, LP-B can safely process it (in fact, it

can process any event from LP-C earlier than time 27, as we know that we will not

receive an event with earlier timestamp). However, LP-B must be blocked once all the

unprocessed events from LP-C are processed. If one of the input queues is empty (as in

 Network

LVT = 4

27 4

LVT = 11

11 15

LVT = 16

16 81

 LP-B LP-A LP-C

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

the figure), the LP must be blocked. We cannot guarantee processing other events (for

instance, although we have plenty of events in the second queue, as the first one is empty,

and the associated timestamp is 4, the LP cannot continue: if we receive, for instance, a

new event with timestamp 5 from LP-C, this will cause a causality error). As we can see,

the simulation can enter into deadlock when a cycle of empty queues is developed where

each process in the simulation is blocked (a shown in the figure).

A solution to break the deadlock in Figure 2 is to have each LP broadcasting the

lower bound on its time stamp to all other relevant LPs. This is can be accomplished by

having LPs sending each other “null” messages with its timestamp. In this case, when an

LP processes an event, it sends other LPs a null message, allowing other LPs decide the

safe events to process. For instance, in our example, LP-A will inform LP-C that the

earliest timestamp for a future event will be 16. Therefore, is it now safe for LP-C to

process the next event in the input queue (with timestamp 15), which breaks the hold-

and-wait cycle (thus preventing deadlock to occur). These are the basic ideas behind the

Chandy/Misra/Bryant algorithm [9][12][23].

Further, runtime performance in conservative algorithms depends on an

application property called lookahead, which is the time distance between two LPs. The

lookahead value can ensure an LP to can process events in the future safely. Let us

suppose that LP-A and LP-B in Figure 2represent the time taken to traverse two cities by

car (which takes 3 units of simulation time). In this case, if LP-A is at simulation time 16,

we know the smallest timestamp it will send to LP-B is 19, so LP-B can safely process

events with that timestamp or lower. The lookahead is important value because it

determines the degree of parallelism in the simulation and it affects the number of

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

exchanged null messages. Naturally, the lookahead value is very difficult to extract in

complex applications. Further, null messages could harshly degrade system performance

[23]. Therefore, an LP can advance and process events safely once it realizes the lower

timestamp bound and the lookahead information for all other relevant LPs. As a result,

many algorithms were proposed during late 1980s and 1990s to arm each LP with this

information as efficiently as possible. For example, the barrier algorithms execute the

simulation by cycling between phases. Once all an LP reaches the barrier (i.e. a wallclock

time), it is blocked until all other LPs get the chance to reach the barrier. In this case, an

LP knows that all of its events are safe to process when it executes the barrier primitive

(e.g. semaphore). Of course, the algorithms need to deal with the messages remaining in

the network (called transient messages) before LPs cross the barrier. Examples of such

algorithms are bounded lag [40], synchronous protocol [49] and a barrier technique [50],

which deals with the transit messages problem. Different algorithms are discussed in

detail in [23].

The above-described algorithms still form the basis of recent conservative

distributed simulation. For example, the distributed CD++ (DCD++) [2] is using a

conservative approach similar to the barrier algorithms, as shown in Figure 3. DCD++ is

a distributed simulation extension of the CD++ toolkit [61], which is based on the DEVS

formalism [66]. Figure 3 shows a DEVS coupled model that consists of three atomic

models. An atomic model forms an indivisible block. A coupled model is a model that

consists of one or more coupled/atomic models. The Producer model in Figure 3-A has

one output port linked with the input port of two consumer models. Suppose that this

model hierarchy is partitioned between two LPs, as shown in Figure 3-B.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Figure 3: DCD++ Conservative Simulation Example

In this case, each LP (which is a component running in DCD++) has its own

unprocessed event queue and the simulation is cycling between phases. In this case, the

Root Coordinator starts a phase by passing a simulation message to the topmost

Coordinator in the hierarchy. This message is propagated downward in the hierarchy. In

return, a DONE message is propagated upward in the hierarchy until it reaches the Root

Coordinator. Each model processor uses this DONE message to insert the time of its next

change (i.e. an output message to another model, or an internal event message) before

passing it to its parent coordinator. A coordinator always passes to its parent the least

time change received from its children. Once the Root coordinator receives a DONE

message, it advances the clock and starts a new phase safely without worrying about any

lingering transit messages in the network. Further, each coordinator in the hierarchy

Producer Consumer-A

Consumer-B

A: Coupled model consists of three atomic models

Consumer-B

simulator

Consumer-A

simulator

Producer

simulator

Coupled (Top)

coordinator
Root

LP-2 LP-1

B: Model hierarchy during simulation split between two LPs

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

knows which child will participate in the next simulation phase. Furthermore, each LP

can safely process any event exchanged within a phase since an event is generated at the

time it suppose to be executed by the receiver model. In this approach, the barrier is

represented by the arrival of the DONE message at the Root coordinator. However, the

Root coordinator does not need to contact any of the LPs because they are already

synchronized.

The lookahead value is the most important parameter in conservative algorithms.

Therefore, lookahead extraction has been studied intensively by researchers. Recently,

the effort has focused on determining the lookahead value dynamically at runtime

(instead of static estimation). This is done by collecting lookahead information from the

models as much as possible [16][64][42][45].

Optimistic Algorithms

Conservative algorithms avoid violating LPs local causality constraints while

optimistic algorithms allow such violations to occur but provide techniques to undo any

computation errors. Jefferson’s Time Warp mechanism [35] remains the most well

known optimistic algorithm. The simulation is executed via a number of Time Warp

Processors (TWLP) interacting with each other via exchanging time-stamped event

messages. Each TWLP maintains its Local Virtual time (LVT) and advances

“optimistically” without explicit synchronization with other processors. On the other

hand, a causality error is detected if a TWLP receives a message from another processor

with a timestamp in the past (i.e. with a time-stamp less than the LVT), as shown in

Figure 4. Such messages are called straggler messages.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Figure 4: TWLP internal processing

To fix the detected error, the TWLP must rollback to the event before the

straggler message timestamp; hence undo all performed computation. Therefore, three

types of information are needed to be able to rollback computation:

• An input queue to hold all incoming events from other LPs. This is necessary because

the TWLP will have to reprocess those events in case of rollback. The events in this

queue are stored according to their received timestamp.

• A state queue to save the TWLP states that might rollback. This is necessary because

the simulation state usually changes upon processing an event. Thus, to undo an event

processing affect, the prior state of its processing must be restored. For example, as

shown in Figure 4, the TWLP must rollback events 21 and 35, upon event 18 (i.e. with

timestamp 18) arrival. Thus, the simulation must be restored to state S1, the state that

resulted from processing event 12. Afterwards, the processor can process event 18 and

reprocess events 21 and 35.

• An output queue to hold the output messages sent to other processors. These messages

are sorted according to their sending timestamps. This is necessary because part of

12 21 35 41

18
LVT

Straggler

message

Unprocessed

events

43
Input

Queue

State

Queue S1 S2 S3

19 42 Output

Queue

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

undoing an event computation is to undo other events scheduled by this event on the

other processors. Such messages are called anti-messages and they may cause a

rollback at its destination, triggering other anti-messages, resulting in a cascade of

rollbacks in the simulation system. Upon event 18 arrival, in Figure 4, all anti-

messages resulted from events 21 and 35 are triggered. In this example anti-message

42 is sent. When anti-message meets its counterpart positive message, they annihilate

each other. Suppose the shown processor in Figure 4 receives an anti-message for

event 43. In this case, unprocessed event 43 is destroyed without any further actions.

On the other hand, if an anti-message is received for event 21, the simulation must be

rollback to state S1, LVT is set to 12, and anti-message 42 must be sent to the

appropriate processor.

The Time Warp computation requires a great deal memory throughout the

simulation execution. Therefore, a TWLP must have a guarantee that rollback will not

occur before a certain virtual time. In this case, a TWLP must not receive a

positive/negative message before a specific virtual time, called Global Virtual time

(GVT). This allows TWLP to reclaim memory via releasing unneeded data such as saved

pervious simulation states, and events in the input/output queues with timestamp less than

the GVT. Further, the GVT can be used to ensure committing certain operations that

cannot be rolled back such as I/O operations. GVT serves as the lower floor for the

simulation virtual time. Thus, as the GVT never decreases [20] and the simulation must

not rollback below the GVT, all events processed before the GVT can be safely

committed (and their memory can be reclaimed). Releasing memory for information

older than GVT is performed via a mechanism called fossil collection. How often the

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

GVT is computed, is a trade-off. The more often the computation, it allows better space

utilization, but it also imposes a higher communication overhead [23] [55] [43]. For

example, the pGVT algorithm [17] allows users to set the frequency of GVT computation

at compile time. The GVT computation algorithm described in [4] uses clock

synchronization to have each processor start computation at the same time instant. Each

processor should have a highly accurate clock to be able to use this algorithm.

The purpose of computing the GVT is to release memory, since the simulation is

guaranteed to not rollback below it. The fossil collection manager cleans up all of the

objects in the state/input/output queues with timestamp less than the GVT. Many

techniques have been used to optimize this mechanism: the infrequent state saving

technique (which avoids saving the modified state variables for each event), the one anti-

message rollback technique (which avoids sending multiple anti-messages to same LP),

or the anti-message with earliest timestamp (only sent to that LP since it suffices to cause

the required rollback). Lazy cancellation is a technique that analyzes if the result of the

new computed message is the same as the previous one. In this case, an antimessage is

not sent [41].

Distributed Simulation Middleware

The main purpose of a distributed simulation middleware is to interoperate

different simulation components and between different standards. Integrating new

simulation components should be easy, fast and effortless. To achieve this, certain

prerequisite conditions must be met [56]:

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

- the middleware Application Programming Interface (API) should be easy to

understand

- it should follow widely accepted standards,

- it should be fast to integrate with new simulation software, and

- it should be interoperable with other middleware, and be independent of diverse

platforms.

In the following sections, we will discuss some of the features of existing simulation

middleware.

Common Object Request Broker Architecture (CORBA)

As discussed earlier, CORBA [26] is an open standard for distributed object

computing defined by the Object Management Group (OMG) [51].

Figure 5: CORBA IDL Example

module BankAccount

{

 interface account {

 readonly attribute float balance;

readonly attribute string name;

 void deposit (in float amount);

 void withdraw (in float amount);

 };

 interface accountManager {

 exception reject {string reason;};

 account createAccount (in string name) raises (reject);

 void deleteAccount (in account acc);

 };

};

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

CORBA objects services are defined using the Interface Definition Language

(IDL), which can then be compiled into a programming language stubs such as C, C++ or

Java (IDL syntax is similar to other programming languages, as shown in Figure 5).

Clients in CORBA invoke methods in remote objects using a style similar to Remote

Procedure Calls (RPC), using IDL stubs, as shown in Figure 6. The method call may

return another CORBA handle where the client can invoke methods of the returned

objects.

Figure 6: CORBA 2.x Reference Model

Figure 6 shows a picture of CORBA architecture: CORBA IDL stubs and

skeletons glue operations between the client and server sides. The Object Request Broker

(ORB) layer provides a communication mechanism for transferring client requests to

target object implementations on the server side. The ORB interface provides a library of

routines (such as translating strings to object references and vice versa). The ORB layer

uses the object adapter with routing client requests to objects and with objects activation.

Object

Adapter

Client

Object Request Broker (ORB)

Object

implementation

IDL

Skeletons

ORB

Interface

IDL

Stubs

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Building distributed simulations using CORBA is straightforward, since CORBA

enables application objects to be distributed across a network. Therefore, the issue

becomes identifying distributed object interfaces and defining them in IDL, hence a

C++/Java local operation call becomes a remote procedure call (hidden by CORBA).

Therefore, to support distributed simulation using CORBA, you just need to translate

your existing C++/Java simulation interfaces into CORBA IDL definition.

The work in [65] is an example of implementing a distributed DEVS simulation

using CORBA. For instance, a DEVS Simulator IDL interface (to the Coordinator,

presented in Figure 3) could be defined as follows (tN is the global next event time):

Module Simulator{

Interface toCoordinator

{

boolean start();

double tN?();

double set_Global_and_Sendoutput (in double tN);

boolean appIyDeltaFunc(in message);

};

};

The Simulator module above is initialized via the method start. The Simulator

module receives its tN via the method set_Global_and_Sendoutput, and in response, it

returns it output. The above IDL code can then be compiled into specific Java/C++ code.

For instance, in [65], a DEVS coordinator IDL (to the simulator) was defined as follows:

Module Coordinator{

Interface toSimulator

{

boolean register

(in Simu1ator::toCoordinator SimObjRef);

boolean startSimulation();

boolean stopSimulation();

};

};

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

The above IDL description shows that the simulator is given an object reference

for the toCoordinator interface (via register method). As a result, simulators and

coordinators can now invoke each other methods (across the network).

High Level Architecture (HLA)

As discussed earlier, the HLA [36] was developed to provide a general

architecture for simulation interoperability and reuse [28][29][30]. Table 1 shows the

common terminology used in HLA.

Table 1: General HLA Terminology

Term Description

Attribute Data field of an object.

Federate HLA simulation processor.

Federation Multiple Federates interacting via RTI.

Interaction Event (message) sent between Federates.

Object Collection of data sent between Federates.

Parameter Data field of an interaction.

Figure 7 shows the overall HLA simulation interaction architecture. The figure

shows HLA simulation entities (called Federates). Multiple Federates (called a

Federation) interact with each other using the Run-Time Infrastructure (RTI), which

implements the HLA standards. Federates use the RTIambassador method to invoke RTI

services while the RTI uses the FederateAmbassador method to pass information to a

Federate in a callback function style. A callback function is a function passed to another

function in the form of a reference (e.g., a C++ function pointer) to be invoked later via

its reference. For example, in Figure 7, when the federate A sends an interaction (via

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

RTIambassador) to the federate B, the RTI invokes a function in federate B via that

function reference.

Figure 7: HLA Interaction Overview

The HLA consists of three parts: the Object Model Template (OMT) [29] (to

document exchanged shared data), the HLA Interface Specification [30] (to define

RTI/federates interfaces) and the HLA Rules [30] (to describe federates obligations and

interactions with the RTI).

The Object Model Template (OMT) provides a standard for documenting HLA

Object Model information. This ensures detailed documentation (in a common format)

for all visible objects and interactions managed by federates. Therefore, the data

transmitted can be interpreted correctly by receivers to achieve the Federation’s

objectives. The OMT consists of the following documents:

• The Federation Object Model (FOM), which describes the shared object’s attributes

and interactions for the whole federation (several federates connected via the RTI).

Run Time Infrastructure

(RTI)

Federate A

RTIAmbassador

FederateAmbassador

Federate B

RTIAmbassador

FederateAmbassador

Run Time Infrastructure

(RTI)

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

• The Simulation Object Model (SOM), which describes the shared object, attributes and

interactions for a single federate. The SOM documents specific information for a single

simulation.

The HLA interface specification [30] standardized the application programming

interface (API) between federates and RTI services. The specification defines RTI

services and the required callback functions that must be supported by the Federates.

Many contemporary RTI implementations conform to the IEEE 1516 and HLA 1.3 API

specifications such as Pitch pRTI™ (C++/Java), CAE RTI (C++), MÄK High

Performance RTI (C++/Java) and poRTIco (C++). However, the RTI implementation

itself is not part of the standards. Therefore, interoperability between different RTI

implementations should not be assumed, since HLA standards do not define the RTI

network protocol. In this sense, the standards assume homogeneous RTI implementations

in a federation. However, federation should be able to replace RTI implementations since

APIs are standardized (bur re-linking and compiling are required). Unfortunately, this is

not always the case.

The RTI services are grouped as follows:

• Federation Management: services to create and destroy Federation Executions.

• Declaration Management: federates must declare exactly what objects (or object

attributes) they can produce or consume. The RTI uses this information to tell the

producing federates to continue/stop sending certain updates.

• Object Management: basic object functions, for instance, deletion/updates of objects.

• Ownership Management: services that allow Federates to exchange object attributes

ownership between themselves.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

• Time Management: these services are categorized in two groups:

o Transportation services to ensure events delivery reliability and events

ordering.

o Time advance services to ensure logical time advancement correctly. For

example, a conservative Federate uses the Time Advance Request service

with a parameter t to request time to advance to t. The RTI then responds via

invoking the Time Granted callback function.

o Data Distribution Management: it controls filters for data transmission (data

routing) and reception of data volume between federates.

The HLA has been widely used to connect HLA-compliant simulations via RTI

middleware. However, it presents some shortcomings:

• No standards exist to interoperate different RTI implementations. Therefore,

interoperability should not be assumed among RTIs provided by different

vendors. Further, standards are too heavy and no load balancing as part of the

standards [56].

• The system does not scale well when many simulations are connected to the

same RTI. This is because RTI middleware acts as a bus that manages all

activates related to connected simulations in a session.

• HLA only covers syntactic (not semantic) interoperability [56].

• Interfacing simulations with RTIs can vary from a standard to another. It is a

strong selling point for commercial RTIs that you can use your old HLA 1.3

federates with HLA 1516 [28] RTI implementations.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

• HLA API specifications are tied to programming languages. Some

interoperability issues need to be resolved when federates are developed with

different programming languages.

• Firewalls usually block RTI underlying communication when used on

WAN/Internet networks.

A new WSDL API has been added to the HLA IEEE 1516-2007 standard,

allowing HLA compliant simulation to be connected via the Internet using SOAP-based

Web Services. Some examples of existing HLA-based simulation tools using Web

Services include [7][48][68]. As shown in Figure 8, the Web Service Provider RTI

component (WSPRC) is an RTI with one or more Web Service ports, allowing HLA to

overcome some of its interoperability problems. Therefore, this solution uses Web

Service interoperability in the WAN/Internet region while maintaining the standard HLA

architecture locally. The WSPRC and WS federate APIs are described in WSDL where a

standard federate and standard RTI API is described in actual programming languages.

For instance, the Pitch pRTI™ version 4.0 supports Web Services.

WS-based solutions solved interoperability issues at the Federate level. However,

this solution still does not solve interoperation of different WSPRC implementations,

since the standard does not cover this part. Further, it does not provide a scalable

solution, since many simulation components are still managed by a single component.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Figure 8: Interfacing RTI with Web Services

SOAP-Based Web Services Middleware

SOAP-based Web Services (or Big Web Services) provide a standard means of

interoperating between different heterogeneous software applications, residing on a range

of different platforms mainly for software reuse and sharing. At present, it is the leading

technology for interoperating remote applications (including distributed simulations)

across WAN/Internet networks. For example, a new WSDL API has been added to the

HLA IEEE 1516-2007 standard, allowing HLA-compliant simulations to be connected

via the Internet using SOAP-based Web Services. Efforts in [7][48][68] are examples of

HLA-based simulation using Web Services. Further, the DEVS community is moving

toward standardizing interoperability among different DEVS implementations using

SOAP-based Web Services [1].

The SOAP-based WS programming style is similar to RPCs, as depicted in Figure

9. The Server exposes a group of services that are accessible via ports. Each service can

be actually seen as an RPC, with semantics described via the procedure parameters. Ports

can be viewed as a class exposing its functionality with a number of operations, forming

RTI

Federate

RTI

Federate

Web-Service Provider RTI

Component (WSPRC)

WS

Federate

WS

Federate

WSDL/SOAP

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

an API accessible to the clients. On other hand, clients need to access those services, and

they do so using procedure stubs at their end. The stubs are local, and allow the client to

invoke services as if they were local procedure calls.

Figure 9: SOAP-based Web Service Architecture Overview

Client programmers need to construct service stubs with their software at compile

time. The clients, consume a service at runtime, by invoking its stub. In a WS-based

architecture, this invocation is in turn converted into an XML SOAP message (which

describes the RPC call). This SOAP message is wrapped into an HTTP message, and sent

to the server port, using an appropriate port URI. Once the message is received at the

server, an HTTP server located into the same machine passes the message to the SOAP

layer (also called SOAP engine; it usually runs inside the HTTP server as Java programs

called Servlets). The SOAP layer parses the SOAP message and converts it into an RPC

call, which is applied to the appropriate port (which activates the right service). In turn,

the server returns results to the clients in the same way.

 Server

SOAP Layer

HTTP Server

RPC API (Ports)

Client Stubs

RPC API (Ports)

RPC

Service Service Service
Service Service

Broker (UDDI)

WSDL

WSDL

Network

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Service providers need to publish the services available (using WSDL

documents), in order to enable clients to discover and use the services. One way of doing

so, is via a broker called Universal Description, Discovery and Integration (UDDI).

UDDI is a directory for storing information about web services and is based on the World

Wide Web Consortium (W3C) and Internet Engineering Task Force (IETF) standards.

To achieve interoperability, services need to be described in WSDL [15] and

published so that clients can construct their RPC stubs correctly. Further, XML SOAP

messages ensure a common language between the client and the server regardless of their

dissimilarities.

To demonstrate the role of SOAP and WSDL in an example, suppose that a

simulation Web Service exposes a port that contains a number of simulation services.

Suppose further that the stopSimulation service (which takes an integer parameter with

the simulation session number, and returns true or false indicating the success or the

failure of the operation) is used to abort a simulation, as shown below:

boolean stopSimulation(int in0); // method prototype

...

result = stopSimulation(1000); // method call

From the client viewpoint, the stopSimulation service is invoked similarly to any

other procedure (using the SOAP-engine API). The responsibility of the SOAP engine

(e.g. AXIS server) is to convert this procedure call into XML SOAP message as shown in

Figure 10.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Figure 10: SOAP Message Request Example

The SOAP message in Figure 10 will be then transmitted in the body of an HTTP

message using the HTTP POST method. It is easy to see how an RPC is constructed in

this SOAP message. The stopSimulation RPC call is mapped to lines 6-8 in Figure 10.

Line #6 indicates invocation service stopSimulation on Web Service port with URI

(http://WS-Port-URI/). URIs are WS port addresses (which correspond, for instance, to

CORBA object references). Line #7 indicates that this service takes one integer

parameter (i.e. simulation session number) with value 1000. Figure 11 shows a possible

response to the client as a SOAP message, responding with the stopSimulation return

value.

Figure 11: SOAP Message Response Example

1 <?xml version="1.0" encoding="UTF-8"?>

2 <SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

5 <SOAP-ENV:Body>

6 <ns1: stopSimulationResponse xmlns:ns1="http://WS-Port-URI/">

7 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

8 <return xsi:type="xsd:boolean">true</return>

9 </ns1: stopSimulationResponse>
10 </SOAP-ENV:Body>

11 </SOAP-ENV:Envelope>

1 <?xml version="1.0" encoding="UTF-8"?>

2 <SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

5 <SOAP-ENV:Body>

6 <ns1: stopSimulation xmlns:ns1="http://WS-Port-URI/">

7 <in0 xsi:type="xsd:int">1000</in0>

8 </ns1: stopSimulation>
9 </SOAP-ENV:Body>

10 </SOAP-ENV:Envelope>

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

The above-explained example shows how SOAP is used to achieve

interoperability. Because the participant parties have agreed on a common standard to

describe the RPC call (in this case SOAP), it becomes straightforward for software to

convert an RPC (from any programming language) to a SOAP message (and vice versa).

Interoperability cannot only be achieved with SOAP messages because RPCs are

programming procedures; hence, they need to be compiled with the clients’ software. For

example, a programmer writing a Java client needs to know that the stopSimulation

service method looks exactly as boolean stopSimulation (int in0). Here is where WSDL

helps in achieving interoperability for SOAP-based WS. Web Services providers need to

describe their services in a WSDL document (and publish them using UDDI) so that

clients can use it to generate services stubs.

The major elements of any WSDL document are THE type, message, port Type,

binding, port, and service elements. Some of these elements (type, message, and

portType) are used to describe the functional behavior of the Web Service in terms of the

functionality it offers. On the other hand, binding, port, and service define the operational

aspects of the service, in terms of the protocol used to transport SOAP messages and the

URL of the service. The former is referred to as abstract service definition, and the latter

is known as concrete service definition.

To carry on with our previous example, the simulation service provider should

describe the stopSimulation service (along with other provided services) in a WSDL

document. Figure 12 shows an excerpt of the WSDL description for the boolean

stopSimulation (int in0) service.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Figure 12: Excerpt of WSDL Document Example

Lines 1-7 show the messages used by the Web Service to send the request and to

handle the response. The stopSimulation operation uses an input message called

stopSimulationRequest (which is an integer), and an output message called

stopSimulationResponse (a Boolean value). Lines 9-17 show the portType definition,

which is used by operations accessing the Web Service. It defines CDppPortType as the

name of the port, and stopSimulation as the name of the exposed operation by this port.

1 <wsdl:message name="stopSimulationRequest">

2 <wsdl:part name="in0" type="xsd:int"/>

3 </wsdl:message>

4

5 <wsdl:message name="stopSimulationResponse">

6 <wsdl:part name="stopSimulationReturn" type="xsd:boolean"/>

7 </wsdl:message>

8

9 <wsdl:portType name="CDppPortType">

10 <wsdl:operation name="stopSimulation" parameterOrder="in0">

11 <wsdl:input message="impl:stopSimulationRequest"

12 name="stopSimulationRequest"/>

13 <wsdl:output message="impl:stopSimulationResponse"

14 name="stopSimulationResponse"/>

15 </wsdl:operation>

16

17 </wsdl:portType>

18

19 <wsdl:binding name="CDppPortTypeSoapBinding"

20 type="impl:CDppPortType">

21 <wsdlsoap:binding style="rpc"

22 transport="http://schemas.xmlsoap.org/soap/http"/>

23 <wsdl:operation name="stopSimulation">

24 <wsdlsoap:operation soapAction=""/>

25 <wsdl:input name="stopSimulationRequest">

26 <wsdlsoap:body encodingStyle="http://.../"

27 namespace="http://..." use="encoded"/>

28 </wsdl:input>

29

30 <wsdl:output name="stopSimulationResponse">

31 <wsdlsoap:body encodingStyle="http://.../"

32 namespace="http://..." use="encoded"/>

33 </wsdl:output>

34 </wsdl:operation>

35 </wsdl:binding>

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

As discussed earlier, ports define connection points to a web service. If we want to relate

this with a traditional program, CDppPortType defines a class where stopSimulation is a

method with stopSimulationRequest as the input parameter, and stopSimulationResponse

as the return parameter. Lines 19-35 show the binding of the Web Service, which defines

the message format and ports protocol details. The <wsdlsoap:binding> element has two

attributes: style and transport. In this example, the style attribute uses the RPC-style, and

the transport attribute defines the SOAP protocol to apply. The <wsdl:operation>

element defines each operation the port exposes. In this case, operation stopSimulation is

the only one. The SOAP input/output encoding style for operation stopSimulation is

defined in lines 25-33.

As we can see, it is a great deal of work to describe one RPC. However, mature

tools are one of the main advantages of SOAP-based WS. The WSDL document is

usually converted to programming language stubs and vice versa with a click of a button

(or with a simple shell command).

Using SOAP and WSDL, interoperability is achieved at the machine level

regardless of their differences such as programming languages and operating systems.

However, interoperability at the human level is still needed. For example, a programmer

still needs to know that the integer input parameter to service stopSimulation means the

simulation session number (even if that programmer was able to compile and invoke the

service). This gets worse when a service procedure is complex with many input

parameters. Therefore, in practice a text description can be helpful for client

programmers. It is possible to add comments to WSDL document like any other XML

documents (and WSDL without comments is worse than programming code without

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

them). However, WSDL documents are typically generated by tools (and they need to

move comments between WSDL and programming code stubs).

In addition, we need a standardized protocol when using Web Services to

interoperate various remote applications (such as interoperation of different simulations

to perform distributed simulation). This is because Web Services provide interoperability

to overcome differences between machines rather than to overcome the differences

between various applications functionalities. Therefore, standards are still needed to

accomplish simulations among different simulators successfully. As part of this effort,

the DEVS simulation community is in the progress of developing standards to interface

different DEVS (and non-DEVS) implementations using SOAP-based Web Services ([1]

is an example of such proposals).

Figure 13: Distributed Simulation using SOAP-based WS

In contemporary WS-based distributed simulations (e.g. [60] and [47]), simulation

components act as both client and server at the same time. In this case, a simulator

becomes the client when it wants to send a simulation message to a remote simulator

(which the later becomes the server), as shown in Figure 13.

Simulation

Receive

message service

Generate Message

Simulation

Receive

message service

Generate Message

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

SOAP-based distributed simulations share in common that synchronized

messages are exchanged in RPC-style where contents are usually passed as input

parameters to the RPC (so it becomes like invoking a local call procedure). Further, those

RPCs are based on internal software implementation, which makes interfacing standards

not easy to achieve among existing systems. This is because each system has already

defined its RPC interfaces.

To summarize the major drawback points with SOAP-based Web Services:

• Heterogeneous interface by exposing few URIs (ports) with many operations. Building

programming stubs correctly (i.e. compiled without errors) is not enough to interface

two different simulators quickly and efficiently. One possible solution, one of the

participant parties has to wrap their simulator API with the simulator API to be able to

interact with it. Another possible solution is to combine both simulator APIs and

expose new set of APIs, assuming this solution works. What happens if many vendor

simulators need to interface with each other? It becomes a complex process. In fact,

exposing heterogeneous programming procedures of a simulator and expecting it to

interoperate with another simulator that is also exposes heterogeneous procedures

quickly and efficiently is a naive assumption.

• It uses an RPC-style, which is suitable for closed communities that need to coordinate

new changes among each other. In fact, those APIs (services) are programming

procedures, which means that they reflect the internal implementation. Therefore,

different vendors, for example, have to hold many meetings before they reach an

agreement on defining those stubs, because they are tied into their internal

implementation; hence it affects a great deal the internal design and implementation of

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

the simulation package. However, suppose that those different simulator vendors came

to an agreement of standardizing the same exposed API, and assume that some changes

are required during development or in the future. How easy is to change those

standardized APIs? A new coordination among different teams becomes inevitable to

redefine new services.

• To use SOAP-based services requires building services stubs at compile time. This can

cause more complexity in future advancements if the simulation components can

join/leave the simulation at runtime. For example, in [24] the authors present the Ad

Hoc distribution simulation, where the number of logical processors (LP) is not known

in advance and can be changed during runtime.

RESTful Web Services Middleware

The Representational State Transfer (REST) provides interoperability by imitating

the World Wide Web (WWW) style and principles [18]. RESTful Web Services are

gaining increased attention with the advent of Web 2.0 [52] and the concept of mashup

(i.e. grouping various services from different providers and present them as a bundle)

because of its simplicity. REST exposes services as “resources” (which are named with

unique URIs similar to Web sites) and manipulated with uniform interface, usually HTTP

methods. GET (to read a resource), PUT (to create/update a resource), POST (to append

to a resource), and DELETE (to remove a resource). For example, a client applies the

HTTP GET method to a resource’s URI in order to retrieve that resource representation

(e.g., this is what happens when you browse a Web site). Further, a client can transfer

data by applying HTTP methods PUT or POST to a URI. REST applications need to be

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

designed as resource-oriented to get the benefits of this approach (see [54] for design

guidelines). REST sometimes is confused with HTTP, since HTTP perfectly matches

REST principles. However, REST is an approach that devotes principles such as

standardized uniform-interface, universal addressing schemes, and resource-oriented

design. REST has been used in many applications such as Yahoo, Flicker, and Amazon

S3. It also used in distributed systems as NASA SensorWeb [11] (which uses REST to

support interoperability across Sensor Web systems that can be used for disaster

management). Another example of using REST to achieve plug-and-play interoperability

heterogeneous sensor and actuator Networks is described in [57]. Example of REST

usage in Business Process Management (BPM) is described in [37], which focuses on

different methods and tools to automate, manage and optimize business processes. REST

has also been used for modeling and managing mobile commerce spaces [44].

REST architecture separates the software interface from internal implementation;

hence, services can be exposed while software internal implementation is hidden form

consumers and providers need to conform to the service agreement, which comes in the

form of messages (e.g. XML). This type of design is a recipe for a plug-and-play (or at

least semi-automatic) interoperability, as a consumer may search, locate and consume a

service at runtime (this is why Web 2.0 applications have expanded beyond regular

computer machines to cell phones or any other device connected to the Internet). In

contrast, other RPC-style form of interfacing require a programmer to build the interface

stubs and recompile the application software before being able to use the intended

service. This is clearly not the way to reach a plug-and-play interoperability. Distributed

simulation can benefit of this capability toward future challenges (see [56] study) such as

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

having middleware that have a plug-and-play (semi-automatic) interoperability, and

accessed by any device from anywhere. Indeed, interoperating two independent

developed simulators where each one of them exposes heterogeneous defined set of RPCs

is not a trivial task to do. In fact, RPCs are often tied to internal implementation and

semantics are described in programming parameters. To add to the situation complexity,

many simulators expose many RPCs of many objects (or ports). One has to question if

this task worth the cost, particularly if we need to add more independent developed

simulators and models. The bottom line is that those simulators are software packages;

hence, they interface with their APIs. Therefore, the API design matters when connecting

diverse software together. To achieve plug-and-play interoperability, simulators need to

have uniform interface and semantics need to be described in form of messages such as

XML.

Based on these ideas, we designed RESTful-CD++ [2] the first existing

distributed simulation middleware based on REST. The RESTful-CD++ main purpose is

to expose services as URIs. Therefore, RESTful-CD++ routes a received request to its

appropriate destination resource and apply the required HTTP method on that resource.

This makes the RESTful-CD++ independent of a simulation formalism or a simulation

engine. CD++ is selected to be the first simulation engine to be supported by the

RESTful-CD++ middleware.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Figure 14: RESTful-CD++ Distributed Simulation Session

In this case, as shown in Figure 14, the simulation manager component is

constructed to manage the CD++ distributed simulation such as the geographic existence

of model partitions, as shown in Figure 3. The simulation manager is seen externally as a

URI (e.g. similar to web site URIs). On the other hand, is a component that manages a

distributed simulation logical processor (LP) instance, in our case an LP is a CD++

simulation engine. Therefore, LPs exchange XML simulation messages among each other

according to their wrapped URIs (using the HTTP POST method). The RESTful-CD++

exposes its APIs as a regular Web-site URIs that can be mashed up with other Web 2.0

applications (e.g. to introduce real systems in the simulation loop). In addition, it is

capable of consuming services from SOAP-based Web Services.

RESTful-CD++

URI

Simulation

manager

CD++

Engine

RESTful-CD++

URI

Simulation

manager

CD++

Engine

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

Figure 15: RESTful-CD++ URIs Template (APIs)

Summary

Distributed simulation deals with executing simulations on multiple processors

connected via communication networks. Distributed simulation can be used to achieve

model reuse via interoperation of heterogeneous simulation components, reducing

execution time, connecting geographically distributed simulation components, avoiding

people/equipment relocations and information hiding – including the protection of

intellectual property rights. These simulations are typically composed of a number of

sequential simulations where each is responsible of part of the entire model.

The main purpose of a distributed simulation middleware is to interoperate

different simulation components and between different standards. Integrating new

simulation components should be easy, fast and effortless. A number of middlewares

have been used to achieve interoperability among different simulation components such

as CORBA, HLA and SOAP-based/REST-based Web-services. HLA is the used

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

middleware in the military sector where various simulation components are plugged into

the RTI, which manages the entire simulation activities. On the other hand, SOAP-based

and CORBA expose services as RPC-style via ports/objects where semantic is described

in the parameters of those RPCs. REST-based WS, instead, separate interface from

internal implementation via exposing standardized uniform interface and describing

semantics in form of messages (e.g. XML). REST can provide a new means of achieving

a plug-and-play (automatic/semi-automatic) distributed simulation interoperability over

the Internet and introducing real systems in the simulation loop (e.g. Web 2.0 mashup

applications). This approach has the potential of highly influencing the field, as it would

make the use of distributed simulation software more attractive for industry (as one can

reuse existing applications and integrate them with a wide variety of e-commerce and

business software applications already existing on the Web).

References

[1] Al-Zoubi K.; Wainer, G. “Interfacing and Coordination for a DEVS Simulation

Protocol Standard”. Proceedings of Distributed Simulation and Real-Time

Applications (DS-RT 2008). Vancouver, BC, Canada. 2008.

[2] Al-Zoubi K.; Wainer, G. “Using REST Web Services Architecture for Distributed

Simulation”. Proceedings of Principles of Advanced and Distributed Simulation

PADS 2009, Lake Placid, New York, USA. 2009.

[3] Anita A., Gordon M., David S. "Aggregate Level Simulation Protocol (ALSP) 1993

Confederation Annual Report". The MITRE Corporation. 1993.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

http://ms.ie.org/alsp/biblio/93_annual_report/93_annual_report_pr.html. [Accessed

March 2009].

[4] Bauer, D.; Yaun, G.; Carothers, C.D.; Yuksel, M.; Kalyanaraman, S. “Seven-

O'Clock: A New Distributed GVT Algorithm Using Network Atomic Operations”.

Proceedings of Principles of Advanced and Distributed Simulation (PADS 2005),

Monterey, CA, USA. 2005.

[5] Boer C., Bruin A., Verbraeck A. “Distributed simulation in industry -- a survey, part

3 -- the HLA standard in industry”. Proceedings of Winter Simulation Conference

(WSC 2008). Miami, FL, USA. 2008.

[6] Boer C., Bruin A. and Verbraeck A. “A survey on distributed simulation in

industry”. Journal of Simulation. Vol. 3, No. 1, pp. 3–16. March 2009.

[7] Boukerche, A.; Iwasaki, F.M.; Araujo, R.; Pizzolato ,E.B. “Web-Based Distributed

Simulations Visualization and Control with HLA and Web Services”. Proceedings

of Distributed Simulation and Real-Time Applications (DS-RT 2008). Vancouver,

BC, Canada. 2008.

[8] Box D., Ehnebuske D., Kakivaya G., Layman A., Mendelsohn N., Nielsen H.,

Thatte S., Winer D. “Simple Object Access Protocol (SOAP) 1.1”. May 2000.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. [Accessed March 2009].

[9] Bryant, R. E. “Simulation of packet communication architecture computer systems”.

Technical Report LCS, TR-188. Massachusetts Institute of Technology. Cambridge,

MA, USA. 1977.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[10] Calvin, J.; Dickens, A.; Gaines, B.; Metzger, P.; Miller, D.; Owen, D.; “The

SIMNET virtual world architecture”. Proceedings of Virtual Reality Annual

International Symposium (IEEE VRAIS 1993). Seatlle, WA. 1993.

[11] Cappelaere, P.; Frye, S.; Mandl, D. “Flow-enablement of the NASA SensorWeb

using RESTful (and secure) workflows”. 2009 IEEE Aerospace conference. Big

Sky, Montana, USA. March 2009.

[12] Chandy, K. M. and J. Misra. “Distributed Simulation: A Case Study in Design and

Verification of Distributed. Programs”. IEEE Transactions on Software

Engineering. Vol. SE-5, No. 5, pp. 440-452. 1979.

[13] Chandy, K. M. and J. Misra. “Asynchronous Distributed Simulation via a Sequence

of Parallel Computations”. Communications of the ACM. Vol. 24, No. 4, pp. 198-

205. April 1981.

[14] Christensen E., Curbera F., Meredith G., Weerawarana S. “Web Services

Description Language (WSDL) 1.0”. http://xml.coverpages.org/wsdl20000929.html.

[Accessed March 2009].

[15] Christensen, E; Curbera, F.; Meredith, G.; Weerawarana, S “Web Service

Desctiption Language (WSDL) 1.1”. March, 2001. http://www.w3.org/TR/wsdl.

[Accessed March 2009].

[16] Chung M., Kyung C. “Improving Lookahead in Parallel Multiprocessor Simulation

Using Dynamic Execution Path Prediction”. Proceedings of Principles of Advanced

and Distributed Simulation (PADS 2006). Singapore. May 2006.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[17] D’Souza L.M; Fan, X.; Wisey, P.A. “pGVT: An algorithm for accurate GVT

estimation”. Proceedings of Principles of Advanced and Distributed Simulation

(PADS 1994). Edinburgh, Scotland. July 1994.

[18] Fielding, R. T. “Architectural Styles and the Design of Network-based Software

Architectures”. Ph.D. Thesis. University of California, Irvine, 2000.

[19] Frécon E.; Stenius M. “DIVE: A scalable network architecture for distributed virtual

environments”, Distributed Systems Engineering Journal. Vol. 5, No. 3, pp. 91-100.

September 1998.

[20] Frey P.; Radhakrishnan, R.; Carter, H.W.; Wilsey, P.A.; Alexander, P. “A formal

specification and verification framework for Time Warp based parallel simulation”.

IEEE Transactions on Software Engineering. Vol. 28, No. 1, pp. 58-78. January

2002.

[21] Fischer M. "Aggregate Level Simulation Protocol (ALSP) - Future Training with

Distributed Interactive Simulations", U. S. Army Simulation, Training and

Instrumentation Command. International Training Equipment Conference. The

Hague, Netherlands. 1995.

[22] Fitzsimmons, E.A.; Fletcher, J.D.; “Beyond DoD: non-defense training and

education applications of DIS”. Proceedings of the IEEE. Vol. 83, No. 8, pp. 1179 –

1187. August 1995.

[23] Fujimoto, R. M. “Parallel and distribution simulation systems”. John Wiley & Sons.

New York. 2000.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[24] Fujimoto, R.; Hunter, M.; Sirichoke, J.; Palekar, M.; Kim, H.; Suh Wonho. “Ad Hoc

Distributed Simulations”. Proceedings of Principles of Advanced and Distributed

Simulation (PADS 2007). San Diego, California, USA. June 2007.

[25] Gan, B. P.; Liu, L.; Jain, S.; Turner, S. J.; Cai, W. T. and Hsu, W.J. “Distributed

Supply Chain Simulation Across the Enterprise Boundaries”. Proceedings of Winter

Simulation Conference (WSC 2000). Orlando, FL, USA. December 2000.

[26] Henning, M., and S. Vinoski. “Advanced CORBA programming with C++”.

Addison–Wesley. Reading, MA. 1999.

[27] Hofer, R.C.; Loper, M.L. “DIS today”. Proceedings of the IEEE. Vol. 83, No. 8, pp.

1124 – 1137. August 1995.

[28] IEEE-1516-2000. “Standard for modeling and simulation (M&S) High Level

Architecture (HLA) - frameworks and rules”. 2000.

[29] IEEE-1516.1-2000. “Standard for modeling and simulation (M&S) High Level

Architecture (HLA) - federate interface specification”. 2000.

[30] IEEE-1516.2-2000. Standard for modeling and simulation (M&S) High Level

Architecture (HLA) - object model template (OMT) specification. 2000.

[31] IEEE-1278.1-1995 - Standard for Distributed Interactive Simulation - Application

protocols. 1995.

[32] IEEE-1278.2-1995 - Standard for Distributed Interactive Simulation -

Communication Services and Profiles. 1995.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[33] IEEE 1278.3-1996 - Recommended Practice for Distributed Interactive Simulation -

Exercise Management and Feedback. 1996.

[34] IEEE 1278.4-1997 - Recommended Practice for Distributed Interactive -

Verification Validation & Accreditation. 1997.

[35] Jefferson, D. R. “Virtual time”. ACM Transactions on Programming Languages and

systems. Vol. 7. No. 3: pp. 405-425. 1985.

[36] Khul F., Weatherly R., Dahmann J.: “Creating Computer Simulation Systems: An

Introduction to High Level Architecture”. Prentice Hall. 1999.

[37] Kumaran, S.; Rong Liu; Dhoolia, P.; Heath, T.; Nandi, P.; Pinel, F. “A RESTful

Architecture for Service-Oriented Business Process Execution”. IEEE International

Conference on e-Business Engineering (ICEBE '08). Xi’an, China. October 2008.

[38] Lenoir, T. and Lowood, H. “Theaters of wars: the military – entertainment

complex”. http://www.stanford.edu/class/sts145/Library/Lenoir-

Lowood_TheatersOfWar.pdf . [Accessed March 2009].

[39] Kakivaya G., Layman A., S. Thatte S., Winer D. “SOAP: Simple Object Access

Protocol”. Version 1.0. 1999. http://www.scripting.com/misc/soap1.txt. [Accessed

March 2009].

[40] Lubachevsky B. “Efficient distributed event-driven simulations of multiple-loop

networks”. Proceedings of the 1988 ACM SIGMETRICS conference on

Measurement and modeling of computer systems. Santa Fe, NM. 1988.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[41] Lubachevsky, B.; Weiss, A.; Schwartz, A. “An analysis of rollback-based

simulation”. ACM Transactions on Modeling and Computer Simulation

(TOMACS). Vol. 1, No. 2, pp. 154-193. 1991.

[42] Liu, J.; Nicol, D.M.“Lookahead revisited in wireless network simulations”.

Proceedings of Principles of Advanced and Distributed Simulation (PADS 2002).

Washington, DC. 2002.

[43] Mattern, F. “Efficient algorithms for distributed snapshots and global virtual time

approximation”. Journal of parallel and distributed computing. Vol. 18, No. 4. pp.

423-434. August 1993.

[44] McFaddin, S.; Coffman, D.; Han, J.H.; Jang, H.K.; Kim, J.H.; Lee, J.K.; Lee, M.C.;

Moon, Y.S.; Narayanaswami, C.; Paik, Y.S.; Park, J.W.; Soroker, D. “Modeling and

Managing Mobile Commerce Spaces Using RESTful Data Services”. 9th IEEE

International Conference on Mobile Data Management (MDM'08). Beijing, China.

2008.

[45] Meyer R., Bagrodia L. “Path Lookahead: a Data Flow View of PDES Models”.

Proceedings of Principles of Advanced and Distributed Simulation (PADS 1999).

Atlanta, GA, USA. 1999.

[46] Misra J. “Distributed discrete-event simulation”. Computing Surveys. Vol. 18 No. 1,

pp. 39 – 65. March 1986.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[47] Mittal S., Risco-Martín J.L., and Zeigler B.P. “DEVS-based simulation web

services for net-centric T\&E,” in Proceedings of the 2007 summer computer

simulation conference, San Diego, California, USA. 2007.

[48] Möller, B. and Dahlin, C. “A First Look at the HLA Evolved Web Service API”.

Proceedings of 2006 Euro Simulation Interoperability Workshop, Simulation

Interoperability Standards Organization. Stockholm, Sweden. 2006.

[49] Nicol D. “The cost of conservative synchronization in parallel discrete event

simulation”. Journal of the ACM. Vol. 40, No. 2, pp. 304 – 333. April 1993.

[50] Nicol D. “Noncommittal barrier synchronization”. Parallel Computing. Vol. 21, No.

4, pp. 529 – 549. April 1995.

[51] Object Management Group (OMG). http://www.omg.org/. [Accessed February

2009].

[52] O'Reilly T. “What Is Web 2.0”.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

[Accessed May 2009].

[53] Pullen, J.M.; Wood, D.C.; “Networking technology and DIS”. Proceedings of the

IEEE. Vol. 83, No. 8, pp. 1156 – 1167. August 1995.

[54] Richardson L., Ruby S. “RESTful Web Services”, 1st edition. O’Reilly Media, Inc.,

Sebastopol, California. 2007.

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[55] Samadi, B. “Distributed simulation, algorithms and performance analysis”. PhD

Thesis, Computer science department, University of California, Los Angeles. 1985.

[56] Strassburger S., Schulze T., Fujimoto R. “Future trends in distributed simulation and

distributed virtual environments: results of a peer study”. Proceedings of Winter

Simulation Conference (WSC 2008). Miami, FL, USA. 2008.

[57] Stirbu, V. “Towards a RESTful Plug and Play Experience in the Web of Things”.

IEEE International Conference on Semantic Computing (ICSC 2008). Santa Clara,

CA, USA. August 2008.

[58] Taha, H.A. “Simulation with SIMNET II”. Proceedings of Winter Simulation

Conference (WSC 1991). Phoenix, Arizona, USA. December 1991.

[59] Taha, H.A. “Introduction to SIMNET v2.0”. Proceedings of Winter Simulation

Conference (WSC 1988). San Diego, California, USA. December 1988.

[60] Wainer, G.; Madhoun, R.; Al-Zoubi, K. “Distributed Simulation of DEVS and Cell-

DEVS Models in CD++ using Web Services”. Simulation Modelling Practice and

Theory. Vol. 16, No. 9, pp. 1266-1292. October 2008.

[61] Wainer, G. “Discrete-Event Modeling and Simulation: A Practitioner's Approach”.

CRC press, Taylor & Francis Group. Boca Raton, Florida. 2009.

[62] Wainer G., Zeigler B., Nutaro J., Kim T. “DEVS standardization study group Final

report”. http://www.sce.carleton.ca/faculty/wainer/standard. [Accessed March

2009].

Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc

[63] William E. Babineau, Philip S. Barry, C. Zachary Furness, "Automated Testing

within the Joint Training confederation (JTC)", Proceedings of the Fall Simulation

Interoperability Workshop, Orlando, FL. September 1998.

[64] Zacharewicz, G. “Giambiasi, N.; Frydman, C.; Improving the lookahead

computation in G-DEVS/HLA environment”. Proceedings of Distributed Simulation

and Real-Time Applications (DS-RT 2005). Montreal, QC. 2005.

[65] Zeigler, B.P.; Doohwan Kim. “Distributed supply chain simulation in a

DEVS/CORBA execution environment”. Proceedings of Winter Simulation

Conference (WSC 1999). Phoenix, AZ. 1999.

[66] Zeigler, B.; Kim, T.; Praehofer. “H. Theory of Modeling and Simulation”. 2nd

Edition. Academic Press. 2000.

[67] Zeigler, B.; Hammods, P. “Modeling & Simulation-Based Data Engineering:

Pragmatics into Ontologies for Net-Centric Information Exchange”. Academic

Press. 2007.

[68] Zhu H.; Li G.; Zheng L. “Introducing Web Services in HLA-based simulation

application”. Proceedings of IEEE 7th World Congress on Intelligent Control and

Automation (WCICA 2008). Chongqing, China. June 2008.

