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Introduction 

Distributed simulation technologies were created to execute simulations on 

distributed computer systems (i.e., on multiple processors connected via communication 

networks) [23]. Distributed Simulation is a computer program that models real or 

imagined systems over time. On the other hand, distributed computer systems 

interconnect various computers (e.g. personal computers) across a communication 

network. Therefore, distributed simulation deals with executing simulation correctly over 

inter-connected multiple processors. Correctness means that the simulation should 

produce the same results as if it was executed sequentially using single processor. 

Fujimoto [23] distinguishes parallel from distributed simulation by their physical 

existence, used processors, communication network and latency. Parallel systems usually 

exist in a machine room, employ homogeneous processors and communication latency is 

measured with less than 100 microseconds. In contrast, distributed computers can expand 

from a single building to global networks, often employ heterogeneous processors (and 

software), and communication latency is measured with hundreds of microseconds to 
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seconds. The simulation is divided spatially (or temporally) and mapped to participated 

processors. Our focus here is on distributed simulation, which employs multiple 

distributed computers to execute the same simulation run over a wide geographical area. 

A focus of distributed simulation software has been on how to achieve model 

reuse via interoperation of heterogeneous simulation components. Other benefits include 

reducing execution time, connecting geographically distributed simulation components 

(without relocating people/equipment to other locations), interoperating different vendor 

simulation toolkits, providing fault tolerance and information hiding – including the 

protection of intellectual property rights - [6] [23].   

Trends and Challenges of Distributed Simulation 

The defense sector is currently one of the largest users of distributed simulation 

technology. On the other hand, the current adoption of distributed simulation in the 

industry is still limited. In recent years, there have been some studies (conducted in the 

form of surveys) to analyze these issues [5][6][56]. The surveys collected opinions, 

comments and interviews of experts from different background in the form of 

questionnaires, and showed that there is now an opportunity for distributed simulation in 

industry. It has been predicted that in the coming years, the sectors that will drive future 

advancement in distributed simulation are not only the defense sector, but also gaming 

industry, the high-tech industry (e.g. auto, manufacturing and working training), 

emergency and security management [56]. 

The High Level Architecture (HLA) is the preferred middleware standard in the 

defense sector [28]. However, its popularity in industry is limited. The HLA started as a 
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large project mainly funded by the military, in order to provide the means for reusing 

legacy simulations in military training operations, so that exercised could be conducted 

between remote parties in different fields, reusing existing simulation assets. On the other 

hand, the adoption of these technologies in industry is based on return-of-investment 

policies. Therefore, most commercial-off-the-shelf (COTS) simulation packages do not 

usually support distributed simulation due to a cost/benefit issue. In [6], the authors 

suggested that, in order to make distributed simulation more attractive to the industrial 

community, we need a lightweight COTS-based architecture with higher cost/benefit 

ratio. The middleware should be easy to understand (e.g. programming interface, fast 

development and debugging), and interoperable with other vendor’s simulation 

components. Distributed simulation might become a necessity when extending the 

product development beyond factory walls, particularly when such organizations prefer 

to hide detailed information [25]. New standards (for instance, Commercial Off-the-Shelf 

Simulation Package Interoperability, Core Manufacturing Simulation Data and DEVS) 

can contribute to achieve these goals [62]. 

Another recent study, carried out by Strassburger, Schulze and Fujimoto, focused 

on surveying experts from the area of distributed simulation and distributed virtual 

environment [56]. This study found out that the highest rated applications in future 

distributed simulation efforts include the integration of heterogeneous resources, and 

joining computer resources for complex simulations and training sessions. The study also 

identified some research challenges: 
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• Plug-and-Play capability: the middleware should be able to support coupling 

simulation models in such a way that the technical approach and standards gain 

acceptance in industry. In other words, interoperability should be achieved effortlessly. 

• Automated semantic interoperability between domains: to achieve the plug-and-play 

challenge, interoperability must be achieved at the semantic level.  

A Brief History of Distributed Simulation 

Simulations have been used for war games by the U.S Department of Defense 

(DoD) since 1950s. However, until 1980s, simulators were developed as a standalone 

with single-task purpose (such as landing on the deck of an aircraft carrier). Those 

standalone simulators were extremely expensive comparing to the systems that they 

suppose to mimic. For example, the cost of a tank simulator in the 1970s was $18 

million, while the cost of an advanced aircraft was around $18 million (and a tank was 

significantly less). By the 1980s, the need of performing cost-effective distributed 

simulation started to be used at the DoD to simulate war games [38]. 

The first large project in this area, the SIMulator NETworking program 

(SIMNET) was initiated in 1983 by the Defense Advanced Research Projects Agency 

(DARPA) in order to provide virtual world environment for military training 

[10][38][58][59]. SIMNET was different from previous simulators in a sense that many 

objects played together in the same virtual war-game. During a SIMNET exercise, a 

simulator sent/received messages to/from other simulators using a Local Area Network 

(LAN). This distributed simulation environment enabled various simulation components 

to interact with each other over the communication network. Cost played as a major 



Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings 

and Practical Domains   

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc 

 

factor for developing SIMNET. However, the ability of having different type of 

simulations interacting with each other was another major factor. For example, warships, 

tanks, and aircraft simulators worked together, enhancing the individual systems’ ability 

to interact with others in a real-world scenario. Further, the design of SIMNET was 

different from previous simulators. The goal became to derive the simulation 

requirements, and only then decide the hardware needed for the simulation environment. 

This caused many required hardware in the actual systems to be rolled out from 

simulation training. 

The success of SIMNET led to developing standards for Distributed Interactive 

Simulation (DIS) during the 1990s [22][27][53]. DIS is an open standard (realized in 

[31][32][33][34]) for conducting interactive and distributed simulations mainly within 

military organizations. DIS evolved from SIMNET and applied many of SIMNET's basic 

concepts. Therefore, DIS can be viewed as a standardized version of SIMNET. The DIS 

standards introduced the concept of interoperability in distributed simulation, meaning 

that one can interface a simulator with other compliant DIS simulators, if they follow the 

DIS standards. Interoperability via simulation standards was a major step forward 

provided by SIMNET, but it only permitted distributed simulations in homogeneous 

environments. DIS was aimed to provide consistency (from human observation and 

behavior) in an interactive simulation composed by different connected components. 

Consistency in these human-in-the-loop simulators was achieved via data exchange 

protocols and a common database. DIS exchanged data using standardized units called 

the Protocol Data Unit (PDU), which allowed DIS simulations to be independent of the 

network protocol used to transmit those PDUs [27]. DIS was successful in providing 
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distributed simulation in LANs, but it only supported interactive simulations restricted to 

military training [56]. These simulations did not scale well in Wide Area Networks. 

SIMNET and DIS use an approach in which a single virtual environment is 

created by a number of interacting simulations, each of which controls the local objects 

and communicates its state to other simulations. This approach led to new methods for 

integrating existing simulations into a single environment, and during the 1990s, the 

Aggregate Level Simulation Protocol (ALSP) was built. ALSP was designed to allow 

legacy military simulations to interact with each other over LANs and WANs. ALSP, for 

example, enabled Army, Air Force and Navy war game simulations to be integrated in 

single exercise [3][21] [63]. 

The next major progress in the defense simulation community occurred in 1996 

with the development of the High Level Architecture (HLA) [28][29][30]. HLA was a 

major improvement because it combined both analytic simulations with virtual 

environment technologies in single framework [23]. The HLA replaced SIMNET and 

DIS, and all simulations in DoD are required to be HLA compliant since 1999 [23]. 

The distributed simulation success in the defense community along with the 

popularity of the Internet in the early 1990s led to the emergence of non-military 

distributed virtual environments, for instance, the Distributed Interactive Virtual 

Environment (DIVE) (which still in use since 1991). DIVE allows a number of users to 

interact with each other in a virtual world [19]. The central feature in DIVE is the shared, 

distributed database where all interactions occur through this common medium. 

Another environment that became popular during 1990s was the Common Object 

Request Broker Architecture (CORBA) [26]. CORBA introduced new interoperability 
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improvements since it was independent of the programming language used. On the other 

hand, CORBA use had sharply declined in new projects since 2000. Some reflect this for 

being very complicated to developers or by the process CORBA standard was created 

(e.g., the process did not require a reference implementation for a standard before being 

adopted). Further, Web Services became popular in the 2000’s as an alternative approach 

to achieve interoperability among heterogeneous applications (which also contributed to 

CORBA’s decline). 

Web Services standards were fully finalized in 2000. However, TCP/IP, HTTP, 

and XML (which are the major Web Services standards), had matured since the 1990s. 

These standards have opened the way for Simple Object Access Protocol (SOAP) version 

1.0 [39], which was developed in 1999 by Userland Software and Microsoft. SOAP 

provided a common language (based on XML) to interface different applications. A 

major breakthrough came when IBM backed up the SOAP proposal in early 2000 and 

joined the effort for producing the SOAP standard version 1.1 [8]. It was followed in the 

same year by the definition of the standards version 1.0 of the Web Services Description 

Language (WSDL), which is used to describe exposed services [14]. The final boost for 

making Web Services popular came when five major companies (Sun, IBM, Oracle, HP 

and Microsoft) announced their support for Web Services in their products in 2000. It did 

not take long for the distributed simulation community to take advantage of Web 

Services technology. Web Services are being now even used to wrap the HLA interfaces 

to overcome its interoperability shortcomings, or to perform pure distributed simulation 

across WAN/Internet. Web Services presented the Service Oriented Architecture (SOA) 

concept, which means services are deployed in interoperable units in order to be 
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consumed by other applications. The US DoD Global Information Grid (GIG) is based on 

SOA to interoperate the DoD heterogeneous systems. At the time of this writing, Web 

Service is the technology of choice for interoperating heterogeneous systems across the 

Internet [67]. 

Synchronization Algorithms for Parallel and 

Distributed Simulation 

Parallel/distributed simulations are typically composed of a number of sequential 

simulations where each is responsible of part of the entire model. In parallel and 

distributed simulations, the execution of a system is subdivided in smaller, simpler parts 

that run on different processors or nodes. Each of these subparts is a sequential 

simulation, which is usually referred to as a logical process (LP). Those LPs interact with 

each other using message passing to notify each other of a simulation event. In other 

words, LPs use messages to coordinate the entire simulation [23]. The main purpose of 

synchronization algorithms is to produce the same results as if the simulation were 

preformed sequentially in a single processor. The second purpose is to optimize the 

simulation speed by executing the simulation as fast as possible. 

In order to reduce the execution times, the parallel simulator tries to execute 

events received on different LPs concurrently (in order to exploit parallelism). 

Nevertheless, this might cause errors in a simulation. Consider the scenario presented in 

Figure 1, in which two LPs are processing different events. Consider that the LPs receive 

two events: E200 is received by LP2 (with timestamp 200), and event E300 is received by 

LP1 (with timestamp 300). Suppose that LP2 has no events before time 200, and LP1 has 

no events before time 300. It thus seems reasonable to process E200 and E300. Suppose 
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that, when we execute E200, it generates a new event, E250 (with timestamp 250), which 

must be sent to LP1. When LP1 receives the event E250, it was already processing (or had 

processed) the event E300 with timestamp 300. As we can see, we receive an event from 

the past in the future (an event that requires immediate attention, and might affect the 

results of processing event E300). This is called a causality error. 

 

Simulation time 

LP2 

LP1 

100 200 300 

Processed event 

Unprocessed event 

E200 

E250 E300 

 

Figure 1. Causality error in a distributed simulation 

 

The local causality constraint guarantees the conditions under which one cannot 

have causality errors [23]: if each LP processes events and messages in non-decreasing 

timestamp order, causality errors cannot occur. This brings us to a fundamental issue in 

synchronization algorithms: should we avoid or deal with local causality constraints? 

Based on these ideas, two kinds of algorithms were defined. Conservative (pessimistic) 

algorithms avoid local causality errors by carefully executing safe events, not permitting 

local causality errors. On the other hand, Optimistic algorithms allow causality errors to 

occur, but fix them when detected. It is difficult to decide which type is better than the 

other one, because simulation is application dependent. In fact, the support for both types 

of algorithms may exist within one system. 



Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings 

and Practical Domains   

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc 

 

Conservative Algorithms 

Conservative algorithms were introduced in late 1970s by Chandy-Misra [12] and Bryant 

[9]. This approach always satisfies local causality constraint via ensuring safe timestamp-

ordered processing of simulation events within each LP [12][13]. Figure 2 shows the data 

structures used: input and output queues on each LP, and a Local Virtual Time (LVT) 

representing the time of the last processed event. For instance, LP-B uses two input 

queues: one from LP-A, and one from a different LP (not showed in the figure). At this 

point, it has processed an event at time 4, and has advanced the LVT=4. Its output queue 

is connected to LP-A.  

 

Figure 2: Deadlock situation. Each LP is waiting for an event from another LP 

 

For instance, LP-B has received an event with timestamp = 27, thus we know that 

it will never receive an event with a smaller timestamp from the same LP. If at that point 

it receives an event with timestamp 4 from LP-C, LP-B can safely process it (in fact, it 

can process any event from LP-C earlier than time 27, as we know that we will not 

receive an event with earlier timestamp). However, LP-B must be blocked once all the 

unprocessed events from LP-C are processed. If one of the input queues is empty (as in 

 Network 

LVT = 4 

27 4 

LVT = 11 

11 15 

LVT = 16 

16 81 

                    LP-B                                      LP-A                                  LP-C 
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the figure), the LP must be blocked. We cannot guarantee processing other events (for 

instance, although we have plenty of events in the second queue, as the first one is empty, 

and the associated timestamp is 4, the LP cannot continue: if we receive, for instance, a 

new event with timestamp 5 from LP-C, this will cause a causality error). As we can see, 

the simulation can enter into deadlock when a cycle of empty queues is developed where 

each process in the simulation is blocked (a shown in the figure). 

A solution to break the deadlock in Figure 2 is to have each LP broadcasting the 

lower bound on its time stamp to all other relevant LPs. This is can be accomplished by 

having LPs sending each other “null” messages with its timestamp. In this case, when an 

LP processes an event, it sends other LPs a null message, allowing other LPs decide the 

safe events to process. For instance, in our example, LP-A will inform LP-C that the 

earliest timestamp for a future event will be 16. Therefore, is it now safe for LP-C to 

process the next event in the input queue (with timestamp 15), which breaks the hold-

and-wait cycle (thus preventing deadlock to occur). These are the basic ideas behind the 

Chandy/Misra/Bryant algorithm [9][12][23].  

Further, runtime performance in conservative algorithms depends on an 

application property called lookahead, which is the time distance between two LPs. The 

lookahead value can ensure an LP to can process events in the future safely. Let us 

suppose that LP-A and LP-B in Figure 2represent the time taken to traverse two cities by 

car (which takes 3 units of simulation time). In this case, if LP-A is at simulation time 16, 

we know the smallest timestamp it will send to LP-B is 19, so LP-B can safely process 

events with that timestamp or lower. The lookahead is important value because it 

determines the degree of parallelism in the simulation and it affects the number of 
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exchanged null messages. Naturally, the lookahead value is very difficult to extract in 

complex applications. Further, null messages could harshly degrade system performance 

[23]. Therefore, an LP can advance and process events safely once it realizes the lower 

timestamp bound and the lookahead information for all other relevant LPs. As a result, 

many algorithms were proposed during late 1980s and 1990s to arm each LP with this 

information as efficiently as possible. For example, the barrier algorithms execute the 

simulation by cycling between phases. Once all an LP reaches the barrier (i.e. a wallclock 

time), it is blocked until all other LPs get the chance to reach the barrier. In this case, an 

LP knows that all of its events are safe to process when it executes the barrier primitive 

(e.g. semaphore). Of course, the algorithms need to deal with the messages remaining in 

the network (called transient messages) before LPs cross the barrier. Examples of such 

algorithms are bounded lag [40], synchronous protocol [49] and a barrier technique [50], 

which deals with the transit messages problem. Different algorithms are discussed in 

detail in [23]. 

The above-described algorithms still form the basis of recent conservative 

distributed simulation. For example, the distributed CD++ (DCD++) [2] is using a 

conservative approach similar to the barrier algorithms, as shown in Figure 3. DCD++ is 

a distributed simulation extension of the CD++ toolkit [61], which is based on the DEVS 

formalism [66]. Figure 3 shows a DEVS coupled model that consists of three atomic 

models. An atomic model forms an indivisible block. A coupled model is a model that 

consists of one or more coupled/atomic models. The Producer model in Figure 3-A has 

one output port linked with the input port of two consumer models. Suppose that this 

model hierarchy is partitioned between two LPs, as shown in Figure 3-B. 
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Figure 3: DCD++ Conservative Simulation Example 

 

In this case, each LP (which is a component running in DCD++) has its own 

unprocessed event queue and the simulation is cycling between phases. In this case, the 

Root Coordinator starts a phase by passing a simulation message to the topmost 

Coordinator in the hierarchy. This message is propagated downward in the hierarchy. In 

return, a DONE message is propagated upward in the hierarchy until it reaches the Root 

Coordinator. Each model processor uses this DONE message to insert the time of its next 

change (i.e. an output message to another model, or an internal event message) before 

passing it to its parent coordinator. A coordinator always passes to its parent the least 

time change received from its children. Once the Root coordinator receives a DONE 

message, it advances the clock and starts a new phase safely without worrying about any 

lingering transit messages in the network. Further, each coordinator in the hierarchy 
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A: Coupled model consists of three atomic models 
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B: Model hierarchy during simulation split between two LPs 
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knows which child will participate in the next simulation phase. Furthermore, each LP 

can safely process any event exchanged within a phase since an event is generated at the 

time it suppose to be executed by the receiver model. In this approach, the barrier is 

represented by the arrival of the DONE message at the Root coordinator. However, the 

Root coordinator does not need to contact any of the LPs because they are already 

synchronized. 

The lookahead value is the most important parameter in conservative algorithms. 

Therefore, lookahead extraction has been studied intensively by researchers. Recently, 

the effort has focused on determining the lookahead value dynamically at runtime 

(instead of static estimation). This is done by collecting lookahead information from the 

models as much as possible [16][64][42][45]. 

Optimistic Algorithms 

Conservative algorithms avoid violating LPs local causality constraints while 

optimistic algorithms allow such violations to occur but provide techniques to undo any 

computation errors.  Jefferson’s Time Warp mechanism [35] remains the most well 

known optimistic algorithm. The simulation is executed via a number of Time Warp 

Processors (TWLP) interacting with each other via exchanging time-stamped event 

messages. Each TWLP maintains its Local Virtual time (LVT) and advances 

“optimistically” without explicit synchronization with other processors. On the other 

hand, a causality error is detected if a TWLP receives a message from another processor 

with a timestamp in the past (i.e. with a time-stamp less than the LVT), as shown in 

Figure 4. Such messages are called straggler messages.  
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Figure 4: TWLP internal processing 

 

To fix the detected error, the TWLP must rollback to the event before the 

straggler message timestamp; hence undo all performed computation. Therefore, three 

types of information are needed to be able to rollback computation: 

• An input queue to hold all incoming events from other LPs. This is necessary because 

the TWLP will have to reprocess those events in case of rollback. The events in this 

queue are stored according to their received timestamp. 

• A state queue to save the TWLP states that might rollback. This is necessary because 

the simulation state usually changes upon processing an event. Thus, to undo an event 

processing affect, the prior state of its processing must be restored. For example, as 

shown in Figure 4, the TWLP must rollback events 21 and 35, upon event 18 (i.e. with 

timestamp 18) arrival. Thus, the simulation must be restored to state S1, the state that 

resulted from processing event 12. Afterwards, the processor can process event 18 and 

reprocess events 21 and 35. 

• An output queue to hold the output messages sent to other processors. These messages 

are sorted according to their sending timestamps. This is necessary because part of 
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undoing an event computation is to undo other events scheduled by this event on the 

other processors. Such messages are called anti-messages and they may cause a 

rollback at its destination, triggering other anti-messages, resulting in a cascade of 

rollbacks in the simulation system. Upon event 18 arrival, in Figure 4, all anti-

messages resulted from events 21 and 35 are triggered. In this example anti-message 

42 is sent. When anti-message meets its counterpart positive message, they annihilate 

each other. Suppose the shown processor in Figure 4 receives an anti-message for 

event 43. In this case, unprocessed event 43 is destroyed without any further actions. 

On the other hand, if an anti-message is received for event 21, the simulation must be 

rollback to state S1, LVT is set to 12, and anti-message 42 must be sent to the 

appropriate processor.  

The Time Warp computation requires a great deal memory throughout the 

simulation execution. Therefore, a TWLP must have a guarantee that rollback will not 

occur before a certain virtual time. In this case, a TWLP must not receive a 

positive/negative message before a specific virtual time, called Global Virtual time 

(GVT). This allows TWLP to reclaim memory via releasing unneeded data such as saved 

pervious simulation states, and events in the input/output queues with timestamp less than 

the GVT. Further, the GVT can be used to ensure committing certain operations that 

cannot be rolled back such as I/O operations. GVT serves as the lower floor for the 

simulation virtual time. Thus, as the GVT never decreases [20] and the simulation must 

not rollback below the GVT, all events processed before the GVT can be safely 

committed (and their memory can be reclaimed). Releasing memory for information 

older than GVT is performed via a mechanism called fossil collection. How often the 
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GVT is computed, is a trade-off. The more often the computation, it allows better space 

utilization, but it also imposes a higher communication overhead [23] [55] [43]. For 

example, the pGVT algorithm [17] allows users to set the frequency of GVT computation 

at compile time. The GVT computation algorithm described in [4] uses clock 

synchronization to have each processor start computation at the same time instant. Each 

processor should have a highly accurate clock to be able to use this algorithm. 

The purpose of computing the GVT is to release memory, since the simulation is 

guaranteed to not rollback below it. The fossil collection manager cleans up all of the 

objects in the state/input/output queues with timestamp less than the GVT. Many 

techniques have been used to optimize this mechanism: the infrequent state saving 

technique (which avoids saving the modified state variables for each event), the one anti-

message rollback technique (which avoids sending multiple anti-messages to same LP), 

or the anti-message with earliest timestamp (only sent to that LP since it suffices to cause 

the required rollback). Lazy cancellation is a technique that analyzes if the result of the 

new computed message is the same as the previous one. In this case, an antimessage is 

not sent [41].  

Distributed Simulation Middleware 

The main purpose of a distributed simulation middleware is to interoperate 

different simulation components and between different standards. Integrating new 

simulation components should be easy, fast and effortless. To achieve this, certain 

prerequisite conditions must be met [56]: 
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- the middleware Application Programming Interface (API) should be easy to 

understand 

- it should follow widely accepted standards,  

- it should be fast to integrate with new simulation software, and 

- it should be interoperable with other middleware, and be independent of diverse 

platforms. 

In the following sections, we will discuss some of the features of existing simulation 

middleware. 

Common Object Request Broker Architecture (CORBA) 

As discussed earlier, CORBA [26] is an open standard for distributed object 

computing defined by the Object Management Group (OMG) [51].  

 

Figure 5: CORBA IDL Example 

 

module BankAccount 

{ 

    interface account { 

 

      readonly attribute float balance; 

readonly attribute string name; 

 

      void deposit (in float amount); 

      void withdraw (in float amount); 

    }; 

 

    interface accountManager { 

      exception reject {string reason;}; 

 

      account createAccount (in string name) raises (reject); 

      void deleteAccount (in account acc); 

    }; 

}; 
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CORBA objects services are defined using the Interface Definition Language 

(IDL), which can then be compiled into a programming language stubs such as C, C++ or 

Java (IDL syntax is similar to other programming languages, as shown in Figure 5). 

Clients in CORBA invoke methods in remote objects using a style similar to Remote 

Procedure Calls (RPC), using IDL stubs, as shown in Figure 6. The method call may 

return another CORBA handle where the client can invoke methods of the returned 

objects. 

 

Figure 6: CORBA 2.x Reference Model 

 

Figure 6 shows a picture of CORBA architecture: CORBA IDL stubs and 

skeletons glue operations between the client and server sides. The Object Request Broker 

(ORB) layer provides a communication mechanism for transferring client requests to 

target object implementations on the server side. The ORB interface provides a library of 

routines (such as translating strings to object references and vice versa). The ORB layer 

uses the object adapter with routing client requests to objects and with objects activation. 
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Building distributed simulations using CORBA is straightforward, since CORBA 

enables application objects to be distributed across a network. Therefore, the issue 

becomes identifying distributed object interfaces and defining them in IDL, hence a 

C++/Java local operation call becomes a remote procedure call (hidden by CORBA). 

Therefore, to support distributed simulation using CORBA, you just need to translate 

your existing C++/Java simulation interfaces into CORBA IDL definition. 

The work in [65] is an example of implementing a distributed DEVS simulation 

using CORBA. For instance, a DEVS Simulator IDL interface (to the Coordinator, 

presented in Figure 3) could be defined as follows (tN is the global next event time): 

Module Simulator{ 

Interface toCoordinator  

{ 

boolean start(); 

double tN?(); 

double set_Global_and_Sendoutput (in double tN); 

boolean appIyDeltaFunc(in message); 

}; 

}; 

 

The Simulator module above is initialized via the method start. The Simulator 

module receives its tN via the method set_Global_and_Sendoutput, and in response, it 

returns it output. The above IDL code can then be compiled into specific Java/C++ code. 

For instance, in [65], a DEVS coordinator IDL (to the simulator) was defined as follows: 

Module Coordinator{ 

Interface toSimulator 

{ 

boolean register  

(in Simu1ator::toCoordinator SimObjRef); 

boolean startSimulation(); 

boolean stopSimulation(); 

}; 

}; 
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The above IDL description shows that the simulator is given an object reference 

for the toCoordinator interface (via register method). As a result, simulators and 

coordinators can now invoke each other methods (across the network). 

High Level Architecture (HLA) 

As discussed earlier, the HLA [36] was developed to provide a general 

architecture for simulation interoperability and reuse [28][29][30]. Table 1 shows the 

common terminology used in HLA. 

Table 1:  General HLA Terminology 

Term Description 

Attribute Data field of an object. 

Federate HLA simulation processor. 

Federation Multiple Federates interacting via RTI. 

Interaction Event (message) sent between Federates. 

Object Collection of data sent between Federates. 

Parameter Data field of an interaction. 

 

Figure 7 shows the overall HLA simulation interaction architecture. The figure 

shows HLA simulation entities (called Federates). Multiple Federates (called a 

Federation) interact with each other using the Run-Time Infrastructure (RTI), which 

implements the HLA standards. Federates use the RTIambassador method to invoke RTI 

services while the RTI uses the FederateAmbassador method to pass information to a 

Federate in a callback function style. A callback function is a function passed to another 

function in the form of a reference (e.g., a C++ function pointer) to be invoked later via 

its reference. For example, in Figure 7, when the federate A sends an interaction (via 
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RTIambassador) to the federate B, the RTI invokes a function in federate B via that 

function reference. 

 

Figure 7: HLA Interaction Overview 

 

The HLA consists of three parts: the Object Model Template (OMT) [29] (to 

document exchanged shared data), the HLA Interface Specification [30] (to define 

RTI/federates interfaces) and the HLA Rules [30] (to describe federates obligations and 

interactions with the RTI).  

The Object Model Template (OMT) provides a standard for documenting HLA 

Object Model information. This ensures detailed documentation (in a common format) 

for all visible objects and interactions managed by federates. Therefore, the data 

transmitted can be interpreted correctly by receivers to achieve the Federation’s 

objectives. The OMT consists of the following documents: 

• The Federation Object Model (FOM), which describes the shared object’s attributes 

and interactions for the whole federation (several federates connected via the RTI).  
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• The Simulation Object Model (SOM), which describes the shared object, attributes and 

interactions for a single federate. The SOM documents specific information for a single 

simulation. 

The HLA interface specification [30] standardized the application programming 

interface (API) between federates and RTI services. The specification defines RTI 

services and the required callback functions that must be supported by the Federates. 

Many contemporary RTI implementations conform to the IEEE 1516 and HLA 1.3 API 

specifications such as Pitch pRTI™ (C++/Java), CAE RTI (C++), MÄK High 

Performance RTI (C++/Java) and poRTIco (C++).  However, the RTI implementation 

itself is not part of the standards. Therefore, interoperability between different RTI 

implementations should not be assumed, since HLA standards do not define the RTI 

network protocol. In this sense, the standards assume homogeneous RTI implementations 

in a federation. However, federation should be able to replace RTI implementations since 

APIs are standardized (bur re-linking and compiling are required). Unfortunately, this is 

not always the case. 

The RTI services are grouped as follows: 

• Federation Management: services to create and destroy Federation Executions. 

• Declaration Management: federates must declare exactly what objects (or object 

attributes) they can produce or consume. The RTI uses this information to tell the 

producing federates to continue/stop sending certain updates. 

• Object Management: basic object functions, for instance, deletion/updates of objects. 

• Ownership Management: services that allow Federates to exchange object attributes 

ownership between themselves. 
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• Time Management: these services are categorized in two groups: 

o Transportation services to ensure events delivery reliability and events 

ordering. 

o Time advance services to ensure logical time advancement correctly. For 

example, a conservative Federate uses the Time Advance Request service 

with a parameter t to request time to advance to t. The RTI then responds via 

invoking the Time Granted callback function. 

o Data Distribution Management: it controls filters for data transmission (data 

routing) and reception of data volume between federates.  

The HLA has been widely used to connect HLA-compliant simulations via RTI 

middleware. However, it presents some shortcomings: 

• No standards exist to interoperate different RTI implementations. Therefore, 

interoperability should not be assumed among RTIs provided by different 

vendors. Further, standards are too heavy and no load balancing as part of the 

standards [56]. 

• The system does not scale well when many simulations are connected to the 

same RTI. This is because RTI middleware acts as a bus that manages all 

activates related to connected simulations in a session. 

• HLA only covers syntactic (not semantic) interoperability [56]. 

• Interfacing simulations with RTIs can vary from a standard to another. It is a 

strong selling point for commercial RTIs that you can use your old HLA 1.3 

federates with HLA 1516 [28] RTI implementations. 
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• HLA API specifications are tied to programming languages. Some 

interoperability issues need to be resolved when federates are developed with 

different programming languages.  

• Firewalls usually block RTI underlying communication when used on 

WAN/Internet networks. 

A new WSDL API has been added to the HLA IEEE 1516-2007 standard, 

allowing HLA compliant simulation to be connected via the Internet using SOAP-based 

Web Services. Some examples of existing HLA-based simulation tools using Web 

Services include [7][48][68]. As shown in Figure 8, the Web Service Provider RTI 

component (WSPRC) is an RTI with one or more Web Service ports, allowing HLA to 

overcome some of its interoperability problems. Therefore, this solution uses Web 

Service interoperability in the WAN/Internet region while maintaining the standard HLA 

architecture locally. The WSPRC and WS federate APIs are described in WSDL where a 

standard federate and standard RTI API is described in actual programming languages. 

For instance, the Pitch pRTI™ version 4.0 supports Web Services. 

WS-based solutions solved interoperability issues at the Federate level. However, 

this solution still does not solve interoperation of different WSPRC implementations, 

since the standard does not cover this part. Further, it does not provide a scalable 

solution, since many simulation components are still managed by a single component. 
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Figure 8: Interfacing RTI with Web Services 

SOAP-Based Web Services Middleware 

SOAP-based Web Services (or Big Web Services) provide a standard means of 

interoperating between different heterogeneous software applications, residing on a range 

of different platforms mainly for software reuse and sharing. At present, it is the leading 

technology for interoperating remote applications (including distributed simulations) 

across WAN/Internet networks. For example, a new WSDL API has been added to the 

HLA IEEE 1516-2007 standard, allowing HLA-compliant simulations to be connected 

via the Internet using SOAP-based Web Services. Efforts in [7][48][68] are examples of 

HLA-based simulation using Web Services. Further, the DEVS community is moving 

toward standardizing interoperability among different DEVS implementations using 

SOAP-based Web Services [1]. 

The SOAP-based WS programming style is similar to RPCs, as depicted in Figure 

9. The Server exposes a group of services that are accessible via ports. Each service can 

be actually seen as an RPC, with semantics described via the procedure parameters. Ports 

can be viewed as a class exposing its functionality with a number of operations, forming 
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an API accessible to the clients. On other hand, clients need to access those services, and 

they do so using procedure stubs at their end. The stubs are local, and allow the client to 

invoke services as if they were local procedure calls.  

 

Figure 9: SOAP-based Web Service Architecture Overview 

 

Client programmers need to construct service stubs with their software at compile 

time. The clients, consume a service at runtime, by invoking its stub. In a WS-based 

architecture, this invocation is in turn converted into an XML SOAP message (which 

describes the RPC call). This SOAP message is wrapped into an HTTP message, and sent 

to the server port, using an appropriate port URI. Once the message is received at the 

server, an HTTP server located into the same machine passes the message to the SOAP 

layer (also called SOAP engine; it usually runs inside the HTTP server as Java programs 

called Servlets). The SOAP layer parses the SOAP message and converts it into an RPC 

call, which is applied to the appropriate port (which activates the right service). In turn, 

the server returns results to the clients in the same way.  
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Service providers need to publish the services available (using WSDL 

documents),  in order to enable clients to discover and use the services. One way of doing 

so, is via a broker called Universal Description, Discovery and Integration (UDDI). 

UDDI is a directory for storing information about web services and is based on the World 

Wide Web Consortium (W3C) and Internet Engineering Task Force (IETF) standards. 

To achieve interoperability, services need to be described in WSDL [15] and 

published so that clients can construct their RPC stubs correctly. Further, XML SOAP 

messages ensure a common language between the client and the server regardless of their 

dissimilarities.  

To demonstrate the role of SOAP and WSDL in an example, suppose that a 

simulation Web Service exposes a port that contains a number of simulation services. 

Suppose further that the stopSimulation service (which takes an integer parameter with 

the simulation session number, and returns true or false indicating the success or the 

failure of the operation) is used to abort a simulation, as shown below: 

boolean stopSimulation(int in0);  // method prototype 

... 

result = stopSimulation(1000);    // method call 

From the client viewpoint, the stopSimulation service is invoked similarly to any 

other procedure (using the SOAP-engine API). The responsibility of the SOAP engine 

(e.g. AXIS server) is to convert this procedure call into XML SOAP message as shown in 

Figure 10.  
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Figure 10: SOAP Message Request Example 

 

The SOAP message in Figure 10 will be then transmitted in the body of an HTTP 

message using the HTTP POST method. It is easy to see how an RPC is constructed in 

this SOAP message. The stopSimulation RPC call is mapped to lines 6-8 in Figure 10. 

Line #6 indicates invocation service stopSimulation on Web Service port with URI 

(http://WS-Port-URI/). URIs are WS port addresses (which correspond, for instance, to 

CORBA object references). Line #7 indicates that this service takes one integer 

parameter (i.e. simulation session number) with value 1000. Figure 11 shows a possible 

response to the client as a SOAP message, responding with the stopSimulation return 

value. 

 

Figure 11: SOAP Message Response Example 

 

1 <?xml version="1.0" encoding="UTF-8"?> 

2 <SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

3    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

4    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

5  <SOAP-ENV:Body> 

6    <ns1: stopSimulationResponse xmlns:ns1="http://WS-Port-URI/"> 

7 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 

8   <return xsi:type="xsd:boolean">true</return>  

9    </ns1: stopSimulationResponse> 
10  </SOAP-ENV:Body> 

11 </SOAP-ENV:Envelope> 

1 <?xml version="1.0" encoding="UTF-8"?> 

2 <SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

3    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

4    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

5  <SOAP-ENV:Body> 

6    <ns1: stopSimulation xmlns:ns1="http://WS-Port-URI/"> 

7      <in0 xsi:type="xsd:int">1000</in0> 

8    </ns1: stopSimulation> 
9  </SOAP-ENV:Body> 

10 </SOAP-ENV:Envelope> 
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The above-explained example shows how SOAP is used to achieve 

interoperability. Because the participant parties have agreed on a common standard to 

describe the RPC call (in this case SOAP), it becomes straightforward for software to 

convert an RPC (from any programming language) to a SOAP message (and vice versa). 

Interoperability cannot only be achieved with SOAP messages because RPCs are 

programming procedures; hence, they need to be compiled with the clients’ software. For 

example, a programmer writing a Java client needs to know that the stopSimulation 

service method looks exactly as boolean stopSimulation (int in0). Here is where WSDL 

helps in achieving interoperability for SOAP-based WS. Web Services providers need to 

describe their services in a WSDL document (and publish them using UDDI) so that 

clients can use it to generate services stubs. 

The major elements of any WSDL document are THE type, message, port Type, 

binding, port, and service elements. Some of these elements (type, message, and 

portType) are used to describe the functional behavior of the Web Service in terms of the 

functionality it offers. On the other hand, binding, port, and service define the operational 

aspects of the service, in terms of the protocol used to transport SOAP messages and the 

URL of the service. The former is referred to as abstract service definition, and the latter 

is known as concrete service definition.  

To carry on with our previous example, the simulation service provider should 

describe the stopSimulation service (along with other provided services) in a WSDL 

document. Figure 12 shows an excerpt of the WSDL description for the boolean 

stopSimulation (int in0) service.  
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Figure 12: Excerpt of WSDL Document Example 

 

Lines 1-7 show the messages used by the Web Service to send the request and to 

handle the response. The stopSimulation operation uses an input message called 

stopSimulationRequest (which is an integer), and an output message called 

stopSimulationResponse (a Boolean value). Lines 9-17 show the portType definition, 

which is used by operations accessing the Web Service. It defines CDppPortType as the 

name of the port, and stopSimulation as the name of the exposed operation by this port. 

1  <wsdl:message name="stopSimulationRequest"> 

2    <wsdl:part name="in0" type="xsd:int"/> 

3  </wsdl:message> 

4 

5  <wsdl:message name="stopSimulationResponse"> 

6    <wsdl:part name="stopSimulationReturn" type="xsd:boolean"/> 

7  </wsdl:message> 

8 

9  <wsdl:portType name="CDppPortType"> 

10  <wsdl:operation name="stopSimulation" parameterOrder="in0"> 

11   <wsdl:input message="impl:stopSimulationRequest"  

12             name="stopSimulationRequest"/> 

13   <wsdl:output message="impl:stopSimulationResponse"  

14             name="stopSimulationResponse"/> 

15 </wsdl:operation> 

16 

17 </wsdl:portType> 

18 

19 <wsdl:binding name="CDppPortTypeSoapBinding"  

20                     type="impl:CDppPortType"> 

21   <wsdlsoap:binding style="rpc"  

22         transport="http://schemas.xmlsoap.org/soap/http"/> 

23   <wsdl:operation name="stopSimulation"> 

24      <wsdlsoap:operation soapAction=""/> 

25      <wsdl:input name="stopSimulationRequest"> 

26         <wsdlsoap:body encodingStyle="http://.../"      

27                namespace="http://..." use="encoded"/> 

28      </wsdl:input> 

29 

30      <wsdl:output name="stopSimulationResponse"> 

31         <wsdlsoap:body encodingStyle="http://.../"  

32               namespace="http://..." use="encoded"/> 

33      </wsdl:output> 

34    </wsdl:operation> 

35 </wsdl:binding> 
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As discussed earlier, ports define connection points to a web service. If we want to relate 

this with a traditional program, CDppPortType defines a class where stopSimulation is a 

method with stopSimulationRequest as the input parameter, and stopSimulationResponse 

as the return parameter. Lines 19-35 show the binding of the Web Service, which defines 

the message format and ports protocol details. The <wsdlsoap:binding> element has two 

attributes: style and transport. In this example, the style attribute uses the RPC-style, and 

the transport attribute defines the SOAP protocol to apply. The <wsdl:operation> 

element defines each operation the port exposes. In this case, operation stopSimulation is 

the only one. The SOAP input/output encoding style for operation stopSimulation is 

defined in lines 25-33.  

As we can see, it is a great deal of work to describe one RPC. However, mature 

tools are one of the main advantages of SOAP-based WS. The WSDL document is 

usually converted to programming language stubs and vice versa with a click of a button 

(or with a simple shell command). 

Using SOAP and WSDL, interoperability is achieved at the machine level 

regardless of their differences such as programming languages and operating systems. 

However, interoperability at the human level is still needed. For example, a programmer 

still needs to know that the integer input parameter to service stopSimulation means the 

simulation session number (even if that programmer was able to compile and invoke the 

service). This gets worse when a service procedure is complex with many input 

parameters. Therefore, in practice a text description can be helpful for client 

programmers. It is possible to add comments to WSDL document like any other XML 

documents (and WSDL without comments is worse than programming code without 
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them). However, WSDL documents are typically generated by tools (and they need to 

move comments between WSDL and programming code stubs).  

In addition, we need a standardized protocol when using Web Services to 

interoperate various remote applications (such as interoperation of different simulations 

to perform distributed simulation). This is because Web Services provide interoperability 

to overcome differences between machines rather than to overcome the differences 

between various applications functionalities. Therefore, standards are still needed to 

accomplish simulations among different simulators successfully. As part of this effort, 

the DEVS simulation community is in the progress of developing standards to interface 

different DEVS (and non-DEVS) implementations using SOAP-based Web Services ([1] 

is an example of such proposals). 

 

Figure 13: Distributed Simulation using SOAP-based WS 

 

In contemporary WS-based distributed simulations (e.g. [60] and [47]), simulation 

components act as both client and server at the same time. In this case, a simulator 

becomes the client when it wants to send a simulation message to a remote simulator 

(which the later becomes the server), as shown in Figure 13. 
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SOAP-based distributed simulations share in common that synchronized 

messages are exchanged in RPC-style where contents are usually passed as input 

parameters to the RPC (so it becomes like invoking a local call procedure). Further, those 

RPCs are based on internal software implementation, which makes interfacing standards 

not easy to achieve among existing systems. This is because each system has already 

defined its RPC interfaces.  

To summarize the major drawback points with SOAP-based Web Services: 

• Heterogeneous interface by exposing few URIs (ports) with many operations. Building 

programming stubs correctly (i.e. compiled without errors) is not enough to interface 

two different simulators quickly and efficiently. One possible solution, one of the 

participant parties has to wrap their simulator API with the simulator API to be able to 

interact with it. Another possible solution is to combine both simulator APIs and 

expose new set of APIs, assuming this solution works. What happens if many vendor 

simulators need to interface with each other? It becomes a complex process. In fact, 

exposing heterogeneous programming procedures of a simulator and expecting it to 

interoperate with another simulator that is also exposes heterogeneous procedures 

quickly and efficiently is a naive assumption.   

• It uses an RPC-style, which is suitable for closed communities that need to coordinate 

new changes among each other. In fact, those APIs (services) are programming 

procedures, which means that they reflect the internal implementation. Therefore, 

different vendors, for example, have to hold many meetings before they reach an 

agreement on defining those stubs, because they are tied into their internal 

implementation; hence it affects a great deal the internal design and implementation of 
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the simulation package. However, suppose that those different simulator vendors came 

to an agreement of standardizing the same exposed API, and assume that some changes 

are required during development or in the future. How easy is to change those 

standardized APIs? A new coordination among different teams becomes inevitable to 

redefine new services. 

• To use SOAP-based services requires building services stubs at compile time. This can 

cause more complexity in future advancements if the simulation components can 

join/leave the simulation at runtime. For example, in [24] the authors present the Ad 

Hoc distribution simulation, where the number of logical processors (LP) is not known 

in advance and can be changed during runtime. 

RESTful Web Services Middleware 

The Representational State Transfer (REST) provides interoperability by imitating 

the World Wide Web (WWW) style and principles [18]. RESTful Web Services are 

gaining increased attention with the advent of Web 2.0 [52] and the concept of mashup 

(i.e. grouping various services from different providers and present them as a bundle) 

because of its simplicity. REST exposes services as “resources” (which are named with 

unique URIs similar to Web sites) and manipulated with uniform interface, usually HTTP 

methods. GET (to read a resource), PUT (to create/update a resource), POST (to append 

to a resource), and DELETE (to remove a resource). For example, a client applies the 

HTTP GET method to a resource’s URI in order to retrieve that resource representation 

(e.g., this is what happens when you browse a Web site). Further, a client can transfer 

data by applying HTTP methods PUT or POST to a URI. REST applications need to be 
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designed as resource-oriented to get the benefits of this approach (see [54] for design 

guidelines). REST sometimes is confused with HTTP, since HTTP perfectly matches 

REST principles. However, REST is an approach that devotes principles such as 

standardized uniform-interface, universal addressing schemes, and resource-oriented 

design.  REST has been used in many applications such as Yahoo, Flicker, and Amazon 

S3. It also used in distributed systems as NASA SensorWeb [11] (which uses REST to 

support interoperability across Sensor Web systems that can be used for disaster 

management). Another example of using REST to achieve plug-and-play interoperability 

heterogeneous sensor and actuator Networks is described in [57]. Example of REST 

usage in Business Process Management (BPM) is described in [37], which focuses on 

different methods and tools to automate, manage and optimize business processes. REST 

has also been used for modeling and managing mobile commerce spaces [44]. 

REST architecture separates the software interface from internal implementation; 

hence, services can be exposed while software internal implementation is hidden form 

consumers and providers need to conform to the service agreement, which comes in the 

form of messages (e.g. XML). This type of design is a recipe for a plug-and-play (or at 

least semi-automatic) interoperability, as a consumer may search, locate and consume a 

service at runtime (this is why Web 2.0 applications have expanded beyond regular 

computer machines to cell phones or any other device connected to the Internet). In 

contrast, other RPC-style form of interfacing require a programmer to build the interface 

stubs and recompile the application software before being able to use the intended 

service. This is clearly not the way to reach a plug-and-play interoperability. Distributed 

simulation can benefit of this capability toward future challenges (see [56] study) such as 
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having middleware that have a plug-and-play (semi-automatic) interoperability, and 

accessed by any device from anywhere. Indeed, interoperating two independent 

developed simulators where each one of them exposes heterogeneous defined set of RPCs 

is not a trivial task to do. In fact, RPCs are often tied to internal implementation and 

semantics are described in programming parameters. To add to the situation complexity, 

many simulators expose many RPCs of many objects (or ports). One has to question if 

this task worth the cost, particularly if we need to add more independent developed 

simulators and models. The bottom line is that those simulators are software packages; 

hence, they interface with their APIs. Therefore, the API design matters when connecting 

diverse software together. To achieve plug-and-play interoperability, simulators need to 

have uniform interface and semantics need to be described in form of messages such as 

XML. 

Based on these ideas, we designed RESTful-CD++ [2] the first existing 

distributed simulation middleware based on REST. The RESTful-CD++ main purpose is 

to expose services as URIs. Therefore, RESTful-CD++ routes a received request to its 

appropriate destination resource and apply the required HTTP method on that resource. 

This makes the RESTful-CD++ independent of a simulation formalism or a simulation 

engine. CD++ is selected to be the first simulation engine to be supported by the 

RESTful-CD++ middleware.  
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Figure 14: RESTful-CD++ Distributed Simulation Session 

 

In this case, as shown in Figure 14, the simulation manager component is 

constructed to manage the CD++ distributed simulation such as the geographic existence 

of model partitions, as shown in Figure 3. The simulation manager is seen externally as a 

URI (e.g. similar to web site URIs). On the other hand, is a component that manages a 

distributed simulation logical processor (LP) instance, in our case an LP is a CD++ 

simulation engine. Therefore, LPs exchange XML simulation messages among each other 

according to their wrapped URIs (using the HTTP POST method). The RESTful-CD++ 

exposes its APIs as a regular Web-site URIs that can be mashed up with other Web 2.0 

applications (e.g. to introduce real systems in the simulation loop). In addition, it is 

capable of consuming services from SOAP-based Web Services. 
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Figure 15: RESTful-CD++ URIs Template (APIs) 

Summary 

Distributed simulation deals with executing simulations on multiple processors 

connected via communication networks. Distributed simulation can be used to achieve 

model reuse via interoperation of heterogeneous simulation components, reducing 

execution time, connecting geographically distributed simulation components, avoiding 

people/equipment relocations and information hiding – including the protection of 

intellectual property rights. These simulations are typically composed of a number of 

sequential simulations where each is responsible of part of the entire model.  

The main purpose of a distributed simulation middleware is to interoperate 

different simulation components and between different standards. Integrating new 

simulation components should be easy, fast and effortless. A number of middlewares 

have been used to achieve interoperability among different simulation components such 

as CORBA, HLA and SOAP-based/REST-based Web-services. HLA is the used 



Wiley STM / Sokolowski, Banks: Modeling and Simulation Fundamentals: Theoretical Underpinnings 

and Practical Domains   

Chapter XX/ Wainer/Al-Zoubi / filename: chxx.doc 

 

middleware in the military sector where various simulation components are plugged into 

the RTI, which manages the entire simulation activities. On the other hand, SOAP-based 

and CORBA expose services as RPC-style via ports/objects where semantic is described 

in the parameters of those RPCs. REST-based WS, instead, separate interface from 

internal implementation via exposing standardized uniform interface and describing 

semantics in form of messages (e.g. XML). REST can provide a new means of achieving 

a plug-and-play (automatic/semi-automatic) distributed simulation interoperability over 

the Internet and introducing real systems in the simulation loop (e.g. Web 2.0 mashup 

applications). This approach has the potential of highly influencing the field, as it would 

make the use of distributed simulation software more attractive for industry (as one can 

reuse existing applications and integrate them with a wide variety of e-commerce and 

business software applications already existing on the Web). 
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