Enhanced Distributed Simulation Interoperability and
Algorithms Using Web Services

By

Khaldoon Al-Zoubi

A thesis submitted to the Faculty of Graduate Studies and Research

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering
(OCIECE)
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada
May 2011

© Copyright 2011, Khaldoon Al-Zoubi

The undersigned hereby recommends to the Faculty of Graduate Studies and Research

acceptance of the thesis
Enhanced Distributed Simulation Interoperability and Algorithms
Using Web Services

Submitted by Khaldoon Al-Zoubi

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Thesis Supervisor

Dr. Gabridel A. Wainer

External Examiner

Dr. Andreas Tolk

Chair, Department of Systemsand Computer Engineering

Dr. Howard M. Schwartz

Carleton University

May 2011

ABSTRACT

With the expansion of the Internet, the desire toward global cooperation in the distributed
simulation technology has also been on the rise. As a result, much research has been
devoted to develop middleware interoperability methods on the Web, particularly using
purely SOAP-based WS or HLA with SOAP extension. However, such frameworks still
have constraints in the structural rules that are placed on the middleware design methods.
In particular, the way they exchange, structure, and use information is tied to
programming, making it difficult to decouple systems implementations and design. In
this work, these issues are addressed, enhancing the distributed simulation methods on
the Internet using SOAP WS and RESTful WS. In particular, the main objective of the
methods presented is to decouple systems design and implementations while allowing
composition scalability and dynamicity. To do so, the proposed SOAP-based methods
wrap each system in a single WS port while algorithms synchronize ssimulation via
exchanging XML messages. However, the thesis shows how the objective can better
achieved by the RESTful Interoperability Simulation Environment (RISE) middieware,
which is the first existing RESTful simulation environment. RISE is a genera
middleware that serves as a container to hold different simulation environments without
being specific to a certain environment. In RISE, al functionalities are hidden in
resources (URIs) that connected to each other via constant uniform virtual channels
where al synchronization messages are described in XML. To prove the concept of the
genera middleware container, we started by RISE-enabling a simulator called CD++, so
that it can perform distributed ssmulation on the Web. This system performance tests

have shown promising results comparing to the SOAP-enabled version. Additiond

methods have also been defined such as algorithms that could be used as a basis for
DEVS standardization, and workflow methods to enhance simulation experimentation

automation and reusability viathe Web.

ACKNOWLEDGMENT

First of al, | thank ALLAH, the ailmighty, for giving me the ability and the will to
complete anything | want to do.

| would strongly like to thank my thesis supervisor Dr. Gabriel Wainer for al of
his constant support, kindness, understanding and patience during this research. | was
truly lucky to have Dr. Gabriel Wainer as my friend and supervisor during this research. |
also grestly appreciate Dr. Andreas Tolk, Dr. Azzedine Boukerche, Dr. Chris Herdman,
Dr. Michel Gaulin and Dr. Babak Esfandiari for being on my defense committee and for
their valuable inputs. | would aso like to thank Dr. Azzedine Boukerche, Dr. Shikharesh
Majumdar, and Dr. Greg Franks for their greatly appreciated inputs during my thesis
proposal defense.

| am aways in debt for my parents, my uncle, Abraham, my two sisters and my
five brothers for their infinite support at all times.

Finaly, | greatly thank my wife Sahar and my son Tariq for their endless patience
and support in anything | want to do, particularly in thisresearch. | dedicate this work for

them.

CONTENT

PN SIS I Y N o R I
ACKNOWLEDGMENT ettiiiiiteieesiteieesssteiesssbeiasssbesessssbesassssbessssssbesassssbessssssssnsssssbenessssssnessssenesssssens \Y;
IS O] I = I =13 VI
L IST OF FIGURES ..ottt ettt stte et ee s s s bt e e s st e e e s sb e e e e s sabb e e e s s bb e e e s sabb e e e s s bbeeessabbeeessbbenessabbenesanns IX
L1ST OF ACRONYMSAND ABBREVIATIONS.....ccutiiiiiitteiesisttieessssseeessssseessssssssssssssssssssssssssssssssesanns Xl
CHAPTER 1: INTRODUCTION ceeeii ettt svee s sivae s s aas s s s svae s s sssasse s sessanessansannas 1
1.1 MOTIVATIONS, OBJECTIVES, AND ASSUMPTIONSccciiiitieeiiirireesiiereessraeesssssesssssaesssssssessssssens 3
1.2 THESIS CONTRIBUTIONS. ..ccciictteeesiittreesssteresssssesesssssssesssssssssssssssssssssssssssassssssssssssssssssssssssssssesanns 11
1.3 RESEARCH PUBLICATIONS ... cutiiiiiittieesiiteiessstteesssssesessssbsesssssbssssssssssssssssesssssssessssssssnsesssssssesanns 14
1.4 THESIS ORGANIZATION ..uveeiiireeeeiiirreeesiiseeessssseeessenesanns 17
CHAPTER 2: BACK GROUNDuiiiiitii ittt sttt st abae s s s saba s s aba e s s s nres 19
2.1 A BRIEF HISTORY OF DISTRIBUTED SIMULATIONccuttteietteiessisrersssssseeesssssenssssssesssssssesssssssens 20
2.2 A SURVEY OF DISTRIBUTED SIMULATION APPROACHES......cociiiiiieiitteeecesreee s ssibeessssnveeessssves 22
2.2.1 HLA-based Simulation and LimitalionS..........ceeicveeiiieieieii et see s s s 23
2.2.2 SOAP-based WS Simulation and LimMitationS........ccueeeiecveieiecieie e s s ssree e s sssree e s 26
2.2.3 Additional SImulation APPIrOBCNES.cceiueieieirire et e e 30
2.3 TRENDS AND CHALLENGES OF DISTRIBUTED SIMULATION ...cccccutiiiiiitreeeceireressireeessssseeesssnvens 31
2.4 WEB-SERVICES FRAMEWORK AND STANDARDS......iicttteietteiessistersssssressssssresssssssesssssssesssssssens 35
2.4.1 SOAP-DESE WED-SENVICES ... evviii ittt ettt ettt st s s e s s s st e e e s s b e e e s s sabeeessenbenesssares 35
2.4.2 RESTTUN WED-SEIVICES......oo ittt sttt ettt et st b e s st s be s s s aa e s sbe e s sabessares 39
2.5 DEV SFORMALISM.....uttiiiiitteiiiiiitii s sttt e s ssabae s s ssabaesssasbaesssabbesssasbbesesassbesssasbbenesassbenesssbenessnsrens 41
P 1O B L RO 44
CHAPTER 3: THESISARGUMENT ...ooii ettt et s s s mba e s 48
CHAPTER 4: SOAP-BASED DESIGN METHODOLOGIESAND ALGORITHMS.......... 57
4.1 DESIGN METHODOLOGYvvieeiiireieessireressssseresssssssesssssssesssssssssssssssssssssesssssssssssssssssssssssssssens 59
4.1.1 Single-Port Wrapper COMPONENT.........couiirirerieieieeeesie sttt sse e eeneeneas 59
4.1.2 XML Message SYyNCAIONIZALiONc.ccueieeeieieeiecte et eee et te st eesre e e tesreesaesreennenren 61
4.1.3 EXperimental frameEWOrK ..o e 63
4.2 WEB-SERVICE COMPONENT IMPLEMENTATION. ..uvteiiiittieeeeiteieessreeesssreeesssresessssbenesssssesesssssens 70
4.3 SOAP-BASED APPROACH DESIGN CHALLENGES.......ccctiieiiteieeeeteee e eevtee s s eveeesssbeeesssveesssssves 72
4.4 CHAPTER SUMMARY ...uteiiiiiteieeiiiteie e s sbeee s s sbeeesssbaeessasbasessasbesassssbessssssbessssssbensssssbenessssserssssssens 74
CHAPTERG5: RISE MIDDLEWARE DESIGN METHODOLOGIES.......cccooecveeeeeeee e 77
5.1 RESOURCE-ORIENTED ARCHITECTUREuutiiiiiittiieisitetsssstesssssssesssssssesssssssesssssssssssssssssssssssens 78
5.1.1 Resources HierarchiCal DESIQN........ccviiiieiiiiee ettt sttt s 79
5.1.2 Simulation EXperiment BIUEPIINTcooeeieirinisese st 82
5.1.3 RESOUICES DALAASEcoeveei ettt ettt e e sttt e s st e e s e e e e s sasb e e e sasabeeesesbenesssnbeeesesbeeesssrees 87
5.2 UNIFORM-INTERFACE IMECHANISM ...uvviiiiiteiieiireiiessseeessssressssssessssssesssssssesssssssenssssssenssssssens 89
5.3 MESSAGE-ORIENTED INFORMATION DESCRIPTIONuvviiiitieieieseeeesssreeesssversssssseessssssesssssssens 95
5.4 CHAPTER SUMMARY .oiiiiietttetiiee et e seeiettttteessssasbasstesesssesaabesssesesssasassbassrasssssasbeseeesessssssssssesness 98
CHAPTER 6: DISTRIBUTED CD++ (DCD++) SIMULATIONcocvoeiriieeeeeeeeeseeeenans 101
6.1 DCD++ SIMULATION ARCHITECTUREcvtiiiiitiie e esteee s essreessssbeiessssbaesssssbesssssssenassssnensssssvens 103
6.2 DCD++ SIMULATION SYNCHRONIZATIONccieieittetieieeesessisssreesssssesssssssssesssssssssssssssesessssssssns 111
6.3 CHAPTER SUMMARY ..oeiiiiiiteteiiie e s eeseiisaettesesssssssabasssesasssesasabesssesasssesasssssssesasssasassresssesesssssssens 122
CHAPTER 7: RISE PERFORMANCE ...ttt st s 123
7.1 CONCURRENT WORKLOAD TESTING....uutttiieeiiesiireerieieesiesssssssseesssssesssssssssssssssssssssssssessssssssssns 124
7.2 DISTRIBUTED SIMULATION PERFORMANGCEuttttiiieeiiisiireeeierssesesssssseeesssssasssssssssesssssssssnns 131
7.3 CHAPTER SUMMARY eteiiiiiteieeiiittieessteiesssbesassssbasassssbasessssbssssssbesassssbessssssbesesssssesasssssenssssssens 146

Vi

CONTENT Vii

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS.....cciiiererene e 148
8.1 DISTRIBUTED SIMULATION ALGORITHMS ...veuveuieuierierestestessessessesseeesensessessessessessessessesessensenns 149
8.1.1 Interconnecting MOdElS PartitionS............coeoirierinerise e 150
8.1.2 Simulation Synchronization Interoperabilityccccovviiveie e 152
8.2 SIMULATION EXPERIMENT WORKFLOWScittiueeiesieeeesiesieeseesses e seesseesieseesneesnesaeeseesneesesees 161
8.2.1 Workflow Component ArChiteCIUNE...........ccveviieirirese e 163
8.2.2 Experiment PatterNS EXaMPIEScoviiiie ettt sttt 167
8.3 CHAPTER SUMMARY ..cutiitiiteiteeieestesseente st s eestesaeesbesheemeesbesaeeseesbeseeseesaeebesbeeneeabesaeenbesneeneenees 178
CHAPTER 9: CONCLUSIONSAND FUTURE WORKcccooiieieieineee e 181
0.1 THESIS SUMMARY ...eutiteteeeseeeesessessessessessessessesessessessessessessessessensessessssessessessessessessessensessnsenns 181
0.2 FUTURE WORK ...ttt ittt sttt sit et bt st se e ehe et she st besae e e e s bt et e seeshe e b e sbeestesbesaeabesneeneeneas 186
REFERENGCES...... .ottt sttt ae st et et eneeseeseaneseesaentenseneenennens 190
APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATIONcoiieieieeeese e 202
AL RISE SUBSY STEMS....ooiiitiiiiiieieieestesesie s steste e be st sbe st ssesaeeenessessessesbestessensensensssessens 202
A.LLMaIN SUBSYSIEIM.....oiiiiiicieieee et b bbbt e st e e ene s 203
A.L2 Data SUDSYSEEM.......eiuiitiiiisieieiee et ste et st e essesbesaesaesae e eseeseesessesbessessenaenseneenenneas 206
A. 1.3 RESOUICES SUDSYSIEIM ...t eneas 208
AL A ULHITY SUDSYSIEIM .. .oouiitiiiiiieieeeees ettt b bbbttt ene s 213
A.15 SImulationAdMIN SUDSYSIEM.......coiiiiiirieieieeeeee e eneas 215
A.2 MIDDLEWARE DEPLOYMENT ...vouieuiiuiitistestesiesteseesseessessessessessessessessesssssssessessessessessessensessssens 221
A.3INTERFACING CD++ WITH RISE ..ottt 223
APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) ...ccoooeivenens 228
B.LRISE APl OVERVIEW ...uoctiiiiitisieieeeieseesessessestessessessessssessessessessessessesssssssessessessessessessensesasens 228
B.2 EXPERIMENT URIS SPECIFICATIONScvtitiitestesieeeseesessessesseseessessesssssssessessesseseessessessensenessens 231
B.2.1 Experiment Resource: {framework} ...t s 232
B.2.2 Active-Simulation Resource: {framework} /Simulation.............ccceoerininineneneneeees 238
B.2.3 Simulation-Results Resource: {framework} /reSUILScoovvereieeerinescscseseeeeeeis 242
B.2.4 Simulation-Debug Resource: {framework} /debugccooveeeciiiiciiceee e, 243

B.3 APl XIML DESCRIPTIONeeeitiitteeesteseessesseesessesssessesseessessessessesseessessessssssessessssssesssessesnsessens 245

TABLE 1:
TABLE 2:
TABLE 3:
TABLE 4:
TABLEDb:
TABLE 6:
TABLE 7:
TABLE 8:
TABLE9:

TABLE 10:
TABLE 11:
TABLE 12:
TABLE 13:
TABLE 14.
TABLE 15:
TABLE 16:
TABLE 17:
TABLE 18:
TABLE 19:
TABLE 20:
TABLE 21.

LIST OF TABLES

COMPARING RISE MIDDLEWARE TO CURRENT INTEROPERABILITY APPROACHES 49

COMPARING CURRENT WEB-BASED SIMULATION APPROACHEScceevriereeriereeenennens 50
MESSAGE ELEMENTSIN XML SIMULATION MESSAGE.......cccctririerienieeiesieeee e sieenee e 62
FIRST ENVIRONMENT MESSAGE PROCESSING TIME PATHSRESULTSooeiveieiieienne 128
SECOND ENVIRONMENT MESSAGE PROCESSING TIME PATHS RESULTSocvevevennene 130
TEST ENVIRONMENTS SETTINGS ...c.veitetereereeseesesressessessessessessesessessessessessessessessessesensens 135
COMPARING MPT RESULTSFOR ALL TESTING ENVIRONMENTS....c.covirieeieniinieeeenne 138
COMPARING NRM VALUES BETWEEN RISE-BASED AND SOAP-BASED DCD++...... 139
FIRST ENVIRONMENT TEST SETTING TET RESULTS...ccveiveieieieiesrese e sie e eenas 140
SECOND ENVIRONMENT TEST SETTING TET RESULTS...c.voiiireresiesienie e 140
THIRD ENVIRONMENT TEST SETTING TET RESULTS....coiiiieerese e 141
DOMAINS RISE ROUTING TABLES (SEE SETUP IN FIGURE 57)....uvcvvvvviesieiieieeieeenens 152
RESOURCES URI TEMPLATES MAPPING TO JAVA CLASSESIN FIGURE 81................ 209
SPECIFICATIONS SUMMARY FOR RESOURCE { FRAMEWORK}ccvvuiriiniinierieneeennennes 232
FAULTS SUMMARY FOR RESOURCE { FRAMEWORK} ...c.vouveuieiieiesieeresieseeseesaeseeseeneenens 237
SPECIFICATIONS SUMMARY FOR RESOURCE { FRAMEWORK}/SIMULATION............... 239
FAULTS SUMMARY FOR RESOURCE { FRAMEWORK}/SIMULATIONcccoeeivenreereenenne 241
SPECIFICATIONS SUMMARY FOR RESOURCE { FRAMEWORK}/RESULTS.......ccccrvenene 242
FAULTS SUMMARY FOR RESOURCE /{ FRAMEWORK} /RESULTSccvrverienieeeeeennens 243
SPECIFICATIONS SUMMARY FOR RESOURCE { FRAMEWORK} /DEBUG.........ccccuveneenee. 244
FAULTS SUMMARY FOR RESOURCE /{ FRAMEWORK}/DEBUGccccceeveerecrecneennnn 244

viii

LIST OF FIGURES

FIGURE 1: RISE LAYERSWITHIN LCIM FRAMEWORKccctiiiiitiieeiiteie e ssraee e sebressssbaeesssnaesssennes 9
FIGURE 2: HLA INTERACTION OVERVIEW .. utiiiiiiteeeeeiitteeessbteeessibseeessssseesssbsessssabassssssssesssssssenessnns 23
FIGURE 3: INTERFACING RTI WITH WEB SERVICES......eceiiiitieeeiiiieessstteeessssteessssssesssssssesssssssssssanns 25
FIGURE 4: INTEROPERATING SOAP-BASED WS SIMULATIONSveiiiittieeeiteiee s ssteeeessssreeessssreeesanns 27
FIGURE 5: SOAP-BASED WEB SERVICE INTEROPERABILITY ARCHITECTURE.......ccccviieeeiiinveneennns 36
FIGURE 6: EXCERPT OF WSDL DOCUMENT EXAMPLEcicitiie ittt sireee st e s snree e snreeeseans 37
FIGURE 7: SOAP MESSAGE REQUEST EXAMPLE ...ccciiittieeiittiee e stteee s svtee s s ssvtee e s svaeesssvsessssersnnasanns 38
FIGURE 8: RESOURCES STATE TRANSFER CONCEPTueiiiiiiieeiiitieeessitteeesssreeessssaeesssssesssssnssssssnns 39
FIGURE 9: THE AUTO FACTORY COUPLED MODEL EXAMPLEcveiiiitieee s srteee s svteee s ssareee s snreee e 45
FIGURE 10: THE AUTO FACTORY COUPLED MODEL CD++ DEFINITION ...ccoovveeeeiirieeesssreeeesserreeessnns 46
FIGURE 11: CD++ MODEL AND PROCESSOR HIERARCHIES........coieeiiitteeessiteeeessssteeessssresessssreeessnns 47
FIGURE 12: DCD++ SOAP-BASED ARCHITECTURE OVERVIEW. ...uciiiiitiieeiireeee e srteee s ssiveee s senreee s 58
FIGURE 13: DEV S-WRAPPER RPCS SERVICES.....eciiiiittieesiittiiessittieessssteesssssssssssssasssssssssssssssssessnns 60
FIGURE 14: CONNECTING DOMAINS USING SOAP-BASED WEB-SERVICES........cciveeiiireeeesireeeeins 61
FIGURE 15: XML SIMULATION MESSAGE EXAMPLE.....ccciiiiiiieiiiieee e stteee s siteee s ssites e ssaree e s snreeeseans 63
FIGURE 16: COUPLED MODEL PARTITIONED ACROSS DEV S DOMAINS......coocieiiiieeecrrreee e srreee s 64
FIGURE 17: XML MODEL STRUCTURE DOCUMENT EXAMPLE.....uciiiiiiieeiieeiee e sereeee e ssreee s ssvveee s 66
FIGURE 18: DOMAIN-SIMULATION SESSIONS XML BINDING DOCUMENT EXAMPLEccovveennee 67
FIGURE 19: COUPLED #0 SPLIT BETWEEN TWO DEVSDOMAINS.......coiie ittt 67
FIGURE 20: ALGORITHM FOR SIMULATION MESSAGE PROCESSING.....ccceiiieiieeiireeeesssreeeessssseeessnns 69
FIGURE 21: DONE MESSAGE PROCESSING BY ROOT COORDINATOR....vceeiiereeeesisrreeessssreeessssreeessns 70
FIGURE 22: WEB-SERVICE COMPONENT DESIGNcccteieiiitiieeeiiieeeessieeeesssieeeessssaeesssseesssssssenessnns 71
FIGURE 23: EXCERPT OF RISE RESOURCES TEMPLATES.....utiteiiitieeeiitteeesssseeeesssaeeesssssesessssseeessns 80
FIGURE 24: RISE MIDDLEWARE GENERAL SIMULATION CONTAINERcoieeiiiteeessstreeesseveeeesans 81
FIGURE 25: SIMULATION EXPERIMENT RESOURCES (URIS)......ccciiiicie et 82
FIGURE 26: SIMULATION EXPERIMENT RESOURCES (URIS)......cociiiicie e 83
FIGURE 27: SIMULATION EXPERIMENT PATTERN CONTEXT ooeiiceiieiiiteeeesssreeeesssseeeesssssesesssssesessns 85
FIGURE 28: USER SECTION IN THE DATABASEoveiiiittiee e sttiee e stteee s s vtee s s svaee s s sbaeesssbaeesssneeeesanns 88
FIGURE 29: UNIFORM CHANNELS FOR RISE RESOURCEScccioiieeiitteee e seeee s esteee s svtee e sevreee e a0
FIGURE 30: RISE-BASED INTEROPERABILITY CHANNELS OVERVIEW ..cccoicvvieeeiiteieesseveeeesseveee e 91
FIGURE 31: RISE-BASED SIMULATION MESSAGES TRANSMISSIONuvveeiiiiieesiirieeessssreeesssseeessns 92
FIGURE 32: PROCESSING RECEIVED MESSAGE IN RISE MIDDLEWARE......cccceeiiiieeecisteeee e srveee e 93
FIGURE 33: RESOURCES AUTHORIZATION PROCESS......ccciiitiieiiitteee e siteee s ssreeeesssbaeesssseessssveeessanns 94
FIGURE 34: XML SIMULATION MESSAGE AGGREGATION EXAMPLE......ciicviieiieieee e seteee e eeveee e 96
FIGURE 35: DCD++ EXPERIMENT WITH TWO PARTITIONS DURING SIMULATIONcccvveeernveenn. 104
FIGURE 36: XML MODEL PARTITIONING EXAMPLE......cciiiieiieitteiiecsreee s ssreeessssvee s s sssveesssssveeee s 108
FIGURE 37: DCD++ PROCESSORS HIERARCHY PARTITIONING EXAMPLE......cccccvveeeeiiveceveeeeeeeenn 109
FIGURE 38: MESSAGE EXCHANGE DURING A SIMULATION CYCLE...uuuttiiiiiiieciieeeieee e e seesvveeeeeeseens 112
FIGURE 39: ROOT COORDINATOR HANDLING DONE MESSAGE ALGORITHMevveeevvveeeecsveeenn, 113
FIGURE 40: ROOT COORDINATOR SIMULATION PHASES ...cviiiiiieeectteeieee ettt svvae e e 114
FIGURE 41: DCD++ PROCESSORS HIERARCHY EXAMPLEciiiiictiiiiiiteiiesseeeeeeseeeeesssvaeeessvaeees 115
FIGURE 42: DCD++ SIMULATION PHASES AND TIME ADVANCEMENT .cocivvieie e ceveeeessiveeees 116
FIGURE 43: DISPATCHING AND AGGREGATING SIMULATION MESSAGESIN XML ...cccocvvvrrreenn. 119
FIGURE 44: DCD++ AGGREGATION MESSAGE QUEUES........oiiieiieiienieeteesieesseesnessseesseessesneeens 120
FIGURE 45: AGGREGATING SIMULTANEOUS SIMULATION MESSAGES TOGETHEReeeveeuveennn. 121
FIGURE 46: WORKLOADS PERFORMANCE TEST ENVIRONMENT ...eviiiiveiieireeeeessveeeessseeessssseeees 125
FIGURE 47: MESSAGES PATH PERFORMANCE METRICSc.uuiiiiiiieieiireeeesesreeesssseesssssesessnsseees 126

LIST OF FIGURES X

FIGURE 48: RPT AND CDPT AVERAGES FOR FIRST ENVIRONMENT SETUP......oocviiiiiiieeeecveeenn 128
FIGURE 49: ALL RUNS FOR THE FIRST ENVIRONMENT AT WORKLOAD 50.....cocovcvveieiiieeee e, 129
FIGURE 50: SECOND ENVIRONMENT SETUP RPT AND CDPT METRICS.....ccociie i 130
FIGURE 51: RISE-BASED AND SOAP-BASED DEPLOYMENT ON A MACHINEccovvvevivveee v, 131
FIGURE 52: MIDDLEWARE PROCESSING TIME (MPT) ON A PARTITION ...oecoveviivieieseecee e 137
FIGURE 53: FIRST ENVIRONMENT ALL RUNS EXAMPLE......cuuiiiiiiieie ettt svae s s svaeee s 143
FIGURE 54: SECOND ENVIRONMENT ALL RUNS EXAMPLE.......ccciiiiiiireiiesiriee e ssrree e svee e ssvreeas 143
FIGURE 55: THIRD ENVIRONMENT ALL RUNS EXAMPLE.....c.c.cciiiiiieieiiieei st s svae e ssvreees 144
FIGURE 56: EXECUTING MULTIPLE SHIP MODELS SIMULTANEOUSLY ..eeoviveeeieireeeessveeesssseeeens 145
FIGURE 57: MODELS PARTITIONS INTERCONNECTIONS.......uvtiiiiiteeieisseresssssseesssssssssssssssssssssees 150
FIGURE 58: XML CONFIGURATION EXAMPLE (SEE SETUPIN FIGURE 57)ocoveveieiieie e, 151
FIGURE 59: SIMULATION CYCLE AT TIME T EXAMPLE ..cciiiiteiie ettt s s svae s s svae s ssraeee s 154
FIGURE 60: EXAMPLE OF RISE-TM TO DOMAINS MESSAGEcvviiiiiiiiiesireeeessseesessseeeessssnees 155
FIGURE 61: EXAMPLE OF DOMAINS REPLY TO RISE-TM MESSAGE......cccoviiiieireeeessreeeeesvveeens 156
FIGURE 62: SIMULATION CYCLES EXAMPLE ... cutiiiiitteie ettt sireee e ssare s ssasae s s sssae s s sesbae e s ssnsrene s 157
FIGURE 63: RISE XML DYNAMIC CONFIGURATION ...uuviiiiieeeieiitreiessssesssssssesssssssssssssssssssssssssens 159
FIGURE 64: DYNAMIC SIMULATION PHASES EXAMPLEccuvtiiieteiiesseeessssssesssssaesssssssesssssnees 160
FIGURE 65: OVERVIEW OF SIMULATION WORKFLOWS EXAMPLEccvvtiiiireeeesereeeesevree e ssvreeens 162
FIGURE 66: WORKFLOW COMPONENT DESIGN ARCHITECTURE......ccisvtviieisreeeessseesessseeeessssnees 164
FIGURE 67: EXAMPLE OF A WORKFLOW TASK AND TASK INSTANCEScoccvveieieieeeessveeeessveeeens 165
FIGURE 68: STATE TRANSITION DIAGRAM FOR A WORKFLOW TASK ...eciiiivieieiireeressveeeesssneeens 166
FIGURE 69: TRACKING TOKEN STATESIN TASKSINSTANCES.......ceiiiiiiiiiinreeieinireeeessveesesssseees 167
FIGURE 70: EXCERPT OF YAWL NOTATIONAL ELEMENTS ..ciiiiitiiieiiteiiesseeeeessseeesssvaeessssseees 168
FIGURE 71: SIMULATION WORKFLOW COMPOSITE TASK (SW-CT) AND RISE INTERACTIONS.. 169
FIGURE 72: BUILDING-SIMULATION-MODEL COMPOSITE TASK WORKFLOWovevvevvvereirrnenan, 171
FIGURE 73: SIMULATION EXPERIMENTATION TASK WORKFLOW ...ccocuvviieieeeeiesseeeeesseeeeessveeees 173
FIGURE 74: WORKFLOW TOKEN INTERACTIONSWITH EXPERIMENT URISATRISE 175
FIGURE 75: XML DEFINITION FOR SIMULATION-EXPERIMENTATION TASK WORKFLOW 177
FIGURE 76: AN OVERVIEW OF ADDITIONAL RISE-BASED SERVICES......ocovcviieieieeieeseeeeeesveenans 187
FIGURE 77: MASHUP EXAMPLE. .. .uiiiiiiteieeseeeie e sttt e e setee e s seaes s s sestas s s sesssssssassaesssasseesssassessssassensens 188
FIGURE 78: RISE SERVER ARCHITECTURE OVERVIEW ..cccooveiiiiittieieisieeeeesssveeesssssessssseeesssssseses 203
FIGURE 79: MAIN-SUBSYSTEM ARCHITECTURE OVERVIEWccouvieiiiireieessireeessssveeeessvaeesssvaeees 204
FIGURE 80: DATA-SUBSYSTEM ARCHITECTURE OVERVIEW ..cocicuvviieiieeieesseiessssseesesssseessssssnees 207
FIGURE 81: RESOURCES-SUBSY STEM ARCHITECTURE OVERVIEWvvviiiiiiveeieiireeeesssveeeessseeees 210
FIGURE 82: UTILITY-SUBSYSTEM ARCHITECTURE OVERVIEW ...uvvviiiireiieiireeieesveeseesveeessssseees 214
FIGURE 83: SIMULATIONADMIN-SUBSY STEM ARCHITECTURE OVERVIEW ...cocovcvveeeivieeeeesieeen, 216
FIGURE 84: RISE TYPE OF DEPLOYMENTS ..uvviiiiittieeiiteeiessseeessssssesssssssssssssssssssssssssssssssessessssssens 221
FIGURE 85: MULTIPLE INSTANCES OF RISE RUNNING ON A SINGLE MACHINE.........cocveeeerreeenn. 222
FIGURE 86: CD++ PROCESSORS HIERARCHY ..ovvviiiiiiiiiiiiterrieieeesessreessesessssssssssssesssssssssssssssssssens 224
FIGURE 87: CD++ MODELSHIERARCHYcteteiiieeiieseieetiet e e e s e s evtese e s e s s s e ssaabaeesesasssssssssseseasasens 227
FIGURE 88: RISE RESOURCES URI TEMPLATE OVERVIEW ..veeiiiitvieieiesveieesssveeesssveeeessvaeesssssaeees 229
FIGURE 89: DCD++ EXPERIMENT XML CONFIGURATION DOCUMENT EXAMPLEcoveveereveenn. 234
FIGURE 90: EXCERPT OF DISPLAYED FRAMEWORK STATE USING A WEB-BROWSER.........cc....... 235
FIGURE 91: EXAMPLE OF EXPERIMENT STATE IN XML REPRESENTATION.....uvvtiieeeiireirreeeeeenenn 236
FIGURE 92: EXAMPLE OF SIMULATION EXTERNAL EVEN MESSAGEceiiivtieie e 240
FIGURE 93: RISE WADL DOCUMENT STRUCTURE EXAMPLEuvtiiiiieeiieecieeeie e e eeesvvaeeeeea e 246

FIGURE 94: RISE WADL RESOURCE DESCRIPTION EXAMPLE.......uuueuueeeeeeeeeusesesesssssseesssnsssssnnnnes 247

LIST OF ACRONYMS AND ABBREVIATIONS

AP

Cl
DCD++
DEVS
DS
HLA
HTTP
IPC
M&S
oS
P-DEVS
REST
RISE
RPC
RTI
SOAP
URL
URI
WADL
WS
WSDL
XML
YAWL

Application Programming Interface
Confidence Interval

Distributed CD++

Discrete EVent Simulation
Distributed Simulation

High Level Architecture

Hyper Text Transfer Protocol

I nter-Process Communication
Modeling and Simulation

Operating System

Pardlel-DEVS

Representational State Transfer WS
RESTful Interoperability Simulation Environment
Remote Procedure Call

Run-Time Infrastructure

Simple Object Access Protocol
Uniform Reference L ocator
Uniform Reference Identifier

Web Application Description Language
Web-Services

Web Services Description Language
Extensible Markup Language

Y et Another Workflow Language

Xi

CHAPTER 1: INTRODUCTION

Modeling and Simulation (M&S) has evolved to become a discipline that has its
own knowledge, formalisms, and methodologies [11]. Indeed, the technology has
advanced in the last 30 years to be applied in nearly every aspect of life [11][109][140].
At the heart of the M& S, technology is the model concept: a representation of a system
with the purpose to promote understanding of that system. The idea is that we abstract
what we learned about the system into a model that represents the system under study.
This abstraction implies aloss of information, but it allows us to describe the behavior of
the system, analyze it, and prove properties of the proposed model [139]. The second
concept is simulation, which refers to the execution of those models with particular sets
of data using a computing device [139]. This approach alowed solving problems with a
level of complexity that traditional methods could not answer. Computer-simulated
models also have additional benefits: they can be executed safely, and experiments can be
easily repeated in a cost effective, risk-free environment and are thus well suited for
training purposes [139].

As simulated systems become increasingly sophisticated, the simulation software
becomes larger and more complex. In these cases, the resources provided by a single-
processor machine often become insufficient to execute these systems. Paralel And
Distributed Simulation (PADS) is a technique that deals with these issues by executing
simulations over multiple processors [137][138][139]. Distributed simulation is
distinguished from paralel simulation by their physical architecture, communication

network and latency [58]. Paralel ssimulation systems usually exist in a machine room

CHAPTER 1: INTRODUCTION 2

connecting homogeneous simulation partitions with a latency measured of a few
microseconds, while distributed simulation can expand from a single building to global
networks usually interoperating heterogeneous processors (and software) [58]. A focal
point of distributed simulation software has been on how to achieve model reuse via
interoperation of different simulation components. Other benefits include [138]
connecting geographically distributed simulation components (without relocating
people/equipment to other locations), interoperating different vendor simulation
components (allowing M& S solutions reuse), providing fault tolerance, and information
hiding—including the protection of intellectual property rights [13][125], and simulating
larger problems via exploiting more available distributed computer resources (e.g.
memory).

As those benefits point out, interoperability is indeed the major function of most
existing simulation middleware [138][124][125]. Interoperability enables two or more
different software systems to interface and use each service correctly [130][138]. In the
case of distributed simulation, various simulation partitions (components) interoperate
with each other to execute the same simulation run throughout the network. Such
interoperability must be achieved at the semantic and syntactic levels. syntactic is the
standardized rules to exchange and structure information while semantics are the
meaning of the exchanged simulation information [130][154]. As distributed simulation
technology increasingly needs to interoperate heterogeneous systems on a global scale
(particularly over the Internet), we need to use mature interoperability standards.
Consequently, in most cases Web-Services are the technology of choice (the latest widely

accepted interoperability standards over the Web, which has been proven to achieve such

CHAPTER 1: INTRODUCTION 3

global interoperability between diverse systems of different disciplines). Indeed, Web-
services have aready been successfully used for achieving model and simulation
interoperability on the Web [140][154], which can be defined as the ability to deploy
services by a machine and consumed by a different machine via the Web [115][140]. At
present, the two most popular classes are the SOA P-based Web-services and the RESTful
Web-services [115][138]. Both types aim on reusing existing solutions on the Web,
motivated by enhancing collaboration to increase products quality with reduced cost. On
the other hand, they are different in the way they use to reach this goal, in particular, in

the way the services API is designed, orchestrated, and consumed at the software level.

1.1 Motivations, Objectives, and Assumptions

As aready mentioned, because of the expansion of the Internet, the way modern
systems are being built has taken a historical shift. Nowadays, for example, the customers
can have a say at early stages of a product development cycle as the Web can virtually
put them inside the factory walls, hence shifting away from the traditional company-
centric development methods [118]. Indeed, data sharing and reuse is becoming a
necessity for modern research, scientific and engineering organizations as the expansion
of the Internet and the advancement of XML and Web services technologies have
transformed the way modern systems are built [154]. Certainly, it is a powerful concept is
that to be able to assemble a number of existing Web-enabled services from around the
globe to form a new novel system. This notion starts gaining momentum in the M&S
field as countless of scattered solutions are waiting to be Web-enabled where they can be

accessed and reused by other systems, which leads to the need for a widely accepted

CHAPTER 1: INTRODUCTION 4

interoperability framework to overcome such systems heterogeneity issues [140]. Indeed,
while interoperability was in the past as an issue specific for a standard or a system, it is
now becoming a globalized notion that goes beyond the boundaries of the M& Sfield. For
example, the US department of defense is in the transition of moving all of its operations
into the Global Information Grid (GIG) [154]: a high-speed version of the Internet where
globally interconnected information entities, systems, and personnel store, share and
distribute information on demand to war fighters, policy makers, and support personnel.
Therefore, the road is currently open for the distributed simulation to incorporate
different simulation assets around the globe, motivated by reducing products cost and
enhancing solving problems rapidly. These types of motivations have affected the course
of distributed simulation technology and its requirements.

At present, the trend of distributed simulation (as discussed in Section 2.3) is
going toward cooperation at globalization level, information hiding and achieving a
genera container middleware that is able of supporting different simulation components
[12][125]. Thus, the middleware is in the heart of advancing distributed simulation use
and applications. Thisis because the middleware is responsible of exposing al simulation
components that reside on a machine [124][138]. Thus, the middleware does not only
affect the information flow from and to those components, but also the boundaries of the
audience circle that can access those components. Further, the middleware
interoperability methods play a major role in affecting the overall distributed simulation
synchronization algorithms and semantics [143]. This is because the distributed
simulation partitions need both communication and synchronization to work correctly,

which both of these are under the middleware control. These issues are clearly recognized

CHAPTER 1: INTRODUCTION 5

in the literature, for instance most published surveys (e.g. [12][13][125]) of experts of

different backgrounds require the distributed simulation middleware to solve most of the

technology current challenges, as discussed in Chapter 2. Therefore, Web Services alow
building distributed simulation middleware that can interoperate diverse simulators,
assemble new systems from existing ones, and put anything within a simulation loop

(regardless of systems platforms, implementations, architectures or geographical

boundaries). We envision, for example, a user that pipelines different solutions outputs

(collected from around the world) as inputs to other components by simple drag-and-drop

operations to invent a new system that might have taken years to build without such

capability. However, such vision will never become reality until enough research is
conducted to study and experience the basic distributed simulation interoperability at the
software level (particularly by using Web-services over the Internet).

Based on the above, our objective is to develop an all-purpose Web-services
based distributed simulation middleware with features similar to the following:

e To find a framework that eases distributed simulation interoperability protocols
between different independent-developed simulation systems. In this case, systems
heterogeneity (which resides in implementation) must be hidden in the way
information is exchanged, accessed and described, hence at the software levels of the
API and semantics.

e The middleware should serve as container of any type of simulation environment.
Therefore, the middleware must be independent of any specific implementation,

synchronizations agorithms and semantics, or formalisms. This means that the

CHAPTER 1: INTRODUCTION 6

simulation environments should operate at a different layer above the middleware,
allowing the middleware to be extended to support various environments.
Composition scalability: the middleware must ensure composition scalability in the
distributed simulation environment regardless of the number of partitions.

Each ssmulation environment (component) type should be able to support multiple
interoperability distributed simulation synchronization protocols. This includes the
way models partitions are coupled, the way simulation is advanced and the way
simulation messages semantics are structured and processed. Such protocols should
also be flexible enough for future enhancements in particular integrating performance
related techniques.

Design scalability: The middleware structure must scale up when adding/removing a
simulation environment type. This also includes the middleware address space
(URIs).

Experiment-oriented framework:

- Modeler-oriented: Experiment instances resources (URIs) are created and
named by modelers. They can be created for any model, of any settings of any
simulation environment.

- Define an experiment with a semantic Web interface. In this case, an
experiment instance is spread over a number of URIs, similar to any other
attached URIs to the Web. This interface enables those simulation
experiments to be manipulated externally viathe Web.

- Define a blueprint experiment pattern that is satiable for workflows use,

allowing experiments sharing, automation, repeatability, and reusability.

CHAPTER 1: INTRODUCTION 7

- Distributed simulation experiments partitions are configured and distributed
on participant machines by the middleware.
- All experiment resources (URIs) must be preserved indefinitely unless deleted

by their owner (i.e. the authorized user).

The research first attempted to achieve these objectives using the SOAP-based
WS, which was successful to some extent in hiding implementations in components and
reducing synchronization protocols programming dependency, as discussed in Chapter 4.
However, since interoperability is realized at the software level via their systems API
links and the exchanged information through those links, it makes it difficult for a
middleware to achieve certain objectives if an applied technology (i.e. SOAP-based WS
in this case) places implementation constraints on those software interoperability joints
(see Chapter 2). These problems were better solved via basing the middleware on
RESTful WS, mainly because REST separates systems implementations from their API
and the exchanged information semantics, which is a fundamental concept that affects
most of the middleware interoperability methods. The RESTful Interoperability
Simulation Environment (RISE) middleware we developed is the first existing
middleware to achieve these goals via the use of RESTful WS.

The RISE middleware serves as general container that is capable of encapsulating
different smulation environments. This general concept led to layered interoperability,
which includes the Middleware Layer, the Smulation Layer, and the Modeling Layer.
The Middleware Layer provides all means to exchange all information (on behalf of the

supported simulation environments) and to encapsulate supported solutions. The

CHAPTER 1: INTRODUCTION 8

Simulation Layer deploys different simulation environment types (e.g., DCD++,
discussed in Chapter 6) where the Modeling Layer operates on the top of a simulation
environment. These three layers cover al interoperability aspects of distributed
simulation interoperability and modeling. Thus, it is beyond a single research to face all
of ssimulation and modeling related issues at once. Hence, this research focuses on some
of these issues, opening the door for future researches to carry on further (see Chapter 9).
Conseguently, this thesis makes the following assumptions:

e As the RISE middleware serves as a general container for different simulation
environments, the simulation time and data distribution management should be a part
of the ssimulation environment responsibilities (at the simulation layer). This approach
allows the middleware to be open for extensions, in particular for supporting different
types of simulation environments.

e Modd representations are compatible with the ssimulation environments in their
partitions. Thus, the conceptual alignment is provided by the model designer, and not
by the middleware. In other words, RISE assumes that the distributed model
interrelations comes from the modeler (e.g. in form of XML file) as part of setting up
an experiment. However, the middleware should allow the modeler to manipulate this
information at anytime.

It is worth to note that the RISE environment layers:. Middleware, simulation, and
modeling still match other existing interoperability conceptua frameworks, particularly
the Level of Conceptua Interoperability Model (LCIM) framework [130]. The LCIM
generdly divides interoperability into three general layers (Figure 1): Integratability

(which deals with networks issues and connectivity), Interoperability (which deals with

CHAPTER 1: INTRODUCTION 9

the software implementations of interoperations, including simulation and middleware),

and Composability (deals with the alignment issues of the models).

Comnposabilivy
hModels Adignment
(Specitie to g simulation envirsment)

Interoperabifivy
RISE Middleware and Simulation Environmenis

Tnregrarabilivy
RISE Middleware (HTTFP Handling)
HITE over TCPTP

Figure 1: RISE Layerswithin LCIM Framework

In the scope of this thesis, the focus is on the LCIM Interoperability layer (Figure
1). In RISE, this layer contains the middleware and supported simulation environments
(which can be extended with simulation environments). The RISE middleware is
involved in the Integratability layer for handling the HTTP envelope and TCP
connections. However, in the LCIM Composability layer, the RISE middleware assumes
that the models conceptual alignment is provided by the designer as previously stated in
the Assumptions above. Note that in this thesis context, the composition term deals with
interoperating various distributed simulation partitions. In this case, a partition is number
of URIs (within the middleware) that encapsulates a portion of a distributed model along
with a simulation environment that is capable of executing that portion of the model. Our
use of this term is in conformance of the Web service literature [115]. In this case, a
partition is viewed as a WS component. However, in the M&Sfield, asin the case of the

LCIM conceptual framework and other existing works (e.g. [45][106][113]),

CHAPTER 1: INTRODUCTION 10

composability in some cases deals with the issues of constructing a model correctly to
achieve asolution.

The RISE middleware is designed as a resource-oriented architecture, which
means that al functionalities (resources) are spread in a parent-child relationship
structure. Resources are addressed via URI templates (blueprints). Thus, resources are
classes of services whose URI instances can be named and created at runtime. Therefore,
RISE deploys simulation services in classes so that modelers can create instances of those
services classes as part of their experiments. This provides modelers with an experiment
blueprint since an experiment instance can be created for any simulation environment
with settings manipulated via a few URIs throughout its life cycle. To enhance
composition scalability, each resource (URI) is connected via few virtual software
channels (i.e. HTTP methods in RISE case), hence a uniform-interface mechanism to
exchange information between resources instances (i.e. experiments URIS). This means
that each resource is connected with the same number of virtual links regardless of the
number of simulation partitions. Further, all synchronization simulation messages
semantics are described in XML, a message-oriented method describing the syntax of the
information exchanged via those uniform channels. The uniform interface and the
message-oriented concepts alow RISE to hide system implementations in components,
which is where systems heterogeneity lives. Further, the use of XML messages allows
each simulation service to support multiple synchronization algorithms and protocols to
accommodate different interoperability domains, which alow systems to evolve

independently.

CHAPTER 1: INTRODUCTION 11

1.2 Thesis Contributions

As discussed in the previous section, the central theme of this thesisis to improve
distributed simulation interoperability and synchronization agorithms at the software
level. Our objective is to develop an all-purpose Web-services based distributed
simulation middleware. The interoperability methods are introduced by studying the
interoperability structural and syntactic rules that form the foundations of the design
methodologies of those methods. Those methods were initially developed using the
SOAP WS framework. However, due to the numerous problems posed by SOAP WS, we
explored the use of the RESTful WS. This thesis presents the first existing effort on
distributed simulation interoperability methods using the RESTful WS principles
according to the major Web standards: HTTP, URI, and XML. The key contributions are
summarized as the following:

e The research first extended an existing SOAP-based DCD++ with a new WS
component to enhance hiding the CD++ internal implementation as much as possible.
This component consists of a few RPCs and supports synchronization algorithms that
describe exchanged messages between partitions in form of XML messages (i.e. as
SOAP attachments).

e The design and development of the RISE middleware, which is the first existing
middleware to be fully based on RESTful WS principles according to the Web
standards. The RISE key features are summarized as the following:

- Itisagenera middleware where it serves as a container to hold different software

components without being specific to any implementation.

CHAPTER 1: INTRODUCTION 12

- It organizes the resources in a scalable hierarchical relationship. Resources are
exposed by the middleware as URI templates. This means that those resources
instances can be created and named by modelers at runtime. This leads to the
concept of general layered interoperability where different simulation resources
(URIs) organized at a separate layer above the middleware.

- Because RISE experiments are seen as URIs, URI templates allow RISE to provide
experiments as blueprint patterns. This means that various experiments of different
types and URIs can be created at runtime, and that the usual steps that are usually
performed manually to create and manipulate experiments can be automated, asin
the case of simulation workflows.

- RISE maintains al URIsin adatabase (unless they are deleted by authorized users).
This database allows RISE to maintain al URIs similar to a typical HTTP server,
allowing all experiments related data such as models and simulation results to be
accessed viatheir URIs on the Web.

- The resources (URIs) access channels are designed in RISE as virtual software
channels, and are realized outside the resources internal implementations. Further,
by having standardized channels for each resource, RISE enhances composition
scalability and improves dynamicity in distributed simulation (since the channels of
each resource automatically exist upon that resource creation). Furthermore,
because of the uniform interface, al messages are transmitted uniformly regardless
of the number of destinations.

- The exchanged data syntax is designed as XML messages used by the distributed

simulation synchronization algorithms. This further enhances the idea of supporting

CHAPTER 1: INTRODUCTION 13

multiple synchronization methods, since each agorithm can have its own set of
XML messages.
In RISE, since the exchanged data (XML messages) and the access channels form
the resources APIs, thus, simulation systems APIs are realized outside interoperated
systems implementations. In contrast, current approaches (e.g. HLA, SOAP WS)
systems APIs are embedded in implementations (Chapter 2).
The RISE middleware is fully multithreaded. In this case, each message is
transmitted in its own thread, and each received message to a URI is processed
within its own thread. This mechanism allowed RISE to balance load distribution
well under increasing workload pressure.
The Authentication and Authorization schemeis required on al channels that might
modify aresource while not required, by default, on the read-only channels.
APl XML Description (based on XML WADL standards) is used to publish the
APl in XML machine processing format. This WADL document is retrieved on
demand by usersviathe HTTP OPTION channel (see Appendix-B).
RISE supports two types of deployments as a standalone HTTP server or as a
Servlet runsinside any HTTP server containers (see Appendix-A).
An interface is developed between CD++ and the RISE middleware so that various
instances of CD++ engines can cooperate with each other to simulate the same
distributed simulation session. In this case, the distributed CD++ (DCD++)
simulation is performed within the RISE middleware experiment framework. This
means that experiment URIs can be created, named, and manipulated at runtime.

During simulation, algorithms synchronize simulation activities by exchanging XML

CHAPTER 1: INTRODUCTION 14

messages between partitions URIs. Further, algorithms use an aggregation scheme to
group multiple simulation messages in single XML messages to reduce the number of
remote transmissions via the Web. These algorithms (via RISE) showed a substantial
performance improvement when compared to the current SOAP-based DCD++
system.

e The design of a workflow component (on the client side) that could be used to
automate the steps been taken by modelers to create and manipulate experiments
(which can be easily implemented on the RISE middleware). Such component would
serve as means for automation, repeatability, controlling processes and management.

e This research has also contributed in the process of DEVS standardization to
interoperate different DEV S-based implementations by organizing and evaluating
different DEVS groups recent interoperability methods (published in
[140][141][142][143]). As part of this process, the research proposed distributed
simulation algorithms to synchronize simulation activities via the Web by exchanging
XML messages wrapped in HTTP envelopes. The main RISE methods have also been
incorporated into those agorithms such as hiding systems implementations,
composition scalability, dynamicity and message aggregation in XML. A dynamic
extension has also been proposed to handle the idea of having systems join/digoin
simulation session during runtime. The main contribution of such algorithms is that

they are presented without dictating their software implementation methods.

1.3 Research Publications

Parts of this thesis have appeared in the following publications:

CHAPTER 1: INTRODUCTION 15

Journal Papers:

e Wainer, G.; Madhoun, R.; Al-Zoubi, K. “Distributed Simulation of DEVS and Cell-
DEVS Models in CD++ using Web-Services”. Simulation Modelling Practice and
Theory 16 (2008), pp. 1266-1292. Elsevier.

Book Chapters:

e Al-Zoubi K.; Wainer, G.; “Distributed Simulation Using RESTful Interoperability
Simulation Environment (RISE) Middleware”. Chapter 6 in “Handbook on
Intelligence-based Systems Engineering”. Andreas Tolk and Lakhmi Jain Editors.
Springer-Verlag (expected publication in 2011).

e Wainer, G. and Al-Zoubi, K. "An Introduction to Distributed Simulation”. Chapter
11 in book “Modeling and Simulation Fundamentals: Theoretical Underpinnings
and Practical Domains”. Catherine Banks, John Sokolowski Editors. Wiley. New
Jersey, 2010.

e Wainer G., K. Al-Zoubi, S. Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.
“DEVS Standardization: Foundations and Trends”. Chapter 15, “Discrete-Event
Modeling and Simulation: Theory and Applications.” G. Wainer, P. Mosterman
(Editors). CRC Press. Taylor and Francis. December 2010.

e Wainer G., K. Al-Zoubi, S. Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.
“An Introduction to DEVS Standardization”. Chapter 16, “Discrete-Event Modeling
and Simulation: Theory and Applications.” G. Wainer, P. Mosterman (Editors).
CRC Press. Taylor and Francis. December 2010.

e Wainer G., K. Al-Zoubi, S. Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.

“Standardizing DEVS Model Representation”. Chapter 17, “Discrete-Event

CHAPTER 1: INTRODUCTION 16

Modeling and Simulation: Theory and Applications.” G. Wainer, P. Mosterman
(Editors). CRC Press. Taylor and Francis. December 2010.

e Wainer G., K. Al-Zoubi, S. Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.
“Standardizing DEVS Simulation Middleware”. Chapter 18, “Discrete-Event
Modeling and Simulation: Theory and Applications.” G. Wainer, P. Mosterman
(Editors). CRC Press. Taylor and Francis. December 2010.

Conference Papers:

e Al-Zoubi K.; Wainer, G.; “Managing Simulation Workflow Patterns using Dynamic
Service-Oriented”. Proceedings of the Winter Simulation Conference (WSC 2010).
Baltimore, Maryland, USA. 2010.

e Al-Zoubi K.; Wainer, G. “RISE: REST-ing Heterogeneous Simulation
Interoperability”. Proceedings of the Winter Simulation Conference (WSC 2010).
Baltimore, Maryland, USA. 2010.

e Al-Zoubi K.; Wainer, G. “Using REST Web-Services Architecture for Distributed
Simulation”. Proceedings of the 23rd ACM/IEEE/SCS Workshop on Principles of
Advanced and Distributed Simulation (PADS 2009). Lake Placid, New Y ork, USA.
June 2009.

e Al-Zoubi K.; Wainer, G. “Performing Distributed Simulation with RESTful Web-
Services Approach”. Proceedings of the Winter Simulation Conference (WSC
2009). Austin, TX, USA. 20009.

e Al-Zoubi K.; Wainer, G. “Interfacing and Coordination for a DEVS Simulation

Protocol Standard”. Proceedings of the 2008 12th IEEE/ACM International

CHAPTER 1: INTRODUCTION 17

Symposium on Distributed Simulation and Real-Time Applications (DS-RT '08).

Vancouver, BC, Canada. October 2008.

1.4 Thesis Organization

The rest of the chapters are organized as follows: Chapter 2 provides background
information about the distributed simulation state-of-the-art and Web-services
technologies. It further discusses the trends and challenges of distributed simulation and
current approaches limitations. Chapter 3 discusses the main argument of the thesis. It
summarizes the major existing problems in current distributed simulation interoperability
(previously detailed in Chapter 2) and shows how these issues are solved based on both
SOAP-based (detailed in Chapter 4) and RESTful WS (detailed in Chapter 5). Chapter 4
discusses the proposed design methodologies and implementation based on the SOAP-
based WS dtructural rules and standards. Chapter 5 discusses the RESTful
Interoperability Simulation Environment (RISE) middleware design methodologies.
Chapter 6 discusses the design methodologies of interfacing CD++ into RISE so that it
can perform distributed simulation on the Web. It also describes the distributed CD++
(DCD++) agorithms that enable various CD++ instances to synchronize the distributed
simulation via RISE. Chapter 7 anayzes the performance of the RISE middleware in
two parts. The first part studies the middleware sensitivity under increasing concurrent
workload pressure. The second part studies the distributed simulation performance by
comparing the SOAP-based DCD++ against the RISE-based DCD++. In this case, both
systems are placed in a similar testing environment while ssimulation performance is

compared over executing various CD++ models. Chapter 8 describes additional RISE-

CHAPTER 1: INTRODUCTION 18

based methods. It first presents additional distributed simulation algorithms built with
RISE (which could be used as a feasible proposal for DEVS standardization). It then
shows how RISE could improve simulation experimentation via the use of workflows.
Chapter 9 summarizes the thesis topics and presents suggestions for possible future
work. Appendix-A presents the RISE middleware implementation, RISE deployment
types, and the implementation of interfacing the CD++ engine into RISE. Appendix-B
summarizes the RISE APl with more focus on the simulation blueprint experiment

related API, since they form the URI templates for all simulation experiments.

CHAPTER 2: BACKGROUND

Distributed simulation technologies employ multiple distributed processors,
connected via communication networks, to execute the same simulation run over a
geographic area correctly [58][138]. Correctness means that the simulation should
produce the same results as if it was executed sequentially using a single processor [58].
Distributed computers can expand from a single building to global networks, often
employing heterogeneous processors (and software), and communication latency is
measured with hundreds of microseconds to seconds. The simulation is divided spatially
(or temporally) and mapped to participating processors [58].

A focal point of distributed simulation software has been on how to achieve
model reuse via interoperation of different simulation components. Indeed,
interoperability is the maor function of most existing simulation middleware
[138][124][125]. Such interoperability must be achieved at the semantic and syntactic
levels [130]. Syntactic is the standardized rules to exchange and structure information
while semantics are the meaning of exchanged simulation information [130].

In this chapter, we present an extensive survey of different applied distributed
simulation approaches. In terms of where they come from, their current state, and where
they are heading. These approaches have advanced distributed simulation by exploiting
other technologies advances in software, hardware and standards. In most cases, the
Web-services technology is highly leveraged, which has proven useful in achieving
model and simulation interoperability [140][154]. Web-services (WS) provide general

interoperability syntactic standards, enabling deployment of services on a machine and

19

CHAPTER 2: BACKGROUND 20

consumed by another via the Web. They fall into two popular classes. SOAP-based WS

and RESTful WS[115].

2.1 A Brief History of Distributed Simulation

Simulations have been used for war games by the U.S. Department of Defense
(DoD) since the 1950s. However, until the 1980s, simulators were developed as stand-
alone and with a single-task purpose (such as landing on the deck of an aircraft carrier).
Those standalone simulators were extremely expensive compared with the systems that
they were supposed to mimic. For example, the cost of a tank simulator in the 1970s was
$18 million, while the cost of an advanced aircraft was around $18 million (and a tank
was significantly less) [91].

The defense sector started such distributed simulations with the SIMulator
NETworking (SIMNET) project in 1983 [31][91][128][129]. The success of SIMNET led
to developing standards for distributed interactive simulation (DIS) during the 1990s
[75][76][77][78]. Indeed, DIS can be viewed as the standardized version of SIMNET.
SIMNET and DIS use an approach in which a single virtual environment is created by a
number of interacting simulations, each of which controls the local objects and
communicates its state to other simulations. This approach led to new methods for
integrating existing ssimulations into a single environment, and during the 1990s, the
Aggregate Level Simulation Protocol (ALSP) was born. ALSP was designed to alow
legacy military simulations to interact with each other over LANs and WANSs. For
example, ALSP enabled Army, Air Force, and Navy war game simulations to be

integrated in a single exercise [6][56][9]. The next mgor progress in the defense

CHAPTER 2: BACKGROUND 21

simulation community occurred in 1996 with the development of the High Level
Architecture (HLA) standards [72][73][74][82]. HLA was a major improvement because
it combined both analytic simulations with virtual environment technologies in a single
framework [58]. The HLA replaced SIMNET and DIS, and al simulations in US
Department of Defense (DoD) are required to be HLA compliant since 1999 [58].

The distributed simulation advancement in the defense community along with the
popularity of the Internet in the early 1990s led to the emergence of nonmilitary
distributed virtual environments, for instance, the distributed interactive virtual
environment (DIVE) (which is still in use since 1991). DIVE alows a number of usersto
interact with each other in avirtual world [55]. The central feature in DIVE is the shared,
distributed database where all interactions occur through this common medium. Another
environment that became popular during the 1990s was the Common Object Request
Broker Architecture (CORBA) [67]. CORBA introduced new interoperability
improvements since it was independent of the programming language used. On the other
hand, CORBA use had sharply declined in new projects since the year 2000 [66].
Examples of CORBA based simulation are described in [37][88][152]. Some reflect this
for being very complicated to developers or by the process by which the CORBA
standard was created (e.g., the process did not require a reference implementation for a
standard before being adopted [66]). Further, Web services emerged as an aternative
approach to achieve interoperability among heterogeneous applications (which also
contributed to CORBA’s decline). Web services standards were fully finalized in the year
2000 (i.e. SOAP [25][83] and WSDL [39][40]). However, other WS needed standards

particularly the TCP/IP, HTTP, and XML [27][150] standards had already matured

CHAPTER 2: BACKGROUND 22

during the 1990s. SOAP WS and CORBA programming styles are similar, but with
different standards (e.g. WSDL vs. IDL). This similarity perhaps allowed CORBA -based
legacy systems to migrate to SOAP WS with less difficulty. This point can be seen when
CORBA-based simulation systems are compared against their SOAP WS counterpart
systems design (e.g. [37][46][152]). Further, Web-services technology fever has recently
spread back to the defense sector. For example, the new HLA |IEEE 1516-2007 [74]
standard is extended with a Web-service interface.

It is worth to note that the Web-based simulation concept goes beyond having
several computers performing distributed simulation on the Web. In addition to Web-
based distributed simulation, other Web-based simulation categories have been used
[29][44][53][107]. Examples of such categories are loca visuaization (to download a
simulation engine with visualization capabilities), remote visualization (to use a browser
to access a remote simulation engine with visualization capabilities), hybrid visualization
(to execute simulation remotely and view results locally), and models repositories (to

store models representations to enhance model s reusability).

2.2 A Survey of Distributed Simulation Approaches

Distributed simulation can be divided into two parts. agorithms and middleware
[138]. Distributed simulation middleware is responsible for interoperability and
composability. On the other hand, algorithms are concerned with synchronizing the
overal simulation correctly. They can be classified in two types [58]: the conservative
type (e.g. [28][34][43]) which executes safe events to avoid local causality errors while

the optimistic type (e.g. [80][97][117]) advances simulation optimistically, but fix those

CHAPTER 2: BACKGROUND 23

errors once detected [58]. The common implementation of the existing distributed
simulation systems is summarized as follows (e.g. [19][36][152]): (1) A time-coordinator
component requests the minimum time from al partitions. (2) The time-coordinator
calculates the global minimum time, broadcasts it to all partitions, and waits for their
replies. (3) The time-coordinator instructs al the partitions to execute the events with

minimum global time, waits for all partitions replies, and starts again with step #1.

2.2.1 HLA-based Simulation and Limitations

The HLA [87] was developed to provide a genera architecture for simulation
interoperability and reuse [72][73][74]. Examples of HLA-based simulations are
described in [14][69][135]. Figure 2 shows the overal HLA simulation interaction
architecture. The HLA simulation entities are called Federates. In this case, multiple
federates (called a Federation) interact with each other to synchronize the overall

simulation using the Run-Time Infrastructure (RTI).

Federate A Federate B
FederateAmbassador FederateAmbassador
M M
k4 W
RTIAmbassador RTIAmbassador
Run Time Infrastructure Run Time Infrastructure
(RTI) (RTI)

Figure2: HLA Interaction Overview

The HLA standards consist of three parts: (1) the Object Model Template (OMT)
[73], (2) the HLA Rules [74], and (3) the HLA Interface Specification [74]. The Object

Model Template (OMT) [73] provides standards for documenting HLA Object Model

CHAPTER 2: BACKGROUND 24

information. This ensures detailed documentation (in a common format) for al visible
objects and interactions managed by all federates. The HLA Rules [74] describe the
federates obligations and their interactions with the RTI. The HLA interface specification
standardize the API between federates and RTI services [74]. The specification defines
RTI services and the required callback functions that must be supported by all federates.
Many contemporary RTI implementations conform to the IEEE 1516 and HLA 1.3 API
specifications such as Pitch pRTI™ (C++/Java) [111], CAE RTI (C++) [30], MAK High
Performance RTI (C++/Java) [94], and poRTIco (C++) [110]. However, the RTI
component itself is not part of the standards.

The HLA standard is mainly involves in interfacing federates with local RTIsin a
specific programming language. RTI is the important component in HLA, since it
connects the whole federation. Federates use the RTlambassador method to invoke RTI
services while the RTI uses the FederateAmbassador method to pass information to a
federate in a callback function style (Figure 2). A callback function is a function passed
to another function in the form of reference (e.g., C++ function pointer). These callback
functions are called interactions in HLA.

The RTI provides a number of different services groups. Two of the major groups
are the Time Management and the Data Distribution Management (DDM) services. DDM
services distribute data in the federation (i.e. data routing) while the Time management
services ensure events delivery and logical time advancement. These two groups usually
get the most research attention because of their direct affect on the RTI performance and
its quality of service (QoS). Some of the RTI performance research efforts (e.g.

[20][21][99][157]) focused on using techniques such as multi-threading and load-

CHAPTER 2: BACKGROUND 25

balancing. Other efforts (e.g. [16][22][23][127]) focused on improving DDM methods of
shipping attribute regions between RTIs. The main purpose of such methods is to avoid
unnecessary information transmission across the network. Further, some research efforts
focused on providing RTI forma design methods. For example, work described in [17]
uses DEV S formalism [153] as the forma method to design a Real-time RTI.

On another line of work, a new WSDL API has been added to the HLA |IEEE
1516-2007 standard [74]. Examples of such efforts are described in
[18][84][102][156][158][159]. In this way, federates can connect with the Web Service
Provider RTI component (WSPRC) using SOAP WS (Figure 3). However, this solution
still does not solve interoperation of different WSPRC vendors, since the standards do not
cover this part. Further, it does not provide a scalable solution, since many simulation

components are still managed by a single component.

WS T ‘
| " Federate Federate |,
‘ Federate \ Fedarate ;E f'
— < sOaPWs .
TN #

"i:" i

\ r.| Web-Service Provider RTI J

[RTI ‘ RTI ‘ L : C‘nn_i_p-:nnﬂlt_l"_-.’-."S-PR{_:‘.- ‘
Figure 3: Interfacing RTI with Web Services

The HLA presents a number of shortcomings that can be summarized as follows:
e The HLA only standardizes the programming interface (functions) for integrating
federates into local RTI, but RTI-to-RTI interoperability is not standardized, hence

vendor specific.

CHAPTER 2: BACKGROUND 26

The HLA RTI does not scale up and acts as a shared bus for all federates.

It can be difficult to integrate federates with a local RTI if the federates are not
implemented with the same language of that RTI. This even gets worst if federates
are implemented in a language other than C++ or Java, since existing RTIs mostly
implemented in those programming languages.

The RTIs maintain simulation information as attributes in regions. In this case, an
RTI ships an entire region to other remote RTIs once that region is updated. Thus, the
RTIs may transmit redundant information remotely. To solve this problem, the HLA
DDM services require optimization via complex algorithms to deliver the information
needed as accurate as possible (e.g. [15][21][22][113]).

Interfacing federates with RTIs can vary from a standard to another. For example, itis
a strong selling point for commercial RTIs to be able to use the old HLA-1.3 based
federates with the new HLA-1516 based RTI implementations. This is because the
federate-RTI interface is programming design dependent. Thus, it may not be trivial
issue to migrate those functions to the new standard design.

The standards are complex and tied to programming languages.

2.2.2 SOAP-based WS Simulation and Limitations

SOAP-based WS simulations [49][108] use a client-server model where clients

initiate requests to consume services from remote servers. The SOAP-based WS

framework is discussed in details in section 2.4.1. In this case, the simulation components

(e.0. [89][101][137]) act as both client and server. A simulator becomes a client when it

sends a message, while the receiver simulator becomes the server. This mechanism is

shown in Figure 4. In this method, the sending component passes al simulation

CHAPTER 2: BACKGROUND 27

information as parameters into the subject procedure (stub) and makes a procedure call.
Consequently, a procedure (service) is caled in the receiver simulation software where
the passed-in information is processed. This is exactly like invoking a procedure directly
a the receiving smulation software (Figure 4). Therefore, al different simulation
components become a virtual single implementation coupled by those procedures. It is
worth to note that XML is not applied at the ssmulation synchronization level, in spite of
being used at the underlying Web-service level (discussed in Section 2.4.1). On the other

hand, the XML standards have widely been recognized as the way to arrange information

[154].
! Jothware fmplemeniation Couplmg
. Smeirenization Sensmmiics I ,-"’ A p ;

o - daserihed b Proveshore Parameter I|!¢,_ ﬂr}leﬂll".x'.gr i deserihe '\ul.IJllm i R

: J e P ;
f £
) _) [Py Sinulation-F Side

R Simudotion-A Sile i .
W !
; = Bzmiice Stk i nrell, a2l

Service-Dargh, argl, .. | Service Stub-2argl, argl.

Service-2{argh, argl. .. 0

= ’ S y q
Servicestib-3iaral, angl,) = L 2 servRoe-Sargh, argl, .. 5 s
ServiceSmb-d(arel. angl, ¥ | = Service-Hargl, argl, ..)i ;
I i
L [
: " I !
(Clignr sy o ..'_F'--l'.'._H||r.'1.-..'._-.--.ull:l|.'..u|-..-.' rimia - f
I ot (Collecrion of Services procedures) =~
> Port Services (Server side) I
¥ Gl |
[:: Port Stehs (Cligni sude)

Figure4: Interoperating SOAP-based WS Simulations

Many simulation systems have evolved and been developed independently. Thus,
interoperating those systems via the RPC style API can be a complex task to accomplish.
This task even gets more complicated when attempting to interoperate legacy

independent-developed systems. This is because al existing heterogeneous APIs for al

CHAPTER 2: BACKGROUND 28

systems need to be homogenized. The RPC style is a heterogeneous interface because
procedures are invented by different programmers to fit their systems specific needs. In
this type of interoperability, ssmulation systems are usually best to be designed according
to a preexisting common RPCs interface. For example, the IDSIim federation simulators
[57] use the Globus Toolkit [52] implementation of the Grid Services Infrastructure
(OGSI) [134] specifications to provide distributed simulation on the Web. The OGSl
defines SOAP-based WS interoperability specifications with defined set of RPCs. In this
case, the IDSIm software design architecture (as described in [57]) has clearly been
extended from the Globus implementation. This is because the SOAP WS sneak into
software design and implementations. This may work well for the IDSIim system, but it
may not necessary work as well for a different system (in particular, if the latter system
had already been designed without taking OGSI interface in consideration).

Further, this type of APl leads to other challenges particularly in the areas of
systems composition scalability and dynamic interoperability. The composition
scalability problem arises because a procedure stub is needed at the client side for every
unique service at the server side (Figure 4). Further, because these stubs are programming
procedures, they need to be written and compiled with the client software. Thisis a static
approach and can be a problem for simulation systems that need to apply dynamic
interoperability. For example, the Ad Hoc distribution simulation based systems require
that the number of simulators is not known in advance and can be changed during
simulation runtime [59]. Furthermore, passing simulation information in a form of
procedure parameters complicates semantic standards. This is because implementation

issues can easily sneak into those standards.

CHAPTER 2: BACKGROUND 29

A performance issue worth mentioning is that RPCs in existing SOAP-based

simulation implementations (e.g. [89][101][137]) are implemented as blocking calls. This

means that the sending simulation needs to be blocked until the RPC is compl eted.

To summarize RPC-style issues:

RPCs split implementation between different systems, since procedures in a
system implementation directly point to other procedures in other systems
implementations.

Heterogeneous interface, since RPCs were invented by programmers to fit their
systems specific needs.

Making interoperability sensitive to changes since any slight change would break
interoperability with other systems even at compiling time.

Static approach since software compiling is required in advance before
interoperating with new systems.

Make it difficult to support multiple interoperability protocols. This is because
exposing different RPC-based APIs still need to map to the same internal calls.
Make it difficult to develop semantic standards. This is because semantics need to
be expressed as procedure parameters, which usually sneak into internal systems
implementations, hence standardizing implementation.

Services composition does not scale well since a stub is required at the client side
for each unique service at the server side.

Tools convert WSDL into empty stubs, leaving programmers to write those stub

functionalities, which would slow services compositions.

CHAPTER 2: BACKGROUND 30

e Tools treat changes to existing RPCs as new services, causing programmers to

verify and test each new RPC against already existing services.

2.2.3 Additional Simulation Approaches

We already covered a number of approaches when we discussed the history of
distributed smulation such as DIS, ALSP, CORBA, and DIVE. However, more
approaches were also used.

Distributed simulation has also been used in the grid environment. For example,
DEVS/Grid [121] implements a grid-enabled DEVS simulator following a layered
approach. Another grid example is described in vGrid [86], which divides the model into
components that can be grouped together to form avirtual computational unit.

Other distributed simulation systems made a use of the IXTA standards [81][147].
JXTA is an open peer-to-peer (P2P) [147] standards developed by Sun Microsystems.
Examples of such efforts are described in [19][36]. In the P2P systems, simulation
messages may go through a number of intermediate machines before reaching their
destinations.

DEVS/RMI [155] is adistributed DEV S simulator based on Java Remote Method
Invocation (RM1). RMI is similar to CORBA and SOAP WS at runtime, but works only
with Java. ISEE [100] is distributed simulation example that is based on MySQL
database [48]. In this case, dl of the simulation components synchronize via the MySQL
database unit, which keeps tracks of all states and activities across the network.
Performing distributed ssmulation directly on top of TCP was also used. For example, the
work described in [96] performs red-time distributed simulation using TCP socket

communications.

CHAPTER 2: BACKGROUND 31

2.3 Trends and Challenges of Distributed Simulation

The defense sector is currently the largest user of distributed simulation
technology, but limited elsewhere. In recent years, there have been some studies
conducted in the form of surveys of experts from different backgrounds such as the ones
described in [12][13][124][125]. Those studies aimed on analyzing a number of issues
concerning the current distributed simulation state-of-the-art and research challenges that
must be resolved with the purpose of advancing these technologies use particularly
outside the defense sector. It has been predicted that in the coming years, the sectors that
will drive future advancement in distributed simulation are not only the defense sector,
but also the gaming industry, the high-tech industry (e.g., auto, manufacturing, and
training), emergency, and security management [125]. The studies clearly pointed out for
the need to enhance cooperation across geographical areas at different levels, asfollows:

e Cooperation at globalization level, which is driven by economic incentives to form
industrial clusters [125]. The Internet came as the natural choice to globalize this
cooperation.

e Hiding information in components where they conduct distributed simulation
together, which might become a necessity when extending the product development
beyond factory walls [60][138]. Further, because of the cooperation at global scale,
the desire to protect intellectual property right (IPR) for different products is also
increased; hence, information and design need to be hidden [125].

e Packaging functionalities as commercial off-the-shelf (COTS) simulation packages

with the ability to select sub-components in the fina product [12][13][125]. At

CHAPTER 2: BACKGROUND 32

present, the COTS simulation packages do not usually support distributed simulation
due to the cost/benefit issue [12][13].

Based on the above, those surveys also have acknowledged that the most research

challenge that needs to be resolved in order to advance distributed simulation technology

is to ease interoperability via the middleware. Consequently, a number of middleware

challenges that need to be resolved have been identified:

It must ease the use of distributed simulation algorithms. This means that the
middleware interoperability method must not place constraints on improving
synchronization algorithms.

It must be based on widely accepted syntactic standards.

It must be accessed by any device from anywhere. This also should alow
human/information in simulation loop from anywhere.

It must ease semantic interoperability. This includes easing semantic standards to
allow interoperating different systems and standards. This further means that different
semantic standards may be developed by different distributed simulation
communities.

It needs to map the use of existing simulation solutions in the WWW into a Semantic
Web method. The “Semantic Web” term can be defined differently by different
people. However, the W3C defines it as the ability of a software system to redlize the
meaning of information on the WWW [149].

It must ease integrating COTS simulation packages to reuse the same loca

middleware. The studies do not define the type of packaged functionalities in the

CHAPTER 2: BACKGROUND 33

COTS components. However, if a component is a simulation model, thus this model
still needs a simulation engine to execute it.

The studies have also recognized the difficulty for resolving the above issues
using the HLA or the DIS approaches mainly due to the reasons that have previousy
been discussed in the previous sections. Thisimplicitly indicates the desire in the industry
to uncover other approaches. On the other hand, there are some works (e.g. [132][133])
attempt to use HLA as the standardized framework for plugging COTS simulation
packages. In this case, the COTS components are HLA federates.

Based on the above, new interoperability standards are definitely needed to
interoperate various components that contain heterogeneous models and simulation
engines. Interoperability is the main function in most existing ssimulation middleware
[138]. It enables two or more different software systems to interface and use each other
services correctly [130][138]. However, developing interoperability standards is a
complex process. The involved parities will only support standards if the benefits are
worth it and the cost is low. Further, the interoperability problem at the software level is
not a trivial task to solve. This is because software components accessed via their API
and the exchanged information flow through those APIs. Further, those software
components are developed independently by different programmers. Thus, having
syntactic and semantic standards that are not tied to implementation issues can help
easing such software integration. Note that all existing interoperability technologies,
including HLA, CORBA and SOAP-based WS, provide interoperability at the syntactic
level, leaving semantics to developers. No distributed simulation semantics standards

have been yet finalized. However, developing semantic standards has already started in

CHAPTER 2: BACKGROUND 34

different simulation communities such as the DEVS community [140][141][142][143],
and the HLA community [132][133].

To this end, distributed ssimulation is going toward globalizing interoperability
with the desire to hide information. This direction also involves putting “anything” into
the ssimulation loop regardless of geographical locations. Of course, semantic standards
are needed to interoperate heterogeneous simulators developed by different teams.
Further, the desire to have a middleware to be shared locally by different components is
certainly there. On the other hand, current distributed simulation interoperability
approaches provide a number of challenges that need to be examined and improved.

All existing systems perform distributed simulation according to their specific
designed semantics, which are tied to systems internal implementations, as discussed in
previous sections. In practice, interoperability is realized at the software level. Thus,
coupling existing systems interface and semantics to specific software implementations
can introduce challenging interoperability issues. For example, this makes different
software APIs extremely difficult to combine, since each was developed with a specific
implementation in mind. In practice, this even applies to simulation environments that
implement the same formalism as we learned throughout the DEVS standardization
process [143]. Therefore, interoperating independent-devel oped systems that are based on
different formalisms or tools would probably multiply those problems. Further,
implementation-coupled APl and semantics make it more difficult for systems to support
multiple algorithms and semantics. For example, a system of type A may interoperate
with a system of type B using certain APl while interoperating with a system of type C

using different API. This could happen for many reasons in the real world when different

CHAPTER 2: BACKGROUND 35

teams favor to evolve independently. However, multiple-semantic protocols support
becomes extremely difficult when an API is coupled with internal implementation [137].
In reality, when a system exposes different APIs to the external world, these APIs still
need to map to the same internal calls. This is because the received requests are still need
to be handled by the same internal software. Thisis not impossible to do, but it gets more
difficult to implement every time anew protocol is added.

Further, some existing middleware systems only provide modularity at the
modeling level, but not at the simulation engine level. This is because existing
middleware approaches do not support local deployment of different types of simulation
environments (engines). This completely goes against the modularity concept. In
contrast, a new simulation environment should be able to be added to reuse the same

local middleware without affecting other types of simulation services.

2.4 Web-services Framework and Standards

Web-services can be defined as the ability to deploy services by a machine and
consumed by a different machine via the Web. At present, the two most popular classes
are SOAP-based Web-services and RESTful Web-services [115]. Both types aim on
reusing existing solutions via the Web. On the other hand, they are different in the way
they use to reach this goal, in particular, in the way the services APl is designed,

orchestrated, and consumed at the software level.

2.4.1 SOAP-based Web-services

The SOAP-based WS (or Big Web Services) [49][108] interoperability model

follows the RPC-style approach. In this case, the server exposes services in groups where

CHAPTER 2: BACKGROUND 36

each group is deployed in a port. Each service is implemented as an RPC where
information is exchanged in form of procedure parameters. Thus, clients need to have

those services as procedure stubs compiled with their software.

Port (BPC Services)
T AT WEDL
Samvica I; Sarvice ﬁ-'_-"_E:_—.__"xl i i VSDLRPL ____ iy
o L S - 3 |
"‘..:_j_:_‘:_i-'-x—,__..j‘_ f};___ji_,..r Client Stubs
F
T L APe AP BPC ADI
BOAR Layer BOAPHTTE Client
HTTH Server
.
SOAP enclosed in TP

Figure 5: SOAP-based Web Service I nteroperability Architecture

At runtime, clients consume a service by invoking its stub as follows (Figure 5):

1. The SOAP engine (e.g. Apache AXIS [145]) converts the RPC into a SOAP message
and wrapsitin an HTTP request envelope.

2. Acting as an HTTP client, the client sends this HTTP message to the URI of the
destination port, using HTTP POST method.

3. Once received by the server, the server extracts the SOAP message and hands it to the
SOAP engine.

4. The SOAP engine selects the appropriate port (object) based on the received message
URI.

5. The SOAP engine converts the received SOAP message to a procedure call on that

port.

CHAPTER 2: BACKGROUND 37

O©CO~NOOOTAWN P

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Once the procedure is completed, the SOAP layer sends results back to the client as a

SOAP message wrapped in HT TP response message.

<wsdl : mressage nane="st opSi nmul ati onRequest ">
<wsdl : part nanme="in0" type="xsd:int"/>
</ wsdl : message>

<wsdl : nessage nane="st opSi mul ati onResponse" >
<wsdl : part name="stopSi nul ati onReturn" type="xsd: bool ean"/ >
</ wsdl : message>

<wsdl : port Type name="CDppPort Type" >
<wsdl : operati on nane="st opSi nmul ati on" paraneter Order="in0">
<wsdl : i nput nessage="i npl :stopSi mul ati onRequest "
nane="st opSi nul ati onRequest "/ >
<wsdl : out put nessage="i npl: stopSi nul ati onResponse”
nane="st opSi nul ati onResponse"/ >
</ wsdl : operation>

</ wsdl : port Type>

<wsdl : bi ndi ng nanme=" CDppPort TypeSoapBi ndi ng"
type="inpl : CDppPort Type" >
<wsdl soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. or g/ soap/ htt p"/ >
<wsdl : operati on nanme="st opSi nmul ati on">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="st opSi mul ati onRequest " >
<wsdl soap: body encodi ngStyle="http://.../"
nanespace="http://..." use="encoded"/>
</ wsdl : i nput >

<wsdl : out put nane="st opSi nul ati onResponse" >
<wsdl soap: body encodi ngStyle="http://.../"
nanespace="http://..." use="encoded"/>
</ wsdl : out put >
</ wsdl : operation>
</ wsdl : bi ndi ng>

Figure 6: Excerpt of WSDL Document Example

To demonstrate the role of SOAP and WSDL in an example, suppose that a

simulation port exposes a stopSmulation service that takes an integer parameter to

specify the simulation session number, and returns the operation status. The service

CHAPTER 2: BACKGROUND 38

signature is as follows: “boolean stopSimulation (int in0)”. In this case, the
service provider needs to publish this service as a WSDL document so that clients can
build their programming stubs (as shown in Figure 6). Tools usualy help with
constructing the communication skeleton of the client side from a WSDL document.
However, a developer needs to write the contents of this stub and compile it with the
overal client software. This can get more difficult if WSDL is being converted on the top
of previously existing stubs. This is because existing tools treat any dlight change of a
service as anew one. Thus, developers need to verify new stubs against existing ones.

In our example, the SOAP message shown in Figure 7, describes the
stopSmulation RPC at runtime. The stopSmulation RPC is mapped into lines 6-8 in
Figure 7. In this example, Line #6 indicates the port URI that this service belongsto. This
enables the destination server to discover the intended port object (e.g. Java/C++ objects).
Further, Line #7 indicates that the value of the input parameter (i.e. session number) is
1000. For instance, the service can then be invoked as follows: status =
Port. st opSi mul ati on(1000). As a result, the status value is then shipped back to
the client as a SOAP message wrapped within the HTTP response message, as shown in

Figure 7.

1 <?xm version="1.0" encodi ng="UTF-8""?>

2 <SOAP- ENV: Envel ope xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
3 xm ns: SOAP- ENvV="htt p: / / schenas. xm soap. or g/ soap/ envel ope/"

4 xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >

5 <SOAP- ENV: Body>

6 <nsl: stopSimulation xm ns:nsl="http://W5s-Port-URI/">

7 <inO xsi:type="xsd:int">1000</i n0>

8 </ nsl: stopSi nul ati on>

9 </ SOAP- ENV: Body>

10 </ SOAP- ENV: Envel ope>

Figure 7: SOAP Message Request Example

CHAPTER 2: BACKGROUND 39

2.4.2 RESTful Web-services

The Representational State Transfer (REST) Web-services [50][115] provide
interoperability by imitating the Web architectural style [79] and principles. RESTful
Web-services [115] are gaining increased attention with the advent of Web 2.0 [105] and
the concept of mashups [71]. A mashup groups various services from different providers
and presents them as a bundle in order to provide single integrated service. For example,
IBM enterprise mashup solutions [70] aim on integrating Web 2.0 functions as rapid as
possible. Those functions usually called “widgets”. Nowadays, RESTful Web-services
are supported, in conjunction with SOAP-based Web-services, in leading companies’
tools such as IBM [70] and Sun Microsystems (e.g. NetBeans IDE [103]). It is worth to
note that the WSDL 2.0 standards [41] have now full support for describing RESTful
services [95]. Thisis because WSDL is shifting toward component-based type of services
rather than RPC-based service type [112]. WSDL 2.0 is the recommended standard since

year 2007 [41].

GET: hitp:www. carleton.ca

T Besource \

A, ;
IS0 1R HILL Representation . {LTRIy |

Wl browsery [

Figure 8: Resour ces State Transfer Concept

REST exposes services as “resources” (which are named with unique URIs
similar to Web sites) and manipulated with a uniform interface, usualy HTTP methods
[51]: GET (to read aresource), PUT (to create/update a resource), POST (to append to a

resource), and DELETE (to remove a resource). For example, a Web browser makes a

CHAPTER 2: BACKGROUND 40

request to aURI viaan HTTP GET method to read that URI representation. In return, the
URI sends the representation (e.g. HTML) to the Web browser, as shown in Figure 8. It is
worth to note that REST applications need to be designed as resource oriented to get the
benefits of this approach [115].

The REST architecture separates the software interface from its internal
implementation; hence, the services can be exposed while the software internd
implementation is hidden from the consumers. In this case, the consumers and the
providers need to conform to the service agreement, which comes in the form of
messages (e.g., XML). This type of design has the potential to achieve dynamic and
improved interoperability. For example, using standardized protocols, a consumer may
search, locate, and consume a service at runtime. These protocols are usually XML -based
format such as Atom [8] and RSS [116]. For example, the Web 2.0 [105] usually uses
such XML-based protocols via REST WS to achieve machine-based interactions on the
Web [42]. In contrast, other RPC-style form of interfacing requires a programmer to
build the interface stubs and recompile the application software before being able to use.
Therefore, the API design matters when connecting diverse software together.

REST has been used in many applications such as IBM enterprise mashup
solutions, Y ahoo, Google Maps, Flicker, and Amazon S3. It is also used in distributed
systems such as National Aeronautics and Space Administration (NASA) SensorWeb
(which uses REST to support interoperability across Sensor Web systems that can be
used for disaster management) [32]. Another example of using REST to achieve plug-
and-play interoperability heterogeneous in sensor and actuator networks was described in

[126]. Example of REST usage in Business Process Management (BPM) was described

CHAPTER 2: BACKGROUND 41

in [90], which showed different methods and tools to automate, manage, and optimize
business processes. REST has also been used for modeling and managing mobile
commerce spaces as described in [98].

REST is sometimes confused with HTTP, since REST is normally implemented
using HTTP protocol. First, to provide “Web-services” on the Web, you need typically to
use the Web mgjor protocol, which isHTTP [24]. Thisis also the case of SOAP WS. In
fact, one can quickly know the need of HTTP in SOAP-based WS when reading the
SOAP standards [63]. However, REST is easily implemented using HTTP protocol,
because REST is based on the Web principles where HTTP is the major Web protocol.
On the other hand, conforming to the HTTP standards does not necessary lead to a
RESTful application. For example, SOAP-based WS uses the POST HTTP method to
send al SOAP messages wrapped in HTTP envelopes. This is perfectly allowed
according to HTTP standards, since HTTP allows overloading the POST method.
However, this forbidden in REST because overloading the POST method converts the
uniform interface into a heterogeneous interface. In short, REST is not HTTP, but it uses

HTTP standards to realize its principles.

2.5 DEVS Formalism

Discrete Event System Specification (DEVS) [153] is M& S specification that is
aimed to study discrete event systems. As in any discrete-event simulation, the models
change their state only at discrete points in time, upon the occurrence of an event. The
models consist of components connected together through external input/output ports

where events are exchanged among models.

CHAPTER 2: BACKGROUND 42

The Parallel-DEVS (P-DEVS) formalism [38] expresses a system as a humber of
connected behaviora (atomic) and structural (coupled) components. The basic building
block of DEVS models is the atomic DEVS model. A P-DEV'S atomic model is formally
defined as:

M=<X,Y, S, dint, dext, Ocon, A, t&>
Where:
Xisthe set of input values,
Sisthe set of states;
Y isthe set of output values,
dint: S — S is the internal transition function;
Sext: Q X XP — S is the external transition function, where

XPisaset of bags over dementsin X, and dext (s, €, ®) = (s, e);

Q={(s,e&|se S 0< ec<tas isthetota state set;

eisthetime elapsed since last transition;

Scont: SX XP — S is the confluent transition function;
A: S — YP isthe output function;
ta: S — R~

At any given time, an atomic model isin some state s € S. It stays in state s for
the time period specified by the state time advance function ta(s). When the atomic model
lifetime expires, the model an outputs a value A(s) € Y, and changes its state as indicated
by the internal transition function din(s). A P-DEVS model uses bag of inputs (XP) to
exploit pardlelism in the system, hence execute multiple concurrent events

simultaneously. Nevertheless, the model also changes its state as defined by the externd

CHAPTER 2: BACKGROUND 43

transition function dext(S, €, XP), if the atomic mode! receives one or more external events
X € X before the expiration of ta(s). A confluent transition function (dcon) IS Used to
resolve collisions when receiving external events and interna transitions simultaneously.

The physical system model is created by integrating different DEVS models
together through their input and output ports; resulting in a coupled DEVS model. A
coupled DEV S model consists of atomic and/or other coupled models connected together.
A P-DEV S coupled model isformally defined as:

N =<X,Y, D, {Maq|d€D}, EIC, EOC, IC>

Both X and Y define the sets of input and output events respectively. D is an
index of the components of a coupled model and, for eachd € D, Mqisabasic P-DEVS
model (atomic or coupled). The External Input Coupling set (EIC) specifies the
connections between external and component inputs, while the External Output Coupling
set (EOC) describes the connections between component and external outputs. The
connections between the components themselves are defined by the Internal Coupling set
(IC). Thanks to the property of closure under coupling, a coupled model can be reduced
to a behaviorally equivalent atomic model, and thus be treated as a basic component in
construction of more complicated hierarchical models.

Cell-DEVS [139] is an extension to DEVS that defines each cell in a cellular
model as an atomic DEVS model. Cell-DEVS describes n-dimensional cell spaces as
discrete-event DEV S coupled models, where each cell is represented as a DEV'S atomic
model. Furthermore, it defines timing constructions rules for each cell, allowing explicit
timing delays, asynchronous model execution, and integration with other DEV'S models.

A Cell-DEV S atomic model isformally defined as:

CHAPTER 2: BACKGROUND 44

C=<X,Y,1,8S,60,N, delay, d, dint, Oext, T, A, D>

Each cell has a modular interface (I) that is composed of a number of ports
connected to its neighboring cells or to other DEVS models. The future state of a cell is
computed by the local transition function (t) based on the cell’s current state and input
values. State changes are spread only after a delay given by the delay function (d). Each
cell also has the computing apparatus (Sint, Oext, and A) as defined in P-DEVS atomic
models. Two types of delays can be used: transport delays transmit every input received.
Inertial delays can preempt a scheduled state change if there is a change before the
consumption of the delay.

Cdlls are coupled by the neighborhood relationship to form a cell space, which
can then be integrated with other DEV S and Cell-DEV'S models. A cell spaceis formally
defined as a Cell-DEV'S coupled mode!:

GCC = <Xiis, Yiist, I, X, Y, 7, {t1, ..., ta}, N, C, B, Z>

The cell space (C) consists of a fixed-sized n-dimensional array of cells, and the
relative position between each individual cell and its surrounding neighbors is defined by
the neighborhood set (N). B specifies the border of the cell space, which can be wrapped
(i.e, al cells have exactly the same behavior) or non-wrapped (i.e., the border cells have
a different behavior from others in the cell space). The tranglation function (Z) defines

the input/output coupling between the cells.

2.6 CD++

CD++ [139] is an object-oriented modeling and simulation toolkit capable of

executing DEV'S and Cell-DEVS models. For each DEV'S atomic model, users need to

CHAPTER 2: BACKGROUND 45

implement the various functions as required by the DEVS formalism in a C++ class,
which is then integrated into the modeling hierarchy during compilation. On the other
hand, for DEV S coupled models and Cell-DEV S models, users can specify the coupling
information as well as other attributes of cell spacesin a model configuration file using a

built-in script specification language.

I burks Patoy Miodke]
o] T ol
B Cheas Srdodartony =
dons
'I—P' |
! Bioedye Tubdaciry
does]—h
Pﬁ";ﬂh“ —Ll_ﬁ T i mion Caz Gubdciory
eg aanber o) o
of reeckd
aubmobuks
..".......,...| Eremi ooy |..._.. p— .

'.' ok ;
Furdon Lirs Englw

.
:
- E”"E&n‘m - faatuntly Loe
1 m T
i
n
;
n
L

‘Tmn Eugiss Doy Las T“Tﬂi

Figure 9: The auto factory coupled model example

Figure 9 shows an example of a DEVS coupled model that represents an auto
factory, which coordinates different warehouses and assembly lines to make sure their
productivity levels are suitable [137][33]. The factory only manufactures one type of car
and each sub-factory manufactures only one type of auto part. Each sub-factory sendsits
completed component to the Final Assembly Subfactory where the automobile is
assembled. Four sub-factories devoted to manufacture different parts of a car (Chassis,
Body, Transmission Case and Engine), and a warehouse devoted to the Final Assembly

Subfactory. Only one of each component is needed to make an automobile (i.e. 1 Chassis

CHAPTER 2: BACKGROUND 46

+ 1 Body + 1 Transmission Case + 1 Engine). We need four Pistons and one Engine
Body to make an Engine (i.e. 4 Piston Line + 1 Engine Body Line = 1 Engine
Subfactory).

[top]

components : chassi s@hassi s body@ody trans@r ans
fi nal Assem@i nal Assem engi neSubFact

out : out

in: in
Link : in in@hassis

Link : in in@oaody

Link : in in@rans

Link : in in@ngi neSubFact

Link : out @i nal Assem out

Link : out @i nal Assem done@i nal Assem

Link : out @hassis in_chassis@inal Assem

Li nk : out @hassi s done@hassi s

Li nk : out @ody in_body@i nal Assem

Li nk : out @ody done@ody

Link : out@rans in_trans@i nal Assem

Link : out@rans done@r ans

Li nk : out @ngi neSubFact in_engi ne@i nal Assem

[engi neSubFact]

conponents : piston@i ston engi neBody@ngi neBody
engi neAssema@ngi neAssem

out : out

in: in
Link : in in@iston

Link : in in@ngi neBody

Li nk : out @i ston in_piston@ngi neAssem

Li nk : out @i ston done@i ston

Li nk : out @ngi neBody i n_engi neBody @ngi neAssem
Li nk : out @ngi neBody done@ngi neBody

Li nk : out @ngi neAssem out

Li nk : out @ngi neAssem done@ngi heAssem

Figure 10: The auto factory coupled model CD++ definition
Afterward, a CD++ atomic model is implemented (e.g. C++) for each component
in Figure 9. For example, the externa transition (dex) of the atomic model (i.e. this
function determines what to do with the incoming parts) is implemented as follows: If a
piston is received, it is stocked until the number of pistons needed is available. Once

every component’s atomic model is implemented, the CD++ coupled model for the

CHAPTER 2: BACKGROUND 47

structure is defined, as shown in Figure 10, which describes the structure of Figure 9 in
terms of the components names and their links connections.
In CD++, each atomic model is executed by a “Simulator” Processor type, and

each coupled model is executed by a “Coordinator” processor type (see Figure 11).

proc

Model —>Processor

rrdl
e_'_'_,_,_,—'—

Atomic Coupled f i\

f CDi}llEdCell Root Eimuleiay Coordinator
AtomicCell /!
TransportDelayCell | | InertialDelayCell FlatCoupledCell FlatCellCoordinator

Figure 11: CD++ Model and Processor Hierarchies

The simulation is driven by the Root processor, which is responsible for (1)
starting and stopping the simulation, (2) connecting the simulator with the environment,
and (3) advancing the simulation clock. The Smulator class executes an atomic DEVS
model by (1) reacting to the different types of received messages via invoking the
appropriate function within the Atomic DEVS class. The Coordinator class manages a
DEVS coupled model through routing messages between its children and its parent-
coordinator. The CellCoordinator is responsible for message routing among the cells

within a coupled Cell-DEV S mode.

CHAPTER 3: THESIS ARGUMENT

In chapter 2, we showed that the way current distributed simulation approaches
exchange, structure, and use information, is tied to programming and implementations,
exposing systems heterogeneity. This path usually leads to the need for homogenizing
different implementations, which is usualy a complex problem to resolve. We
particularly focused on HLA and SOAP-based WS simulations, since this is the state-of-
the-art. The HLA performs distributed simulation via interfacing a number of federates
into the RTI. This is done in the form of programming functions (called interactions);
hence, data is exchanged at the federate level via those functions parameters. Thus, the
data exchanged between federates is described in programming parameters while the data
channels are realized as programming procedures. Further, RTIs themselves are
implementation-specific, which makes it difficult to interoperate different vendors’ RTIs.
At the RTI level, simulation data is usually exchanged as attributes according to an RTI
specific implementation. SOAP-based WS simulations group services as procedures in
WS ports (addressed by a single URI). Thus, smulation data is exchanged and described
in the form of procedure parameters while the data channels are described as procedures.
In this case, XML SOAP messages (describing RPCs) are not exchanged at the
simulation level, but at the Web service technology layer.

Based on the above state of the art, our work can be compared to other approaches
in two ways. The first is comparing it to other distributed simulation interoperability
approaches (Table 1). This is important because all existing systems design methods are

influenced by the structural rules that they have to follow. The second way is comparing

CHAPTER 3: THESIS ARGUMENT 49

the proposed approach to other Web-based simulation approaches (Table 2). This is
important because we can compare capabilities to other existing solutions. Note that the
work presented here provides simulation differently from the HLA standard, but both

frameworks are comparable in their interoperability style (Table 1).

Table1l: Comparing RISE Middlewareto Current Interoperability Approaches

Simulation Simulation Middlewareto Services
Approach Synchronization Information Middleware] Details
e - Addressing
Description Channels I nter oper ability
Procedure _ RTI _Ifr_npl ementation Section 2.2.1
Parameters Interactions specific. RTIs
(Interaction data (callback exchange RTI
HLA fields between the functions information as Implementation
RTI and the between the RTI regions of attributes | specific
federates) and the federates) | (programming
variablesin objects)
URI instance per | Section 2.2.2
SOAPWS Procedure RPCs (each setis | RPC converted to Port (port
Approaches Parameters grouped in aport) | SOAP over HTTP contains a set of
services RPCs)
CORBA Procedure RPCs e(Olea_lch Setis Paragr?;tlgrs . C(:afORBA Section 2.1,
Approaches Parameters grouped in an mar ing an reference per Section 2.2.3
object) unmarshalling Object
RISE Four Uniform URI template per Chapter 5
. XML Messages resource (service
Middieware | eccage Software XML over HTTP | type). Instances
(based on . Channels (HTTP ype).
RESTful ws) | oened) methods) (URIs) are
created at runtime

Table 1 compares the proposed RISE middleware to current distributed simulation

interoperability methods. In this case, existing interoperability approaches are tied to
internal software design and implementations. This not only complicates interoperability
methods, but also causes dynamicity and scalability issues. Therefore, the RISE
middleware approach provides (comparing to existing approaches) a novel approach to
decouple interoperability from simulation systems implementations and internal software
design issues. This can be classified in the way ssmulation the synchronization messages
are described, in the way simulation messages are exchanged, and in the way simulation

services are accessed, structured, and addressed (as shown in Table 1).

CHAPTER 3: THESIS ARGUMENT 50

Table 2 compares the proposed RISE framework with selected existing Web-
based simulation systems. Note that plenty of web-based simulation software is published
in the literature, which makes it difficult to list all of them. However, we can safely state
that the selected references in the table reflect the most recent Web-based simulation
works. Note further that HLA systems with SOAP WS extension are not shown in the

table. Thisis because WS is only used to access the RTI, hence ssimulation is still of an

HLA type, which is covered in Table 1.

Table2: Comparing Current Web-based Simulation Approaches

Characteristic Aiss 57] [44] [35] [49189] [641
Approach [53] [101][137] [65]
General Middleware | Yes(Interfaced | No No No No No
(ability to hold DCD++asa
different smulation proof of
environments) concept)
Simulation Semantic | Yes No Yes No No Yes
Web Access
Distributed Yes(asinthe Yes No No Yes No (access
Simulation (several case of (accessto | (accessto tosingle
computers performs DCD++, but it asingle asingle simulation
the same simulation depends on the simulation | simulation engine)
on the Web) simulation engine) engine)
environment)
Distributed Yes (al No No No No No
Simulation partitions
Composition connected with
Scalability the same
virtual
channels)
Standardized Yes(designed | Yes No No No (RPC No
Distributed asHTTP (according to specific to each
Simulation methods) OGSl [134]) system)
Information Channels
Distributed XML Programming | No No Programming No
Simulation Parameters Parameters
Synchronization
M essages Description
Experimental Yes Yes Yes Yes Yes Yes
framework (create
different
experiments)
Experiments Yes No No No No No
blueprints (life cycle
follow certain pattern,
allowing the use of
workflows)

CHAPTER 3: THESISARGUMENT 51
a4 49][89 64
Characteristic RES (57] [44] [35] [49][89] [64]
Approach [53] [101][237] [65]
Experiments Direct Yes No Yes No No No
Access on the Web
(Experiments created
and wrapped as URI)
Experiments named Yes (services No No No No No
with modelers choice | deployed as
of URIs URI templates)
Experiments URIs Yes No No No No No
created at runtime
Experiments settings | Yes Yes Yes No No Yes
maintained in a
database
Authentication and Yes Yes Yes Yes No (within a Yes
Authorization distributed sim.
session)
APl XML Yes (WADL; Yes (WSDL No Yes Yes(WSDL No
Description canbedonein | 1.1) (wsbL 1.1)
WSDL 2.0) 1.1)
Models Specifictothe | Specificto Specific Specific Specific to Specific to
representation simulation system tosystem | tosystem | system system
environment
Visualization Extendable No Yes Yes No Yes
Models repository Canbe Yes Yes No No
interfaced with
existing
repositories
Workflows Yes(Can be No No No No
done at Client
side)
Interoperable with Y es (since they Yes No No No
Web 2.0 apply REST)

As shown in Table 2, most Web-based simulation efforts focus on the modeling
layer. Thisis mainly by providing Web access to models repositories. These models are
usually represented in a text format, mainly as XML (with a visualization support on
certain tools). However, existing Web-based distributed simulation are usually specific to
asimulation environment. In this case, SOAP-based WS ports are usually connected with
specific designed remote procedures. In contrast, the RISE middleware is designed as a

general container that can encapsulate different simulation environments. This leaves the

CHAPTER 3: THESIS ARGUMENT 52

door open for additional extensions. It further, provides more flexible semantic-web
experimental frameworks that can be created and named by designers.

In Chapter 2 we aso discussed a number of surveys [12][13][124][125] that
pointed out that distributed simulation technology is going toward cooperation at
globalization level, hiding internal implementations, and packaging functionalities in
reusable components. They further pointed out that the middleware needs to overcome
certain challenges to meet such objectives. For instance, the interoperability method
should not place constraints on synchronization algorithms, interoperability syntax must
be based on widely accepted standards, existing simulation solutions should be ready to
be combined with Semantic Web, etc. It is worth to note that those studies have
recognized the difficulty for resolving the above issues using the HLA or the DIS
approaches. As discussed in Chapter 2, those studies state that the middleware
interoperability methods should interoperate the simulation components via the Web
while hiding internal implementations in the components (without placing any constraints
on the synchronization algorithms). This objective matches our goals, discussed in
Chapter 1. In addition, we want design scalability (in the way simulation services are
externally exposed), composition scalability (in the way distributed simulation partitions
connected to each other), a method that allows dynamicity (i.e., systems that join/digoin
the simulation at runtime), and a general experimental framework (that can be created,
named and manipulated at runtime).

We initiadly focused on meeting these objectives using a SOAP-based WS
framework (Chapter 4). However, we redized that the WS structura rules place

restrictions in to designing the software. For example, we cannot decouple interoperated

CHAPTER 3: THESIS ARGUMENT 53

systems implementations if the data channels (procedures) and the way data is described
(programming parameters) are part of implementation itself. Further, composition
scalability is complex if every service (implemented as procedure) at the server side
requires a stub on the client side. Although we limited our procedures to a few
(implemented in a single WS port), those channels are still embedded (and compiled)
with the internal implementation. To reduce exposing the internal implementation, we
exchanged and described the simulation synchronization messages as XML messages. In
this case, the entire XML message is sent as a single SOAP attachment.

The major lesson learned in the above solution is that the syntactic and structural
interoperability rules characterize the level of freedom of a software designer when
defining the methods for middleware interoperability. Therefore, the structura and
syntactic rules that govern the overal distributed structure have a direct effect on the
middleware design methodologies and synchronization algorithms, since those methods
need to conform to those rules. Thus, to have freedom for the software design, we need to
find the syntactic and structural rules that do not place restrictions on how to design the
software while meeting our previously stated objectives. In other words, interoperability
methods should not try to answer the “how to implement” question for programmers. To
do so, the systems API should be decoupled from internal implementation, since this is
how software systems interact (that is, how to communicate data and how to synchronize
actions). In fact, amost every issue with current approaches can be traced back to some
programming and implementation issue around the systems API.

Consequently, in order to meet our previously stated objectives, we first need to

solve the problem of hiding systems heterogeneity (that resides in implementation) in

CHAPTER 3: THESIS ARGUMENT 54

components while alowing composition scalability and dynamicity. The main motivation
of solving this problem is that distributed simulation systems are complex and have
diverse implementations. Thus, hiding these internal details makes sense toward easing
interoperability. As discussed earlier, none of the existing approaches is suitable to solve
this problem.

Based on these ideas, we defined, designed and developed the RISE middleware,
which is based on RESTful WS principles according to the Web standards (HTTP, URI,
and XML). RISE is a general middleware that serves as a container to hold different
software components without being specific to any implementation. The RISE
middleware is a resource-oriented design architecture, which means that al
functionalities (resources) have a parent-child relationship. Resources are addressed via
URI templates (blueprints). Thus, resources are classes of services whose URI instances
can be named and created at runtime. This applies to simulation experiments that exist as
URIs which are created at runtime. During distributed simulation, agorithms
communicate and synchronize activities by exchanging XML messages between
simulation partitions URIs.

RISE has solved the above stated problems as follows: (1) it strictly conforms to
the widely accepted Web standards of XML, URI, and HTTP. (2) It hides al software
implementations (heterogeneity) in resources, which can be created at runtime. (3) All
resources are automatically connected to each other via the same constant uniform data
channels. These channels are software virtual channels redlized in the exchanged
messages themselves. (4) Exchanged simulation messages are described in XML

documents.

CHAPTER 3: THESIS ARGUMENT 55

Thus, RISE solves the problem of hiding systems heterogeneity in components
while alowing composition scalability and dynamicity. Resources can be created and
named with URIs at runtime. Further, regardless of the number of URIs (resources) in the
distributed environment, they will aways be automatically connected with the same
HTTP methods (channels). Furthermore, because channels are realized outside
implementations and resources synchronize their activities in XML messages, resources
APIs are then decoupled from implementations. Thus, systems heterogeneity is hidden.

In Chapter 4, we discuss our SOAP-based design methodologies for meeting our
objectives. The SOAP WS structural rules proved difficult for completely solving the
research problem. For example, the WS ports that contain software implementations
cannot be created at runtime. Further, since data channels must be implemented as none-
standardized procedures, they must be compiled with internal implementations.
Furthermore, each service procedure must have a stub built in the user software, which
causes composition scalability difficulty. In Chapter 5, we discuss the RISE design
methodologies and their use for meeting our objectives. In Chapter 6, we discuss a proof-
of-concept implementation of the CD++ engine into RISE to perform distributed
simulations. We show how the simulation URIs are built dynamically, and we discuss the
algorithms to synchronize activities via exchanging XML messages between partitions.
In Chapter 7, we show that synchronization via XML messages can help performance
because of the flexibility it provides, and message aggregation to reduce the number of
remote message transmissions. In Chapter 8, we show that distributed synchronization
algorithms can be decoupled from software design specifics. In this case, we show

algorithms designed as the synchronization rules and the messages that they require to

CHAPTER 3: THESIS ARGUMENT 56

communicate without dictating the way systems have to implement them in software. We
further show in Chapter 8 that the improvement of creating experiments (URIS)
dynamically by software can be used in workflows to automate the simulation

experimentation process.

CHAPTER 4: SOAP-BASED DESIGN
METHODOLOGIES AND ALGORITHMS

As discussed in Chapter 3, the elements of the syntactic and structural rules form
the basis of the middleware design methodologies. Those elements define all
interoperability aspects such as services access, exchanging and describing messages, and
the degree of decoupling systems from each other. Because the design decisions are
restricted by those elements, they then define the degree of success of achieving our
objectives stated in Chapter 1, such as building a genera middleware that can support
any simulation environment, decouple systems implementations, distributed simulation
composition scalability, etc. As previously mentioned, the research first selected the
SOAP-based WS architecture to design new algorithms that mainly aim on interoperating
independent-developed simulation systems, as part of the DEV S standardization process
[143]. Thus, the design methodologies presented in this chapter conform to the SOAP-
based WS structura rules, which mainly expose services as RPCs where the simulation
information flows from those procedures in form of programming parameters.

Since DCD++ had aready been used for distributed simulation (using SOAP-
based WS), we started by making use of this SOAP-based architecture. The original
SOAP-based DCD++ [137] places each CD++ instance behind a single WS port (i.e.
wrapper component) that handles all client interfaces and synchronization information
that flow to/from other CD++ instance components. Each component defines many RPCs
where all information flows through those procedure parameters. On the other hand, this

interface exposes the interna CD++ implementation. This means that the RPCs

57

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 58

input/output parameters are tied to the way CD++ structures its internal C++ classes and
their operations. Thus, using DCD++ specific interface to interoperate with other systems
is not practical, since it would require implementation changes in those systems. Thisis
even more complicated since other SOAP-based DEV S systems interfaces are also tied to
their internal implementations. To bring those interfaces together and ease
interoperability at the software level, this research targeted the two major syntactic and
structural elements of the SOAP WS: RPCs and the information that flow through those
RPCs. To do so, this research extended the overall SOAP-based DCD++ architecture
with a new WS component with few RPCs, and described the synchronization messages
in XML (i.e. as SOAP attachments). This interface ssimplified the synchronization
between different systems, and increased their decoupling from each other. In this
architecture, DCD++ still uses its original WS component to interoperate various
distributed CD++ instances, while using the new designed component to interoperate
with other systems (Figure 12).

The rest of the chapter discusses the new WS component (Figure 12) while the

original CD++ WS component is discussed in [137].

e VS o e il 7 e+ WH Ok e
RRC-| J.’”ﬁml‘l o Bpc|
RACE | i j .I " e—— | T
-':-.'I.]'H' : : 4 :I " Ill" of .I
. R Jo B] BiC=
L L) v,
\\I I
[New WA Compenend a’ﬁﬁml’-.l Mew WE Componewst
1 | i
] RIC-1 2 = il
A wmZ |
'\"'Il- RPC-Z - L -E--l: -1.|] RV —__p| System
) @,‘ == H
-..H.;;-..... | \‘l'w & ﬂ: o .
HPC -1 * - - e
] I_)'Iu.

Figure 12: DCD++ SOAP-based Architecture Overview

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 59

4.1 Design methodology

The basic design principle employed was to hide systems implementations behind
a single WS component with few RPCs, describe al synchronization information in
XML, and enclosing all partitions insde one DEVS coupled model within an

experimental framework. These are discussed in the following subsections.

4.1.1 Single-Port Wrapper Component

The main purpose of single a coordination entry (caled DEVS wrapper) is to
minimize the number of RPCs and to simplify the coordination between different systems
via simplifying those RPCs. The RPCs define al the interface channels and the
exchanged information through those channels;, hence, they play a maor role in
decoupling systems implementations. The DEV S-WS Wrapper component (Figure 12) is
expected to perform the following tasks:

1. To trandate incoming common XML messages from other partitions (domains) to
specific simulation messages of a partition (domain) and vice versa, and
2. To route incoming simulation messages to the correct models/ports within its

partition.

These RPCs define the operations necessary to setup an experiment and to execute
the simulation on that experiment. In this case, the simulation is started by a modeler
from the main domain, which synchronizes the ssimulation on all other support domains.
These operations are summarized as follows (Figure 13) [1]: (1) retrieveResultFile (Line

#5) is used to retrieve the simulation result file from a support DEVS domain. (2)

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 60

startSmulation (Line #6) starts a simulation on a support DEV'S domain. In this case, the
simulation engine starts and waits for the first simulation message from the main DEVS
domain. (3) isSmRunning (Line #7) checks if simulation is running on a DEV'S domain.
(4) SopSmulation (Line #8) stops the simulation normally on a support DEV'S domain.
(5) setDEVSXML (Line #9 and #10) sends an XML document to a DEV'S domain. This
XML document is either a configuration file (see Section 4.1.2) or a simulation message
(see Section 4.1.3). (6) deleteSession (Line #11) deletes a simulation session on a support
DEVS domain. (7) createSupportSession (Line #12) creates a simulation session on a

support DEV'S domain.
i nport javax.activation. Dat aHandl er;
public interface DEVSW apper Type extends java.rm . Renmote {

Dat aHandl er retrieveResultFile(int SupportiveSession);
bool ean startSi nul ati on(i nt SupportiveSession);
bool ean i sSi nRunni ng(i nt session);
public bool ean StopSi nul ation(int session);
9 public bool ean set DEVSXM_(i nt session, String fil enane,
10 Dat aHandl er file);
11 public bool ean del et eSessi on(i nt SupportiveSession);
12 public int createSupportiveSession(int M nSession);

publ i

1

2

3

4

5 publ i
6

7 publ i
8

OO0 000

(@)

Figure 13: DEVS-Wrapper RPCs Services

The DEV S wrapper is the component (i.e. the software layer) that sits between a
simulation system and the Web-service layers. Thus, al information is transmitted
through SOAP/HTTP layers, wrapped within SOAP and HTTP envelopes, as shown in
Figure 14. In this stack, the DEV'S wrapper invokes an RPC via the SOAP engine layer
(e.g. AXIS [145]), which in turn converts the call into a SOAP message and passes it to

the HTTP server (e.g. Tomcat [7]), which wraps it in an HTTP envelope and sends it as

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 61

an HTTP message request. These software components are often available commercially

or as freaware.

LIEN'S Prodocol
DEY 5-Wiappei DEYS-Wrappa
= = == =
+ &
. B . ¥
Stuhs Inlertnees (WS,) | Seuhs Inlerfnces (WSS

SCIAP Engine (e.g. ANER) SOAF Engine fe.g. AXIS)
HTTF Server fe g Tomoat) HTTF Server (e.g Tomeal)

Figure 14: Connecting Domains using SOAP-based Web-Services

4.1.2 XML Message Synchronization

Our approach here is to describe the ssmulation synchronization information as
XML messages instead of programming parameters. This is different from all existing
SOAP-based simulation systems (see Section 2.2.2). Describing simulation messages as
XML increases the level of decoupling system implementations from the synchronization
algorithms and from each other. Making changes to an XML document is much more
flexible than changing programming parameters to procedures. To do so, the actual XML
message needs to be sent as a parameter to a procedure, since the interface is still RPC-
style. This means that the XML message needs to be sent as a file embedded in the SOAP
message; this is usually caled a SOAP attachment. The operation setDEVSXML (Lines
#9-10 in Figure 13) sends all XML messages as attachments. As shown in Figure 14, the
actual work is performed by the SOAP engine layer. Therefore, the operation depends on

that engine’s capability of supporting such feature. In most cases, there are commercial or

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 62

open source SOAP engines that implement the SOAP standards available. Thus, all
existing SOAP-based systems make a use of such available components, which reduce
development time. However, the simulation systems become restricted to those
components limitations (such as the type of programming parameters they support and
their implemented programming languages). For example, since the WS components
available are often implemented in Java, non-Java systems need to find a solution to
interface the SOAP engine Java code with their programming language. In our case, we
used the Javabased AXIS SOAP-engine [145] because it supports sending XML
documents as SOAP attachments, and the Java Native Interface (JNI) [92] to interface

Javaand C++ programs.

Table3: Message Elementsin XML Simulation M essage

Element For mat Allowed Values Comments
MessageType Character l,@ D, X,Y,* | = INIT, @ = Collect,
D = Done, X = Externd,
Y = Output, * = Internal.
Time String Numbers separated | Example: 08:50:00:00
HH:MM:SSMS by colon (“:”)
SrcModel String Known Model Name | Source Model
DestModéel String Known Model Name | Destination Model
Port String Known Port Name | Destination Port
Value C++/Java double N/A Mandatory only for X and Y
messages
NextChange See Time See Timeelement | Next Change Time(mandatory only
element for D messages)
IsFromProxy Java boolean True or False Mandatory for D messagesif Head/
Proxy Algorithm is used. Allows
the Head to synchronize its Proxies.

Table 3 shows all fields in a ssimulation message (the XML description of this
information is shown in Figure 15). These fields define al the information needed to
process a simulation event such as the message type, event time, source model, source
port, destination model, destination port, next time change (used to calculate next internd

event), and event value. There are six types of simulation messages (Table 3) for

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 63

synchronizing the entire ssmulation and exchanging simulation events (the simulation

synchronization will be discussed shortly in Section 4.1.3):

The Init (I) message is sent at the start of the simulation to initialize all modelsin
the DEV S hierarchy.

The Collect (@) message is used to collect all models output events in the
collection phase.

The Internal (*) message is used to execute collected message and any internal
events.

The Done (D) message is used to advance simulation from a phase to another.

The External (X) message is used to send to input event to amodel.

The Output (Y) message is used to generate an event by a model.

<Message ver="1.0">
<MessageType>| </ MessageType>
<Ti me>00: 00: 00: 00</ Ti me>
< Sr cModel >Coupl ed0</ Sr cMbdel >
< Dest Mbdel >Coupl ed2</ Dest Mbdel >
<Port>I N</ Port >
<Val ue>1. 0</ Val ue>
<Next Change>00: 00: 00: 00</ Next Change>
<| sFr onPr oxy>f al se</I sFr onPr oxy>
</ Message>

Figure 15: XML Simulation M essage Example

4.1.3 Experimental framework

To perform a simulation session, an experimental framework needs to be setup.

This means that the model partitions need to be placed on different simulation

environments (typicaly, each is placed on a machine) where each ssmulation engine

knows how the partitions ports are connected to each other.

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 64

The main principle was to enclose all various DEVS-domain heterogeneous
models within a single coupled model. This ssimplifies the overall ssmulation since these
models can be heterogeneous, hence expected to be simulated by different simulation
engines. For example, in Figure 16, coupled 1 and coupled 2 can belong to different
smulation environments. In this scheme, both of these models are then enclosed in
Coupled 0. In this case, the main DEV'S domain will own the Root coordinator and will
be in charge of coupled O, which encloses both heterogeneous models, giving the
impression of simulating a single homogeneous DEV'S model. As shown in Figure 16,
both coupled models are interfaced without worrying about how each simulation engine
does the simulation internally. Therefore, the coupled models are viewed as black boxes

with input/output ports.

[lll.ll'lll.'ll[l
|.'||I.I.j'||.lr|] 1 I L -\.'ruph-d : |
| [=
LN i..._|_.' OuT?

] bt l.-.
s | ==
ouTe b 132
___________ g —
|

Figure 16: Coupled model partitioned across DEVS Domains

The structure shown in Figure 16 can be described in XML as in the document
shown in Figure 17: Line #1 defines the XML document version. Lines 2-4 define the
synchronization algorithm used (in this case, head/proxy). Lines 5-47 define all models
partitions. In this example, there are three models: Lines 6-27, Lines 28-36, and Lines 36-
47 define the first, second and third model respectively. For example, the first model is

defined as follows: line #6 indicates the model type (a coupled model), Line 7 indicates

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 65

the name of the model (Coupled0), and Lines 8-10 define the model internal components
(two coupled models components, Coupledl and Coupled?2). Line #12 defines the Web-
service port URI that wraps the Coupled0 model. Lines 13-25 define the ports
connections of all internal components. For example, Lines 14-23 defines the connection
from port OUT1 port of Coupledl to port IN2 of Coupled2. Further, from this XML
document (Figure 17), the main machine can identify the participant support domains.
This document originally comes from the modeler to the main DEV'S domain, which in

turn passes it to other domains viainvoking the method setDEVSXML.

1 <MODEL STRUCTURE ver="1.0">

2 <COUPLED _SYNC>

3 <scheme ver="1.0”>HeadPr oxy</schenme>

4 </ COUPLED SYNC>

5 <Model s>

6 <Model Type="Coupled”>

7 <Nanme> Coupl ed0 </ Nane>

8 <Conponent s>

9 <Name Type="Coupled”>Coupledl</Name>

10 <Name Type="Coupled”>Coupled2</Name>
11 </ Conponent s>

12 <URI>http://.. </URI>

13 <LI NKS>

14 <LI NK>

15 <FROW>

16 <Conponent >Coupl ed1</ Conponent >
17 <Port >QUT1</ Port >

18 </ FROW>

19 <TO>

20 <Conponent >Coupl ed2</ Conponent >
21 <Port > N2</ Por t >

22 </ TO>

23 </ LI NK>

24 .

25 </ LI NKS>

26

27 </ Mbdel >
28 <Model Type="Coupled”>

29 <Nanme> Coupl edl </ Nane>

30 <Port s>

31 <Port Type="in”>IN1</Port>
32 <Port Type="out”>0UT1</Port>
33 </ Ports>

34 <URI>http://.. </URI>

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 66

35 -
36 </ Model >
37 <Model Type="Coupled”>

38 <Nanme> Coupl ed2 </ Nane>

39 <Ports>

40 <Port Type="in”>IN2</Port>
41 <Port Type="out”>0QUT2</Port>
42 </ Ports>

43 <URI>http://.. </URI>

44 -

45 </ Model >

46

47 </ Model s>

48

49</ MODEL_STRUCTURE>
Figure17: XML Model Structure Document Example

Once all models are partitioned and placed in their proper locations, the
smulation can then be started. The modeler software starts the simulation via the
operation startSmulation on the main DEV S domain, which in turn opens a session with
all the relevant support domains (using the RPC createSupportSession). Once the main
domain opens and collects the session numbers from all support domains, it broadcasts
this information to the support domains in one XML document (using the RPC
setDEVSXML), as shown in Figure 18. The simulation session document (Figure 18)
contains the main domain session number, and the support URIs paired with their session
numbers as follows. Line #1 specifies the message version. Lines 2-5 defines the first
partition session as follows: Line #2 indicates that this session belongs to the main
partition. Line #3 specifies the session number on the main machine. Lines #4 specifies
the main partition Web-service port URI. Similarly, Lines 6-9 define the second partition

session. However, this session belongs to a support machine.

1 <Sessions ver="1.0">

2 <Session Type="Main”>
3 <Nunmber >123</ Nunber >
4 <URI>http://..</URI>
5 </ Sessi on>

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 67

6 <Session Type="Supportive”>
7 <Nunber >1000</ Nunber >

8 <URI>http://..</URI>

9 </ Sessi on>

10

11 </Séssions>

Figure 18: Domain-Simulation Sessions XML Binding Document Example
After this XML message (Figure 18) is received by al domains, each partition
structures the models coordinators as shown in Figure 19, where each partition IS able to

send/receive XML synchronization messages to/from other partitions.

R Ol ima o
| I
/ |
[: !
Compled 0 | Compled 0
Hezad Cioordeator - g Prony Coordinator]
1 |
' 1
1 S R
s » I 1‘ '
Coianled 1 ‘ ol 2 g 2
5]) = ety
Coordinator : | Loordinatoo

Figure 19: Coupled #0 Split between two DEV S Domains

The coordinators structure in Figure 19 represents the model partitions shown in
Figure 16. Only one main DEVS domain will be in charge of driving the overal
simulation. This domain creates and owns the Root coordinator while other DEVS
domains become support and only react to messages from the main or support domains.
The main domain is the one selected by the user to initialize and start the simulation
session. The ssimulation engine uses a called Head/Proxy [1] architecture, which aims on
reducing remote messages via routing them locally on the same partition, if possible. The
DEVS coordinator concept is extended in two ways. (1) the Head Coordinator is in

charge of simulating the entire coupled model. It coordinates the internal models that

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 68

exist in its domain and other remote models (via Proxy Coordinators). (2) The Proxy

Coordinator acts as an agent on behalf of the Head Coordinator to simulate the internal

sub-models of a coupled model that exist in its domain.

The coordinators in Figure 19 advance the simulation in phases via exchanging

the XML simulation messages between each other (see Section 4.1.2). The first phase

(initialization) only is triggered at the beginning of the simulation while the other two

(collection and transition) simulate simultaneous events at a specific simulation time.

These phases are based on the simulation phases of the CD++ engine [139] and they

operate as in the following:

Initialization: it starts when the topmost coupled model receives an Init (I) message.
This message propagates in the model hierarchy until it executes every initialization
method of every atomic model. In response, a Done (D) message propagates upwards
in the model hierarchy, where each coordinator calculates the minimum next change
of its children and passes it in a D message to its parent. Once al D messages
propagate up to the top coupled model, the one with smallest time passes to the Root
Coordinator, which updates the simulation clock and starts the Collection phase.

Collection: The Root Coordinator sends a Collect (@) message to the top coupled
model, which, in turn, passes it to al of its children. In this phase, al the output
functions are triggered and Output (Y) messages may be passed by internd
coordinators to their destination as External (X) messages (inserted in message bags).
This phase ends when the Root Coordinator receives a DONE message from the top

model.

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 69

e Transition: The Root Coordinator sends an Internal message (*) to the top coupled
model, which in turn, passes it to al of its children. All the external messages
collected in the message bags are passed downward in the model hierarchy. Once an
atomic model is reached, the appropriate atomic operations are executed by its
simulator, based on an internal event or external messages.

The coordinators exchange information and synchronize the above simulation
phases by sending simulation messages to each other. In this case, all messages in a
partition are queued in the same simulation event list to be processed. Processing those
events means forwarding them to their intended coordinators where, eventualy, they are
executed. Therefore, there are two types of messages. (1) messages with known
destinations; they are heading to coordinators within this partition. In this case, it is up to
this domain engine to forward those messages. (2) Messages with unknown destinations,
they are heading to coordinators belonging to other domains partitions. In this case, the
messages are forwarded to the Web-service component, which converts them to XML
messages (Section 4.1.2) and transmit them to the appropriate WS components of the
other remote partitions. A possible agorithm to implement of such mechanism is shown

in Figure 20.

VWhile (sinulation is running)
If (unprocessed nmessages exi st in queue) {
Cet first nessage from queue;
If (nmessage belongs to ny DEVS domai n)
/1 Destination is either Root
/1 Coordi nator, coupl ed Coordi nator
/1 or atom c sinulator
Send nessage to its Destination;
El se /1 going to another DEVS domain
Send nessage to ny DEVS-Wapper port;

Figure 20: Algorithm for Simulation M essage Processing

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 70

Based on the simulation loop shown in Figure 20, the Root Coordinator (which
exists only in the main DEVS domain) receives simulation messages like any other
coordinator. The main function of the Root Coordinator is performed when it receives the
D message, as follows: (1) It advances the ssimulation clock (carried by the D message),
(2) It starts the collection/transition phase or (3) It stops the simulation. The Root
Coordinator will receive itsfirst D message to indicate the end of the initialization phase.
Figure 21 shows a sample algorithm showing a possible implementation for the Root

Coordinator.

Root Coordi nat or:: Recei veDoneMessage () {
If (Next Phase == Transition) {

/1l Start transition phase

Next Phase = Coll ect;

Send Internal Msg to highest nodel;
} Else if (next Time <= STOP_TI M) {

Send Stop to all;
} Else {

Whil e (envExternal == Next EventTi ne){

Send envi ronnent external event;
}

If (Next Event is NOT external) {
/] Start the Collect Phase
Next Phase = Transition;
Send Col |l ect Msg to hi ghest nodel;
} Else { [/ Start transition phase
Next Phase = Coll ect;
Send Internal Msg to top nodel;

}
}
} // end root

Figure 21: Done M essage Processing by Root Coor dinator

4.2 Web-Service Component Implementation

The Web Service components are implemented in Java. As seen in Figure 22, they

fall into the following categories:

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 71

1. Web Service wrapper (JavaWrapper class in Figure 22): this is the backbone of the
web service components since and the actual management of a simulation session
within the AXIS SOAP-engine [145] for asingle session. For example, the client side
makes its stubs calls via the DEVSPortTypeSoapBindingStub class. However, once
received a the server side, the message is handled by the class
DEVSPortTypeSoapBindinglmpl. The message is then forwarded to the appropriate
operation in the JavaWrapper class to fulfill the request.

2. SOAP engine Interface (DEVSPortType interface in Figure 22): the interface
operations in the stubs on the client side are implemented in the class
DEVSPortTypeSoapBindingSub, while the server services implementation are

implemented in the class DEVSPortTypeSoapBindinglmpl.

Camtnntissdes [] P e
et “I‘:*‘“r':;"*".‘" e - i rmd lamuts
- - ALk + mglhen L
;L ~ rilkaame + g (6 G b ool 2|i-

Defaulifesie | , taPiaseawnid T LL_E
? + st Dca rreait]] | s

+ it D O LT T |5Mll?'uruﬂFul:Il:lrj' VS PestT
+ phanElemenifi I L ad
1 i) l » anifdAF 1l
M R l W P el el e £ i -:ﬂE.-irllFul:':hj
“nmmlrﬁlhuq _
E Rarw i agpii = sl SupparFik]]
Bunnahle o ...oomme==27"7 00 el # gefExaulionTime[)
o AT R T # |ESim Runineg()
A - logF leflana & Rl ES i ol e
aeHmsht
o i e " -ff‘ﬁ - devehd pdak # a0 EVERa taly
COppPeaTygaSansca | mosions Wrappe's. - modsPation = |3 O
- 2 omeP et on &R L S v bt T i)
= et Dy pP pet Typa i e e [= wlop S el stion Gesmo | & |re e s T Even]
= = Flopi

; = autheicrie’ TR =T o

: = greajelreSemsion|] * antirchidafile])

f = j=alid Smamipn | s refrimes Rt i)

: + gregleSimeSeasmn] * FlrtSimuion
HippPeaiTypeSomnicn L ncaies o npthipchinelD0 s sRDEVEMLY
fﬂWDlJI‘IT'rp-e._aUI?H-F i gLsH'.'-riﬂ.':-:lnl'h:FlH:l T

- COppPar Ty eSS 0 DS ey e mme o B e R s v
- pare SR -
L5 L * updahabiakeFik(] LAl
. compikaBouial} Eod org-apeche avs clionl, Sl
g s > T
an A packe awim chped Serdice

¢ [DEwSPenT i g 5ael
= a1y Sasgdinding

P |

|IJEI.|'5PuﬂTu:m5-|-HHII|;:IInuI|n|.|I
I

Figure 22: Web-Service Component Design

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 72

The Web service operations are provided by the DEVSPortType interface in
Figure 22. We have previously described the major operations when discussed Figure 13
(in Section 4.1.1): retrieveResultFile, startSmulation, isSmRunning, StopSmulation,
setDEVSXML deleteSession, and createSupportSession. Further, there are more services
mainly provided to setup the CD++ simulation, summarized as follows:

e Login/logout: to log current user in/out.

o setMAFile: to set CD++ model definition file (.ma).

e setDEVSModel: to set DEVS model (C++ header and implementation files).
o setEventFile: to define the external eventsfile (.ev).

e satExecutionTime: to choose maximum execution time of the simulation.

4.3 SOAP-based Approach Design Challenges

The approach presented in the previous section, which is based on the SOAP-
based WS structural rules, showed a number of difficulties in achieving our objectives of
developing an all-purpose simulation middleware as previously defined in Chapter 1.
Examples of the presented approach difficulties are listed below:

e Decoupling heterogeneous independent-developed implementations is enhanced via
describing synchronization information in XML messages. However, these XML
messages till need to be passed as file parameters via RPCs (i.e, as SOAP
attachments). Thus, the systems are still linked via those RPCs that need to be
compiled with systems software. Nonetheless, the proposed approach uses a single

component with few RPCs to simplify the interface. In spite of this, other systems

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 73

may find difficulties mapping those RPCs to their internal implementations as we did
with the DCD++ system in this chapter.

e The main purpose of adding a second WS component in the presented architecture is
to allow DCD++ to support new synchronization protocol in addition to its original.
To do so, we finished up with a complete new WS component, re-implementing the
Web-service definition. This means injecting new software code to an existing stable
system, but we had alittle choice since the original interface is specific to the DCD++
implementation. Based on this, adding new simulation services to reuse the same
local middleware becomes even more complicated, which makes it more difficult to
achieve ageneral middleware that can support different simulation services.

e Composition scalability is a desired capability in distributed ssmulation. However, a
system implementation needs to have a procedure stub with every unique remote
service. This is because RPCs are the channels that systems use to exchange
information, which need to be constructed at all systems (even at compiling time).

e To dlow multiple distributed experiments to execute simultaneously, each simulation
partition is identified by a session number. This is because each machine always has
the same Web-service port (i.e. addressed by a URI instance) for all experiments.
Thus, based on a specific session number, the incoming simulation messages are
routed to the appropriate simulation partition. This makes all the experiments on a
machine to be addressed by the same URI instance, which makes it difficult to design
a Web semantic for each experiment since they do not have unique URIs (e.g. an
experiment cannot be reached by a Web browser because it is not directly attached to

the Web). Further, it is difficult to provide experiment blueprint patterns where

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 74

multiple experiment instances may be created with their own URI instances at
runtime. This is because the Web-service port is addressed by a single URI instance
rather than a URI template where multiple URI instances of that template can be

created at runtime.

The above examples of such difficulties are mainly because that the SOAP-based
structural and syntactic rules limit designers to interface systems with RPC style and pass
information as parameters. The designers can then reduce programming dependency and
hide the implementation to some extent, as we did in this chapter. However, this may not
fit well with other systems that are not under their control. In practice, interoperability at
the software level is extremely difficult to achieve unless systems are completely
decoupled from each other. Otherwise, they would be homogenizing their systems
implementations. This means to achieve interoperability between simulation systems,
their interfaces must be homogenized (in advance) to avoid major implementation
changes later in the integration process. Thus, various parties need to agree on some
implementation issues, which can be slow and difficult process. However, most systems
are usualy developed independently, which become more complex to integrate their

interfaces after they have been devel oped.

4.4 Chapter Summary

In this chapter, we showed the structural and syntactic rules of the SOAP-based WS
architecture to design new algorithms that mainly am on interoperating independent-

developed simulation systems, as part of DEVS standardization process. The SOAP-

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 75

based DCD++ introduced here places each CD++ instance behind a single WS port (i.e.,
a wrapper component) that handles al client interface and synchronizations information
flow with other CD++ instances components. Each component defines many RPCs where
al information flows through those procedure parameters. This interface heavily exposes
the internal CD++ implementation as in the case of other SOAP-based systems (see
Section 2.2.2). Thus, using DCD++ specific interface to interoperate with other systems
is not practical since it would require major implementation changes in those systems.

We extended the overall architecture of the SOAP-based DCD++ with a new WS
component with fewer RPCs, and described synchronization messages in XML. This
smplified the interface, and increased decoupling interoperating systems
implementations with the purpose of reducing changes to legacy systems
implementations. In the new proposed architecture, DCD++ still has its origind WS
component to interoperate various CD++ instances while has the new component to
interoperate with other systems.

This new WS component provides the RPCs interface of each domain. To enable the
WS component to handle multiple experiments at the same time, the WS component
assigns a session number to each experiment partition (which resides on its machine).
Before the simulation takes place, the modeler needs to setup the experiment. This is
mainly done via partitioning the entire model over the participant machines. In this case,
al partitions are viewed as coupled models wrapped within a single distributed DEVS
coupled model. This configuration (e.g. models ports connections) is described in an
XML document, allowing models repartition if needed. During simulation, all the

synchronization messages are exchanged as XML instead of procedure parameters

CHAPTER 4: SOAP-BASED DESIGN METHODOL OGIES AND ALGORITHMS 76

between WS components. The XML messages are sent as file parameters via the SOAP
engine (this mechanism usually called a SOAP attachment). However, the ability to do so
depends on the SOAP engine used. Upon XML messages arrival, the WS component at
the destination routes the information received to the CD++ engine associated with that
experiment partition. The CD++ engine advances the simulation in three phases:
initialization (to initialize all models), collection (to collect models output events), and
transition (to execute simultaneous collected and internal events). During these phases,
the messages heading to remote partitions are routed via the WS wrapper component of
the local partition (as XML messages).

The SOAP-based approach showed a number of difficulties in achieving a number of
objectives such as fully decoupling heterogeneous implementations, distributed
simulation composition scalability, experiment blueprints, easing supporting new
synchronization protocols, etc. This is mainly because SOAP-based structura and
syntactic rules limit designers to interface systems with RPC style and pass information
as parameters. The designers can then reduce programming dependency and hide
implementation to some extent (as we did in this chapter), however this may not fit well
with other systems that not under their control. In practice, interoperability at the
software level is extremely difficult unless systems are completely decoupled from each
other (otherwise, they would be homogenizing their systems implementations). Further, a
WS component at a machine is addressed by a single URI instance, which is the only
address to reach all experiments on that machine. This makes it difficult to design
experiment blueprints, allowing experiments instances to be created with their own URIs

at runtime (i.e. attached directly to the Web).

CHAPTER 5: RISE MIDDLEWARE DESIGN
METHODOLOGIES

The SOAP-based WS structural and syntactic rules (described in Section 2.4.1)
provided the foundations of our applied design methodologies presented in Chapter 4.
Nevertheless, the structural rules in Chapter 4 presented some difficulties in achieving
some of our objectives (stated in Chapter 1) such as decoupling heterogeneous
implementations, composition scalability in distributed simulation, etc. In this chapter,
we discuss a different method that can be used to achieve our goals. the RESTful
Interoperability Simulation Environment (RISE) middleware. The idea is to provide a
design methodology that uses RESTful WS structural rules (described in Section 2.4.2).
We believe that these rules allow us more freedom with making better design decisionsin
order to achieve our objectives (stated in Chapter 1). Thisis because as argued in Chapter
3 that the syntactic and structural rules that govern the overall distributed structure have a
direct effect on the middleware design methodologies and synchronization algorithms,
since those methods need to conform to those rules.

Those syntactic and structural rules elements clearly distinguish the RISE
approach from all other existing approaches (previously discussed in Chapter 2). These
differences can be classified in the way simulation the synchronization messages are
described, in the way simulation messages are exchanged, and in the way simulation
services are accessed, structured, and addressed (see Table 1 in Chapter 3). In this case,
the RISE approach hides al simulation services in resources that are named by URI

templates. Thus, resources themselves become services templates (i.e. types) whose

77

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 78

instances (URIs) can be created at runtime. The ability to create services of any type on
the middleware and name them by URIs chosen by users’ at runtime is an important
element for achieving a flexible and generic middleware. Further, these resources are
automatically connected upon creation to each other via constant uniform virtual software
channels to exchange all information (in our case, HTTP methods), which is described in
XML messages.

The RISE structural rules form the basis of the design methodol ogies discussed in
this chapter. RISE uses the RESTful WS structural rules to spread services over a number
of resources (resource-oriented), and resources exchange synchronization information in
form of XML messages (message-oriented) via predefined uniform channels (uniform
interface). Each of these concepts is discussed in the next sections (while the RISE

middleware implementation is presented in Appendix-A).

5.1 Resource-Oriented Architecture

One of RISE design objectives is to alow different ssimulation services types to
share the same local middleware, allowing modelers to setup different experiments based
on different selections via the same server. Thus, we want to design a general middleware
that can support different ssmulation services simultaneously. For example, Chapter 6
will present a proof-of-concept implementation of DCD++ simulation services via RISE.
However, additional services (besides DCD++ services) could be supported by the same
server on the same machine. The next subsections focus on achieving such generd

middleware, as follows:

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 79

e Section 5.1.1: it discusses how resources are organized in a hierarchical structure.
These resources are exposed as URI templates whose instances can be created at
runtime. This leads to a concept of general layered interoperability where different
simulation resources (URIS) organized at a separate layer above the middleware.

e Section 5.1.2: because resources instances (URIs) are a part of experiment instances,
this allows RISE to provide experiments blueprints, which can be used in applications
such as workflows (a concept to be discussed in Chapter 8).

e Section 5.1.3: one of the RISE objectives is to maintain experiment instances unless
deleted by authorized users (Chapter 1). This section discusses the design of the

database that maintains those experiments resources (URIS).

5.1.1 Resources Hierarchical Design

A resource on the Web is conceptually intended to capture a target of a hypertext
reference [50]. In this case, aresource is named with a URI and can be used to find other
resources, similar to typical Web browsers hyper links. This concept is applied in RISE,
but with one difference: resources are types whose instances are created at runtime. To do
this, RISE applies the concept of URI templates to deploy resources types. URI
Templates [62] are URIs with variables (placed between braces ‘{}’) which can be
substituted with the appropriate values to obtain the actual URI instances. For example,
“username”’ in URI template “users/{username}” can be substituted with any string to
obtain the actual URI instance such as “users/Bob”. URI templates lead to a general
middleware organization, since URIs can be created and named at runtime to wrap

concrete services (Figure 23).

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 80

Shmlation Resources Templates Cpeated Stmiilation Resouices Instaices

| F{Eramawark} | fCancerModal | fFireModal

Figure 23: Excerpt of RISE Resources Templates

Figure 23 shows how resources are organized in a hierarchical structure, where
multiple instances of each template may be created simultaneously (the API is described
in Appendix-B). For example, the “fuserworkspace}” template at Level #3 alows any
number of clients’ workspaces to be created, separating modelers’ experiments from each
other. Level #4 allows each client workspace to select a simulation service type. For
instance, setting the “/servicetype}” template to “DCDpp” selects the DCD++
simulation environment. This allows modelers to create experiments based on different
environments. It also allows middleware developers to add additional services types
without affecting other existing services types.

Level #5 indicates that the modelers may create any number of experiment

frameworks with any environment type (the experiment blueprint is shortly discussed in

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 81

Section 5.1.2). As shown in Figure 23, these resources can be used to find each other
similar to browsing a Web site. For example, the “{servicetype}” template (at Level #5)
does not only hold a simulation service type, but also serves as a structural resource for
its children. For instance, typing URI “.../Bob/DCDpp/” in a Web browser address bar
returns all of Bob’s DCD++-based experiments URIs.

The concept of providing services as general resources led to layered
interoperability, which includes the Middleware Layer, the Smulation Layer, and the
Modeling Layer (Figure 24). The Middleware Layer provides all means to exchange all
information. The Simulation Layer deploys different ssmulation environment types (e.g.
DCD++) where the Modeling Layer operates on the top of a simulation environment. In
this case, the simulation environment (e.g., DCD++ described in Chapter 6) provides all
simulation management such as time management while the Modeling Layer is specific

to each simulation environment type.

Iy | By, ., o

! - | . : Muodelling Laver = |

_ _ Simmlarion Laver | T
i Tijpr-A Sfurafeidon Haerdmme e N Thpe-di . i'.l.nh'-l.l'ur-l‘a'w.l .E.l.uq\.l-wl.un'mi - :

= w - b T " || A— 1: - | '
Exp-1 S5im II Exp-2 Sim | JL | Exp-1Sim | Exp-2 Sim

Figure 24: RISE Middleware General Simulation Container
Using this architecture, any number of experiments of any type may be conducted

at the ssimulation layer. For example, Figure 24 shows experiments with two simulation

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 82

environments. Type-A and Type-B. In this example, the URI <User-1/Type-A/Exp-1>
corresponds to the experiment “Exp-1" of simulation system “Type-A” (which is owned
by modeler “User-1”). Likewise, URI <User-1/Type-B/Exp-1> corresponds to the

experiment “Exp-1" of simulation system “Type-B” (owned by modeler “User-1").

5.1.2 Simulation Experiment Blueprint

As discussed in the previous section, the simulation resources (i.e., the second
layer in Figure 24) are typically part of experiments instances. Because the resources are
defined as templates, this makes experiments blueprints whose instances can be created

for any user of any service type. The experiment blueprint is shown in Figure 25.

: } _ Provides a Web interface fo select a
/servicatyps] |' TTTT pimnidatton emviramment fpe

;

=

[M Eframaswork | I---""

_

Provides a Weh mierfoce fo the all
eeffinges o deta of aw exper et

| Fr il .'u'l;c F) ”'--!-!'- P I".';Jl_ & 0
| = .-"FF .'.IIF FUTIRINE ST aTen

| /simulation

: . Provides o Web pterface o the
fresults |r-- comgpiened siredation resulls
/debug _____ Provides o Web inferface to the

axperiment fops and arrors

Figure 25: Simulation Experiment Resour ces (URI)

The main resource available is the “/framework}” template, which holds the
experiment name, serves as the parent resource for other resources in the experiment, and
it is used to interface and manipulate the experiment setup. The children resources

provide a Web interface for the experiment, depending on the experiment states. These

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 83

resources can exist at certain states and disappear at others. In this case, the resource
“{framework}/simulation” is used to wrap an active simulation, and used to manipulate
the active simulation in progress. Note that this resource is used to communicate
synchronization XML messages between the various distributed simulation partitions.
The resource “{framework}/results” is used to store simulation results once a simulation
is completed. The resource “{framework}/debug” is used to store any faults related

information regard the subject model under simulation.

= L 5

~ Experinient-1. ; . % e
{ Envirorment of Type-1 o Experinenr-2 (Tstebneed STRilatiog:

| A Emvirenment |H'I:E'PF-H
\ | Mogel | { Midel '|-u:- O : A—— -ﬂ Mol | |
i) I| —r i ——
| Modefling Lays) F i I
e e e s - .-._--:z'-.--- ----------- i————-l-——-?'
| / HSimmlatinn

I.
| | Resmbis

I' 2 - -
Simudalion Servic

TN

| w5 | vR1 B J URI I'IE‘EL_'TT'Tﬁiﬁ"ﬁ?ﬁl‘l URI
RISE Aliddleware a RISE Middfeware
----- i“““""“““[“ u-“----T-----
Tt
I we k= B

Figure 26: Simulation Experiment Resour ces (URI s)
Each of the experiment resources instances are attached to the Web (since they are
URIs) where al information flow to/from those resources through a set of uniform
channels (typically via XML messages; the channels provide a uniform interface and are

discussed in Section 5.2). In fact, the URIs work as wrappers to concrete simulation

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 84

services and data. For example, Figure 26 shows two experiment instances where
experiment-1 is of Type-A simulation environment while experiment-2 is of Type-B
environment. In this example, experiment-1 holds results from a previous simulation run
(the completed state) while experiment-2 is currently executing a distributed simulation
over two computers (active simulation state). In distributed simulation experiments,
similar to experiment-2, the algorithms in each partition synchronize their execution
among each other via exchanging XML messages with URI “{framework }/simulation”.
This URI wraps all software components that execute the simulation in each partition,
including simulation engines. It is worth to note that each resource in RISE API is
described in terms of its URI, supported channels (see Section 5.2), messages exchanged
via those channels to execute a certain function (see Section 5.3), and the type of errors
responses that may be generated. Appendix-B describes the RISE resources
specifications API.

Each of the experiments instances follows a pattern where it moves from a state to
another, as shown in Figure 27 (the API details are described in Appendix-B). The figure
shows that the modeler (for the first time) needs to create an Experiment Framework on
the main RISE middleware and submit all of the necessary files and configuration
settings to it. The experiment framework creation is performed via the PUT channel
where the experiment settings (e.g. model partitioning) may optionally submitted in form
of an XML message. If the XML message is received to an existing experiment URI, the
experiment URI is updated; otherwise, the URI it is created. The “{framework}” URI is

named by the modeler upon creation (e.g. .../FireModel WithRain).

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 85

| FPuTloshena w7 .
T

e i Expenmeni (s g UE1
L LK e el
PLITERIAL Y b upcata conf puration] =

PO TR posad Tihed b0 pl e modal sopis FASE LR AR Hinamesyori]

o hsng s an abds s Taekos [Smudston HOT Schve)

o 5 o

4 Espdimaid Frsameriaibk -J
i o — i

FUT o - flramesvsejia nudnhoen I] _:-:-:4;:..!-.:.:_-.:1“

9 l

S S '
Eimci - R
1[0 e g Fasdl
1
N 1

To check Simulation Stshis read Kh_wa |

GET 1oL irameomck fu mesialic

ol

Charigs ik Varsble Dvramc sk

P N --
| | -] . Toivand Fecies St ol Teced Tied el
| J c"‘f""‘ | H=waGET o LH
| TR s | Aramevcris mushon? simeremin
0 _ '.|F-"--|I Samukanon] .
e Em-|| -
= i"f ..-..'| ' ST i
I I o g L A rran puksies Al Sl atkon
[DELETE: £ ffhatmest vl risation "I 5 o™ [v ;"ﬁm .r_-p-..q.-..-.;.;:-:..-.-.-.:;-:..-..|
_. I HEE LR BF | ek s mudston
|
Hberiad] '

e ey, = '!I..q._-\.l\.'. =T i

! 1
l Abwrtad !
- > I
i . . Ramjs=
b et P il Db L y
b = P paci] s g i | Dietug L
REE LRLARL namismaridciilng L

o 5 i o S Filees sl ‘

Smulsionis Complsted

| R L AP amawcrasas
Figure 27: Simulation Experiment Pattern Context

After the framework (Figure 27) is created, the modeler can update the existing

data via this URI. For instance, the models scripts can be submitted to this URI as a

Zipped file via the POST channel. Furthermore, the experiment settings may be updated

sending new XML messages via the PUT channel. Note that these changes are only

allowed if a simulation is not running the experiment. The main experiment URI can be

used to check the smulation status via the GET channd to URI

(.../{framework}?sim=dtatus). In this case, the middleware responds with an XML

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 86

message containing one of the following states: IDLE (the simulation never run), INIT
(the simulation is being initiaized), RUNNING (the simulation is being executed),
ABORTED (the simulation was stopped by the modeler), ERROR (the simulation
stopped due to an error), STOPPING (the simulation is finishing), and DONE (the
simulation completed correctly).

Once the experiment is setup (Figure 27), the simulation can be started by creating
the Active Smulation URI (eg. ../FireModelWithRain/simulation). However, before
creating this URI, the middleware verifies that the experiment has been set correctly.
This, for example, includes al of the model script files and configurations like the model
partitioning scheme. This Active Smulation URI is used to manipulate simulation in an
experiment during execution such as sending distributed simulation synchronization
messages (by sending those messages via POST channel), inserting external events (by
sending events via POST channel), reading simulation results (via GET channel to URI
.../simulation?sim=results), etc. Once the Active Simulation URI is correctly created, the
necessary components are created in each partition to manage and execute the simulation.
At this point, the simulation exits on one of the following states: ERROR (e.g., a problem
in the model scripts), ABORTED (the modeler sent a DELETE request to remove the
simulation URI), or DONE (the simulation completed successfully). When the simulation
is successfully completed, a results resource (e.g. .../FireModelWithRain/results) is
created to hold all simulation output files. For example, these results can be downloaded
at anytime to replay a simulation’s visualization without executing the simulation again.
However, if the model simulation execution aborted, the errors are stored in the

debugging resource (e.g. .../FireModel WithRain/debug).

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 87

Note that the workflow component discussed in Chapter 8 uses this blueprint to
create and manipulate different simulation experiment instances (executing workflow
patterns), thus enhancing experiments automation, repeatability, management and
reusability. For example, the settings of an experiment may be saved for future reuse
without changing its input variables, since a modeler can create any number of
experiment frameworks. In this case, a modeler may have different repeatable scenarios
without being forced to change a certain experiment settings. For instance, a modeler
may have an environment for model FireModelWithRain to simulate a forest fire when
rain is present while creating another instance to simulate a forest fire without rain, say
FireModelWithoutRain. In this case, the modeler has two scenarios to run

simultaneously.

5.1.3 Resources Database

As stated in Chapter 1, one of RISE objectives is to preserve all experiments
instances unless deleted by an authorized user. This leads to the need of a database to
maintain al resources instances and settings, since an experiment uses a number of
resources.

The database is divided into sections where each section belongs to a user (i.e, a
username account). This allows multiple messages from different users to modify the
database without blocking each other. This is because each incoming message is
processed in its own thread (as shortly discussed in Section 5.2), and a single thread is
only allowed to modify a data object at a time, but different threads are alowed to
manipulate different objects ssimultaneously. The database is transactional, which means

that atransaction is only allowed to enter an object in the database when the previous one

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 88

to the same object is completed. The database stores its objects in a file where each object
is brought into the memory cache upon itsfirst access.

Mladeler Section

s P ' /1 Simulation Systems Simulation Framewaorks
X OO | Services (Experiments)
[—
Worrkapeace "': ﬂ :
I..‘=.
'“'[. ———

Figure 28: User Section in the Database
As seen on Figure 28, each user’s section contains an account object (i.e.
username, password, etc.) and a workspace object. The workspace contains the list of the
simulation services (e.g. DCD++) that are currently used in this user’s experiments. Each
service object contains the list of the experiments objects that have been created by the
subject user (the RISE implementation in Appendix-A provides more details). The
database main issues are summarized as follows:

e RISE divides the database into sections, each section belonging to one username
account. This minimizes the number of threads that need to manipulate the same
data objects simultaneoudly.

e The database (stored in the file system) and the objects in memory have to be
synchronized at al times (without degrading performance) because server reboots
or failures may happen at any time. We should notice that the database and cache
synchronization does not affect distributed simulation performance. This is

because in RISE, simulation in an experiment always needs to be restarted if the

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 89

server fails during ssimulation (e.g. power failure). However, the RISE database
keeps the door open to mark a simulation progress so that it can later be resumed

due to such unexpected failures.

5.2 Uniform-Interface Mechanism

In the previous section, we focused on how resources (URIS) are organized,
created and named to provide a general middleware and experiments blueprints. In this
section, our focus is on how these resources are connected to each other and how
information flows from/to those resources.

RISE advocates the concept of uniform interface of each resource (URI). This
means that all resources are connected with the same software channels that are used to
exchange al information between resources. The concept of software channels is usually
realized (at the software level) by setting afield in the header of a message to specify the
used channel of that message, hence providing a software multiplexing method for the
messages exchanged. Since RISE aready uses the HTTP envelopes to wrap al the
transferred information, HTTP methods are then the ideal choice to redize those
channels. Thus, RISE uses those HTTP methods and treats them as software virtual
channels as follows (Figure 29):

e The GET channel is used to read information from resources such as simulation status
and results.
e The PUT channel isto create a resource or update an existing data in a resource such

as experiment settings.

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 90

e The POST channel is used to append new information to an existing resource such as
sending an XML synchronization message in a distributed simulation session.

e The DELETE channdl is used to remove a resource from RISE such as deleting an
experiment URI.

e The OPTIONS channel is used to retrieve an XML description of all RISE API to

provide a machine processing APl based on the WADL XML standards [144] (see

Appendix-B).
i '
Clant 1 Channels : Services (URIz)
t i
I T !
{ GET .

: pin ["Jp,_ﬁ_ R.esouree

- yPUT (Create/Update)y - (UERL

Services i 1

- i

S . ik Resource

Respurce

| 1 POST (Append) | -
: = >

B esource
(LTET}

: Pl
' DELETE (Remuove) I;}
. L~

Figure 29: Uniform Channelsfor RI SE Resources

Having predefined standardized channels for each resource, we can achieve
composition scalability and improve dynamicity in distributed simulation. Since the
channels of each resource automatically exist upon that resource creation, therefore, the
dynamic interoperability foundations already exist. In chapter 8, we provide suggestions
for extending the presented algorithms in that chapter to allow systems to join/abandon
simulation at runtime. This would have been extremely difficult if, for instance, each
system needed to compile other systems API stubs before interoperability can take place
(see simulation systems APl in existing approaches in Table 1 in Chapter 3). Further,

because each resource is connected with the same number of virtual channels (regardiess

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 91

of the number of remote resources); composition scalability is therefore automatically
achieved, as shown Figure 30. Thus, a system always sends messages in a uniform way
and accessed in auniform way. The rest of this section discusses these two concepts. The

uniform message transmission and the uniform access of resources.

/ LRI UR]
Q LRI f 71;,———- URI
-__‘-‘—\—_\
[
e UL e

Uniform Access Channels rr 2
Lliforme Transmission

Figure 30: RISE-based Inter operability Channels Overview

Because of the uniform interface, all messages are transmitted uniformly
regardless of the number of destinations (Figure 30). In this case, four parameters are
needed to transmit a message: the destination URI, the channel name, the message
syntactic format (e.g., defined in XML), and the actual message data. This means that the
message transmission mechanism can be implemented in a single programming
procedure (see RISE implementation in Appendix-A). However, RISE starts a separate
thread (from athread pool) for each message transmission. It further reuses the same TCP
connections to transmit multiple messages over the same connections. This avoids
establishing a TCP connection with every message transmission, which can be expensive.

Figure 31 shows an example of the message transmission process in RISE. In this

figure, the smulation system sends external simulation messages to its simulation

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 92

manager component. The simulation manager interfaces the middleware with a specific
simulation component. Note that simulation systems can extend the simulation manager
implementation, if specific issues are not handled by the RISE general simulation
manager (whose implementation is discussed in Appendix-A). The simulation manager
converts a system specific simulation message to XML, which usually aggregates several
simulation messages in a single message (XML messages are discussed in Section 5.3). It
then hands the XML message to the middleware to be sent remotely. At this point, a
simulation component assumes the information is sent correctly unless the middleware
reports a transmission error. Finaly, RISE starts a thread to handle the message

transmission from the thread pool, wraps it with an HTTP envelop, and sends it to the

destination URI.
| hodel partition] o Sihcay Saintforion Evein's
[Sinslation ﬁ‘:
| J-I .!_f‘,','-'-!'gT:"rl'"‘ Craitarton Everry
¥ o il Py ol vey XML Messenge
e
Simulation Manager L
.-"'... "-IJ-..I-!' wf Thead frome o o/
£t 'l|" msiigd in e

g el
il'\-rn-',u el el 1 fo 2 LR

[RISE Middiswmare l__ ,,
- S

o

Ll r" "||'|.'\..'H. AEE Thread
*-_

Figure 31: RISE-based Simulation M essages Transmission
Once the message arrives at its destination, RISE needs to route it to the
appropriate resource (URI). RISE internally routes incoming messages to a URI instance
based on the best-case match to a URI template. If a match is found, it assigns a thread
from a pool to handle each incoming request. This processing mechanism is performed in

three steps (Figure 32):

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 93

1. Step 1. the Router (i.e. thread in RISE) checks if the URI matches one of the URI
templates in the server. If so, it starts athread (from the threads pool) and initializes it
with the HTTP request along with an instance of the Java class that is associated with
the subject URI template (see implementation in appendix-A). Note that the thread
owns the HTTP message and the Java object; hence, data contention by other threads
isnot possible in this case.

2. Step 2: The proper operation (of the Java object) is invoked based on the message
channel. At this point, the enclosed message in the HTTP envelope is processed (e.g.
converting received XML message and sending it to a simulation engine instance).
Thus, aresource is implemented as a Java class where channels are operations in that
class. These operations take HTTP requests as inputs and produce an HTTP response.

3. Step 3: The HTTP response is then generated and the message thread is terminated.

Hessage (withiom HITE Eovelope)

'S5tep 2: Invoke Channel Entry
ind Process evbadded mpssige

Step 1. Initializakicn

Responsa

| 4I7E Eavelope]

e |
¥
£
L]
T
7
1
o
3
T
m
-1
b

i P
ETTF Envelspe]
 / . [¥ | _/DCDpp/TireNodel U
JDCDpp/Firedodel |
| /DCDpp/FireMadel
;[:irTiDttypi}fszlmuwurkl: !
: T - HTTF
; Basponse

Channel (s.g. FUT) I

Figure 32: Processing Recelved M essagein RISE Middleware
Based on the second step of the message processing in Figure 32, the message

aways enters a resource through a specific channel. RISE uses this characteristic to filter

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 94

all incoming messages via those channels based on the authentication and authorization
scheme. Theideais that the GET channel (i.e. read data) does not change resources while
the others do (i.e. write data). Therefore, in RISE, resources are created (by default) as
read-only to everyone and read-write to the resource sole owner. However, the owner of a
resource can change settings to block other users from retrieving information from that
resource, if needed. RISE realizes the access mechanism by protecting every resource
with a filter, as shown in Figure 33. The filter performs the following two steps upon
receiving a request: (1) Authentication which verifies the username and password in the
received request, and if authentication passes, it performs (2) Authorization, which
verifies that the received request belongs to the owner of that resource. The filter
responds with the Unauthorized (HTTP code 401) error, if either authentication or

authorization fails. Otherwise, the received request is processed as expected.

- -----\-\-\"-
LET -hﬂ:“ﬂ_ﬂvuﬁﬂw" ;J:h HO
e
TES !
POET
. s 7
r
e L G Bw il i |
FUT - Filber | | (xtate) .
— -
P HO
DELETE !

thnauthorized [d01)

Figure 33: Resour ces Authorization Process
RISE authenticates each message, including synchronization messages in
distributed simulation. The RISE middleware is capable of supporting the Hypertext
Transfer Protocol Secure (HTTPS), if needed. In this case, the entire HTTP message
contents (header and body) are encrypted to achieve higher security [115]. On the other

hand, we assume here the use of HTTP protocol, since it is the typica use of the RISE

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 95

middleware. In this case, RISE applies the HTTP Basic authentication method [54]. In

this method, the client combines and encodes the username and password into a single

string with base 64 encoding, and inserts it in the HTTP header envelope. RISE uses this

method for the following reasons:

1. It does not affect performance since it does not add new extra overhead for handling
messages, particularly for distributed simulation synchronization messages.

2. Itissupported by every Web-browser [115] so that users can still retrieve information
from restricted resources viaregular Web browsers.

3. Itiswidey supported by Web programming languages such as JavaScript, Java, €etc.

5.3 Message-Oriented Information Description

In this section, our focus turned on the actual information that flow between
resources through the virtual uniform channels discusses earlier. Since the RISE
middleware transfers all information in HTTP envelopes and reaizes the resources
channels by HTTP methods, any data format type supported on the Web can be
transferred between resources. For example, simulation output files can be downloaded
from RISE as zipped files (see API in Appendix-B). However, our focus here is on the
distributed simulation synchronization information, since they directly affect
synchronization algorithms design and decoupling systems from each other. In RISE, al
synchronization simulation messages semantics are described in XML (as in the case of
the algorithms to be presented next in Chapter 6 and Chapter 8). One of the purposes of
describing simulation information in XML is to enhance decoupling different systems

implementations in a number of ways such as:

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 96

Design decisions for handling simulation messages in a system become internal
issues that do not need to conform to other systems implementations.

Changes applied to existing simulation messages can be done without modifying
systems software. In contrast, for example, programming parameters changes in
existing approaches break software even at compiling time.

Synchronization algorithms can be proposed on a higher level from programming
details, independent of programming languages and implementations. For instance,
the algorithms presented in Chapter 8 do not discuss software implementation issues.
Thisis because the main concern of such message-oriented protocolsis on what XML
messages can be sent and what messages are expected in return. On the other hand,
how these messages are handled in a system implementation is out of the protocol
scope. In other words, one does not need to be a programmer to design such

synchronization algorithms.

<Messages>
<MessagesCount >3</ MessagesCount >
<Message>

<MessageType>X</ MessageType>

</ Message>
<Message>
<MessageType>X</ MessageType>

</ Message>
<Message>
<MessageType>D</ MessageType>

</ Message>
</ Messages>

Figure 34: XML Simulation Message Aggregation Example

XML messages can aso enhance synchronization protocols performance,

particularly via aggregating severa simulation messages in single XML message, as

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 97

shown in Figure 34. The DCD++ agorithms and the common algorithms aggregate
simultaneous events in single XML messages. The performance results to be presented in
Chapter 7 showed that aggregating remote messages could improve distributed
simulation performance. This flexibility can go beyond improving performance to being
able to support multiple synchronization protocols. This can accommodate different
interoperability domains, which allow systems to evolve independently at different
directions. For example, DCD++ (to be discussed in Chapter 6) can also support other
algorithms (in addition to its own), like those presented in Chapter 8. This is achieved
mainly because of two reasons. the messages uniform transmission, and the use of XML.
In the uniform transmission, to transmit a message four pieces of information are aways
needed: the destination URI, the channel name, the message syntactic format, and the
actual message data. Thus, to accommodate different protocols, the software needs to
pack the XML messages according to different synchronization protocol semantics. In
this case, sending different types of XML messages is the same from the sending routine

viewpoint. It can be as simple as of the following:

If (Protocol-A) then { [/ protocol A

Pack XM._Message TypeA(MsQ);
} else If (Protocol-B) then { //protocol B
Pack XM._ Message TypeB(MsQ);
}
Send(URI, Channel, XM__Type, Msg); //Send the nessage
At the receiving system, the XML messages are processed similar to the above

transmission principle. Of course, the packed information in an XML message still needs

to be mapped to the local software implementation. On the other hand, these types of

issues are irrelevant to the other systems implementations and synchronization protocols,

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 98

which is a fundamental factor for decoupling systems implementations and easing

interoperability.

5.4 Chapter Summary

This chapter provides a design methodology that uses RESTful WS structural
rules. These rules alow more freedom fir making better design decisions in order to
achieve the objectives stated in Chapter 1. RISE uses the RESTful WS structura rules to
spread services over a number of resources (resource-oriented), and resources exchange
synchronization information in form of XML messages (message-oriented) via
predefined uniform channels (uniform interface).

The resource-oriented design organizes resources in a scalable hierarchical
structure. Those resources are exposed by the middleware as URI templates. This means
that those resources instances can be created and named by modelers at runtime. This
leads to the concept of general layered interoperability where different simulation
resources (URIs) are organized at a separate layer above the middleware. Further,
because RISE experiments are externally seen on the Web as URIs, URI templates allow
RISE to provide experiments as blueprints patterns. This means that various experiments
of different types and URIs can be created at runtime, and the steps usually performed to
create and manipulate experiments can be automated (as in the case of the workflow
component to be discussed in Chapter 8). RISE also maintains all resources in a database
(unless deleted by authorized users), which allows RISE to maintain all URIs similarly to

atypical HTTP server.

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 99

RISE advocates the concept of uniform interface of each resource (URI). This
means that all resources are connected with the same software channels that are used to
exchange al information between resources. The concept of software channelsis usually
realized (at the software level) by setting afield in the header of a message to specify the
used channel of that message, hence providing a software multiplexing method for the
messages exchanged. Those channels are based on the HTTP methods (conforming to
universally accepted standards): GET, PUT, POST and DELETE. By having predefined
standard channels for each resource, we can achieve composition scalability and improve
dynamicity in distributed simulation (since the channels of each resource exist upon that
resource creation, the dynamic interoperability foundations aready exist). Further,
because of the uniform interface, all messages are transmitted uniformly regardless of the
number of destinations. In this case, four parameters are needed to transmit a message:
the destination URI, the channel name, the message syntax (e.g., defined in XML), and
the actual message data. Thus, a single programming procedure is sufficient to transmit
all messages to any destination. Furthermore, because of the uniform interface, all
incoming messages to a resource access from known predefined gates. RISE uses this
characteristic to filter all incoming messages via those channels based on the
authentication and authorization scheme. The ideais that the GET channel (i.e. read data)
does not change resources while the others do (i.e. write data).

In RISE, al synchronization simulation messages semantics are described in
XML (message-oriented). One of the purposes of describing simulation information in
XML is to enhance the decoupling of different systems implementations. This is because

implementing those messages in a system becomes an internal issue that is irrelevant to

CHAPTER 5: RISE MIDDLEWARE DESIGN METHODOL OGIES 100

other systems. It further enhances the idea of supporting multiple synchronization
algorithms. This is because the idea behind synchronization agorithms is that the
software implements a set of rules and coordinates the internal activities with other
systems via messages. Thus, to accommodate different protocols, the software needs to

pack the XML messages according to different synchronization protocol semantics.

CHAPTER 6: DISTRIBUTED CD++ (DCD++)
SIMULATION

RISE-based Distributed CD++ (DCD++) performs distributed simulation between
different CD++ engines where each is placed in a partition and is in charge of simulating
aportion of the entire CD++ model. As discussed in Chapter 5, experiments in RISE are
seen on the Web as URIs built by modelers with names of their choice according to the
RISE URI templates. Therefore, for DCD++ simulations, one must build an experimental
framework in RISE. In this case, modelers start the simulation by building URI
<...[{framework}/simulation> where {framework} is the experiment name. Once the
simulation starts, al of the software components needed to execute the simulation are
built on each partition (in our case, the URI <../{framework}/simulation> wraps the
software components in each partition during active simulation). Thus, this URI is
externally used to reach and communicate with the active simulation.

As aso discussed in Chapter 5, RISE is designed as a software layer supporting
different services in upper layers. The assumption is that those services can be built and
executed as separate Operating System (OS) process. In other words, concert services
need to be packaged in standalone software components. At runtime, those components
are started as separate OS processes outside the RISE layer and al communication is
performed via the OS Inter-Process Communication (IPC) queues. This applies to the
CD++ engine once started within an experiment partition, since CD++ is a standalone
application. The advantage of this design is to separate RISE implementation from other

software components. This design has worked, based on our testing, with different

101

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 102

software components (other than CD++) as long as those components can be started as a
standalone OS process. This means that this component can be started by a defined
command (e.g. startComponent) so that RISE can use this command to start the
component on the local machine. The components that cannot be started on the loca
machine (for reasons such as operating system compatibility) were not investigated in our
testing. We further added a thread to each component to handle sending/receiving
messages to/from RISE through the OS IPC (while the component is running). This
design was tested by components written by us (and obtained by available open source
software from the Internet). These components implemented various functions such as a
simple calculator, monitoring hardware devices such as atmospheric pressure sensors,
and device drivers to manipulate local hardware, etc. In conclusion, software components
were different because they were written by different programmers, thus interfacing such
components varied from one to another.

This chapter main contribution is the DCD++ architecture and the enhancement of
the simulation synchronization algorithms. In this case, the CD++ engine, which is based
on Paradlel DEVS (P-DEVS) [38], is interfaced to the Simulation Manager component
(on the RISE middleware side). In this case, within each partition, the CD++ performs the
time management while the simulation manager performs the data distribution on behalf
of the CD++ instance. Note that the P-DEV S algorithms have already been proven to
work correctly within the DEVS community since their first introduction in 1994 by
Chow and Zeigler [38].

The RISE-based DCD++ architecture is described (Section 6.1) in terms of the

software components built during smulation and their roles. The synchronization

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 103

algorithms are discussed (Section 6.2) in terms of simulation messages, simulation
progress phases, and remote messages aggregation (which remote messages and ensures

accurate order arrival). Note that implementation is discussed in Appendix-A.

6.1 DCD++ Simulation Architecture

Distributed CD++ (DCD++) splits the model hierarchy presented in Chapter 2
between several CD++ engines to be executed across the distributed environment. In this
case, each CD++ is responsible of simulating a portion of the model hierarchy and of
coordinating with other CD++ engines to execute the simulation correctly. However, as
discussed in Chapter 5, before simulation can be started, the experiment framework needs
to be created and setup on RISE. In this case, the experiment is created by creating the
URI .../{framework} where all required setup files are submitted to. Afterward, the
simulation is started via creating URI .../{framework}/simulation (see APl in Appendix-
B). Note that the RISE middleware that the modeler uses to create the experiment will be
the main experiment partition. The main partition owns the Root coordinator, which
drives the simulation on al other remote partitions (on other machines). Mode
partitioning is discussed shortly in this section.

Once simulation is started, all of the necessary software components are created in
al partitions. All of these components, built upon starting the simulation, are deleted
when the simulation is completed or aborted. The overal architecture is shown in Figure

35.

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 104

CDH++ Engine
[PC Monitor |

PC [— o
Quene | g -== FPrDEFS Messages CO++ Engme l

IrC .
Monitor | Waichdog

| simmlation Maonager

- -

i A
| Watchdog o

llr Simulation Manager

‘xh RISE Middleware
! "H____
N \%{1.-:] ik

-

YDA Synetironizarion
~ Messages
Erparimers Hartion UG

Figure 35: DCD++ Experiment with Two Partitions during Simulation

Figure 35 shows an example of a RISE-based distributed CD++ (DCD++)
experiment with two active partitions during simulation. Each partition contains an
instance of the CD++ engine [139] to simulate the DEV S hierarchy models that belongs
to this partition. The CD++ engine used here is based on the SOAP-based DCD++ system
described in [137], which was originally based on P-DEVS algorithms [38]. The
simulation manager is the component that manages the distributed activities on behalf of
the CD++ engine with remote partitions. Note that the CD++ (which is based on P-
DEVS) peforms the simulation time management while the simulation manager
performs the simulation data distribution on behalf of its CD++ instance. Both Simulation
Manager and the CD++ engine communicate P-DEVS messages through the OS IPC
queues.

The idea is that the CD++ executes by sending messages to their destination
processor (coordinator/simulator). However, if the destination processor does not exist

locally, it is sent to the simulation manager (on the RISE side), which knows how to

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 105

handle it. This allows CD++ to execute the simulation locally as if it was running on a
single processor, while alowing the simulation manager to handle the distributed
activities.

The IPC Monitors are threads found at both ends of the IPC queues, which are in
charge of processing P-DEVS received from the other. Once the CD++ IPC Monitor
thread receives a message (from the simulation manager), it inserts it in the main CD++
external event list. This relieves the main thread (within CD++) of continually checking
the IPC queue. Further, once the IPC Monitor thread (at the Simulation Manager side)
receives a message from the CD++ engine, it buffers it at the Simulation Manager
according to its partition destination. This allows the Simulation Manager to aggregate
those remote messages in XML and transmit them together (via RISE). This not only
reduces the number of remote messages through the Internet, but also avoids causality
errors. This incorrect ssimulation could occur because P-DEVS messages may arrive in
the incorrect order of their transmissions at the distant CD++ (since those messages are
transmitted concurrently via the Internet). Thus, these messages may violate the local
causality constraint in the distant CD++, starting the wrong simulation phase, as
discussed in the next section.

Thefina component shown in Figure 35 is the watchdog component. A watchdog
is athread that sends periodic messages to other simulation URIs to check their presence.
If a partition is present, it responds back with the XML message
<simulation>ALIVE</smulation>. Otherwise, it responds with HTTP error 401 (Not
Found). The watchdog on the main partition watches all other partitions existence, while

the watchdog threads on other partitions watch the main partition. Watchdog threads are

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 106

necessary because a CD++ engine on a partition may fail during simulation, leading to
inaccurate simulation or deadlocks. For example, assume a CD++ in a partition fails
while the CD++ Root coordinator (in the main partition) is waiting for a “Done” message
from that dead partition. In this case, the Root coordinator would wait forever without
being able to advance the simulation (and without being aware of the problem). Note that
this periodic message value (two minutes by default) is configurable by the modeler. It
only indicates the time it takes the modeler to know of a hanged simulation session
(RISE, in this case, would abort simulation and change the experiment state to ERROR).
Otherwise, it does not interfere with the actual simulation progress or correctness.

It is worth to note that the SOAP-based DCD++ [137] interfaces different
simulation sessions to a single Web-service Wrapper. This wrapper assigns a number to
each simulation session, and builds a CD++ engine for each session. However, this
design does not scale well performance wise (all CD++ engines of different sessions on
the same machine are interfaced to a single WS wrapper using the same IPC queues).
Thus, the more sessions are added the more communication overhead pressure is added
on those IPC queues and to the WS wrapper (which handles all sessions’ requests
sequentialy). Further, sessions that simulate models with low remote communication
overhead performance can be degraded if they share those queues with other sessions
with heavy communication overhead. In contrast, the architecture in Figure 35 separates
different experiments from each other. Experiments managed by RISE on the same
machine will have their own CD++ engines, threads, IPC queues, and simulation

managers.

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 107

As previously discussed, once the simulation is started, the RISE middleware
builds the simulation manager, which in turns builds all components shown in Figure 35.
Afterward, the model needs to be loaded by the CD++ engine in each partition. In this
case, CD++ only needs to simulate a portion of that model. Thus, the simulation manager
stores the model partitioning requirements, allowing the CD++ to use this information
during model loading. To do so, CD++ in a partition initializes the model in two steps:

1. Load the model by parsing the CD++ model coupled model file (CD++ assumes that
it will smulate the entire model; hence, it parses the entire model).

2. Build the processors that will ssmulate all models in the DEVS models hierarchy.
Before building each simulator, CD++ requires permission from the simulation
manager to do so (because it knows how the model is partitioned, as discussed
shortly). If permission is granted, the simulator is built and assigned a unique ID.
However, if permission is not granted, the simulator is not built, but the ID is still
generated (and forwarded to the simulation manager). This is important because
DCD++ maintains a unique ID for each processor in all partitions. Note that
simulators only exist in one partition, since they simulate atomic models. However,
coordinators can span over multiple partitions, since they simulate coupled models.

The CD++ moddl is structured across the network based on the model partitioning
requirements (which helps the simulation manager to perform data distribution on behalf
of its CD++ instance). These requirements originally come from the modeler as part of
setting up the experiment. Therefore, the assumption here is that the modeler is aware of

how the model partitions influence each other before the simulation starts. For example,

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 108

the XML document in Figure 36 splits a 30x30 Cell-DEV'S based fire model into two

partitions
1 <DCDpp>
2 <Partitions>
3 <Partition |IP="10.0.40.175" PORT="8080">
4 <ZONE>fire(0,0).. (14, 29) </ ZONE>
5 </Partition>
6 <Partition |IP="10.0.40.162" PORT="8080">
7 <ZONE>fire(15,0).. (29, 29) </ ZONE>
8 </Partition>
9 </Partitions>
10 </ DCDpp>

Figure 36: XML Mode Partitioning Example

Lines 2-4 in Figure 36 describe the first partition; Lines 6-8 describe the second
partition. Each partition specifies the RISE middleware identification (IP address and the
port number) and the atomic models belonging to this partition. 1P addresses and port
numbers enable the machines to calculate each other base URIs. For example,
<http://10.0.40.175:8080/cdpp> is the base URI of the RISE running the first partition
(Line #2). The above XML document also places the cells zone (0,0) to (14,29) on the
first partition (Line #4) and zone (15,0)..(29,29) on the second partition (Line #7). This
partitioning information is mapped to the DCD++ model hierarchy shown in Figure 37.

As shown in Figure 37, the CD++ in Partition O (on the left) builds the Root
coordinator to manage the overal simulation on partitions (the time management and
synchronization according to P-DEV S agorithms). Note that the “Local communication”
indicates that all messages are indirectly sent viathe local CD++ Event List, as described
shortly. This is the case, between the Head Coordinator and its children Simulators,
between the Proxy Coordinator and its children Simulators, and between the Head
Coordinator and the Root Coordinator. However, the “Communication via RISE”

indicates that messages are sent through the Internet (which usually aggregated in XML

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 109

messages as described in next section). This is the case between the Proxy and the Head

Coordinators.

St 00 QL2 627 POR P S

.I”I'IJ'J'I“I’J" .f

Ll R R A &
FPartitiown &

Simnlarion Vfanager Table Sinmmlatien Maweger Talle

Fanticisa I LRI Prwcesyal 1D Fanbiion ID LRI Frocessor I

1 huetps I (Proxy 103,
453,002 [Sntmlatsy

o bt ¢ (1 {Head. I},
T A52{Eimualatess)

.ﬂ'H'.l' T e A Proceisons

[Rcmr ._ : I-Iu-ii i |i|¢.-rr|-| : + b oy i-'-u;.-i.ir;-rur]
EEEE
L‘- ent List / C=—+ Event List
Shwdate | | Sjaladon Siwndator | | Slsdator
[[ERT] [14.2%) (1500 (18,214
Local Conumumication #—— Comrnunication via RISE

Figure 37: DCD++ Processors Hierar chy Partitioning Example

As discussed in the next section, the Root starts a new simulation phase by locally
sending one message to the highest coordinator, which then propagates in the hierarchy
until it reaches the Simulators. Once Simulators complete their work, they respond with
DONE messages to their coordinators where each coordinator forwards a single message
to its parent until it reaches the Root coordinator. Thus, the Root coordinator is similar to
any other intermediate DEV S coordinator in the hierarchy. In this case, the time it takes a
simulation phase of a coordinator to complete is the time it takes al of its children
segments to complete. Most of these segments are concentrated locally (Figure 37),
however, these local communications still need to be performed via the same CD++

Event List. Note that the Simulation Manager Tables (Figure 37) allow the simulation

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 110

manager component to distribute data to their appropriate destinations during simulation
execution.

In this example (Figure 37), this Root coordinator becomes the parent of the Head
coordinator with ID 0, which simulates cells zone (0,0) locally to (14,29). Since CD++
simulates each cell as an atomic model, CD++ will then run 450 simulators (with 1Ds
2.452). In the same way, the CD++ in Partition 1 (in the right) starts the Proxy
coordinator with ID 1. This Proxy coordinator locally simulates cells zone (15,0)..(29,29)
on behalf of the Head coordinator in the other partition. In this case, the CD++ in
Partition 1 runs 450 simulators with 1Ds 453..902. The CD++ processors pass to each
other the P-DEV'S messages by first inserting those messages in the CD++ Externd
Event List (to be executed later by the Administrator). The Administrator picks the
message at the front of the CD++ Event List and checks the destination of the message; if
the destination is a local processor, the message is directly delivered to that processor.
However, if the destination processor does not locally exist, the message is then sent the
Simulation Manager, which maintains the necessary partitions information to be able to
transmit remote messages. Specifically, it stores the remote partitions URIs and the
CD++ processors | Ds on those partitions.

As shown Figure 37, DCD++ extends the concept of coordinators into a
head/proxy structure [137]. The idea of the head/proxy depends on using two kinds of
coordinators for each coupled model: (1) Head Coordinator: is responsible for
synchronizing the coupled model execution, interacting with upper level coordinators and
message routing among the local and remote processors. (2) Proxy Coordinator: is

responsible for message routing among the local processors. The advantage of using

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 111

proxy coordinators is to avoid remote message transmission between local processors.
For example, assume that Simulator (15,0) needs to send Simulator (29,29) a message. In
this case, this message will be routed through the Proxy coordinator. On the other hand, if
the Proxy coordinator was not used, the message would be first sent to the Head

coordinator in Partition O, which would then routed back to Partition 1.

6.2 DCD++ Simulation Synchronization

During simulation, the CD++ processors discussed in the previous section send
each other P-DEV'S messages via inserting them first in the local CD++ External event
list. The CD++ administrator processes messages in the list by dropping them directly in
the local CD++ processors or by sending them to the simulation manager (to be
forwarded to remote processors). P-DEV S messages can be categorized as follows:

1. Content messages represent events generated by a model. Content simulation
messages include External messages (X) and Output messages (Y). Y messages are
usually converted to X messages when they arrive at destinations. X and Y messages
that are exchanged within a simulation phase are simultaneous, since they are
stamped with the same simulation time.

2. Synchronization messages cause the simulation to move into another simulation
phase (those phases discussed next). In other words, synchronization messages mark
the beginning and the end of each simulation phase. Synchronization messages
include Initialize message (1) (to start initialization phase), Interna message (*) (to
start transition phase), Collect message (@) (to start a collection phase), and Done

message (D) (to end a phase). In this case, the |, *, and @ messages are sent from the

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 112

parent coordinator downward throughout the model hierarchy. On the other hand, the
D messages are generated from simulators upward throughout the model hierarchy

(Figure 38).

(=2 -[;ﬁuj'{lhtiltl;l-.-.m.'4+ Sl ibonel

- i

.[-
D|*| @

O e Atomic Nodel
Simulatoy - {0} gy) ()

Figure 38: Message exchange during a smulation cycle

The simulation phases are divided into three phases:

1. The Initidlization phase initializes al models in the hierarchy. It is initiated by the
Root coordinator by sending an | message to the topmost coordinator. It propagates
downward in the hierarchy until it reaches the simulators. In response, a D message
propagates upward in the model hierarchy where each Coordinator calculates the
minimum next change of its children and passes it in a D message to its parent.
Eventually, Root receives a D message with smallest time, which updates the
simulation clock and starts the Collection phase.

2. The Collection phase is initiated when the Root coordinator sends the @ message
downward the hierarchy. The Y messages generated in this phase are collected to
ensure their execution at the same time with interna events (in the transition phase).
The collection phase is ended once the Root coordinator receives aD message.

3. The Transition phase is initiated by the Root coordinator by sending the * message

downward the hierarchy. In the Transition phase, all the Y messages collected in the

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 113

previous phase are converted into X messages. In this case, all X messages are
executed alongside the simultaneous internal events (by simulators).
Once the initialization phase is completed by the receipt of D message at the Root
coordinator, the Root coordinator immediately starts the transition phase. From now one,
simulation phases are executed by the Root coordinator (upon the receipt of D message)

according to the shown algorithm in Figure 39.

/1 At first call Next Phase is initialized to Transition
Root Coordi nat or: : Recei veDoneMessage (DoneMessage nsg) {

I f (Next Phase == Transition) {
/1l Start transition phase
Next Phase = Coll ect;
Send Internal (*) Msg to highest nodel;
} Else {
Time = Current Tinme + Next Change in neg;
If (Tine <= STOP_TI M) {
Send Stop to all;
} Else {
Wil e (environment event == Tinme) {
Send environment external event to highest nodel;

}
If (Next Event is NOT external) {

/1 Start the Collect Phase

Next Phase = Transition;

Send Collect (@ Mg to highest nodel;
} Else { /] Start transition phase

Next Phase = Coll ect;
Send Internal (*) Msg to top nodel;

Figure 39: Root Coordinator Handling DONE M essage Algorithm
Therefore, as shown in Figure 40, at each virtua time (t), there is at least one
mandatory Transition phase and an optiona Collection phase. This means that multiple
Transition phases may be executed multiple times (since additional internal events may

continually be generated). However, the initialization phase only exists at to.

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 114

-

1 2] o JIT _.|{' T | T; _.|-: T || O

‘|| I_l_ I"'

Imtalization Phaze

| —_ |

L Collection Plsase

Transition Phase

Figure 40: Root Coordinator Simulation Phases
Severa key characteristics of the above simulation phases can be summarized as
follows (which underlies some of the needs behind aggregating remote P-DEVS
messages as discussed | ater):

1. Once a phase is initiated by the Root coordinator, it keeps moving downward in the
processors hierarchy. In other words, each coordinator initiates the smulation phase
for all of its children.

2. Each phase is started by a message (I, @, or *) and ends with a D message. This
means that the messages must be received at the destination processor in the correct
order to ensure correct simulation progress.

3. Content messages (Y and X) are sent to the destination processors (collection phase)
so that they can be executed (by simulators) with the internal events that need to be
simulated at the same time.

The above issues can cause incorrect simulation in the RISE-based DCD++ if one
applies the origina algorithms used by the SOAP-based DCD++, because all the remote
messages in RISE are transmitted concurrently (for obvious performance reasons). In this

case, each message is transmitted within its own thread independently from other

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 115

messages. Therefore, one can never guarantee that independent messages transmitted via
the Internet would arrive to the destination in the same order of their transmission and in
the correct smulation phase. This is not a problem in the SOAP-based DCD++ because
messages are transmitted sequentially and the transmitter is blocked until the message is
acknowledged by the recelver (i.e. the RPCs blocks the caler software until is
completed). In order to overcome this problem, we aggregate simultaneous remote P-
DEV S messages and send together. This solution applies parallelism during the message
transmission, ensures the correct order of P-DEV S messages at destination, and ensures
messages execution in the correct simulation phase.

The aggregation also improves the origina head/proxy a gorithms by reducing the
number of remote messages transmissions (as it will be seen in the performance tests
introduced in Chapter 7). As previously mentioned, the original head/proxy only routes
remote messages locally if destinations processors exist in the loca CD++ engine.
However, messages still need to be transmitted remotely if their destinations exist in
remote partitions. In this case, aggregation can reduce multiple messages transmissions to

a single message transmission cost.

Pareitiomn 0 Partition |

b Prasy Cesdinaion |

/N

| B -| Vo Headl Ceotilinates -

| Simadntos 1 | L
| Shmalator 1 | Stwmeator 2
Local Communication e DMUMD CATION via BLISE

Figure 41: DCD++ Processors Hierarchy Example

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 116

To give an example of the smulation phases with message aggregation, let us
consider the DCD++ processors hierarchy shown in Figure 41. Here, Partition O consists
of the Root coordinators, Head coordinator and Simulator 1, while Partition 1 consists of
the Proxy coordinator, Simulator 2 and Simulator 3. The Local Communication is
performed directly by the local CD++ engine. However, the Communication via RISE
indicates that the destination processor is in a remote partition. In this case, CD++
forwards remote messages to the simulation manager, which aggregates simultaneous
messages in each phase and transmit them in an XML message.

oot |__ Inf {10} Calection (12) i Transition {12) Callection (t12)

—
n’]

Simulator |
1 -
o(3)

Sp— I_ ||I |
e,

i

2
Simutator |- - & 4 -

3
A: Without Mes=age Aggregation
| Root 'I lr_'lit_lfb_:':I Ecnmmnuz] Transiian (2] CroBection {13)
“ ol
| Head i'||I':']
T R P e, '“':I |
| Simulator r i
| 1 s ot
| B3
e ML
EZan

B: With Message Aggregation

w— ppgregaied Remole Messages —* Single Remote Messaga — Local Message
I init . Callect ' Oufput X Exfemal * ndemal O: Done @ Collecled X Messans

Figure 42: DCD++ Simulation Phases and Time Advancement

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 117

Figure 42 shows an example of the simulation progress phases based on the
DCD++ processors hierarchy shown in Figure 41. Figure 42-A shows the simulation
phases progress without message aggregation while Figure 42-B shows the simulation
progress with message aggregation. Let us suppose that Simulators 2 and 3 outputs a job
to simulator 1 every two time units while Simulator 1 takes one time unit to process each
job regardless of the number of jobs are being processed.

The simulation phases without aggregation progress as the follows (Figure 42-A):

1. The first phase is Init(t0) (initialization phase at time 0). A Message | is sent to the
Head coordinator, which passes it to Simulator 1 and the Proxy coordinator.
Conseguently, the Proxy routes message | to Simulator 2 and Simulator 3. Each of
Simulator 2 and 3 reply with D(2) message. This means that both have scheduled an
internal change in two time units from now. Further, Simulator 1 replies with D(c0).
This means that Simulator 1 has no more events to execute.

2. The second phase is Collection(t2). In this phase, Root advances time to 2 and starts
the collection phase by sending message @ to the Head coordinator, which only
sends it to the proxy. This message is not sent to Simulator 1 because it did not
schedule a change in the previous phase; hence, it becomes irrelevant in this phase.
Consequently, the Proxy passes message @ to Simulator 2 and 3, which causes them
to send two jobs (i.e. each sendsa'Y message) to Simulator 1 (viathe Head and Proxy
coordinators). The Head coordinator converts those Y messages to X messages and
send them to Simulator 1. Simulator 1 then collects them to be executed in the next
phase. Simulator 2 and Simulator 3 ends this phase by sending D(0) message upward

in the hierarchy. This aso means that they will be involved in the next phase.

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 118

3. The third phase is Transition (t2). The Root starts transition phase (by sending *
message downward) causing Simulator 1 to execute the two previously collected X
messages. It further schedules a change at one time unit from now. In addition,
Simulators 2 and 3 schedule a change at two time units from now (when they will
produce their next jobsas'Y messages).

As shown in Figure 42-B, the only messages that were aggregated and sent
together are in the Collection (t2) phase. These messages are the two Y messages and the
D(0) sent from the proxy coordinator to the head coordinator. However, other remote
messages were sent individually. This is because other remote messages must not be
delayed to allow simulation to progress. For example, the @ message sent by Head
coordinator to the Proxy coordinator in Collection (t2) phase must be transmitted to
trigger the collection phase on the Proxy portion of the hierarchy. Otherwise, the
simulation does not advance.

The basic idea behind aggregation is that content messages (Y and X) are sent to
processors within a simulation phase. Thus, they are simultaneous messages (messages
exchanged within the same simulation phase). On the other hand, synchronization
messages (I, @, *, and D) are sent to start/end a phase. Therefore, content messages that
are heading to same processor can be buffered until the first synchronization message is
received to that processor. Further, messages that are heading to processors in the same
remote partition can also be sent together. Therefore, dispatching and aggregating
simulation messages are only performed to remote messages (which were originally
forwarded from the CD++ to its simulation manager). This algorithm is listed in Figure

43 followed by an example described in Figure 44.

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 119

Di spat chAndAggr egat eRenot eMessage (Msg) {
Di spatch_XM._Msg = fal se;
Find Renote Partition_|ID (Msg. DestinationProcessorlD);

If (Renmpte Partition does not exist) {
Start aggregation for this partition;

}

[

f (Renote Processor does not have a nessage bag) {
Start Msg bag for Renote Processor;

}

Insert Msg in the Processor’s bag;
If (Msg is of Synchronized type) {// if Db @ *, or |
If (Al Partition Processors ends with Synchronized type) {
Di spatch_XM._Msg = true;
}

}

I f (Dispatch XM._Msg) {
Start XM. Docunent Buil der;
Pack partition Msgs count in XM. Docunent;
For (all nessages Processors bags in this partition) {
Pack Msg in XM. Docurnent;
}

Cl ose XM. Docunent;
Rel ease all partition bags nenory;
Send XM. Docunent to partition sinmulation URI;

Figure 43: Dispatching and Aggregating Simulation Messagesin XML

Figure 44 shows an example of the aggregation scheme. In this scheme, the CD++
(inthe local partition) maintains unprocessed events in a Least-Time-Stamp-First (LTSF)
list. The CD++ Administrator executes the first event in the list by sending to a local
processor or by sending it to the simulation manager. The Aggregator (in the smulation
manager side), maintains the aggregation message queues. These queues are built and
destroyed dynamically as needed. The aggregation queues are organized by their

destination partitions and processors.

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION

120

;___.-o—\-._HI\HH-__ -
Cio++ Admenisiraisr Local
Mit) | Mt} | M) | M) | M) [~ : — T‘\-I-I- R
Local CTH+ Linprocessed Event List "*—-_______.______-—"
E_.'-'—'___'___'_ =
Partiion | Pracesior 5 Mk} A) ¥i{Te Yitz) ‘[¥iTsd -|
ASETEpEaloT | - !
TI. Processor 8 | Xk} | X | Yo | D)
Panition 2 —I'-l Processor 2 Xk} Xit) D) -\\I
XML (X, X D) ja— | Dispascher lg——"

| M1} | &l is a P-DEYS Message with time stamp

Figure 44: DCD++ Aggregation Message Queues

For example, the Aggregator (Figure 44) opened queues for Partition 1 and

Partition 2. In this case, Partition 1 has two queues one for Processor 5 while the other for

Processor 8. As shown in the figure, Processor 8 queue is complete since it has already

received the synchronized message D(tn). This means that CD++ is not going to generate

any messages to Processor 8. However, Processor 8 messages are not dispatched yet

because Processor 5 still has more expected messages. On the other hand, the Dispatcher

sends Processor 2 messages to Partition 2, since all of Partition 2 queues have been

completed. Consequently, the Dispatcher walks over al messages and sends them in

single XML message. Note that all aggregated messages are stamped with the same time

since they are generated within the same simulation phase according to the P-DEVS

algorithm. On the other hand, the aggregation scheme in Figure 44 needs to answer two

possible situations:

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 121

1. The Dispatcher may send messages to a partition before other processors (belong to

that partition) queues even started. In this case, new queues are built for the other

processors and transmitted in the same way. The simulation phases still progress

correctly even if multiple XML messages are sent to the same partition. This is

because simulation phases are executed per processor rather than per partition.

2. The order of messages is only guaranteed per processor. This is because the

Dispatcher packs them, in XML, as they were stored in a processor queue. Thisisthe

important part, since the simulation phases are executed per processor rather than per

partition.

19
20

<Messages>
<MessagesCount >2</ MessagesCount >
<Message>

<MessageType>X</ MessageType>

<Ti me>08: 50: 00: 00</ Ti ne>
<SrcProcl d>2</ SrcProcl d>
<Port | d>5</Port| d>

<Val ue>9. 0</ Val ue>

<Sender Mbdel | d>3</ Sender Model | d>
<Dest Pr ocl d>1</ Dest Pr ocl d>

</ Message>
<Message>

<MessageType>D</ MessageType>

<Ti me>08: 50: 00: 00</ Ti me>

<Sr cProcl d>2</ SrcProcl d>

<Next Change>00: 00: 00: 00</ Next Change>
<Sender Model | d>3</ Sender Model | d>

<Pr oxy>Tr ue</ Pr oxy>

<Dest Pr ocl d>1</ Dest Procl d>

</ Message>

21 </ Messages>

Figure 45: Aggregating Simultaneous Simulation M essages Together

Figure 45 shows an example of an XML message aggregating two messages. Line

#2 specifies the number of the packed messages (2 in this case). Lines 3-11 define the X

message while Lines 12-20 define the D message. Messages contain the following

CHAPTER 6: DISTRIBUTED CD++ (DCD++) SSIMULATION 122

information: Message type (Line #4), simulation time (Line #5), sender processor 1D
(Line #9), destination port ID (Line #7), content value (Line #8), next change time (Line

#16), sender model 1d (Line #9), and destination Processor Id (Line #10).

6.3 Chapter Summary

RISE-based Distributed CD++ (DCD++) performs distributed simulation between
different CD++ engines where each is placed in a partition and is in charge of ssimulating
a portion of the entire distributed CD++ model. The DCD++ simulation exists in RISE
within an experimental framework. In this case, a CD++ engine is built in each partition
of the experiment once simulation is started. RISE wraps the CD++ simulation in an
experiment partition with a URI. This URI is externally used to reach and communicate
with that CD++ engine.

RISE is designed to build local software components as separate OS processes
where all communication is performed via OS IPC queues. This applies to the CD++
engine once started within an experiment partition. In this case, a CD++ in a partition
forwards all remote messages to its associated simulation manager. This allows a CD++
engine in a partition to progress as if it was simulating the entire model locally, while
leaving the distributed environment details to the simulation manager.

The presented synchronization agorithms extends the original Head/proxy
algorithms by buffering simultaneous DCD++ messages in a simulation cycle and then
transmit all of them in single XML messages. This aggregation reduces remote messages

and ensures accurate order arrival since RISE transmits all XML messages concurrently.

CHAPTER 7: RISE PERFORMANCE

Although the main objective of thisthesisis the improvement of simulation access
and interoperability, performance still matters, particularly because the distributed nature
of the ssimulations. In our case, the RISE middleware manages multiple experiments at
the same time where various simulation sessions may be running simultaneously. This
requires the RISE middleware to provide workload management for those sessions to
manage the workload distributions in order to provide best practical performance for
those sessions.

The focus of the tests presented here is to study the middleware sensitivity to
concurrent workloads, bottlenecks, and distributed simulation performance. The
workload sensitivity study aims on testing the system under pressure. In other words,
how the middleware performance is affected when it is required to process increasing
workloads. On the other hand, the distributed simulation performance study aims on
comparing the performance of the RISE-based and the SOAP-based distributed
simulations in similar environment settings. The aim is to compare the performance of
the design methodologies based on these two different syntactic and structural
interoperability rules.

All of the results presented in the following sections have been collected over a
number of different runs to reach at least a 95% Confidence Interval (Cl). The Cl is

calculated as the following [10]: the model follows the normal distribution with mean 6

and variances” and the goal is to estimated. The natural estimator of 6 is the overall

mean of R independent replications (runs), that is:

123

CHAPTER 7: RISE PERFORMANCE 124

Where Y isthe sample mean (average). However, Y isnot@, but an estimate with

error (). Thus, the usual Cl, which assumesthe Y; values are normally distributed, is:
— o
Y = 4, where #:taIZ,R—l—\/ﬁ

Here, o isthe standard deviation of al runswhile ta / 2,R—1 Isthe quantile of the
t normal distribution with R-1 degrees of freedom that cuts off /2 of the area of each tail

(with probability). For example, suppose 120 runs have been repeated with Y of 5.80
and o of 1.6. Since, our objectiveis a95% of Cl, thus, to.ozs, 119 = 1.98 (this value is based
on the normal distribution tables in [10]). Therefore, the Cl is 580 % 0.29,

sinceu = i1.98£

V120

7.1 Concurrent Workload Testing

The results presented in this section am on studying the middieware overall
design sensitivity and any possible bottlenecks because of increasing workload pressure.
The workload is the total number of concurrent requests being served by the middleware
using DCD++ to execute the simulation tests.

As discussed in Chapter 5, the ssmulation experiment is exposed as a number of
URIs. In this case, once arequest (message) is sent to a URI, athread is started to process
that request and generate a response. Once a DCD++ simulation is started, RISE creates a

URI to wrap the simulation on that partition. In this case, the CD++ engineis started as a

CHAPTER 7: RISE PERFORMANCE 125

separate operating system process by RISE, and all communications to/from that process

are performed via the operating system IPC queues, as shown in Figure 46.

¥
| O Stmulateon |
FPlar 1 - . S
T TPC Message Queues]-‘_-"‘x TS
= Spmulateon Manager L— 1 Netwg 4 .
" Modeler
t\. o .._j_ _,-'FJH'.‘I
RISE Mi L s I
___Hl -
Hart 2 URI ,J ..--*"'-j Part |
RET | R bl erics
/J RTT

£y

Simularion Experiment URTE

Figure 46: Workloads Performance Test Environment

Figure 46 shows the path of the request message from the Modeler (client) to a
URI within a simulation partition. Part 1 indicates the time it takes the request message to
travel back and forth through the network, which we call as the message Round Trip
Time (RTT). Part 2 indicates the RISE processing time of the received request. Each
request message is performed in a separate thread. We call this part as the RISE
Processing Time (RPT). Part 3 indicates the time it takes a message to be processed by a
simulation manager and sent viathe IPC to the CD++ engine process. It further measures
the time it takes the CD++ to respond back to the simulation manager, which generates a
message back to the modeler. We call this as the CD++ Processing Time (CDPT). There
are two types of request messages. messages that travels through Part 1 and Part 2 paths,

and messages that travel through Part 1, Part 2, and Part 3.

CHAPTER 7: RISE PERFORMANCE 126

The following tests view this path as a three-stage process (Figure 47). The tests
cases use an increasing workload on these three stages on the path. We collect the RTT,

RPT, and CDPT metrics just discussed.

s Tﬂ?x
Fart 3‘ H Il'u\ Network Time
RTT [\
I| \
|_ v ¥
Part 2 q A ey Processing Reguests by threads
KT
L\
R
Part 3 l'\-____ Threads Hiacking {ine
CDPT) o CD++ Processing time

i
o>

Figure 47: Messages Path Performance Metrics

The requests were sent (from separate computers) during active simulation to the
CD++ URI (DCDpp/{framework}/simulation), allowing the requests to travel through all
of the path parts shown in Figure 47. The tests were repeated using different workloads.
The workload is the number of requests was concurrently handled by the middlieware.
Note that we considered requests are handled concurrently, if at least 99% of those
requests (in aworkload) arrived at the middleware within the duration of one second (i.e.
the arrival rate is the number of requests in aworkload per one second). Thisis because it
isdifficult in practice to transmit a number of messages through the network and ensures
their ssimultaneous arrival (particularly on the Internet due to the usual variation in

messages propagation delay). Further, each workload test was also repeated over a

CHAPTER 7: RISE PERFORMANCE 127

number of runs (usualy 50 or more) to achieve a Confidence Interval (Cl) of at least

95%.

The tests used the following workloads: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

150, 200, 500, and 5000 concurrent requests. It is worth to note that our objective is to

study the middleware sensitivity when increasing the load pressure. In other words, our

objective is to study the system behavior under heavy load, rather than making the
decision of the system being fast or slow. However, because of the finite processing
power of the hardware and software, there will be a point when the server performance
becomes degraded. However, this type of decisions is usually based on monitoring the
system over along period during normal use operations. On the other hand, our workload
testing here represents the worst-case scenario since the middleware is required to handle
various requests at the same time (using certain physical machine processing power).

The presented tests have been conducted within two testing environments (This
provides two different networks setups and machine processing power capabilities):

e Inthefirst environment, the requests are sent from a computer on the same LAN as of
the RISE machine. RISE is installed on a machine with dua processors at 2.33 GHz
with RAM of 4.0 GB.

e In the second environment, both machines are on the Internet (within the Ottawa
ared). RISE isinstalled on a machine with dua processors at 2.66 GHz with RAM of

8.0GB.

Table 4 shows the results of the three metrics with different workloads in the first

environment. Each metric shows the average (_() of al repeated runs of a certain

CHAPTER 7: RISE PERFORMANCE 128

workload. It also shows the standard deviation (o) of al repeated runs, and the 95 % CI

marginal error ().

Table4: First Environment Message Processing Time Paths Results

RPT (ms) CDPT (m9) RTT (ms)
Workloads V o n V o n ? o n
1 3 0.45 0.09 8 0.18 0.04 5.0 0.81 0.16
10 5 0.65 0.13 10 0.60 0.12 5.4 0.85 0.17
20 6 0.67 0.13 13 0.65 0.13 5.0 0.91 0.18
30 6 0.68 0.13 15 0.64 0.13 5.2 0.98 0.19
40 8 0.70 0.14 14 0.91 0.18 5.0 0.93 0.18
50 6 0.85 0.17 14 0.81 0.16 51 0.85 0.17
60 7 0.71 0.14 15 0.76 0.15 5.2 0.90 0.18
70 7 0.69 0.20 17 0.69 0.20 5.0 0.96 0.27
80 8 0.70 0.14 17 0.79 0.16 5.0 0.87 0.17
90 9 0.69 0.14 18 0.91 0.18 5.0 0.87 0.17
100 9 0.65 0.13 19 0.86 0.17 5.3 0.84 0.17
150 12 0.64 0.13 22 0.79 0.16 5.0 0.81 0.16
200 15 0.73 0.14 26 0.93 0.18 5.0 0.88 0.17
500 21 2.10 0.42 39 4.05 0.80 5.0 0.09 0.02
5000 54 9.51 1.88 81 5.13 1.02 5.0 0.07 0.01
20
= T 4
E B
E il lI|II ,"I RPTEmR
1= -:l.'; / l|III — 1 P
[4
£) [_'__/_a—-'" —— CDFT Load EMacs

il | Sromi g *'\:lw.'l [Lo R B i i::u'l ﬂ}\rﬁ'b- .\.]r.i-\\' _L.ﬂ"'\- 'S%Hré:l
>

Cancurrenk e it | Workiand)

Figure48: RPT and CDPT Averagesfor First Environment Setup

The RPT and CDPT metrics Y values are plotted in Figure 48. The figure shows
that each request processing time increases as the workload increases (RPT Path and
CDPT path graphs). This is expected since the machine is performing more work. The

other two graphs (RPT Load Path and CDPT Load Effect) am on measuring the

CHAPTER 7: RISE PERFORMANCE 129

increased load effect. This effect is the difference between the current load and the

previous load results.

Workload = 50
150
16.0
141
12.0
10.0
8.0 e L T

S — i . 1 o 2

2.0
[k,

Processing TEne [msec)

1 4 7 10 13 16 19 22 25 18 31 34 37 40 43 46 49

Fuin #1

Figure 49: All Runsfor the First Environment at Workload 50

As Figure 48 shows, these two graphs tend to stay constant, which indicates that
the middleware is stable; and it supports increasing workloads. However, the RPT is
increased by 2.57 times, and the CDPT is increased by 2.07 times when the workload is
increased from 500 to 5000. Even though this is a sharp jump, it is till reasonable
because the workload is increased by 10 times. Thus, those results show that increasing
workloads lead to more time it takes to process requests. However, the middleware
manage to make the best of the available processing power to serve al requests fairly.
This observation is shown in Table 4, since o is maintained low. This means that various
runs results are served almost with the same processing time. To illustrate this point
further, Figure 49 shows a detailed plot of al the 50 runs performed in the first
environment. In this figure, the RPT ranges between 4 to 8 ms with Cl = 6x0.17, while
the CDPT ranges between 12 to 17 ms with Cl = 14+0.16. However, the minimum and

maximum values do not tell the whole picture. These tell us that there is a spike in the

CHAPTER 7: RISE PERFORMANCE 130

graph, which is expected since the physica machine is also busy performing other
computations such as the CD++ engine. However, the results plot in Figure 49 shows that

the processing times maintained similar to each other (with few spikes).

Table5: Second Environment M essage Processing Time Paths Results

RPT (ms) CDPT (ms) RTT (ms)
Workloads — — —
Y o tn Y (4 tn Y (o Ea 1
1 2 0.75 0.21 4 0.81 0.23 101 7.10 1.41
10 4 0.95 0.27 3 0.84 0.24 103 7.50 1.49
20 5 0.65 0.18 4 0.68 0.19 105 7.90 1.56
30 4 0.79 0.22 6 1.01 0.29 98 10.10 2.00
40 5 0.29 0.08 6 0.89 0.25 99 7.40 1.47
50 5 0.28 0.08 5 0.65 0.18 100 13.70 2.71
60 6 0.39 0.11 8 0.89 0.25 100 6.50 1.29
70 6 0.55 0.16 9 0.76 0.21 101 7.10 2.01
80 6 0.61 0.17 11 1.80 0.51 102 8.70 1.72
90 7 0.50 0.14 11 1.02 0.29 103 12.30 2.44
100 7 0.48 0.14 12 1.86 0.53 109 7.60 1.50
150 9 0.39 0.11 14 2.01 0.57 101 7.90 1.56
200 11 0.51 0.14 16 212 0.60 104 6.40 1.27
500 15 0.21 0.06 21 3.01 0.85 102 5.01 0.99
5000 24 0.52 0.15 31 3.12 0.88 102 491 0.97
;:. .
E 10 // — PT |
Eg. 15 —C[IPT
E 14 el Ef g
Z 5 _:__c.__-_-;-::__-—"-—"ffﬂ_ . — COPT Load Effoc
0| e f’h““-"‘

R S S R

oo L i B i s W oakBand)

Figure 50: Second Environment Setup RPT and CDPT Metrics

The second environment tests are shown in Table 5. The RPT and CDPT metrics

Y values are plotted in Figure 50. This second set of results show that the CDPT and the

RPT vaues support an increasing workload as in the case of the first environment. The

CHAPTER 7: RISE PERFORMANCE 131

results also show the high communication overhead represented with the RTT metric.
This overhead indicates that most of the time message are in the network. Therefore, it is
common sense to target the remote messages to improve performance, reducing the need

to transmit many remote messages, and/or by using high-speed network lines.

7.2 Distributed Simulation Performance

This section aims on testing the distributed simulation performance via RISE. Our
approach hereis to compare the RISE-based DCD++ (discussed in Chapter 6) against the
SOAP-based DCD++ (discussed in [137]) over anumber of different CD++ models using
different experiment environment settings. In this case, the only difference between both

systems is the design methodology, based on the RESTful and SOAP-based WS.

EFPCs Web-Service Pord — CO+-+ Eigime

T+ Flu;'llr

Tomead HTTE
Hervel O Ulll..l]l:lt’l
EISE
|'|.|_||11II|‘\'| ||-r'

=<5 IA P Engine =
_.:-"'

|
ANTE HOAP
Engine

A BISE-Bized DO Sevlen Deplosenent B: 50AF based DOTH-+ Deplovmeni

o~

/Tmncul HTTF
Server Comtanlie

|

Figure 51: RISE-based and SOAP-based Deployment on a Machine

Both systems are shown in Figure 51. Figure 51-A shows the RISE middleware
running as a Servlet (i.e. a program running within an HTTP container) inside the Apache
Tomcat HTTP server container [7]. In this case, Tomcat forwards al of the HTTP

messages to RISE while RISE processes the messages according to their destination

CHAPTER 7: RISE PERFORMANCE 132

URIs. In the RISE-based distributed simulation experiments, those URIs interface a
partition on a machine (where the CD++ engine is reached by one of those URIS). In
these tests, the RISE middleware is deployed as a Servlet within a Tomcat HTTP server.
Such deployment is similar to the SOAP-based DCD++, as shown in Figure 51.
However, RISE can aso be deployed as a standalone HTTP server (similar to Tomcat in
Figure 51), as discussed in Appendix-A. This standalone deployment is beneficial,
particularly when testing distributed systems. For example, many instances of RISE can
be executed on the same physical machine (each having its own TCP port). In this case,
the distributed simulation is partitioned and tested without the need of deploying RISE on
many physical machines. Figure 51-B shows the Apache AXIS SOAP engine [145]
running as a Servlet inside Apache Tomcat. The SOAP engines transate RPCs to SOAP
messages and vice versa, hence they implement the SOAP standards. In this case, Tomcat
forwards the HTTP messages to the AXIS engine, which trandates the contained SOAP
message into a local procedure call in the RPCs Web-service port, which then
communicates the passed-in parameters to the CD++ engine.

The experiments in this section used the following five CD++ models. Note that
each cell in a Cell-DEVS model represents an atomic DEVS model (see [33] for more
details):

e Barbershop is a DEVS model simulates a retail barbershop store activities. In this
model, customers arrive to the store and have their hair cut by the available barber in
First Come First Serve (FCFS) order. The overall model consists of an atomic model
(called Reception, which simulates the customers arrival and waiting at the

receptionist desk), and a coupled model (caled Barber, which simulates a barber

CHAPTER 7: RISE PERFORMANCE 133

activity). The Barber model consists of two atomic models: CheckHair (to simulate
the barber’s job time estimate based on the customer request) and CutHair (to
simulate the barber actual work of cutting the hair such as arms movement, holding
scissors, etc). In this case, for example, once a customer leaves the CutHair model, it
signals the Reception model. As a result, the Reception model sends a waiting
customer to the CheckHair atomic model (within the Barber coupled model).

e Fireisa2-D 30x30 Cell-DEVS model used to simulate forest fire. The simulation
allows foreseeing the propagation and intensity of the fire. Three parameters are
involved in the ratio of spread: (1) particles properties (amount of heat, minerals and
density), (2) type of fud (includes the size of the vegetation) and (3) values involved
with the natural environment (wind speed, territory inclination and humidity). Each
cell’s rules only influence its neighborhood, which is defined as one cell in each
direction (of each specific cell).

e Ship evacuation is a 2-D 49x27 Cell-DEV S model used to simulate the evacuation of
a ship in an emergency. This model has two phases. In Phase 1, each cell calculates
its shortest path toward the exit. In Phase 2, people run in their initial direction until
they encounter another person or an obstacle (e.g. wall). In this model, a person
usualy tends to follow the direction of other people groups. The simulation is
completed once all persons leave the ship. Each cell’s rules only influence its
neighborhood where the neighborhood is defined as 11 cells (i.e. a cell in each
direction from each specific cell, but there are two cells in the upper and right

directions).

CHAPTER 7: RISE PERFORMANCE 134

e Cancer isa2-D 20x20 Cell-DEV S mode is used study cancer spreading on different
types of tissue. In this model, cancer tumors invade normal tissues (replacing healthy
cells with cancer cells) until cancer is spread over other parts of the body. Each cell’s
rules only influence its neighborhood, which is defined as two cells in each direction
(of each specific cell).

o Battlefield is 3-D 10x10x6 Cell-DEVS model used to simulate a battle between two
armies trying to capture the other flag. This model also simulates different activities
such as soldiers’ injuries, deaths, movements, and fight engagements. Each cell’s
rules only influence its neighborhood, which is defined as two to four cells in each

direction (of each specific cdll).

The presented results were conducted using three different distributed
environment setups, as shown in Table 6. In each setup, each model is partitioned into
two or more partitions where each partition is assigned to a machine; hence, each
partition is simulated by a single CD++ engine on a machine. This alows each run of
simulation experiments performance metrics to be collected independently. Note that the
RISE-based DCD++ model partitioning mechanism is discussed in detail in Section 6.1
while the SOAP-based DCD++ partitioning is discussed in [137]. Note further that the
CD++ models under simulation are partitioned in the same way for both systems in all
test runs. This means that the same models portions are assigned to the same machines.
This is part of the requirement to ensure fair comparison between the two systems.

Therefore, the complexity of the models and the assignment of models portions to

CHAPTER 7: RISE PERFORMANCE 135

machines are irrelevant in our tests. Thisis because our objective is to compare these two

systems with the same experiments setup.

Table6: Test Environments Settings

Environment

M achines Geogr aphical
L ocations

No. of
Partitions

Machines Physical Capabilities
(A partition on each machine)

First

All machines attached to
the same Ethernet.

e dual processors at 2.33 GHz with
RAM of 4.0 GB

e four processors at 2.66 GHz with
RAM of 3.9 GB

e dua processors at 2.33 GHz with
RAM of 4.0 GB

e four processors at 2.66 GHz with
RAM of 3.9 GB

e dua processors at 3.0 GHz with
RAM of 3.0 GB

e dual processors at 2.33 GHz with
RAM of 4.0 GB

o four processors at 2.66 GHz with
RAM of 3.9 GB

e dual processors at 3.0 GHz with
RAM of 3.0 GB

e dua processors at 3.0 GHz with
RAM of 2.0 GB

Second

Placed Machines at
different locations within
the city of Ottawa,
Canada

e dual processors at 2.33 GHz with
RAM of 4.0 GB

e dua processors at 2.40 GHz with
RAM of 6.0 GB

e dual processors at 2.33 GHz with
RAM of 4.0 GB

e dua processors at 2.40 GHz with
RAM of 6.0 GB

e dual processorsat 2.13 GHz with
RAM of 2.0 GB

Third

One machine in Ottawa,
Canada; the other in
Amman, Jordan.

e dual processors at 2.33 GHz with
RAM of 4.0 GB

e four processors at 2.66 GHz with
RAM of 3.9 GB

Both systems were compared by setting up the same simulation experiments

where simulation is repeated alternately between both systems over a number of runs.

CHAPTER 7: RISE PERFORMANCE 136

The same experiment setup means that the CD++ model under simulation is partitioned

in the same way over the same physical machines. The performance results were then

collected based on the following metrics:

Number of Remote Messages (NRM) exchanged in a simulation run. This counts the
messages that travel through the network within HTTP envelopes. The NRM is the
same over the same experiment setup using the same system, because the simulation
always executes the same events (deterministic simulation). However, because the
RISE-based DCD++ system aggregates remote messages in XML (Chapter 6), the
NRM values are usually different between RISE-based and SOAP-based systems.
Total Execution Time (TET) is the average time to complete the simulation of an
experiment. The simulation is repeated over a number of runs (usualy 25 or more) to
achieve at least a 95% Confidence Interval (Cl).

Middleware Processing Time (MPT) is the average time it takes a received message
at a machine to reach the smulation (with at least 95% ClI). In the words, the time it
takes a message to go through the different software components. As shown in Figure
52, the SOAP-based MPT isthetime it takes a received HTTP message by Tomcat to
travel through the AXIS engine (SOAP processing) until the subject procedure is
invoked at the WS port. The RISE-based system MPT is the time it takes a received
HTTP message by Tomcat to travel through the RISE middieware (XML processing)

until the received simulation information is forwarded to CD++.

CHAPTER 7: RISE PERFORMANCE 137

o RS MW AML Procesying)

e o

e — .-'—"\-"“-_h
- | RIsE i
.,_-"" Meddlewane | | -
s Serv et J |_JT
i P E—— L | Simlation
/ & —— ol L
g el T T
f i / .
| # | = i - _. .)
| Tomeat | AN SOap WA Pon Oy
I'. | 5 I.F | |_I'||'_11|!.f.' g Java | Sirmulation |
| ., | Container | | Servied Procedures | ;
\ he] , =
f
iRy AL,

2 I ! A L — E

R e PR) SOAP MPT (S0AP Provessingd

'“"\-\.__:H?____A_-"'F

el
Tommcal
HILE
Containes

Figure52: Middleware Processing Time (MPT) on a Partition

The Middleware Processing Time (MPT) results are shown in Table 7. Because

the messages received in a partition follows the same processing path at all times, the

MPT is calculated over all received messages of all experiments simulation runs. Note

that the partition machine used to collect the results (in Table 7) is a dual-processor at

2.33 GHz with RAM of 4.0 GB. Many factors have contributed to these results such as

RISE multithreading scheme and the XML parsing and handling. Further, the software

implementations of the components chain in Figure 52 such as the AXIS handling of the

received SOAP messages. Other contributing factor is the way information is received by

the main partition during simulation. As discussed in Chapter 6, synchronization

messages are exchanged during simulation cycles. In this case, if the partition receives

few messages during a cycle, it then processes them quickly. On the other hand, if it

needs to process many messages at the same time in certain cycles, it then needs more

time to process them.

CHAPTER 7: RISE PERFORMANCE 138

Table7: Comparing MPT Resultsfor All Testing Environments

RISE MPT (ms) SOAP MPT (ms)
Test Environment (Table 6) — =
Cl=Y =X u o Cl=Y+* u o
First Environment 3.02+0.03 0.091 9.46+0.04 0.127
Second Environment 2.95+0.02 0.085 6.27+0.03 0.115
Third Environment 3.2+0.02 0.088 10.76+0.03 0.114

Table 8 shows the Number of Remote Messages (NRM) to complete a simulation
run for all models with different partitions. The table shows the number of partitions used
in the experiment, the RISE NRM, the SOAP NRM, and the RISE Aggregation Effect
(RAA). The RAA was calculated as follows: RAA = (SOAP NRM + RISE NRM). Thus,
the RAA vaue measures how much remote messages have been reduced via aggregation.
Note that the NRM stays the same of each simulation run for the same experiment setup.
On the other hand, the NRM results show the effect of aggregating simultaneous events
in XML messages by RISE. The RAA valuein Table 8 varies from amodel simulation to
another or from a setup (e.g. partitions) to another. This is because the DCD++
synchronization algorithms only aggregate the simultaneous simulation events (i.e. events
executed at the same simulation cycle), which vary from a simulation setup to another.
For example, the aggregation is able to reduce remote messages by 1.3 and 1.95 times for
the Barbershop model with 2 and 3 partitions respectively. On the other hand, the
aggregation is able to reduce remote messages by 10.30, 11.53 and 14.89 times for the
Battlefield model with 2, 3, and 4 partitions respectively. The presented results also show
that the NRM values change when changing the number of partitions in the simulation
environment for the same model. This is mainly because the more partitions, the more

remote synchronization messages are required. For example, some of the local messages

CHAPTER 7: RISE PERFORMANCE 139

in a partition might become remote messages when this partition is repartitioned further

into more partitions.

Table8: Comparing NRM Values between Rl SE-based and SOAP-based DCD++

Model No. Machines (Partition RISE SOAP RAA = (SOAP NRM =+
per machineg) NRM NRM RISE NRM)
Barbershop 2 661 861 1.30
3 745 1451 1.95
2 1676 1796 1.07
Fire 3 1915 2540 1.33
4 2198 3891 1.77
2 1266 3166 250
Ship 3 1911 3861 202
4 2172 4994 2.30
2 12 192 16.00
Cancer 3 18 378 21.00
4 58 656 11.31
2 86 886 10.30
Battlefield 3 156 1798 11.53
4 208 3098 14.89

The following tables (Table 9, Table 10, and Table 11) show the simulation Total
Execution Time (TET) results obtained for the first, second, and third environment
settings respectively (see Table 6). The tables results show the model used in the
simulation, the number of partitions applied to the model where each partition is assigned
to a machine, and both RISE and SOAP TET averages of al repeated runs (in seconds).
In this case, the CI (with 95%) is presented in addition to the standard deviation (o) of
all repeated runs. The tables also show the RISE Speedup, which is calculated as SOAP
TET + RISE TET. The tables further show the New Partitions Effect for both systems,
which is caculated as (Current Partition TET — Previous Partition TET) + Current

Partition TET.

CHAPTER 7: RISE PERFORMANCE 140

Table9: First Environment Test Setting TET Results

RISETET SOAPTET New Partitions
No. of (seconds) (seconds) RISE Effect
MELE, Partitions Cl = Cl = Speedup
Yxtu | 6 | Yxu o RISE | SOAP
2 10.21+0.44 | 1.07 | 13.41+065 | 1.57 131
B e 3 3147072 | 1.74 | 49104079 | 191 1.56 208 | 266
2 10.89+0.33 | 0.81 | 20.06+0.87 | 211 184
Fire 3 33.30+0.70 | 1.70 | 147.01+3.13 | 7.60 4.42 2.05 6.33
4 81.47+0.72 | 1.75 | 539.51+7.79 | 18.90 6.62 1.45 2.67
2 26.87+0.42 | 1.02 | 47.02+1.90 | 4.60 1.75
Ship 3 31.15+0.82 | 1.98 | 5965+1.31 | 3.18 191 0.16 0.27
4 71.23+0.31 | 0.75 | 247.12+251 | 6.10 3.47 1.29 3.14
2 13.12+0.40 | 0.98 | 31.908+087 | 211 244
Cancer 3 0.54+042 | 101 | 51.78+157 | 3.81 5.43 -0.27 0.62
4 18.19+0.70 | 1.71 | 109.74+3.90 | 9.46 6.03 0.91 112
2 6.29+0.20 | 0.49 | 380.84+7.09 | 17.21 60.55
Battlefield 3 9.23+0.30 | 0.72 | 557.47+8.00 | 19.42 60.40 0.47 0.46
4 13.11+0.39 | 0.95 | 854.17+8.90 | 21.60 65.15 0.42 0.53

Table 10: Second Environment Test Setting TET Results

RISETET SOAPTET New Partitions
odd No_. _Of (sei:onds) (se_conds) RISE Effect
Partitions Cl= Cl = Speedup
Y+tu | & Y+ u o RISE | SOAP
Barber shop 2 13.54+050 | 1.21 | 30.70+0.98 | 2.37 2.27
3 37.76+1.19 | 2.89 86.12+2.02 491 2.28 1.79 1.81
Eire 2 16.10+050 | 1.21 | 29.45+1.36 | 3.31 183
3 41.27+0.82 | 1.98 | 194.05+552 | 1341 4.70 1.56 5.59
_ 2 34.34+0.72 | 175 | 73.00+1.75 | 424 213
<l 3 16794083 | 201 | 14410+469 | 1139 | 3.08 036 | 097
2 14.21+0.46 | 111 | 48.40+1.72 | 418 341
Cancer 3 13.56+0.51 | 1.23 | 109.64+3.75 | 9.10 8.09 -005 | 127
Battlefield 2 09.12+0.43 | 1.05 | 53245+11.95 | 29.01 | 58.38
3 15.87+0.59 | 1.42 | 941.78+13.93 | 33.80 | 59.34 0.74 0.77

CHAPTER 7: RISE PERFORMANCE 141

Table11: Third Environment Test Setting TET Results

RISE TET SOAPTET
Model No. of (seconds) (seconds) RISE
Partitions — — Speedup

Barber shop 2 16.25+0.73 1.76 41.45+1.69 4.11 255
Fire 2 27.10+£1.20 2901 109.45+4.63 11.23 4.04
Ship 2 40.83+1.24 3.00 96.36+4.25 10.31 2.36
Cancer 2 16.35+0.70 1.70 70.47+3.63 8.80 4.31
Battlefield 2 10.72+£0.46 111 | 805.06£29.35 | 71.24 75.10

The TET results clearly show substantial performance improvement for DCD++
simulation via RISE comparing to using SOAP-based WS regardless of the used model
or environment setup. For example, in the first environment settings results (Table 9),
RISE Speedup ranges from 1.31 to 60.55 times (with 2 partitions setup), 1.56 to 60.40
times (with 3 partitions setup), and 6.62 to 65.15 times (with 4 partitions). Further, the
second and third environments showed similar results as shown in Table 10 and Table 11
respectively. These results compare both systems implementations, including distributed
simulation algorithms. As previously mentioned, we tried to make this compression as far
as possible by deploying both systems in Tomcat, by using exactly the same CD++
engines, and the same physical machines. However, we are still using the AXIS engine to
process the SOAP messages (not needed in RISE), since we need software to realize the
SOAP standards. We further tried to introduce multithreading to the SOAP system by
invoking each RPC stub within athread. This not only proved to be difficult because of
the way RPC stubs are structured in AXIS, but also because it requires rebuilding the
entire DCD++ WS component. This new implementation would also need to aggregate
simulation messages to ensure accurate simulation because of the reasons discussed in

Chapter 6. Consequently, this message aggregation also needs to be sent via the RPC as

CHAPTER 7: RISE PERFORMANCE 142

an array (which proved to be nontrivial to implement), or within an XML message (sent
as an attachment). These solutions depend on the use of AXIS; therefore, replacing AXIS
with adifferent vendor implementation would affect our WS solutions.

The above issues show one of the REST major contributions: REST does not
place restrictions on implementations, allowing the programmers to introduce their ideas
freely. In REST (which is the Web method), senders build a message and transmit to a
URI on the Web, according to the Web standards (without restricting implementation to a
certain style). On the other hand, the use of SOAP-based WS is tied to existing software
implementations, which usually makes it difficult to introduce new improvements
without major software changes.

The TET results also showed that adding more partitions into the simulation has
slowed down the simulation in most cases, but the effect on RISE was much less. For
example, adding a third partition to the Ship model simulation (for the second
environment shown in Table 10) slowed down the simulation by 0.36 and 0.97 for the
RISE and SOAP systems respectively. This ssmulation slowdown is mainly because the
communication synchronization overhead is larger than the local computation overhead
by machines. However, few cases showed that adding another partition (machine) sped
up the simulation. For example, adding a third partition for the cancer model has speeded
up the simulation alittle bit in the RISE-based simulation as shown in Table 10 and Table
11. This means that the synchronization overhead is not large enough to overweigh the
benefits of adding more computation power via splitting the model between more
machines. Particularly that the Cancer model was able to reduce the NRM value via

aggregation by a factor of 21 times as shown in Table 8. Thus, speeding up ssimulation is

CHAPTER 7: RISE PERFORMANCE 143

possible in distributed simulation but it depends on the environment and the model under
simulation characteristics.
Figure 53, Figure 54, and Figure 55 shows all repeated simulation runs for both

systems using the first, second, and third testing environments respectively.

Fire Model (3 Partitions)
150
160
140 __,.\’—_/r__a\/_—/r\x_"‘
T
i
o ———=RISL D204+
B :E —S0APDCDH
20 = — ==
a
13 45 6789 1I1I212314151R1T7IBIIQI1 222324105
Bun At
Figure53: First Environment All Runs Example
Ship Model (2 Partitions)
100
au
o _,\/n\-\/\\-/\-’—\./
g o
& B0
% 50
2 40 —— RISE DCOH-+
W
= ig — SOAF LD+
Lo
0

1 -3 53 7 '8 11-13 315 3% 3521 325

Run®

Figure 54. Second Environment All Runs Example

CHAPTER 7: RISE PERFORMANCE 144

Cancer Model (2 Partitions)

140
au
Al
FiL
&0
50
40
0
20

RISE DCCH-+
—— 504P DCD+

TET [Secands|

1 .3 353 7 8111335 Y@ 321 325

Run #

Figure 55: Third Environment All Runs Example

Figure 53 plots the TET results of the Fire model with 3 partitions setup. Figure
54 plots the Ship model with 2 partitions setup. The results show that obtained values
vary from a run to another. This is mainly because of the status of the network during a
specific ssimulation run.

The presented TET results so far obtained for simulating a CD++ model by itself
on the participant machines. However, in practice this is usually not the case, since a
modeler may run several models concurrently within an experiment alongside other
experiments. To study such case, the results, shown in Figure 56, aim on studying
concurrency on both systems. These tests were conducted within the first test
environment with the two-partition setup (Table 6). The tests start by simulating one ship
evacuation model, then two of them simultaneoudly, and so on. The results (Figure 56)
show that the more simulated models are added to the simulation the larger the gap it gets
between both systems. In particular when simulating six concurrent models, RISE

executes each model with 39 seconds while the SOAP-based system executes it with 179

CHAPTER 7: RISE PERFORMANCE 145

seconds. This gap is clearly widened comparing to executing a single model by itself.

Notethat al TET results are averaged over various runs to achieve a 95% ClI.

200
150
160

R 1
£ 120
E 100
[P -
= B0 e BT P R D144
= Bl e F|5SE DI R4
40
P
20
0
1 z 3 4 5 G

Mumbser of Concurnent Models

Figure 56: Executing Multiple Ship Models Simultaneously

Note that our presented results in [2][3] showed slight improvment of the RISE-
based DCD++ simulation over the SOAP-based simulation. Those results were collected
while deploying RISE as a standalone HTTP server (RISE types of deployments are
described in Appendix-A). As part of our testing of the RISE middleware
implementation, it was found that the Simple-framework [122], which is used by RISE
standalone deployment to carryout HTTP connections, has some performance issues. To
fix this problem, the RISE middleware was modified so that it can be deployed as a

Servlet in an HTTP container.

CHAPTER 7: RISE PERFORMANCE 146

7.3 Chapter Summary

The main theme of this thesis is to enhance simulation access and interoperability
via the Web. However, performance still matters since distributed simulation is usually
performed on the Web over broad geographical area. Thus, communication overhead
forms a performance hot spot in synchronization agorithms that need to be design
carefully. Further, the RISE middleware is accepted to manage different simulation
experiments at the same time. Therefore, its ability to handle multiple smulation services
workload simultaneously would affect the performance of each one of them.

The performance tests in this chapter have two objectives. (1) they aimed on
testing the overall design sensitivity to increasing workload and possible bottleneck spots,
and (2) they aimed on studying the distributed simulation performance via RISE.

The distributed ssimulation performance testing approach in this chapter is to
compare the RISE-based DCD++ (discussed in Chapter 6) against the SOAP-based
DCD++ (discussed in [137]) when put in a similar testing environments. Thus, the only
difference of both systems is the use of the interoperability syntactic and structural rules,
which led to different design methodologies, as argued in Chapter 3.

The workload tests was studied via break requests messages path into three parts:
network time, RISE processing time, the CD++ processing time. Afterward, concurrent
requests were pumped into this path at various workloads.

The distributed simulation performance testing approach in this chapter is to
compare the RISE-based DCD++ (discussed in Chapter 6) against the SOAP-based
DCD++ (discussed in [137]) when put in a similar testing environments. Thus, the only

difference of both systems is the use of the interoperability syntactic and structural rules,

CHAPTER 7: RISE PERFORMANCE 147

which led to different design methodologies, as argued in Chapter 3. Our used
performance metrics in these tests are: (1) the Total Execution Time (TET) to complete
simulation, (2) Number of Remote Messages (NRM) in simulation, and (3) the
Middleware Processing Time (MPT), which is the time it takes a received message at a

machine to reach the simulation engine.

CHAPTER 8: RISE MIDDLEWARE
APPLICATIONS

This chapter shows how to apply the different methods introduced in previous
chapters for other applications (besides DCD++ distributed simulation). To do so, this
chapter first presents additional distributed simulation agorithms built with RISE
(Section 8.1), and it then shows how RISE could improve simulation experimentation via
the use of workflows (Section 8.2).

The agorithms presented in Section 8.1 aim on interoperating independent-
developed simulation services (which could be used as a feasible proposal for DEVS
standardization [140][141][142][143]). To do so, algorithms must be decoupled from
software design and implementation. In this case, the agorithms place models in each
partition as black boxes interconnected with other models via input/output ports. The
simulation is executed in cycles where all exchanged synchronization messages are
described in XML. These algorithms are also extended to handle dynamic simulation,
where simulation partitions can join/digoin during runtime.

This chapter also presents (in Section 8.2) the design of a workflow component
(on the client side) that could be used to automate the steps been taken by modelers to
create and manipulate experiments (which can be easily implemented on the RISE
middleware). Such component would serve as means for automation, repeatability,
controlling processes and management (i.e. be part of a formal Business Process

Management (BPM) [146]).

148

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 149

8.1 Distributed Simulation Algorithms

This section describes distributed simulation agorithms in terms of
interconnecting models in different domains and simulation synchronization. This
proposal is part of the ongoing efforts to interoperate different DEV S-based simulation
tools. Thus, our objective hereis to keep algorithms as simple as possible without placing
any implementation restrictions. This is because DEV S-based implementations are highly
diverse, in spite of implementing the same DEV S formalism. In this case, programmers
should answer the question “how to implement” the algorithms in their systems. On the
other hand, the algorithms are expected systems to be able to exchange XML messagesin
HTTP envelopes.

On the other hand, the “how to implement” question should be an internal design
issue. This is one of the principles behind the RISE middleware. Therefore,
synchronization algorithms can be implemented as rules in software that coordinate their
interna activities with remote systems via messages (XML in our case) and the software
can implement different synchronization algorithms, triggering different XML messages
accordingly. This type of separation makes algorithms enhancements evolve
independently of each other.

This section is organized as follows. Section 8.1.1 describes the models
interconnections via their input/output ports while Section 8.1.2 describes the simulation

synchronization.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 150

8.1.1 Interconnecting Models Partitions

Each simulation model needs to be placed in a simulation environment domain
(partition) that is capable of executing that model. To do so, we treat all models as black
boxes with input and output ports and the modeler needs to decide how those models
need to influence each other via those ports. Specifically, modelers need to connect the
appropriate input ports to the appropriate output ports. For example, in the setup shown in
Figure 57, Model-2 influences Model-1 via Port-2 and Port-3. Model-3 influences both
Mode-1 and Model-2 via Port-1. This implies that those models output ports can
generate external messages to their correspondent input ports during simulation, hence
influence recipient models. Note that Port-1 and Port-3 of Model-3 and Port-4 of Model-1

are not connected to other models.

Ihemain-1

hWodel-1

ok ot

“\ RISE Middieware

Domsin-2 I, Dominin-3
¢ ,$ i F'"i i i I$n 3
Faor -2 p
Mlodel-3
Mlndel-2

Figure57: Models Partitions I nter connections

The ports interconnections in Figure 57 are described in the shown XML

document in Figure 58.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 151

1 <Confi gFramewor k>

2 .

3 <RI SE Version="1.0" Type="P">

4 <Domai ns>

5 <Main><URI>../Domain- 1</ URl ></ Mai n>
6 <Li nks>

7 <Li nk>

8 <Fr omp<Port >Port - 2</ Port >

9 <URI>../Domain- 2</ URl ></ Fr on»
10 <TO><Port >Port - 1</ Port >

11 <URI>../Domain- 1</ URl ></ TO>
12 </ Li nk>

13 <Li nk>

14 <Fr onp<Por t >Port - 3</ Port >

15 <URI>../Domain- 2</ URl ></ Fr on»
16 <TO><Port >Port - 2</ Port >

17 <URI>../Domain- 1</ URl ></ TO>
18 </ Li nk>

19 <Li nk>

20 <Fr omp<Port >Port - 1</ Port >

21 <URI>../Domain- 3</ URl ></ Fr on»
22 <TO><Port >Port - 4</ Por t >

23 <URI>../Domain-2</ URl ></ TO>
24 </ Li nk>

25 <Li nk>

26 <Fr omp<Port >Port - 1</ Port >

27 <URI>../Domain- 3</ URl ></ Fr on»
28 <TO><Port >Port - 3</ Port >

29 <URI>../Domain- 1</ URl ></ TO>
30 </ Li nk>

31 </ Li nks>

32 </ Domai ns>

33 </ Rl SE>

34 .
35 </ Confi gFranmewor k>

Figure 58: XML Configuration Example (see Setup in Figure 57)

In this XML document, the configuration must be enclosed within the element
<ConfigFramework> block, shown in lines 1-35. This allows different implementations
to specify other XML configuration outside this block, if desired. Line #3 specifies the
synchronization algorithms version and type. In this case, setting attribute Type to value
“P” indicates the P-DEVS based synchronization. Lines 4-32 define domains (i.e.

models) configurations. Line #5 defines the Main domain URI, which is the main

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 152

partition in an experiment. Its magjor function is simulation synchronization, discussed in
the next section. Lines 6-31 define models ports interconnections (i.e. links). For
example, Lines 7-12 define the connection from Port-2 (i.e. Line #8) in URI
<.../Domain-2> (i.e. Line #9) to Port-1 (i.e. Line #10) in URI <.../Domain-1> (i.e. Line
#11). In this case, simulation messages generated at Port-2 are sent to URI <.../Domain-
2>, which are then sent to Port-1. Other ports connections (i.e. links) are defined in a
similar way in lines 13-18, 19-24, and 25-30. Upon receiving this XML document
(Figure 58), the domains are expected to construct interna routing tables similar to the

example shown in Table 12.

Table 12: Domains RISE Routing Tables (see Setup in Figure 57)

Domain Source Port | Destination Port | Destination URI
. . Port-2 Port-1 .../Domain-1
Domain-2 Routing Table Port-3 Port-2 .../Domain-1
) . Port-1 Port-4 .../Domain-2
Domain-3 Routing Table g Port-3 . _/Domain-1

This table shows the Domain-2 and the Domain-3 routing tables. For example,
Domain-3 generates two external messages for each single output message appears on its
Port-1: the first one is sent to URI <.../Domain-2> on Port-4, and the second one is sent
to URI <.../Domain-1> on Port-3. Upon receipt, the message is forwarded to the

appropriate port regardless of the sender.

8.1.2 Simulation Synchronization Interoperability

Before simulation take place, an experiment framework needs to be setup. In
RISE case, this means creating the URI .../{framework} and submitting all necessary

model scriptsto it (see APl in Appendix-B). Afterward, the simulation can be started via

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 153

the main domain (i.e. this means creating URI {framework}/simulation). Consequently,
the main domain starts the simulation on all other partitions domains (as in the case of
DCD++ described in Chapter 6).

The synchronization approach presented here places a central component to
manage the overall simulation in al domains. This is usually the common used approach
in the wide geographical distributed simulation systems such as [19][36][152]. However,
the presented approach here is different in a sense that it reduces remote message
transmissions via message aggregation in XML messages. Our preference of this
approach is because it requires low remote synchronization overhead through the
Internet. It further adapts the P-DEV'S synchronization style, which is supported by all
DEV S-based distributed simulation systems.

In this section, we discuss this P-DEV'S based synchronization in terms of the
simulation phases and the XML messages exchanged. We further discuss dynamic
simulation algorithms, where simulation domains can join/digoin simulation at runtime.

Note that optimistic-based algorithms have been described in [5].

P-DEV S Based Synchronization

Upon simulation startup, the main domain creates the RISE Time Manager (RISE-
TM), within its domain, to manage the entire distributed simulation (Figure 59). Note that
RISE-TM is reached at the same URI of the main domain simulation. Thus, the relation
between the main domain and RISE-TM in a system is internal implementation specific.

However, we separate them herein our discussion for clarity.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 154

I i F"'\:l‘l"ltr‘.‘ I:':l é - "=: RE '|."""HI All j'.-h.[PHIJ'
aml Send All RISE Time St] i
Callected Manager : Timie |h'|mr'[
Exterinal (RISE T?"r.l "1 s

-

Dhodnain- 1 Diotnain-2 Domain-3

Figure 59: Smulation Cycleat Timet Example

The RISE-TM advances the simulation in cycles (phases). Each cycle is executed

in the following two steps, shown in Figure 59:

1. RISE-TM requires al domains to execute all of their events at current (or newly
calculated) RISE time (i.e. the time that ssmulation partitions are allowed to execute
events at). This is done via sending in paralel an XML message to each relevant
domain, containing the current RISE time along with all external messages generated
in the previous cycle, if any. Once a domain partition executes all the internal events
with the current RISE timestamp, it responds to RISE-TM with one XML message
containing all external messages generated for other domains, if any. Note that all
generated external messages must be stamped with the current RISE time (or larger).
Further, this XML message aso contains the next event time in the sender partition.
The next time is the time of the next event in a partition larger than RISE time. If no

13 2

more events exist, this value is then set to , indicating infinity.
2. Once RISE-TM receives al replies from all relevant domains, it calculates the next
RISE time. Further, RISE-TM merges all generated external messages and passes

them to al relevant domains at the beginning of the next smulation cycle, as

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 155

described in step #1. If RISE-TM finds a new RISE time to be infinity, or receives a

stop request from the modeler, it stops the simulation.

The above two steps require two types of XML messages. the first one is sent
from RISE-TM to domains while the second comes as a reply to the first message (i.e. it
is sent from domains to RISE-TM). Figure 60 shows an example of the first XML

message while Figure 61 shows an example of the second XML message.

1 <RISE Version="1.0">

2 <Ti me>00: 00: 01: 000</ Ti ne>

3 <XEvent s>

4 <MessagesCount >2</ MessagesCount >

5 <XEvent >

6 <Ti me>00: 00: 01: 000</ Ti nme>

7 <Port>Port-1</ Port >

8 <Val ue>9</ Val ue>

9 <URI>../Domain- 1/ si mul ati on</ URl >
10 </ XEvent >

11 <XEvent >

12 <Ti me>00: 00: 02: 000</ Ti ne>

13 <Port >Port - 2</ Port >

14 <Val ue>10</ Val ue>

15 <URI>../Domain- 1/ si mul ati on</ URl >
16 </ XEvent >

17 </ XEvent s>

18 </ Rl SE>

Figure 60: Example of RISE-TM to Domains M essage

Figure 60 shows example of RISE-TM message to domains. This message must
be sent to al relevant domains in this simulation cycle. Relevant domains are the
partitions that have events to execute in this cycle. In Figure 60, Line #1 defines the
protocol version. Line #2 specifies the RISE time; hence, every event with this time must
be executed in this cycle. Lines 3-16 enclose all collected externa messages in the
previous cycles from al domains. In this case, there are two external messages as

indicated by Line #4. For example, the first external message is defined by the < XEvent>

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 156

element block at lines 6-10: Line #6 defines the message time. Line #7 defines the
model’s destination port name, Port-1 in this case. Line #8 holds the message data, “9” in
this case. Line #9 defines the destination URI. Lines 11-16 define the second external

message in asimilar way.

1 <RISE Version="1.0">

2 <URI>../Domain- 2/ si mul ati on</ URI >

3 <XEvent s>

4 <MessagesCount >2</ MessagesCount >

5 <XEvent >

6 <Ti me>00: 00: 01: 000</ Ti ne>

7 <Port>Port-1</ Port >

8 <Val ue>9</ Val ue>

9 <URI>../Domain- 1/ si mul ati on</ URl >
10 </ XEvent >

11 <XEvent >

12 <Ti me>00: 00: 02: 000</ Ti ne>

13 <Port >Port - 2</ Port >

14 <Val ue>10</ Val ue>

15 <URI>../Domain- 1/ si mul ati on</ URl >
16 </ XEvent >

17 <Ti me>00: 00: 01: 000</ Ti ne>

18 </ XEvent s>

19 <Next >00: 00: 03: 000</ Next >
20 </ Rl SE>

Figure 61: Example of Domains Reply to RISE-TM Message

Figure 61 shows an example of a domain response to RISE-TM: Line #1 defines
the protocol version. Line #2 specifies the sender domain URI, in this case Domain-2.
Note that the sender URI alows RISE-TM to recognize when it has received al the
replies from al the relevant domains, so that it can start the new simulation cycle. Lines
3-18 list all externa messages generated by Domain-2 in this cycle. In this case, there are
two messages as indicated by line #4. The first externa message is defined by the
<XEvent> element block at lines 5-10. Line #6 defines the message time. Line #7 defines
the model’s destination port name, in this case Port-1. Line #8 holds the message data, in

this case “9”. Line #9 defines the destination URI. Lines 11-16 define the second external

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 157

message in a similar way. Line 17 specifies the minimum time of all the enclosed
external messages. Note that RISE-TM includes this time when calculating the next RISE
time. Line 19 specifies the time of the next event of the sender domain. Note that RISE-
TM not only includes this time when calculating the next RISE time, but also uses it to
decide relevant domains in the next cycles. This means that RISE-TM only needs to

involve adomain in a certain simulation cycleif it has events to execute in that cycle.

RISE-TM

Domain-1

Time (0) Time (0) Time {2}

Time (6)

[Domain-2 I_ S —

Domain-3 i

Nit): Hext Evant, X{t}: External Message, where t is the time

Figure 62: Simulation Cycles Example

To show how the simulation progresses, let us consider the example shown in
Figure 62. Here, RISE-TM drives the simulation on three domains. In the first cycle,
RISE-TM starts requiring all domainsto execute all of their events at time 0 and waits for
all domains replies. Domain-1 responds with N(2) (the next event has a timestamp 2).
Domain-2 responds with X(0) (an external message with time 0) and N(2) (the next
internal event is scheduled for time 2). Assume further that X(0) is intended to be sent to
Domain-1. Finally, Domain-3 responds with N() (the model passivates, the next
internal event has time infinity). Upon receiving al replies, RISE-TM calculates the
current RISE time to be 0. It further starts the second simulation cycle at time O and

forwards the X (0) to Domain-1. Once Domain-1 executes X(0), it responds with N(2) (it

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 158

schedules itself at time 2). Upon this reply receipt, RISE-TM advances time to 2, and
requires Domain-1 and Domain-2 to execute all events at time 2. In response, Domain-1
schedules itself at time 6, while Domain-2 schedules itself at time 8 and generates X(7)
for Domain-1. In the fourth cycle, RISE-TM advances time to 6 and passes X(7) to
Domain-1. Note that Domain-1 does not execute X(7) in this cycle, since the current
RISE time is 6 in this cycle. Thus, it inserts X(7) in its events list (so that it can later be
executed at time 7), and then responds to RISE-TM. Once RISE-TM receives this reply,
it starts a new cycle.

Note that for ssimplicity, the example in Figure 62 ignores the fact that al of the
exchanged messages are aggregated in XML messages as previously discussed. This
aggregation enhances performance because remote messages transmissions are expensive
and take in the range of milliseconds to seconds [58]. It further ensures accurate RISE
time calculation without having complex time-calculation schemes. In our approach, all
systems involved can only receive or send one XML message in each simulation cycle. In
this case, RISE-TM cannot start a new simulation cycle until it receives that XML
message from each involved domain in the current cycle. Otherwise, if simulation
messages were transmitted individually, RISE-TM would need to take into account any
possible messages that still in transit. This is because all messages are transmitted
concurrently for performance reasons, which makes it impossible to know the time it
takes a message to be transmitted. Simulation messages aggregation solves this problem.
Note that without message aggregation, each sender must be blocked until the message
arrival is acknowledged by the destination, in order to ensure al messages have arrived in

the correct order in the correct ssmulation cycle. This prevents the sender of performing

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 159

local computation, and doubles the cost of each message (i.e. the sender is blocked for the

duration of transmitting of the message and its acknowledgment).

Dynamic Simulation
This section provides design suggestions in performing dynamic simulations in
which domains are removed or added at runtime. To start the process, the modeler sends

the XML configuration document, shown in Figure 63, to the main domain URI.

1 </ ConfigSi nul ati on>

2

3 <RISE Version="1.0">

4 <Domai ns>

5 <Add><URI>../Domain- 4</ URl ></ Add>

6 <Remove><URI>../Domain- 2</ URl ></ Renove>
7 <Li nks>

8

9 </ Li nks>

10 </ Domai ns>

11 </ Rl SE>

12

13 </ Confi gSi mul ati on>

Figure 63: RISE XML Dynamic Configuration

This XML document (Figure 63) instructs the main domain to remove or add
certain domains from/to the simulation. It further describes the new models partitions
ports connections. Note that for simplicity, we do not allow main domain removal, but
modeler can still disconnect al of its ports. Line #5 defines the <Add> element block,
which lists al new joined domains URIs, in this example <.../Domain-4>. Line #6
defines the <Remove> element block, which lists all new digoined domains URIs, in this
example, <.../Domain-2>. Lines 7-9 define the new ports connections similar to lines 6-

31in Figure 58, previously described in Section 8.1.1.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 160

‘DELETE,
PUTy

Mit): Mext Event, X{t): Extarnal Messagea, whara t i tha time

|

|

|
lllrlli1ll' o L

|

I

l*

Figure 64: Dynamic Simulation Phases Example
In the P-DEV'S based synchronization approach, RISE-TM performs the critical
steps of the dynamic configuration before starting a new simulation cycle with a new
RISE time, as illustrated in the example shown in Figure 64. Assume that RISE-TM
receives the configuration request during the first phase at time zero. Assume further that
RISE-TM isinstructed to remove Domain-2 and to add Domain-3. In this case, RISE-TM
performs the second phase because the time does not change. However, it starts the
dynamic configuration before starting the third phase, as follows:
1. It deletes Domain-1 viathe DELETE channel,
2. It creates Domain-3 (viathe PUT channel) and supplies it with the new configuration
along with the current RISE time, and
3. It sendsthe new XML configuration document to Domain-1 (via the POST channel),
allowing new routing tables to be reconstructed. At this point, RISE-TM must wait
until successful acknowledgements are received back. Subsequently, a normal
simulation cycle is started at time 2 where al new created domains are being
involved.
Note that all external messages produced by deleted domains (e.g. Domain-2 in

Figure 64) are still processed since they are still part of the simulation. On the other hand,

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 161

al the X messages going to deleted domains are ignored, since RISE-TM does not
forward simulation messages to dead domains. For example, if the removed Domain-1
was supposed to receive X messages at time 1 in Figure 64, those X messages are
discarded, as Domain-1 died at the start of time 1. Further, Domain-3 started at time 2.
Note that initialization phase for new added domains are assumed to start with the current

RISE time.

8.2 Simulation Experiment Workflows

A product workflow is the set of required steps for developing a product until it
gets into market [146]. They serve as means for automation, repeatability, controlling
processes and management (i.e. be part of aformal Business Process Management (BPM)
[146]). Nevertheless, there is still no workflow integration for the M&S software
currently in use. Users are still forced to combine a number of different software products
using general workflow tools for scientific processes (e.g. Kepler [85] and Trident [131]),
scripting languages like Python [151] or combining different functionalities manually.

This section presents the use of RISE to design a workflow component (and
various workflow examples). A workflow component [4] running on the client side
would be useful to automate the manual steps that would have been taken by modelers to
create and manipulate experiments on the RISE middleware. In the component presented
here, workflows are designed graphically and stored as XML scripts. During execution, a
workflow instance is created and executed based on its XML script. This execution
means that a token is moved from a computation step to another. The computation step

could be for example, creating an experiment URI on RISE, running simulation on that

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 162

experiment, checking a simulation status on that experiment, etc. Thus, many

experiments can be created automatically and manipulated simultaneously.

RISE Viddlewere H"‘-».II
(flpuJJlel'f:f\ ﬁ.p: o \ Fxperiment=3 %, ‘H I||
.
Fischcde: [j|f| FircMaded |j \ I| FireMade]-2 |j | J.
m , f_/(
\l\\ _:. " \.\\- :-ITI'|IJ|J1|"11 \F\JI‘I‘II dution
H""\-\.\,____ :
'\--l| II"
i e — ——__|___ == =
T e 8 | s I—"l ' I—'l | \
i H ..'I'.'-_'.'.i\'rl'.|'-'I I l"l'.lll-llll'l'll. 3 |
. 'l. I "{.i_ll + | """I_|_"|_|_"‘|_! !f'rarlgﬂrm'f_‘mmwuw.r/
Workflon-1 Workflow-4 -
G e e __;'_'_':-‘;__ =
. Tiokere i II'|'."|'_|';I|'II. ETRcTiva yiepy [:".]'illJ.L'jh I'—"|1I.'I!-i;|1|_||"..

Figure 65: Overview of Simulation Workflows Example

Let us consider the example in Figure 65. This example shows four workflow
instances being executed by the workflow component. Assume that the first three
workflows have created three RISE experiments to simulate a Fire model. In this case,
these experiments are handled independently by the workflow component, since each is
handled by a workflow instance. For example, Workflow-1 is currently interacting with
the Experiment-1 URI .../FireModel-1 (e.g. submitting model scripts). Workflow-2 and
Workflow-3 are currently running simulation on Experiment-2 and Experiment-3
respectively (interacting with URIs .../FireModel-2/Ismulation and .../FireModel-
3/simulation). However, Workflow-4 is a a computational step not involving an

experiment at RISE. This is because a workflow may involve other steps such as

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 163

designing a simulation model to be executed later within an experimental framework.
Thus, Workflow-4 is interacting with the Models repository to retrieve previously stored
model's scripts.

This component will be presented as follows. Section 8.2.1 discusses the
workflow component architecture (including interaction with different servers and the
RISE middleware to manage and execute different workflows). Then, Section 8.2.2
presents a number of experiment workflow patterns using the YAWL graphical notations

[136], the interactions with RISE and the workflows XML representation.

8.2.1 Workflow Component Architecture

The workflow component architecture, shown in Figure 66, follows the reference
model recommended by the Workflow Management Coalition (WFMC) standard group
[148]. In this model, the workflow component is in the center where it interacts (as a
client) with other surrounding repositories, servers and perhaps other workflow
components. In our case, the workflow component (Figure 66) interacts with the RISE
middleware to run simulation experiments. It also interacts with different repositories for
storing/retrieving the ssimulation models and workflows scripts. The Graphical User
Interface (GUI) is used to define the workflows graphically according to certain notations
(in our case, YAWL that is presented in Section 8.2.2). The workflow modeler’s role is to
design those workflow blueprints. Once completed, they are compiled by the workflow
component into the XML Definition script (discussed in Section 8.2.2), and stored in a

repository as XML documents for future use.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 164

Sluusionion S uskefor s
Experinmeemtol Aralroer

I~

Himilition Sesulonsaml mailel
e T s b v e

o
1P arkfles IJ.l.‘I’n’ﬁ_ i_
e

=1 (F 1)

'llf**r'“‘x

Workflon l.'lg.i'ip?m‘ll / L

T,

y

‘I

__l .7

Bl Time Section

i ——

—

Simmiavion Medels Beposiiery

W kel rl

: r { RISELT
W Kotk Slawii kil Bl T
XML Dedl Workdbew noesis | 1] Workilen \f_?r FISE Ml U

nilam Hearch Fm- Search Fm- (1§ | Workdbew 47 >
Translatar i aimg] Engims —

N . L [kL
e _—— =mri=

i Tidne Section

"

| Warkilow Bapasiiors _]

Figure 66: Workflow Component Design Architecture

The workflow components allow both workflow and simulation modelers to
submit their search criteria to retrieve certain workflow patterns, as shown in Figure 66.
The simulation modelers use workflow patterns in the context of executing experiments
and constructing models. On the other hand, the workflow modelers use workflow
patterns to construct other needed workflow patterns by reusing certain existing
workflows within new constructed workflows.

As adso shown in Figure 66, the component operates in two phases. In the Run
Time phase, workflow engines execute the workflow patterns while al workflows are
designed and stored for future reuse in the Build Time Phase. In the Run Time phase,
workflow engines execute the workflow patterns. The workflow engine parses the
workflow XML definition document (discussed in Section 8.2.2) and executes each step
as applicable (e.g. manipulating simulation experiments at the RISE side). As in the
discussed examples later in Section 8.2.2, workflows are designed as computational steps
where a token moves through a set of elements such as tasks instances (e.g. start

simulation) and conditions (e.g. if smulation is done).

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 165

Because the token time is spent inside tasks instances, since they represent the
actual work in a workflow. Our focus for the rest of this section is devoted on tasks

executions in workflows.

Workflow blueprint =<Task>>
Start Simulation |
g gt i i < Ll ! . 3
Worktlow 21 Instance Start sinvalation. ¥ | Tokens
: k1 :
Worktlow #2 Instance | nsfamee== [
Start simulation

Figure 67: Example of a Workflow Task and Task I nstances

It is important to distinguish between a workflow blueprint and a workflow
instance. The workflow blueprint is the template that contains tasks (i.e. analogy with the
C++ classes) while the workflow instance is a case of that blueprint that contains tasks
instances (i.e. analogy with the C++ objects). Thus, workflows instances only exist at
runtime. This means that tasks (i.e. computational units) within a workflow blueprint
exist in workflows instances as task instances. For example, Figure 67 shows two
instances of task “Start Simulation” in Workflow #1 and Workflow#2 instances. Even
though these task instances follow the same computational patterns, but their execution is
completely two different things. For example, Workflow #1 might be waiting for some
reason to start smulation on an experiment instance while Workflow #2 is finishing
simulation on another experiment instance. Thus, the state of atask instance is controlled
by the state transition diagram (discussed shortly) of that task. This transition diagram

becomes active once the workflow token enters the task instance (Figure 67).

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 166

In our case, once a token enters a task instance in a workflow, the token follows
the state transition diagram to manage its behavior during a task execution. Because a
task may have different instances that being executed simultaneously, the workflow
component manages those task instances in multiple lists based on their states (i.e.

defined in the state transition diagram). The state transition diagram and those lists are

discussed next.
- il \.lemlng
Cremie = B
Terminaie]
Activale T
= I'i' T —— !
Reac : v
Camcel
Conceled
Camcellafion

Complete
Fimish

Figure 68: State Transition Diagram for a Workflow Task

The execution semantics of each task in a workflow is expressed in the state
transition diagram shown in Figure 68. The diagram consists of conditions (represented
by circles) and transitions (represented by rectangles). Conditions are places to hold
tokens (a token is an instance of a task), hence multiple instances reside in different
condition of their task state transition diagram. Transitions are actions that cause a token
to move from a condition to another. Transitions take time to complete. Figure 68 shows
five possible conditions: (1) “Waiting” holds tokens that are not allowed to run. For
example, the workflow component might limit the number of running tasks

simultaneously. (2) “Ready” holds tokens that are active and waiting to execute. (3)

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 167

“Running” holds tokens that are currently being executed. (4) “Completed” holds tokens
that have completed. (5) “Cancellation” holds tokens that have been canceled before
completion.

The workflow component tracks token instances of atask via associating them to
lists according to their defined conditions in the state transition diagram. In this case,
based on the possible condition, there are four token lists: Waiting, Ready, Running and

Completed lists, shown in Figure 69.

]
[i |
! Tozks } i Waiting 1
(] i :
] 1 i
]] 1 1
- J | . @& | ®
i . | 5
]] I 5
¥ 1 i 5
[1 4 | S
[] e I . -+ gk < §
.- o I.lsl.Jn:l.n!.L e Torkawt frask instancal

=

LY

Kby list

Hunmning livt

Cwmpleted s

Figure 69: Tracking Token Statesin Tasks Instances
8.2.2 Experiment Patterns Examples
The workflow patterns examples discussed in this section uses the YAWL [136]

graphical notations. This provides modelers with a graphica method to design

workflows. However, one of the workflow component objectives is to convert the

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 168

graphical notations to XML representation so that they can be stored, retrieved, and
executed. This provides machines with processing syntactic for handling workflows. In
our discussion next, we briefly describe all of the relevant YAWL notations used in the
presented examples in this section, followed by the workflow patterns examples
discussion in terms of their graphical notations and XML representation.

Figure 70 shows excerpt of the YAWL notations: conditions are represented by
circles and tasks are represented by rectangles. Input and output conditions specify the
beginning and the end of a workflow. Atomic tasks are indivisible activities, where
composite tasks (denoted by double border) enclose other workflow activities. Tasks are
considered automatic, but placing an arrow on a top of atask indicates a user interaction
while placing a clock indicates a timer trigger task. The XOR-split element limits the
flow output to exclusively one, based on a certain condition. Arcs show the token flow
direction.

= I T e = =

Atemic Tazk

Hissaai User Trigger (ask Multiphe Afomic Tashs ~Compesite Task i
Ty N
N D >) I
Condition Inpui Cosdition Ot pet Camdidion

Task XOR-Split

Figure 70: Excerpt of YAWL Notational Elements
The approach followed here is to design workflows in composite tasks so that

these composite tasks can be plugged in other workflows, hence alowing their

reusability.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 169

The Simulation Workflow Composite Task (SW-CT), shown in Figure 71, is the
task that encapsulate all workflows examples presented in this section. The purpose of
thistask is (1) to control the overall pattern of building a simulation model, (2) to setup a
simulation experiment at the RISE middleware, and (3) to execute simulation on that
RISE experiment. To do so, this composite task encloses two other composite tasks. The
first task is the “Building Simulation Model” Composite Task (BSM-CT), which guides
the modeler to construct a simulation model (BSM-CT is discussed shortly). The second
task is the “Simulation Experimentation” Composite Task (SE-CT), which sets up
multiple experiments at the RISE middleware and executes the simulation on those
experiments. The SE-CT is fully automated, hence allowing multiple experiments to run

automatically at the same time (SE-CT is discussed shortly).

ij!-l Sl ol ke Wi kil

Simanlanian

Eﬂ\: i :'IIF. 1|:|_|'| Experimenisiben i
i .-"':\T}—____*l"-_ T "I-D‘I_‘ !
i -'-'-_ Herlert Simulstisn regine s ;:"' . |

r——

Eiilldism# Simiailacion
Bluiled
ety == —

Figure 71: Simulation Workflow Composite Task (SW-CT) and RISE Interactions

Figure 71 shows that if a ssmulation model is present and valid, each simulation
Workflow Composite Task (SW-CT) starts with executing the “Simulation
Experimentation” Composite Task (SE-CT). Once the SE-CT is completed, the

“Analysis” atomic task handles the output results of all experiment instances. For

il a1l i
4 Ll ‘\@ i = - -
i [TRI . fwedcspaces! isorvarhspade | servicivpe | ‘

|

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 170

example, the analysis may be performed via visuaization or by comparing certain
variables from experiment instances different ssmulation results. Note that this task is put
outside the SE-CT since it may require extra handling by modelers. However, if a
simulation model is not valid, the SW-CT starts up with creating a simulation
environment URI at the RISE middleware, using the atomic task “Select Simulation
engine”. This atomic task interacts with the RISE middleware (Figure 71) to select a
simulation environment to hold all future created experiments. For example, setting up
{servicetype} to “DCDpp” would select the DCD++ simulation environment (see API in
Appendix-B). Afterward, the SW-CT starts the “Building Simulation Model” Composite
Task (BSM-CT) to construct the simulation model that will be executed by the
simulation. The flow of the SW-CT task, shown in Figure 71, is summarized as the

following:

If (valid Mdel) {
Start SWCT // build and executes experinents
Conduct experinent Anal ysis
} else if (not valid nodel) {
Create a simulation environnent on Rl SE
Start BSMCT // to construct sinulation nodel

}

Building Simulation Model Composite Task (BSM-CT)

The Building Simulation Model Composite Task (BSM-CT) concerns of
constructing the simulation model and its testing and verification. The BSM-CT guides
the modeler for searching other existing models in repositories for models reusability.
Thus, most of the internal atomic tasks require human intervention (the one with an arrow
on the top). Note that BSM-CT uses the Simulation Experimentation Composite Task
(SE-CT), to execute the simulation in the experiment framework to test the simulation

model being constructed.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 171

DT e

" Gt *
Defioe Srsiems Stmmlation Mioded /

Ex pr i pnsernn Construcian Tk

*Dﬂ%;&{ - ,;,...,..,, A

Ch.'lu.:l-.'l.rndllm puipoi ¥ rm bis

“"(____1 o] Suarih
Search R.lp-l'l.ilﬂl.'l-__ = 2] _-l

e Guhpil Seareh
__P'\._a-'l"- L_ml : T L
Zhip Te=ing hrml.d““ HE :":l"'
___|;: 1-L'r""'_--- ; Raviaw Remles |
— mnd Salest N=del!
Intsgrats Kodsl Seuintian Expers Tomt Batrievd Modul i
[ITCTe ST

Figure 72: Building-Simulation-Model Composite Task Workflow

The BSM-CT is shown in Figure 72. The task starts with the atomic task “Define
System Experiment” to define the purpose of the simulation model with respect to the
system understudy. The workflow then moves to the atomic task “Simulation-Model
Construction” to build the actual model. The model might be built using graphic
notations or by directly writing source code and scripts. The workflow then moves to one
of three branches based on conditions “Test”, “Set Experiment”, or “Search Repository”,
follows:

e By selecting the “Test” condition, the SE-CT task is used to test the set the

experiment and executes the simulation. The “Analysis” task is then used anayze

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 172

results. Afterward, there are two options. (1) to continue building the simulation
model, or (2) to complete the building process. The second option alows the modeler
to archive the model in the repository for possible future reuse.

e By sdecting the “Set Experiment” condition, the “Change Model input/output
Variables” atomic task enables the modeler to change model parameters. Afterward,
it follows the same process of the “Test” condition described above.

e By selecting the “Search Repository” condition, the “Submit Search Criteria” atomic
task submits the criteria to the repository. The workflow then alows the modeler to
test any found models through executing the simulation via the SE-CT task. The
retrieved model can then be integrated with the model being constructed or not
integrated. The workflow is then moves back to the “Simulation-Model Construction”

atomic task, where one of these three conditions can be selected again.

Simulation Experimentation Composite Task (SE-CT)

The Simulation Experimentation Composite Task (SE-CT) provides an
automotive method for conducting multiple experiment instances simultaneously. As
shown in Figure 73, the SE-CT contains multiple “Experiment Instances” tasks where
each “Experiment” task controls the workflow of a single experiment. Thus, the
“Experiment” task interacts heavily with the RISE middleware, since it uses the
middleware to create and runs those experiments instances. Note that those experiments
might be running as a distributed simulation over various machines or over a single
machine. This depends on how such experiments are set and configured on RISE.

However, our focus in this section is only on the “Experiment” workflow.
9

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 173

This subsection presents the following topics: (1) Describe the “Experiment”
workflow YAWL graphical notations, (2) Discuss the interactions between an instance of
the “Experiment” task and its URIs on the RISE middleware. (3) Describe the XML
representation of the “Experiment” task, allowing the software t0 process the workflow.

|i Stmulathin Experimesisiion

e e e e T e o

o o e - o e e e e o oo o o o o o o o o o o o o o o e o o e

5uhu.|ll 'Cuuﬁl-l.'rl.lluu

*—ll| l_ NOT IHFE isd NOT STOPPING
Confiperation "'l - _Sbmir Madel —
e

Ragukred

: e - |
o/ o

Lol Simulatien Stadus

]

. -
[} o

i ; Y MINE
i - 4 Bimrd Mimnlsibon .-'"'

[} o i

¥

[}

) "l1l|l1rl-.r.l'.'|lr!_|.': ERROR
; . .'i_ ﬂ'-}:'\-_ | et $Irn.|!|l|h:-| Clyepni

| E.,_-Q-—;E m | ;*.wl'..'n,lm..,....

~Taelene lH"' Deleie lmslane e
__,.- Helease s - E o

............ J: ----.-.E_.___I:,:L_-._E:_'-....L. '.----._.__'.....-------.._--._.-.---.-_..-_._-
Ezperient TRz {RISE hiddbewae)

Figure 73: Simulation Experimentation Task Workflow

Figure 73 shows the Y AWL graphical notations of the Experiment workflow task.
The task starts with making the decision to reload experiment configuration or not to
reload. If “Configuration Required” condition is met, the workflow follows the following
path: (1) the “Get ID” atomic task is executed to assign an ID for the experiment

instance. (2) The “Submit Configuration” and “Submit Model” atomic tasks are executed

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 174

to setup the experiment at RISE side. (3) The “Start Simulation” atomic task is executed
to start the simulation on that experiment at RISE. However, if “Configuration Not
Required” condition is met, the workflow starts the simulation immediately on RISE.
Once the simulation started, the workflows keeps checking the simulation status at RISE
until it is completed or aborted on error. If simulation completed successfully, the
workflow retrieve the simulation results from the experiment at RISE. Otherwise, if
exited on error, the error files are retrieved from RISE. Finally, the workflow may choose
to delete the experiment instance at RISE, or maintain it for future reuse. The workflow

in Figure 73 is summarized in the following:

If (configuration Required) {
Get an ID for this experinent instance // i.e. token id
Submit updated XM. configuration to experinent at Rl SE
Submit Mbdel representations to experinment at Rl SE
YoILif
Start simulation in experinent at Rl SE
Whi | e (NOT DONE and NOT STOPPI NG {
Sl eep for a nunber of seconds
Get Sinulation status fromthe experinent at Rl SE
if (status == DONE) {
GET simulation results fromexperinent at R SE
} else if (status == ERROR) {
GET simul ation errors fromexperinment at Rl SE

}
} /1 while
If (experiment instance to be deleted on RISE) {
DELETE experinment at RISE and rel ease token ID
}

As shown Figure 73, the workflow interacts with RISE in certain atomic tasks.
This use is similar to any other client use when setting up experiments and executing
simulation on those experiments. Thus, the workflow component, as in the case of any
other clients, needs to follow the RISE API (described in Appendix-B) to create and

manipulate experiments on RISE. Using the RISE API, the workflow interactions with

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 175

RISE are illustrated in Figure 74. In this case, each token (i.e. an experiment instance at
the workflow component side) interacts with the URIs associated with that experiment

instance at the RISE side. These interactions are discussed next.

| token: Experiment I |a‘{Ser\ficetvne}f{framework}:RISEI |I{framework}fsimulation:RISEI
SubmitConfiguration (PUT, URI, Xhﬁ Config) | |f{framewnrk}!results:RISEI
1 | |f{framew0rk}fdehuu:RISE
Submittodel (POST, URI, Fillas) |

-

StanSimulatilnn(F'UT, RN
| | 1]
While NOT DONE and NOT STOFFING J i
I leep
4 <

GetSimulationStatus (GET, URIFsjrm=status

g [
if DONE Correctly GetSimulationQutput (GET, UR))

=) t
| Result Files 1:|
{ ___
T | |
1

|]
: | |
i Delpte DeleteFramework (DELETE URI) |
7 ﬁ

Figure 74: Workflow Token Interactionswith Experiment URIsat RISE

Figure 74 shows five components. The first one on the left (i.e. token:Experiment)
represents the experiment instance (i.e. token) at the workflow component while the other
four components represent the experiment URIs at RISE. Note that those URIs do not
usually exist at the same time, as discussed in Chapter 5, but we show all of them on the
figure for illustration purposes. These four URIs are: (1) The experiment main URI,
usually used for experiment various settings, (2) The active simulation URI that wraps

the active simulation, (if simulation is active), (3) The URI that wraps the simulation

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 176

results, (if any), (4) The URI that wraps the simulation errors (if any). In this case, each

interaction in Figure 74 is uniform with the following information: (1) destination

resource URI, (2) resource Channel, (3) and the message to send/receive.

The interactions in Figure 74 are summarized as follows (from top to bottom

according to the interaction numbers shown on the figure):

1.

Submit updated configuration to experiment at RISE (i.e. PUT channel, main URI,
XML message).

Submit Model representations to experiment at RISE (i.e. POST channel, main URI,
Zipped files).

Start simulation in experiment at RISE (i.e. PUT channel, smulation URI, Null
message).

(The “While” block) Get Simulation status from the experiment at RISE (i.e. GET
channel, main URI, XML message).

(The If DONE block) GET simulation results from experiment at RISE (i.e. GET
channel, results URI, Zipped file).

(The If ERROR block) GET simulation errors from experiment at RISE (i.e. GET
channel, errors URI, Zipped file).

(The If delete block) DELETE experiment at RISE and release token ID (i.e
DELETE channel, smulation URI, Null message).

It is common practice to represent graphical notations in scripts so that it can be

stored in repositories and processed by software. Figure 75 is the XML definition for

Y AWL graphical notations shown in Figure 73.

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 177

1 <Task>

2 <NamexSimmlation-Experimentation</Name><TypexComposite</Type>

3 «Input><Parml>uri</Parml»><Parm?>Mcdel Path</Parm2></Input>

4 <FElements>

5 <Fplitsr<XOBR><Instances><Instance>X0R-1</Instance>. </Instances></X0F></5plit>
[<Conditions><Condition>0OND-Configure</Conditions. . . </Conditions>

7 <Tasks>

g9 <Task><Name>Submit-Configuratiocn</Hame>

10 <Instances><Instance>

11 <Name>Submit-Configuration-1</Name>

12 <Input><Parml>uri</Parml><Parmz>Model Path</Parme>/Input>
13 </Instance></Instances></Task>

14 <Task><Name>Start-5imalaticon-1</Name:>

15 <Instances><Instance>

16 <Input><Parml>uri+"/simmlation”</Parml></Input>

17 </ Instance></Instances»></Task>

13

19 </Tasks>

20 </Elements>

21 <Transiticns>

22

23 <Transiticns<Id=ooe/ Td=<From>X0R-1</From<Te>C0OND-Confiqures,/Tox>

24 <Transition><Id=oo</ Id=<From=-C0ND-Confiqure</Frome<To=Get-ID-1</To>
25 <Transitions<Id=ooe/ Tdx<From:=Get-ID-1</From=<To>Submit-Configuration-1</To>
26 <Transitions<Td=ooes/ Td=<From:=Submi t-Configuration-1</Fram=<To>Submit-Model -1</To>
27

28 «</Transitions>

29

30 <l =

31 «!'--Task Submit Configuraticn --—>»

K B it >

33 <Task>

34 <NamerSubmit-Configuraticn</Name>

35 «Typeritomic</Type>

36 <Input><Parml>uri</Parml><Parm?>Mcdel Path</Parm?></Input>

37 <Implementation><Type>rREST</REST>

38 <Operaticn>

39 <Channel>FUT</Channel>

40 <RBepresentation=<Type>text/mml</Type><File>Model Path</File»</Representations
41 </Operaticn>

47 </Tmplementaticn>

43 </Task>

44

47 <l ———————————— >

45 <!'--Task Start Simmlation

47 <l >

45 «<Task>

49 <NamerStart-Similation</Name>

50 «<Typeritomic</Type>

51 <Input><Parml>uri</Parml><Input>

52 <Implementation><TyperREST</Type>

53 <Operaticn>

54 <Channel>FUT</Channel>

55 <Representationznull</Bepresentaticons

56 </Operaticn>

57 </Implementation>

58 «</Task>

59 </Task>

Figure75: XML Definition for Simulation-Experimentation Task Wor kflow

In Figure 75, Line #2 defines the task name and its type. Line #3 defines the input

parameters of this task. In this case, the task instance is initialized with the experiment

URI at RISE and the directory path of the files that contain the simulation model required

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 178

files, typically zipped up in a single file. Lines #4-20 define all internal elements in this
composite task. Line #5 defines all split elements in the task (e.g. XOR-1). Line #6
defines the condition elements in the task. Lines 7-19 define internal task instances. In
this case, Lines#9-13 creates an instance of atomic task Submit-Configuration with name
Submit-Configuration-1. It further initializes it with the RISE experiment URI and the
experiment XML configuration document. Line #14-17 creates an instance of task Start-
Simulation, and initializes it with the experiment simulation URI. Lines #21-28 define all
internal transitions, hence how each internal element instance is connected to other
elements instances. The rest of the XML document defines al internal atomic tasks to the
SE-CT task. Lines #33-43 presents the Submit-Configuration task: Line #36 defines the
input parameters. Lines #37-42 defines the task implementation as of type of REST Web-
service. In this case, it uses channel PUT where only XML type of representation is

supported. In the same way, the Start-Simulation atomic is defined in Lines #48-58.

8.3 Chapter Summary

This chapter shows how to apply the different methods introduced in previous
chapters for other applications (besides DCD++ distributed simulation). To do so, this
chapter first presents additional distributed simulation agorithms built with RISE
(Section 8.1), and it then shows how RISE could improve simulation experimentation via
the use of workflows (Section 8.2).

The agorithms presented in Section 8.1 am on interoperating independent-
developed simulation services (which could be used as a feasible proposal for DEVS

standardization [140][141][142][143]). In this case, the algorithms place models in each

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 179

partition as black boxes interconnected with other models via input/output ports. The
simulation is executed in cycles where all exchanged synchronization messages are
described in XML. In this case, the RISE-TM component sends (in parallel) an XML
message to all relevant domains, requiring them to execute all internal events at current
simulation time. This XML message also forwards al generated external messages to
domains. In response, domains execute their internal events, and responds back to RISE-
TM with an XML message. This XML message also contains a domain generated
external messages to other domains. This synchronization approach is based on the P-
DEVS approach, and is has less synchronization overhead. These algorithms are aso
extended to handle dynamic simulation, where simulation partitions can join/digoin at
runtime.

Because these algorithms require the approval of the DEV S standardization Group
[47], these algorithms have not fully implemented in RISE. This is because other DEVS
groups may introduce their changes to these algorithms. This type of standardization
process is time consuming and difficult to predict its progress. On the other hand, the
presented algorithms implementation has fully been planned and partially tested. In case
of the DCD++ (presented in Chapter 6), it is expected to be configured by the modeler to
use the type of algorithms in the simulation. In this case, al changes are designed in the
simulation manager (see Chapter 6) outside the CD++ implementation itself. As result,
the ssimulation manager makes the decisions on how to send/process XML messages,
based on the used algorithms. In this case, the CD++ engine “thinks” that it is still using
the algorithms presented in Chapter 6. This makes the DCD++ open for other groups’

proposals as soon as those proposals are presented in terms of the required

CHAPTER 8: RISE MIDDLEWARE APPLICATIONS 180

synchronization rules and the required exchanged XML messages. In other words, they
do not dictate the “how to implement” question.

Note that the need to propose different algorithms from the presented schemes in
Chapter 6 is that the DCD++ has extended the DEV S-based coordinator into Head/Proxy
structure (to reduce synchronization overhead). However, this adds more complexity to
other DEV S-based tools that do not support this structure. On the other hand, the
presented algorithms here hide this type of internal details. Note further that the presented
algorithms have been compared against other proposas in [143]. In this case, other
proposals heavily expose their internal implementations to the point that the proposals
become like standardizing software implementation. This makes it difficult to bring
various independent-devel oped systems implementations close to each other, as discussed
in[143].

This chapter also presented the workflow component design. The workflow
component (on the client side) automates the usual manua steps that would have been
taken by modelers to create and manipulate experiments on the RISE middleware. They
serve as means for automation, repeatability, controlling processes and management. The
major objectives of the presented workflow component are (1) to execute any number of
simulation experiments with different conditions ssmultaneously, and (2) To enhance
simulation models construction and reusability. The workflow component operates in two
phases: Run Time and Build Time Phases. In the Build Time Phase, workflows are
designed (in YAWL graphical notations), converted and stored in repositories (in XML
representations) for future reuse. In the Run Time phase, the workflow engine parses the

workflow XML representation and executes each task in the workflow as applicable.

CHAPTER 9: CONCLUSIONS AND FUTURE
WORK

This chapter summarizes the major topics of the thesis and suggests future
research directions. Section 9.1 summarizes the thesis major objectives, argument, and

results. Section 9.2 suggests different research directions.

9.1 Thesis Summary

This thesis addressed the software issues related to improving distributed
simulation interoperability and synchronization algorithms. In particular, our objective
was to develop an all-purpose Web-services based distributed simulation middleware to
enhance interoperability methods on the Web between different simulation systems. To
do so, we defined certain features similar to the following that we wanted this
middleware to support:

e The middleware was designed as a genera container to keep the door open for
supporting additional simulation environments (beside DCD++ discussed in Chapter
6). Further, this container approach is not limited to simulation systems, but also can
be applied to different applications as described in section 9.2.

e The middleware methods had to hide systems heterogeneity in the way information is
exchanged, accessed and described.

e The middleware had to be independent of any specific implementation and should
alow flexibility of interoperated simulation systems such as in the ability of those

systems to interoperate with different synchronization protocols.

181

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 182

e The middleware had to scale in the ability of interfacing more services into the
middleware, and in the ability of composing any number of partitions in the
distributed simulation session.

e The middleware had to realize simulation within experiments frameworks. In this
case, the middleware had to provide modelers the mechanism to create and
mani pul ate those experiments via the Web. Of course, the experiments were expected
to maintain all related data and settings, unless changed by their authorized owners.

On the other hand, in order to meet the above objectives, we first had to solve the
problem of hiding systems heterogeneity (that resides in implementation) in components
while allowing composition scalability and dynamicity. As discussed in Chapter 2 and 3,
none of the existing approaches up to date was suitable to solve this problem. This is
mainly due to the way in which current distributed simulation approaches exchange,
structure, and use information, which is tied to programming and implementations,
exposing systems heterogeneity. This path usually leads to the need for homogenizing
different implementations, which is usually a complex problem to resolve.

We initialy focused on meeting our objectives using a SOAP-based WS
framework. However, the SOAP WS dtructural rules proved difficult for completely
solving the above research questions. For example, the WS ports that contain software
implementations cannot be created at runtime. Further, data channels must be
implemented as procedures where a stub for each procedure is required in each user
system. This causes composition scalability difficulties and dynamicity problems (since
stubs need to be compiled with each system implementations). Although we limited our

procedures to a few (implemented in a single WS port), those channels were till

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 183

embedded (and compiled) with the internal implementation. To reduce exposing the
internal implementation, we exchanged and described the simulation synchronization
messages as XML messages. In this case, the entire XML message is sent as a single
SOAP attachment. The lesson learned here was that the syntactic and structura
interoperability rules characterize the level of freedom of a software designer when
defining the methods for middleware interoperability. This experience showed us that
decoupling systems implementations (where heterogeneity resides) is difficult task. This
is because interoperating via programming procedures plant the actual links between
systems inside implementations. This makes system implementations and interna
software design issues easily being influenced by each other designs. Therefore, we
concluded that this interoperability approach is difficult to be achieved in open
communities as in the case of the Web. In this type of communities, systems need to be
designed, implemented, and evolve independently from external systems. Further, in
open comminutes collaboration, any number of participant systems should be able to
join/digoin the overall distributed structure at runtime without necessary a pre-
knowledge of other systems. On the other hand, the SOAP-based WS ports (along with
their procedures) had to be created and compiled before even starting up the system.
Thus, this approach is a close community oriented where software developers can discuss
with each other to resolve systems APl related design issues.

In contrast, the WWW is the largest existing distributed structure where countless
of systems interoperate with each other according the Web standards. This open-
community interoperability style is the main advantage of using the RESTful WS, which

adopts the Web interoperability style. Because of the characteristics of this style, we

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 184

showed that the proposed RISE middlieware had first solved the research problem of
hiding systems heterogeneity (implementation) in components while allowing
composition scalability and dynamicity. Hiding implementations indicate that software
related design and implementations issues become system internal issues, hence
irrelevant to other external systems. This is one of the major contributions of the RISE
middleware (comparing to current approaches) of being able to decouple systems
implementations. Further, the solution of this problem consequently allowed RISE to
meet the desired objectives such as decoupling systems implementations in the way
information is exchanged, accessed and described. In this case, RISE presented al
services as types in resources (addressed by URI templates). Thus, the resources (i.e.
services types) can be created and named with URIs at runtime. Regardless of the number
of URIs (resources) in the distributed environment, they are aways automatically
connected with the same HTTP methods (channels). Furthermore, as channels are
realized outside implementations and resources synchronized their activities in XML
messages, resources APIs are decoupled from implementations. Thus, systems
heterogeneity is hidden. Solving this problem allows RISE to be a general middleware
and to provide experimental frameworks that are literally attached to the Web (because
they are externally seen as URIs similar to any other URIs on the Web).

To prove the concept of general middleware that is by being able to hold different
simulation environments. We interfaced the CD++ engine to RISE so that distributed
simulation between different CD++ engines (each placed in a partition and in charge of
simulating a portion of the entire distributed CD++ model)s. In this case, the agorithms

synchronize the activities between partitions URIs by exchanging XML messages. To

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 185

reduce remote messages transmission through the Internet, we developed an aggregation
scheme to group multiple simulation messages in XML. These algorithms performed
substantially better when compared to the SOAP-based DCD++. Furthermore, we
showed that using RISE methods was able decouple distributed synchronization from
software design specifics. In this case, the algorithms presented in Chapter 8 were
designed as the synchronization rules and the messages that they require to communicate
without dictating the way systems have to implement them. The RISE experiment
blueprint was also used to automate the simulation experimentation process via using the
concept of workflows. In this case, workflows (at the client side) can dynamically create
and manipulate various experiments simultaneously on RISE (the server side).

The outcomes of the research showed that the interoperability syntactic and
structural rules played a major role for enhancing the interoperability methods at the
software level. This is mainly because of applying the RESTful WS principles, which
adopts the WWW interoperability principles. However, as in the case of any technology,
the decision to use such technology can be different from a project to another. Therefore,
we recommend the use of RESTful WS principles in Web-service based projects that
contain some or al of the following characteristics:

1. Projectsthat desire to interoperate with applications that use the Web interoperability
style such as Web 2.0 and mashup solutions. In fact, REST eases interoperability with
any application attached to the Web (e.g. Web browser) because they use the same
methods of interoperability. It is worth to note that the SOAP-based WS creates

another RPC layer for applications to interoperate above the Web layer.

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 186

2. Projects that are expecting to interoperate with systems outside their control. In this
case, as we did in this thesis, systems APIs can be moved outside systems
implementations, allowing systems implementations decoupling. This allows systems
development to evolve independently from each other.

3. Projects that are expecting to scale well when composing large number of systems. In
this case, the REST style has been proving to work well on the WWW, which REST
imitates.

4. Projects that are expecting to have different components join/digoin the distributed
structure dynamically at run time. The REST (Web) style has been proven to work on

the WWW by having countless number of systems join/digoin all the time.

However, the above points may not work well for every project. For example, it
may be a better choice to migrate an existing CORBA-based system to a SOAP-based

WS. Thisis because both styles are very similar to each other.

9.2 Future Work

The following list includes a number of topics for future research in the context of
simulation interoperability and access viathe Web:
¢ RISE-Enabling Additional Simulation and Visualization Environments

The RISE middleware is designed as general container to hold more simulation
services beside the DCD++ presented in Chapter 6. From a design viewpoint, those new
services (e.g. Parallel CD++ [93]) can be interfaced with RISE via the IPC queues as we

did in Chapter 6. However, from the API viewpoint (Appendix-B), adding new services

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 187

to the URI template structure is similar to regular Web site URIs. For example, Figure 76
shows example of three types of additional services. Visualization, Conservative

simulation, and Parallel simulation systems.

[

3 ' niodel
[Mo » J E—
¥ A Conservalive (Viimlization D
Faralled Simalation i kaikirm
. Simalation Manager Visualization Manager

H.; " Simulation Mmager

RISE Muddldware

- =l (e

TR e A ey

(' \f’ it URE
¥ G ™ =
llh'"\-_

—

Figure 76: An Overview of Additional RI SE-based Services

The Simulation/Visualization managers shown in Figure 76 are actually part of
the RISE middleware layer. The Manager component usually extends the RISE generic
component to handle an environment specifics such data distribution across the
distributed environment (see the DCD++ implementation extension in Appendix-A). For
example, the Visualization environment (e.g. RUBE [53]) can interoperate with the open
Second Life visualization environment [120]. In this case, the visualization manager, for
instance, manages the visualization representations and their distributions to registered
clients who view them locally. The other shown simulation environments need to
perform simulation time management according to their specific mechanisms. For
example, the parale simulation might be smilar to PCD++ [93], which executes

optimistic-based simulation on paralel machines. However, if a simulation environment

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 188

needs to synchronize simulation with other remote systems to perform distributed
simulation, the simulation manager also needs to handle data distribution mechanisms.
This separation of functionalities is similar to the DCD++ environment presented in
Chapter 6.
e Mashups. Putting Information in Simulation L oop

The mashup concept groups various services from different providers and presents
them as a bundle in order to provide single integrated service. Different RESTful WS
based mashup tools aready exist to allow enterprise mashup such as the IBM Mashup

Center [70]. Thus, this concept can be used to put information in simulation loop.

e o - =y

f’f Fir huhhd? P o e ™ 1
e Foreed Mo !
/ =) s |
=== . SRS | [~ Client Side .
| D+ Sdanalation -._'5\- ¥ |
F
4 d 1 ! 24
o) S S ¢ ! ot

tll Client Visualization |—"'f 4
Weadher Dala . /
Figure 77: Mashup Example
One of the interesting directions is to integrate RISE services (e.g. DCD++) with
the IBM mashup tools. Those tools allow users to click and drag on RESTful services
(called widgets) like Google maps to compose them together. The other direction is to
develop mashup application to integrate different RESTful services, including RISE

services. For example, Figure 77 shows an example of mashing up three sources. (1)

CD++ simulation of the Fire Forest model (on RISE side), (2) rea Weather Web-service

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 189

input, and (3) Google map (on Client side). In this case, the weather datais input in real -
time to the fire spreading simulation and displayed on top of Google map.
e DataFusion (DF)

Data fusion (DF) is defined as collecting information from different sources to
achieve inferences, which potentially leads to better accuracy from relaying on a single
source of information [123]. DF is applied by the military to build integrated images from
various information sources in battlefields [123]. In this case, information can be
combined and forwarded to different simulators at runtime. DF applications go beyond
defense sector. These applications include manufacturing, health and environment [26].
DF is highly dynamic and requires infinite composition scalability, which RISE can help
in this regard. In this case, DF URIs can be created by various software systems at run
time so that messages can be exchanged by those URIs. Further, semantics standards are
being developed (i.e. called Battle Management Language (BML) [68][119]), which
brings DF a huge step toward being fully interoperated in a simulation loop. BML is an
explicit standardized language to express commands for rea troops, ssmulated troops,

and robotic forces.

[1]

[2]

[3]

[4]

[3]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

REFERENCES

Al-Zoubi K.; Wainer, G. “Interfacing and Coordination for a DEVS Simulation
Protocol Standard”. Proceedings of the IEEE/ACM Distributed Simulation and
Real-Time Applications (DS-RT 2008). Vancouver, BC, Canada. 2008.

Al-Zoubi K.; Wainer, G. “Performing Distributed Simulation with RESTful Web-
Services Approach”. Proceedings of the Winter Simulation Conference (WSC
2009). Austin, TX, USA. 2009.

Al-Zoubi K.; Wainer, G. “Using REST Web Services Architecture for Distributed
Simulation”. Proceedings of Principles of Advanced and Distributed Simulation
(PADS 2009), Lake Placid, New York, USA. 20009.

Al-Zoubi K.; Wainer, G.; “Managing Simulation Workflow Patterns using
Dynamic Service-Oriented”. Proceedings of the Winter Simulation Conference
(WSC 2010). Baltimore, Maryland, USA. 2010.

Al-Zoubi K.; Wainer, G. “RISE: REST-ing Heterogeneous Simulation
Interoperability”. Proceedings of the Winter Simulation Conference (WSC 2010).
Baltimore, Maryland, USA. 2010.

Anita A., Gordon M., David S. "Aggregate Level Simulation Protocol (ALSP)
1993 Confederation Annua Report”, the MITRE Corporation. 1993.
<http://ms.ie.org/a sp/biblio/93_annual_report/93_annual _report_pr.html>.
Accessed March 2009.

Apache Tomcat. <http://tomcat.apache.org/>. Accessed October 2008.
Atom. <http://tools.ietf.org/html/rfc4287>. Accessed November 2010.

Babineau W., Barry P., Furness Z., "Automated Testing within the Joint Training
confederation (JTC)", Proceedings of the Fall 1998 Simulation Interoperability
Workshop, Orlando, FL, USA. September 1998.

Banks J.; Carson J.; Nelson B.; Nicol D. “Discrete-Event System Simulation”.
Pearson Prentice Hall. Upper Saddle River, NJ. 2005.

Banks C. "Introduction to Modeling and Simulation”. Chapter 1 in book
“Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical
Domains”. Catherine Banks, John Sokolowski Editors. Wiley. New Jersey, 2010.

Boer C., Bruin A., Verbraeck A. “Distributed simulation in industry -- a survey,
pat 3 -- the HLA standard in industry”. Proceedings of Winter Simulation
Conference (WSC 2008). Miami, FL, USA. 2008.

Boer C., Bruin A. and Verbraeck A. “A survey on distributed simulation in
industry”. Journal of Simulation. Vol. 3, No. 1, pp. 3—16. March 2009.

190

REFERENCES 191

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Bonan H.; Yiping Y.; Bing W.; “Mapping from BOM conceptual model definition
to PDES models for enhancing interoperability”. Proceedings of IEEE 7%
International Conference on System Simulation and Scientific Computing
(ICSC2008). Beijing, China. October 2008.

Boon G.; Lendermann, P.; Yoke, M.; Low, H.; Turner, S.J.; Xiaoguang W.;
Taylor, S.J.E.; “Interoperating AutoSched AP using the High Level Architecture”.
Proceedings of the Winter Simulation Conference (WSC2005). Orlando, FL, USA.
December 2005.

Boukerche, A.; Gu, Y.; “An Efficient Adaptive Transmission Control Scheme for
Large-Scale Distributed Simulation Systems”. IEEE Transactions on Parallel and
Distributed Systems (TPDS), Vol. 20, No. 2, pp. 246-260. February 2009.

Boukerche, A.; Zhang M.; Shadid A.; “DEVS Approach to Real-time RTI Design
for Large-scale Distributed Simulation Systems”. Simulation. Vol. 84, No. 5, pp.
231-238. May 2008.

Boukerche, A.; Iwasaki, F.M.; Araujo, R.; Pizzolato ,E.B. “Web-Based Distributed
Simulations Visualization and Control with HLA and Web Services”. Proceedings
of the IEEE/ACM Distributed Simulation and Real-Time Applications (DS-RT
2008). Vancouver, BC, Canada. 2008.

Boukerche A., Zhang M., Xie H. “An Efficient Time Management Scheme for
Large-Scale Distributed Simulation Based on JXTA Peer-to-Peer Network™.
Proceedings of the IEEE/ACM Distributed Simulation and Rea-Time
Applications (DS-RT 2008). Vancouver, BC, Canada. 2008.

Boukerche A., Shadid A., Zhang M. “Efficient Load Balancing Schemes for
Large-Scale Real-Time HLA/RTI Based Distributed Simulations”. Proceedings of
the IEEE Distributed Simulation and Real-Time Applications (DS-RT 2007).
Chania, Crete Island, Greece. 2007.

Boukerche A., Lu K. “Design and performance evaluation of a real-time RTI
infrastructure for large-scale distributed simulations”. Proceedings of the IEEE
Distributed Simulation and Real-Time Applications (DS-RT 2005). Montreal,
Quebec, Canada. October 2005.

Boukerche A., McGraw N.J., Dzermajko C., Lu K., “Grid-Filtered Region-Based
Data Distribution Management in Large-Scale Distributed Simulation Systems”.
Proceedings of 38th Ann. Simulation Symp. (ANSS ’05). 2005.

Boukerche A., Roy A., “Dynamic Grid-Based Approach to Data Distribution
Management,” Journal of Parallel and Distributed Computing, Vol. 62, No. 3, pp.
366-392, 2002.

Booth D., Haas H., McCabe F., Newcomer E., Champion M., Ferris C., Orchard
D. “Web Services Architecture”. 2004. <http://www.w3.org/TR/ws-arch/>.
Accessed November 2010.

REFERENCES 192

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

Box D., Ehnebuske D., Kakivaya G., Layman A., Mendelsohn N., Nielsen H.,
Thatte S., Winer D. “Simple Object Access Protocol (SOAP) 1.1”. May 2000.
<http://www.w3.0rg/ TR/2000/NOTE-SOA P-20000508/>. Accessed March 2009.

Brooks R., lyengar S., Multi-sensor Fusion: Fundamentals and Applications with
Software, New Jersey; Prentice Hall,1998.

Brown P. “Information Architecture with XML: A Management Strategy”. Wiley.
England, 2003.

Bryant, R. E. “Simulation of packet communication architecture computer
systems”. Massachusetts Institute of Technology. Cambridge, MA, USA. 1977.

Byrne J., Heavey C., Byrne P. “A review of Web-based simulation and supporting
tools”. Simulation Modelling Practice and Theory. Vol. 18, No. 3, pp. 253-276.
March 2010.

CAE RTI. <http://www.cae.com>. Accessed October 2010.

Calvin, J.; Dickens, A.; Gaines, B.; Metzger, P.; Miller, D.; Owen, D.; “The
SIMNET virtual world architecture”. Proceedings of Virtual Reality Annual
International Symposium (IEEE VRAIS 1993). Los Alamitos, CA, USA. 1993.

Cappelaere, P.; Frye, S.; Mandl, D. “Flow-enablement of the NASA SensorWeb
using RESTful (and secure) workflows”. 2009 IEEE Aerospace conference. Big
Sky, Montana, USA. March 2009.

CD++ toolkit. <http://cell-devs.sce.carleton.ca>. Accessed March 2010.

Chandy, K. M. and J. Misra. “Distributed Simulation: A Case Study in Design and
Verification of Distributed. Programs”. IEEE Transactions on Software
Engineering. Vol. SE-5, No. 5, pp. 440-452. 1979.

Chandrasekaran, S.; Silver, G.; Miller, J.A.; Cardoso, J.; Sheth, A.P.; “Web service
technologies and their synergy with simulation”. Proceedings of Winter
Simulation Conference (WSC 2002). San Diego, California, USA, USA. 2002.

Cheon, S.; Seo, C.; Park, S.; Zeigler, B.P. “Design and Implementation of
Distributed DEVS Simulation in a Peer to Peer Network System”. Proceedings of
the Advanced Simulation Technologies Conference, Arlington Virginia April,
2004.

Cho, Y.K.; Zeigler, B.P.; Sarjoughian, H.S.; “Design and implementation of
distributed rea-time DEVS/CORBA”. Proceedings of I|EEE International
Conference on Systems, Man and Cybernetics (ICSMC2001). Tucson, AZ, USA.
2001.

Chow, A.; Zeigler, B. “Parallel DEVS: A paradldl, hierarchical, modular modeling
formalism”. Proceedings of Winter Simulation Conference (WSC 1994). Lake
BuenaVista, FL, USA. 1994.

REFERENCES 193

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

Christensen E., Curbera F., Meredith G., Weerawarana S. “Web Services
Description Language (WSDL) 1.0”.
<http://xml.coverpages.org/wsdl 20000929.html>. Accessed March 2009.

Christensen, E; Curbera, F.; Meredith, G.; Weerawarana, S “Web Service
Desctiption Language (WSDL) 1.17. March, 2001.
<http:/mww.w3.org/TR/wsdl>. Accessed March 2009.

Chinnici R., Moreau J., Ryman A., Weerawarana S. “Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language”. June 2007.
<http:/mww.w3.org/TR/wsdl 20/>. Accessed October 2010.

Chinthaka E. “Enable REST with Web services, Part 1: REST and Web services in
WSDL 2.0”. <http://www.ibm.com/developerworks/webservices/library/ws-
restl/>. Accessed November 2010.

Chung M., Kyung C. “Improving Lookahead in Parallel Multiprocessor
Simulation Using Dynamic Execution Path Prediction”. Proceedings of Principles
of Advanced and Distributed Simulation (PADS 2006). Singapore. May 2006.

Cubert R., Fishwick R., “A framework for distributed object-oriented
multimodeling and simulation”. Proceedings of Winter Simulation Conference
(WSC 1997). Atlanta, Georgia, USA. December 1997.

Davis P., Anderson R. “Improving the Composability of Department of Defense
Models and Simulation”. Santa Monica, CA, Rand Corporation. 2003.
<http://www.rand.org/pubs/monographs/M G101.html>. Accessed May 2011.

DEVSIAVA. "Extensible Modeling and Simulation Framework (XMSF) C4l
Testbed". <
http://www.acims.arizona.edu/SOFTWARE/software.shtmI#DEV SIAVA>.

DEVS Standardization Group. <http://cell-devs.sce.carleton.ca/devsgroup/>.
Accessed March 2011.

DuBois P. “MySQL”. 4™ edition. Addison-Wesley. 2009.

Erl T., Karmarkar A., Walmsley P., Haas H., Yacinalp, L.U., Liu K. Orchard D.,
Tost A., and Pasley J. “Web Service Contract Design and Versioning for SOA”.
Prentice Hall. 2008.

Fielding, R. T. “Architectural Styles and the Design of Network-based Software
Architectures”, Doctoral dissertation, University of California, Irvine, 2000.
Avalable at: <http://www.ics.uci.edu/~fiel ding/pubs/dissertation/top.htm>.
Accessed October 2008.

Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., Berners-Lee T.
“Hypertext Transfer Protocol - HTTP/1.1”. RFC 2616.
<http://www.w3.org/Protocol §/rfc2616/rfc2616.html>. Accessed October 2008.

REFERENCES 194

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Foster, 1., Kesselman C. “Globus: A Metacomputing Infrastructure Toolkit”.
International Journal on Supercomputer Applications, Vol. 11, No. 2, pp: 115-128.
1997.

Fishwick, P., Jinho L., Minho P. “RUBE: a customized 2D and 3D modeling
framework for simulation” Proceedings of Winter Simulation Conference (WSC
2003). Gainesville, FL, USA. December 2003.

Franks J.; Hallam-Baker P.; Hostetler J.; Lawrence S.; Leach P.; Luotonen P.;
Stewart L. “HTTP Authentication: Basic and Digest Access Authentication” RFC
2617. <http://www.ietf.org/rfc/rfc2617.txt>. Accessed October 2008.

Frécon E.; Stenius M. “DIVE: A scalable network architecture for distributed
virtual environments”, Distributed Systems Engineering Journal. Vol. 5, No. 3, pp.
91-100. September 1998.

Fischer M. "Aggregate Level Simulation Protocol (ALSP) - Future Training with
Distributed Interactive Simulations’, U. S. Army Simulation, Training and
Instrumentation Command. International Training Equipment Conference. The
Hague, Netherlands. 1995.

Fitzgibbons J., Fujimoto R., Fellig D., Kleban D., Scholand A. “IDSim: An
extensible framework for interoperable distributed simulation” Proceedings of the
IEEE International Conference on Web Services (ICWS2004). San Diego,
California, USA. 2004.

Fujimoto, R. M. “Parallel and distribution simulation systems”. New York: John
Wiley & Sons. 2000.

Fujimoto, R.; Hunter, M.; Sirichoke, J.; Palekar, M.; Kim, H.; Suh Wonho. “Ad
Hoc Distributed Simulations”. Proceedings of Principles of Advanced and
Distributed Simulation (PADS 2007). San Diego, California, USA. June 2007.

Gan, B. P.; Liu, L.; Jain, S.; Turner, S. J.; Cai, W. T. and Hsu, W.J. “Distributed
Supply Chain Simulation Across the Enterprise Boundaries”. Proceedings of
Winter Simulation Conference (WSC 2000). Orlando, FL, USA. December 2000.

Goetz B.; Peierls T.; Bloch J.; Bowbeer J.; Holmes D.; Lea D. “Java Concurrency
in Practice”. Addison-Wesley Professional. 2006.

Gregorio J. URI Templates. <http://bitworking.org/projects/URI-Templates/>.
Accessed October 2008.

Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.; Nielsen, H. “SOAP Version
1.2 Part 1: Messaging Framework”. 2003. <http://www.w3.0rg/TR/soapl2-
partl/>. Accessed October 2008.

Gong Li; Liu Gao-Feng; Liu Zhong; An Ru-Kui; “An opened model with Web

Service in discrete event simulation”. Proceedings of Future Computer and
Communication (ICFCC 2010). Wuhan, China. 2010.

REFERENCES 195

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Halpin, D.W.; Jen, H.; Kim, J.; “A construction process simulation Web service”.
Proceedings of Winter Simulation Conference (WSC 2003). New Orleans,
Louisiana,USA. 2003.

Henning M., “The Rise and Fall of CORBA”. Communications of the ACM. Vol.
51, No. 8, August 2008. Also available a
<http://queue.acm.org/detail.cfm?d=1142044>. Accessed March 2010.

Henning, M., and S. Vinoski. “Advanced CORBA programming with C++”.
Addison-Wesley. 1999.

Hieb, M.R. and Schade, U., “Formalizing Command Intent Through Development
of a Command and Control Grammar.” in 12th ICCRTS. Newport, Rhode Island,
June 2007.

Hong, L; Wan, H; Wang, Y; Chen, X.; Zou, D. “Extending HLA/RTI to WAN
Based on Grid Service”. Proceedings of IEEE Asia-Pecific Services Computing
Conference (APSCC2008). Yilan, China, 2008.

IBM Mashup Center. <http://www-01.ibm.com/software/info/mashup-center/>.
Accessed June 2009.

IBM. “Why Mashups Matter”.
<ftp://ftp.software.ibm.com/software/l otus/| otusweb/portal/why _mashups_matter.
pdf>. Accessed June 20009.

|[EEE: Standard for modeling and simulation (M&S) High Level Architecture
(HLA) - frameworks and rules. Technical Report 1516, IEEE (2000).

|[EEE: Standard for modeling and simulation (M&S) High Level Architecture
(HLA) - federate interface specification. Technical Report 1516.1, |EEE (2000).

|[EEE: Standard for modeling and simulation (M&S) High Level Architecture
(HLA) - object model template (OMT) specification. Technical Report 1516.2,
|EEE (2000).

|[EEE 1278.1-1995 - Standard for Distributed Interactive Simulation - Application
protocols.

IEEE-1278.2-1995 - Standard for Distributed Interactive Simulation -
Communication Services and Profiles.

|[EEE 1278.3-1996 - Recommended Practice for Distributed Interactive Simulation
- Exercise Management and Feedback.

IEEE 1278.4-1997 - Recommended Practice for Distributed Interactive -
Verification Validation & Accreditation.

Jacobs 1., Walsh N. “Architecture of the World Wide Web, Volume One”.
<http://www.w3.0rg/2001/tag/webarch/>. 2004. Accessed October 2008.

REFERENCES 196

[80]

[81]
[82]

[83]

[84]

[85]
[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Jefferson, D. R. “Virtual time”. ACM Transactions on Programming Languages
and systems. Vol. 7. No. 3. pp. 405-425. 1985.

JIXTA. <https://jxta.dev.java.net/>. Accessed March 2009.

Khul F., Weatherly R., Dahmann J.: “Creating Computer Simulation Systems: An
Introduction to High Level Architecture”. Prentice Hall (1999).

Kakivaya G., Layman A., S. Thatte S., Winer D. “SOAP: Simple Object Access
Protocol”. Version 1.0. 1999. <http://www.scripting.com/misc/soapl.txt>.
Accessed March 2009.

Ke P.; Turner, S..; Wentong C.; Zengxiang L.. “A Service Oriented HLA RTI on
the Grid”. Proceedings of IEEE International Conference on Web Services (ICWS
2007). Salt Lake City, Utah, USA. July 2007.

Kepler. <https://kepler-project.org/>. Accessed March 2010.

Khargharia, B.; Hariri, S.; Parashar, M.; Ntaimo, L.; Kim, B. “vGrid: A
Framework for Building Autonomic Applications”. Proceedings of the 1%
International Workshop on Challenges for Large Applications in Distributed
Environments (CLADE 2003), pp. 19-26. 2003.

Khul F., Weatherly R., Dahmann J.: “Creating Computer Simulation Systems: An
Introduction to High Level Architecture”. Prentice Hall (1999).

Kim, K.; Kang, W. “CORBA -Based, Multi-threaded Distributed Simulation of
Hierarchicad DEVS Models. Transforming Model Structure into a Non-

hierarchical One”. Proceedings of the International Conference on Computational
Science and its Applications (ICCSA2004). Assis, Italy. 2004.

Kim, K. and Kang, W., "A Web Service Based Distributed Simulation
Architecture for Hierarchicd DEVS Models'. Proceedings of the 13th
International Conference on Al, Simulation, Planning in High Autonomy Systems,
(A1S 2004). Jgju Island, Korea, October 2004.

Kumaran, S.; Rong Liu; Dhoolia, P.; Heath, T.; Nandi, P.; Pinel, F. “A RESTful
Architecture for Service-Oriented Business Process Execution”. Proceedings of
IEEE International Conference on e-Business Engineering (ICEBE '08). Xi’an,
China. October 2008.

Lenoir, T. and Lowood, H. “Theaters of wars: the military — entertainment
complex”. <http://www.stanford.edu/class/sts145/Library/Lenoir-
Lowood_TheatersOf War.pdf>. Accessed March 2009.

Liang, S. “Java Native Interface (JNI), Programmer’s Guide and Specification”.
Addison-Wesley. 1999.

Liu, Q., and Wainer G., “Parallel Environment for DEVS and Cell-DEVS
Models”, SIMULATION, Vol. 83, No. 6, pp. 449-471, 2007.

REFERENCES 197

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

MAK High Performance RTI. <http://www.mak.com/products/rti.php>. Accessed
March 2009.

Mandel L. “Describe REST Web services with WSDL 2.0”.
<http://www.ibm.com/devel operworks/webservices/library/ws-restwsdl />.
Accessed May 2009.

Mathure, M. A.; Jonnalagadda, V.; Zalewski, J.; “Heterogeneous architecture and
testbed for simulation of large-scale real-time systems”. Proceedings of the IEEE
Distributed Simulation and Real-Time Applications (DS-RT 2003). Delft,
Netherlands. October 2003.

Mattern, F. “Efficient algorithms for distributed snapshots and global virtual time
approximation”. Journal of parallel and distributed computing. Vol. 18, No. 4. pp.
423-434. August 1993.

McFaddin, S.; Coffman, D.; Han, JH.; Jang, H.K.; Kim, JH.; Lee, JK.; Leg,
M.C.; Moon, Y.S,; Narayanaswami, C.; Pak, Y.S.; Park, JW.; Soroker, D.
“Modeling and Managing Mobile Commerce Spaces Using RESTful Data

Services”. 9th IEEE International Conference on Mobile Data Management
(MDM'08). Beijing, China. April 2008.

McLean T., Fujimoto R., Fitzgibbons B.” Middleware for real-time distributed
simulations”. Journal of Concurrency and Computation: Practice and Experience.
Vol. 16 No. 15, pp. 1483-1501. November 2004.

McGrath, D.; Hunt, A.; Bates, M.; “A simple distributed simulation architecture
for emergency response exercises”. Proceedings of the IEEE Distributed
Simulation and Rea-Time Applications (DS-RT 2005). Montrea, Quebec,
Canada. October 2005.

Mittal S., Risco-Martin J.L., and Zeigler B.P., “DEVS-based simulation web
services for net-centric T\&E,” in Proceedings of the 2007 summer computer
simulation conference (SCSC2007). San Diego, California, USA. 2007.

Moller, B. and Dahlin, C. “A First Look at the HLA Evolved Web Service API”.
Proceedings of 2006 Euro Simulation Interoperability Workshop, Simulation
Interoperability Standards Organization. 06E-SIW-061. 2006.

NetBeans IDE <http://www.netbeans.org/)>. Accessed June 20009.

Noelios Restlet Engine (NRE). <http://www.noelios.com/products/restl et-engine>.
Accessed October 2008.

O'Reilly T. “What Is Web 2.0”.
<http://www.oreillynet.com/pub/aloreilly/tim/news/2005/09/30/what-is-web-
20.html>. Accessed May 2009.

Page E., Briggs R, Tufarolo J. “Toward a family of maturity models for the
simulation interconnection problem”. Proceedings of the Simulation
Interoperability Workshop. Arlington, VA. April 2004.

REFERENCES 198

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]
[117]

[118]

[119]

[120]
[121]

[122]

Page E., “Beyond speedup: PADS, the HLA and web-based simulation”.
Proceedings of Winter Simulation Conference (WSC 1999). Atlanta, Georgia.
December 1999.

Papazoglou, M. “Web Services: Principles and Technology”. Prentice Hall. 2007.

Papelis Y., Madhavan P. "Modeling human behavior". Chapter 9 in book
“Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical
Domains”. Catherine Banks, John Sokolowski Editors. Wiley. New Jersey, 2010.

poRTIco. <http://www.porticoproject.org/index.php?titlte=Main_Page>. Accessed
March 2009.

pRTI™, <http://www.pitch.se/products/prti>. Accessed March 2009.

Padmanabhuni S., Chaudhari P., Bharti S., Kumar S. “WSDL 2.0: A Pragmatic
Analysis and an Interoperation Framework™. June 2007. <http://soa.sys-
con.com/node/219029>. Accessed October 2010.

Petty M., Weisel E. “A composability lexicon”. Proceedings of the Spring
Simulation Interoperability Workshop. Orlando, FL. March 2003.

Restlet API. <http://www.restlet.org/>. Accessed October 2008.

Richardson L., Ruby S. “RESTful Web Services”, 1st edition. O’Reilly Media,
Inc., Sebastopol, California. 2007.

RSS. <http://www.rssboard.org/rss-specification>. Accessed November 2010.

Samadi, B. “Distributed simulation, algorithms and performance analysis”.
Computer science department, PhD Thesis, University of California, Los Angeles.
1985.

Sawhney, M.; Verona, G.; Prandelli, E. “Collaborating to create: The Internet as a
platform for customer engagement in product innovation”. Journal of Interactive
Marketing, Vol. 19, No. 4, pp. 4-17. Fall 2005.

Schade, U. and Hieb, M.R., "Formalizing Battle Management Language: A
Grammar for Specifying Orders,” 06S-SIW-068, in Spring Simulation
Interoperability Workshop, April 2006.

Second Life. <http://secondlife.com/>. Accessed May 2011.

Seo, C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. “Implementation of Distributed
high-performance DEVS Simulation Framework in the Grid Computing
Environment”. Proceedings of Advanced Simulation Technologies conference
(ASTC2004). Arlington, VA. USA. 2004.

Simple Framework. <http://www.simpleframework.org/>. Accessed March 2009.

REFERENCES 199

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

[134]

[135]

[136]

Shahbazian E., “Introduction to DF: Models and Processes, Architectures,
Techniques and Applications,” in Multisensor Fusion, Kluwer Academic
Pulishers, 2000, pp. 71-97.

Strassburger, S.; “The Road to COTS-Interoperability: From Generic HLA-
Interfaces Towards Plug-and-Play Capabilities”. Proceedings of Winter Simulation
Conference (WSC 2006). Monterey, CA, USA. December 2006.

Strassburger S., Schulze T., Fujimoto R. “Future trends in distributed simulation
and distributed virtual environments: results of a peer study”. Proceedings of
Winter Simulation Conference (WSC 2008). Miami, FL, USA. 2008.

Stirbu, V. “Towards a RESTful Plug and Play Experience in the Web of Things”.
|EEE International Conference on Semantic Computing (ICSC 2008). Santa Clara,
CA, USA. August 2008.

Tan G., Xu L., Moradi F., Zhang YS, “An Agent-based DDM Filtering
Mechanism”. Proceedings of MASCOTS, San Francisco, USA, Aug 2000.

Taha, H.A. “Simulation with SIMNET II”. Proceedings of Winter Simulation
Conference (WSC 1991). Phoenix, Arizona, USA. December 1991.

Taha, H.A. “Introduction to SIMNET v2.0”. Proceedings of Winter Simulation
Conference (WSC 1988). San Diego, California, USA. December 1988.

Tolk A. "Interoperability and Composability". Chapter 12 in “Modeling and
Simulation Fundamentals: Theoretical Underpinnings and Practical Domains”.
Catherine Banks, John Sokolowski Editors. Wiley. New Jersey, 2010.

Trident. <http://connect.microsoft.com/Trident>. Accessed March 2010.

Taylor S., Strassburger S., Turner, S.,, Low, M.., Xiaoguang W., Ladbrook, J.;
“Developing Interoperability Standards for Distributed Simulation and COTS
Simulation Packages with the CSPI PDG”. Proceedings of Winter Simulation
Conference (WSC 2006). Monterey, California, USA. December 2006.

Taylor S., Xiaoguang W., Turner S, Low M., “Integrating heterogeneous
distributed COTS discrete-event simulation packages. an emerging standards-
based approach”. IEEE Systems, Man, and Cybernetics Society. Vol. 36, No. 1,
pp. 109-122. January 2006.

Tuecke, S., Foster 1., et al. “Open Grid Services Infrastructure (OGSI) Version 1.0.
Open Grid Services Infrastructure Working Group (OGSI-WG)”. June 2003.
<http://xml.coverpages.org/OGSI-SpecificationV 110.pdf>. Accessed May 2011.

Ulriksson, J.; Ayani, R.; “Consistency Overhead using HLA for Collaborative
Work”. Proceedings of the IEEE Distributed Simulation and Real-Time
Applications (DS-RT 2005). Montreal, Quebec, Canada. October 2005.

Van der Aast W., ter Hofstede A. “YAWL: Yet Another Workflow Language”.
Information Systems. Vol. 30, No. 4, pp. 245-275. June 2005.

REFERENCES 200

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]
[146]

[147]
[148]

[149]

[150]

Wainer, G.; Madhoun, R.; Al-Zoubi, K. “Distributed Simulation of DEVS and
Cell-DEVS Models in CD++ using Web Services”. Simulation Modelling Practice
and Theory. Val. 16, No. 9, pp. 1266-1292. October 2008.

Wainer, G. and Al-Zoubi, K. "An Introduction to Distributed Simulation”. Chapter
11 in book “Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains”. Catherine Banks, John Sokolowski Editors. Wiley. New
Jersey, 2010.

Wainer, G. “Discrete-Event Modeling and Simulation: A Practitioner's Approach”.
CRC press, Taylor & Francis Group. Boca Raton, Florida. 2009.

Wainer G., K. Al-Zoubi, S.Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.
“DEVS Standardization: Foundations and Trends”. Chapter 15, “Discrete-Event
Modeling and Simulation: Theory and Applications.” G. Wainer, P. Mosterman
(Editors). CRC Press. Taylor and Francis. December 2010.

Wainer G., K. Al-Zoubi, S.Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.
“An Introduction to DEVS Standardization”. Chapter 16, “Discrete-Event
Modeling and Simulation: Theory and Applications.” G. Wainer, P. Mosterman
(Editors). CRC Press. Taylor and Francis. December 2010.

Wainer G., K. Al-Zoubi, S.Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.
“Standardizing DEVS Model Representation”. Chapter 17, “Discrete-Event
Modeling and Simulation: Theory and Applications.” G. Wainer, P. Mosterman
(Editors). CRC Press. Taylor and Francis. December 2010.

Wainer G., K. Al-Zoubi, S.Mittal, J.L. Risco Martin, H. Sarjoughian, B. P. Zeigler.
“Standardizing DEVS Simulation Middleware”. Chapter 18, “Discrete-Event
Modeling and Simulation: Theory and Applications.” G. Wainer, P. Mosterman
(Editors). CRC Press. Taylor and Francis. December 2010.

Web Application Description Language (WADL). <https://wadl.dev.javanet/>.
Accessed October 2008.

Web Services-Axis. <http://ws.apache.org/axis/>. Accessed October 2008.

Weske M. “Business Process Management: Concepts, Languages, Architectures”.
Springer-Verlag Berlin Heidelberg. New Y ork. 2007.

Wilson B.J. “JXTA”. New Riders Publishing. 2002.

Workflow Management Coalition. < http://www.wfmc.org/ >. Accessed October
20009.

W3C. "W3C Semantic Web Frequently Asked Questions'.
<http://www.w3.0rg/2001/sw/SW-FAQ>. Accessed March 2008.

XML. “Extensible Markup Language (XML) 1.0 (Fifth Edition)”. <
http://www.w3.0rg/ TR/REC-xml/>. 2008. Accessed November 2010.

REFERENCES 201

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[150]

Zelle J. “Python Programming: An Introduction to Computer Science”. 2nd
Edition. Franklin, Beedle & associates. 2004.

Zeigler, B.P.; Doohwan K. “Distributed supply chain simulation in a
DEVS/CORBA execution environment”. Proceedings of Winter Simulation
Conference (WSC 1999). Phoenix, Arizona, USA. December 1999.

Zeigler, B.; Kim, T.; Praehofer, H. “Theory of Modeling and Simulation”. 2nd
Edition. Academic Press. 2000.

Zeigler, B.; Hammods, P. “Modeling & Simulation-Based Data Engineering:
Pragmatics into Ontologies for Net-Centric Information Exchange”. Academic
Press. 2007.

Zhang, M.; Zeigler, B.; Hammonds, P. "DEVSRMI-An Auto-Adaptive and
Reconfigurable Distributed Simulation Environment for Engineering Studies'. <
http://acims.eas.asu.edu/PUBLICATIONS/PDF/devsRmi.pdf >. Accessed July
2009.

Zhang H.; Wang H.; Chen, D. “Integrating web services technology to HLA-based
multidisciplinary collaborative simulation system for complex product
development”. Proceedings of IEEE 12th International Conference on Computer
Supported Cooperative Work in Design (CSCWD 2008). Xi‘an, China. April 2008.

Zhao H., Georganas N.D.”"HLA Real-time Extension”. Proceedings of the IEEE
Distributed Simulation and Real-Time Applications (DS-RT 2001). Cincinnati,
Ohio, USA. 2008.

Zhu H.; Li G.; Zheng L. “Introducing Web Services in HLA-based simulation
application”. Proceedings of IEEE 7th World Congress on Intelligent Control and
Automation (WCICA 2008). Chongging, China. June 2008.

Zhu S. Du Z. Chai X. “GDSA: A Grid-Based Distributed Simulation
Architecture”. Proceedings of the sixth IEEE International Symposium on Cluster
Computing and the Grid Workshops (CCGRID 2006). Singapore. May 2006.

APPENDIX-A: RISE MIDDLEWARE
IMPLEMENTATION

RISE middleware is implemented in Java and can be deployed as a Servlet
running within any HTTP container (e.g. Tomcat [7]) or as a standalone HTTP server
directly on top of TCP/IP. From the implementation viewpoint, there is no difference
between the standalone or Servlet version except in the way it is packaged and deployed.
This appendix describes the RISE five subsystems (i.e. java packages) and the RISE

types of deployment.

A.1 RISE Subsystems

Figure 78 shows the implementation overview of the RISE Middleware. It
consists of five java packages shown in Figure 78. RISE subsystems (Figure 78)
summarized as follows:

1. The Main subsystem (Section A.1.1): It initializes the server application and major
components such as communication, server logging, database, RISE URIs internd
router, and the shutdown and cleaning routines.

2. Data subsystem (Section A.1.2): It holds and organizes the server database. The
Database holds two object types. the server genera configuration and the user
specific data sections.

3. Resources subsystem (Section A.1.3): It handles received HTTP requests. Each URI
request is processed by a java class in this package, which also generates the HTTP

response.

202

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 203

4. Utility subsystem (Section A.1.4): This package provides the XML parsing utilities,
server logging (based on java logging), file services and the constructing of HTML
documents.

5. SimulationAdmin subsystem (Section A.1.5): It manages/wraps active simulation
services. For example, Java classes in this subsystem synchronize simulation with

remote simulation entities to ensure correct and efficient distributed simulation.

RestfulCDpp I
Data . Main .
RestfulCOpp Data RestfulC0op. Matn
ST ddantessrE

“Z=mangesse :
- <<acchsse>

<<ACCesEER Resources

RestfullOop. Resowces

<<accksseEn rwacebsses

’
’

.
L

SirmulationAdrmin I . <LACCRES P
RestfullOpp. SirmulationAdmin Litility I
RestfullOopn Utilty

Figure 78: RISE Server Architecture Overview
A.1.1 Main Subsystem
Figure 79 shows the Main subsystem Java classes and their interaction with other

subsystem classes. This subsystem contains four major classes: Application, ThreadPool,

ServietListener and ShutdownHook.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 204

Wadldpplication g el et Compa et SandetListanar
cortaxilnifialz=d s e
;,i" ﬁ cartari Desiroped|] ThrandPac
. -,_"_ [ntaag
T A .
e e : r.lﬁu.;:-: jwva_lang. Runisakle
pMicaiion = .
- parpiMame N ™ 2
- parmifa s s X
- paf_num s Y
| = =TT i Shaund ovenHoosk
e - . paggabaif) L ira Bam g Ransimn e
: galBanerPagawordl B e A
- loghdzi]
+ aatSargrPagawardl i
+ gal Bnbleragea r
IR
: fﬁ;:m _———ME} Pl Ol pp. Dhana Db oo arseis
I -

+ gat D advasa() T = et Contarer)
- aatBarvarMamsd] B, S
- ClaarpSimulationFrarneaaraa|] = 'r-h-l?.?gg 5
’ gz'szr*’p“"':'ﬂ RSBl O b S bt onfod i, 5 e i oM e a e s i
- phechiptddme
+ getipdddrame] geiSiradal onManager
- Calculabsinfddie s e ; wizal]
* CleardIpsngdFxint L sta AN

<< pelaiat s

i
<oinatanfialass

i
A T smplats Toutor Haﬂfl.ﬂﬂ[lpp.lllIIW.RE'S-TMICDppLuuuH!

Rouies EpableCTinplnggen]
publ=hl

Figure 79: Main-Subsystem Architecture Overview

ThreadPool class manages all system threads. It is based on Java thread pools
[61], which consist of worker threads. Using worker threads improves performance since
it minimizes thread creation overhead. Allocations and de-alocations of thread objects
can heavily degrade performance in large-scale applications due to the significant
memory management overhead. In this case, athread istaken out of the pool every time a
thread needs to be created to perform a task such as send a simulation message.
Consequently, the thread is returned to the pool once the task is completed, alowing

future tasks to reuse it.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 205

ServietListener and ShutdownHook classes are used to shutdown the RISE
middleware gracefully for Servlet and the Standalone deployments respectively. The
ServietListener is registered with the Servlet container (e.g. Tomcat) where the
ShutdownHook is registered with Java Virtual Machine (JVM). These classes act as
blocked threads waiting for a shutdown event from the Servlet container or VM. In this
case, the RISE middleware always performs the same cleaning routine even if the RISE
is terminated via directly killing its operating system process. The cleaning routine
(implemented in operation CleanUpAndExist in Application class) performs the
following: (1) It aborts all active simulations (if any) along with any remote active
simulations, if necessary. This is easily done via invoking operation stopAll of the
SmulationManager sAdmin class. (2) It closes communication connectors, if middleware
is deployed as standalone. The Servlet container handles this part if middleware is
deployed as Servlet. (3) It marks the shutdown as normal, hence avoiding any cleaning
with the next start up, and (4) it closes the database. This completes any pending
transactions and unlocks the database, making it reusable with the next start up or by
another middleware.

The Application class is the main class of the RISE middleware. It creates and
makes maor structures accessible by al other subsystems. The Application class
performs a number of activities. The following summarizes the major tasks. (1) It creates
and initializes the Thread Pool to handle all worker threads. (2) It starts the middleware
logging system. This allows the necessary information of all incoming requests to be
logged along with their responses like a typica HTTP server. This feature can be

disabled by the administrator. (3) It creates and initializes the Router class, which will be

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 206

in charge of routing all incoming requests based on their URIs to the proper Java class.
(4) It creates and initializes the SmulationManagersAdmin class (from the
SimulationAdmin subsystem) to manage al active simulation managers that will be
created in the server. (5) It creates and initializes the Database class (from the Data
subsystem) to starts the server database. It creates a new database with one administrative
account, if it does not exist. (6) It registers classes ServietListener and ShutdownHook to

perform proper cleaning, as discussed earlier, and (7) it starts communication.

A.1.2 Data Subsystem

Data subsystem (Figure 80) holds and organizes the server database, as shown in
Figure 80. The database file stores two types of java objects: the UserSate class (i.e.
contains a user data section) and ServerConfig class (i.e. contains the server general
configuration). There is always one instance of class ServerConfig where one or more
instances of the User State class may exist in the database.

The Database class holds the database objects and provides methods to external
classes to manipulate the database such as deleting, retrieving and storing objects.
Database objects are cached in memory after the first access, preventing more accesses to
the database file. The database is transactional which means a transaction blocks other
transactions until it is completed. All transactions are committed (to the file) to ensure
their synchronization with the cache. Note that the entire server is multi-threaded so that

writing changes to the database file is performed in a separate thread.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION

207

- paaacrl

& astAdminD

=zl amwsmrd]

I||I_-I||'l.|..l¢_r|_|l_-l-|'l
salisma)

P iraii

gri= s camrdl]

_ UnerWarkapors

+ (aRestiniad

+ galdorkepacsHame]

2+ geiBamces(

/ l{.‘.\,

% |gstTyps(l

Ul S iR astr el
—= TRIIZ elypel
A S AL "'mnrn beh
b geille e Peaihapeed] Eml: DP:E“:;U

gEil e ke

F

v

T Datilaks

« Diakghaoal

& gabConiainan

& gatSernErocedgl

» sai Sprurlorlgl

= gatllgprsieal

= watCtiagi]

+ DalaisllieerGtain)

- IniDaimbayw)
[0 E oy = B

getFileSemlceal

TR A=
miodalPadrbans
pow e anitian4
Srnulatioezon

gerSevadil
st EmE i)

et B rsLIRI S

st HemErslIRIE]

DO p S B Fam b |

IzSmreinConismnen
et Framawor b kLR)

getSimulaiinnCanif)
gethlodaiParttcais]]
et LonaP amEoe|)

satbiodalPartkicnis]]
aetZonaPae e)
setSimulationConih

Bonvel Couiliy
AT
- rexmalEhulckown
& pal P o yenod d)
& mst P amewerd]]
= pafdormalEhuld=wni)
& St Manva b dowes

SlmomlatienFrameewnrk

Siredanoninmaizad
Sirrddanagadd
SimSkaius
EimErmiviey
hasgl e K koL
reatiinied

e otkLog
e it ame
evpniFiktame
suppartFileNams
dor-n Micdala
Pabed F ey

i

gelf rarmrsmi =ML Hep()
ELE e e Sl L R p
DaleteStaleFenulmionbanagar]l
deleiaRemdie]

rernose Simulstionkdenagar|]
e st e
mElR e atrclsd]

guif rerniesnki bl
GulF b ek Lol

Gl e e Lo
(BNt = T)
imParmngOphond
aulFaEnmgoeLion
IsDEYZ0
grlEmEndTimag
autZmEndTinuad
gquiescrdodalng
aellErind el
pottdodalFile= (3
salfiodeiFilesD

It Simulalioni
IeFramisser ki talizad
snbSrmubskecicmialized()
GuT=rnbdaiiaga i did

wet S mdanagaldi
griEmEmorkdeg
aul=mmEmorhdagh

ot i

LTI ||

gelSrnSiabus)
SELS M SlaIE
IaSimAureingi
IzSimulafinnEmram
IzSimulaionsharted|)
[FEEH EH =g i ST
|sSimiulationldizd
izFeeul e Evini]
sulRusuksEninld
gaiflaFilahi g
mEll AP l=Hame]
gelEsarkFilata mead)
SulE e Filahamest
detSuppodFikMamen
melZuppndFikEltiamed

Figure 80: Data-Subsystem Ar chitecture Overview

The ServerConfig class holds the server genera configuration such as username

and password to be used in the DCD++ grid when using remote servers.

The User Sate class represents a user section in the database. Therefore, there is

no need to lock the entire database when receiving several simultaneous requests from

different clients. In this case, severa threads can update the database safely, since each

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 208

incoming runs in a separate thread. However, a user section is protected if more than
request is received from that user to change the same section. The UserSate class (see
Figure 80) consists of the Account class and the UserWorkspace class. The Account class
holds the user account related information such as username, password and account
privileges. The UserWorkspace class holds a list of simulation services. Therefore, the
server, for example, may support none-simulation services by creating a class for that
new service within the UserWorkspace class.

The SmulationService class holds a simulation service type such as the DCD++
simulation service. Thus, more simulation environments like DCD++ can be added to use
the RISE middleware. This class contains a list of simulation frameworks (i.e.
experiments) specific for a service type.

SmulationFramework class holds the necessary information related to any
simulation framework (as shown in Figure 80). The DCD++ extends the
SmulationFramework class to DCDppS mulationFramework class to hold data related to
the geographically distributed simulations such as URIs, model partitions and zone
partitions. DCD++ is more complex than any other CD++ extension from the RISE
server viewpoint. This is because the RISE manages distributed simulation across the

grid among severa servers.

A.1.3 Resources Subsystem

This section discusses the implementation of the resources (i.e. URI templates)
that handle clients messages enclosed in HTTP envelopes (e.g. XML messages from
remote distributed ssimulation partitions). Each URI request is processed by ajavaclassin

the resources subsystem package and an HTTP response is accordingly generated.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 209

Therefore, each URI template in RISE API is handled by a Javaclassin Figure 81. Table
13 summarizes this URIs mapping to Java classes. The server does not store resources
owned by clients according to URIs because it does not scale and is difficult to manage.
On the other hand, it only stores relevant data to resources as discussed in the Data
subsystem. The RISE Router starts a thread from a pool to handle each incoming request.
Afterward, the following steps are taken: (1) an instance of a resource class (shown in
Figure 81) is created, based on the destined URI template (Table 13), and (2) The
appropriate operation of the subject resource class is invoked depending on the HTTP
channel in the request. Note that the Java classes in the Resources subsystem are thread-

safe, since they are private data for each request thread.

Table 13: Resources URI Templates Mapping to Java Classesin Figure 81

Resource URI Template Java Class

/cdpp/admin/log ServerL ogResource

/cdpp/admin/config ServerConfigResource

/cdpp/admin/accounts AccountsResource
/cdpp/admin/accounts/{ accountname} AccountResource
/cdpp/util/ping PingResource

/cdpp/sim SimBranchResource
/cdpp/sim/workspaces WorkspacesResource
/cdpp/sim/workspaces/{ userworkspace} UserWorkspaceResource

/cdpp/sim/workspaces/{ userworkspace} /{ servicetype}

ServiceTypeResource

/cdpp/sim/workspaces/{ userworkspace} /{ servicetype} /{ framework}

FrameworkResource

/cdpp/sim/workspaces/{ userworkspace} /{ servicetype} /{ framework}
/simulation

SimulationResource

/cdpp/sim/workspaces/{ userworkspace} /{ servicetype} /{ framework}
[results

ResultsResource

/cdpp/sim/workspaces/{ userworkspace} /{ servicetype} /{ framework}
/debug

M odel DebugResource

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 210

T Accowsssltasailin |_Flll_l-l'l-L__;l!!i_W1l_l|_llE o L b o L s 28
—— o=z W avcouerib e |"" - ORI LT
+.. EErEETY e — gy T T T heur g el
:El:;::‘;Epu r Naldwwliga] | e e 0o
- Alng.a,_-_q...; ~ . [LP e p— 1 e e o
h e B Cravral LIk 11 a1 LI Ve Vo 2l 0 P e
[T [T e |E el e B LRI
= = g~ umrpariEhe s S LA it A ol e £ o il o e e [
A s pea) el E e e A T a1 R - L i o
= rEmeres Rap e Bned Winskp rasilesamrsn M ,;;';,H::f;‘; 5 i il T 9
2. mi v I peraien el | B S B chiid b = ol o' e e ol e o i o]
i tltﬁx“hwpd:h..ll?um:b = ml‘.mtp__ = at#a o e e | : g e D
p '} = T B LR | a i Becinn] ¥ o vty PR]
| LR HHﬁE b e = pidpmErabion(] a :_-T:l-:pll:'l\-h:;ll
T 3 LA] mLiga
. ':""1"'""”"“% z ;mﬂ:ﬁ;p @ IrdDfas s ks i
a & e Tt e ord i Ored mi oo ks pacm
‘Emrena L ool wsswn e T _E.!\-_-Fu_iilugtuchL = i ik rm s H qﬂ\r:nll- :"HE:."JM
+ Banwiagsanaeei| [[T Ermrechimmreen] (3 SHDMabassd R AL L sl B
= f‘hiumﬂ ¢ . THprakmerill TP Bl e o B o e T A]
e LRI P B g B 1 0 s]
ik i a1) - i
= FremuwrnikHasouros 3 an “"“"“'""“"""L'_.:.
bbb e am 7] " T
Sarv Lo g anse Cn h._.:::.-::“‘d =—"-E.._; B o Wk gt LT
& T Lo b e s L B & F Ty alees o el O € B : Ip'"“:l'::';;":":'
v wiors Repirs anfafion|) + mpsgani) i b i i X aavica Typ aSlnagwmce
demrnhoFt) * mmcepi P eprs ks lion) 111 =TT -:-:rFJ.-FI:F—
=y T LS e - ey B ey T v v P g v s s foon ad] = Ry irctad
T mh ra p es m ke o] _ﬁ_"“"_r'"m'r_“’
Feaaneioom i e % describecain = Clbva o Typ eF s b Al
A e R e -.,.-" i plan o b oE G = rpiEren O
& Frapul e ssose sl W e i b ol e B = s v s v i g o
= rEIEEanG A W pen cri b P iy o Pt e T G r
. e e S o ' iyt W O ol b 55 1 L e g Dl wiSm e culy
M.kl o Bl A W g L o B e UpiwisSardcag
B bl o) 1 ® 0 i] o T T iy e Dy)
Il i R D A e ol il e B i D b S e i e Dersi e]
o o bt s a1 - i F ek H TR R] I B wisnSsrd el
TR = ey — e ey nu“qpump. PG RaianelEd
el i1 &1 B s e o i ebrerie S Lics 1 ekt P bimii J— T . e g el G L P
Db e e © g o rmm s k) — ll-mzl-'iﬂﬂil‘m'-l#li-irll
repeadaiil] v e s o e e : "H"'-"‘H“C'
T iy Py e o pn gl L e s WL oy B . o e v P
» wicrw Fapneerniainni] B L) o ik 1 e) n dlllllrltl!l.':rhlul.l
T sy g | P gy v D - akdeinHTTET D i v Earac !l""l'lE
i R b] P o = o TH] . '-'E'l'n!:'ll'-r:- Lu]
e gk e e e R] |!Eumr|.-||-l_,-|-n1-p.:|
g men kP eng B PN di Ll a:r\-“.-ﬂh-rnu.uua
o b en b EE = T A T = L 1l|..-|m‘E-|-m-:-u|:|
- palifea kil Rl B i e . [IH?I;"ﬂl.\.HI--Il:I
o o A LS e i s n R yG I sl] T T PP b "~ L -a:__l_ n-':-m-? _
ko i B i LAl e) o e L el s s b B e g = o Do o 55 v s S e i
e R e 1 i T [& gt P ey PR e ey b g iy L hm-.-T“m.ﬂE
= R F A e e) T Legingl Wandulliahuy Masn s
i Ter Pl L e o e e T e m G __E- oo
Corws i e ba) o B sn sy mo) 4 P ra st K F e ricrs ey = TG g A
v EiZmulripnlLMG o 7 e I e o & o ik @ A
& DD O e T e o + o P b g Ry
B i e o o B) = o e W g e e
4 pMF s IR 4 desorbalis]
- EFlllFl.’nMnl‘lhllFﬂ" # duscribalalaial

Figure 81: Resour ces-Subsystem Ar chitecture Overview

The HTTP methods (channels) are implemented by the following operations, if
supported by the resource: (1) GET channel is handled by the represent operation. (2)
PUT channel is handled by the storeRepresentation operation. (3) POST channel is
handled by the acceptRepresentation operation. (4) DELETE channel is handled by the
removeRepresentations operation. Operations allowGet, allowPost, allowPut and
allowDelete used by resources to disable HTTP GET, POST, PUT and DELETE

channels respectively. Operations describeGet, describePost, describePut and

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 211

describeDelete used by resources to generate XML WADL [144] description for HTTP
GET, POST, PUT and DELETE channels respectively.

The BasicResource class contains the general and default functionalities for all
resources, since it is the parent of the resource-class hierarchy, as follows: (1) it performs
HTTP Basic authentication for the incoming request, if needed. For example, it may
generate Basic authentication response challenge, alowing clients to reenter their
credentials, if they are missing. (2) Preparing common structures for processing requests
such as: (2.1) Processing URIs query variables, and (2.2) Retrieving necessary Java
objects from the database (or cache). (3) It provides access channels to manipulate the
database, communication component and utilities.

The BasicResource class is extended into four classes AdminBasicResource,
WorkspacesResource, PingResource and UserWorkspaceResource, which are discussed
next. The PingResource class validates a user and responds with the proper HTTP status.
This class serves as a utility class allowing client programs to verify a user credential.

The AdminBasicResource class handles the general functionalities of classes in
charge of handling administrative URIs. For example, it validates a user based on
allowed administrative privileges. It is extended into the following classes: (1)
AccountsResource class: It alows administrative users to GET an XML document, listing
al user accounts. (2) AccountResource class. It alows administrative accounts to
create/del ete an account. Further, it allows users to change their passwords. It extends the
following classes: (2.1) The ServerLogResource class enables users to GET the server

logs in a zipped directory. (2.2) The ServerConfigResource class allows administrative

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 212

users to change server general configuration such as its password (in order to be used
when manipulating remote resources on servers in the DCD++ grid).

The WorkspacesResource class returns a list of existing public workspaces as
HTML or XML document. A client workspace is aways returned (regardless if it is
restricted or not restricted), if the request is generated by the owner with the proper
authentication. The SmBranchResource class is extended from class
Wor kspacesResour ce to provide general HTML description about CD++ simulation.

The UserWorkspaceResource class is used to manipulate a user workspace,
allowing owners to create, update or a delete their workspaces. This class allows reading
requests by everyone unless the owner has restricted the workspace. For example, main
servers aways restrict their workspaces on support servers to hide them from other users.

The ServiceTypeResource class (extended from the UserWorkspaceResource
class) is used to manipulate a user service (e.g. DCD++), alowing clients to manipulate
their service resources. This class can be extended to support other service types beside
DCD++ using its method isSupportedService.

The FrameworkResource class (extended from the ServiceTypeResource class)
handles requests to frameworks of any simulation service type including DCD++. Users
create, update, read and delete frameworks via this class. This class downloads modeler
zip/text filesfrom HT TP requests and sets frameworks configuration.

The ResultsResource and ModelDebugResource classes (extended from the
FrameworkResource class) enable users to download simulation results and debugging

files respectively as zipped file.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 213

The SmulationResource class (extended from the FrameworkResource class)
wraps simulation managers and interfaces users with active simulations. This class routes
al requests to a simulation manager such as passing simulation messages. HTTP PUT
channel (operation storeRepresentation) starts simulation and creates a simulation
manager. HTTP DELETE channel (operation removeRepresentations) aborts simulation.
HTTP GET channel (operation represent) retrieves information from active simulation.
HTTP POST (operation acceptRepresentation) allows modelers to manipulate active
simulation. Further, it is used to exchange messages among servers in the DCD++ grid.
This class only (via channel ValidateBuddyUser) alows participant servers in a

simulation conference to POST a simulation message.

A.1.4 Utility Subsystem

Utility subsystem classes (Figure 82) provides helper classes for all other
subsystems, providing four main functionalities: XML parsing utilities, server logging,
file services and HTML builder documents. Resources subsystem classes (shown Figure
81) construct on their own transmitted XML documents to clients. However, they rely on
the Utility subsystem classes to parse incoming XML documents from clients. Utility
classes store all received data in XML documents in java structures, alowing resources
classes to manipul ate them conveniently.

The RESTfulCDppLogger classis responsible of logging incoming requests along
with their HTTP status codes. The RISE logging is based on Java logging. The
HTMLHandler class is used by any resource class to construct an HTML document to be
sent to clients. The RISE server usually responds (to HTTP GET channel) by HTML

documents to be friendlier when the request is made from a Web-browser. Of course,

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 214

XML documents are also supported (if requested by clients) to be friendlier when request
is made from a client program. The FileSystemServices class provides genera file

services such as zipping directories, copying directories, unzipping files etc.

Frnesewesi & nssmren XML Handr | Y ey ey o oy g o EarvarCamiigH WL Han dar
el e e v
O i P T = = ArmtE el
o g O i = prd Elaine
WEN T AR P Ll L LT U LT TR |
i dpndani ERL Ha sl r & ”“1...'*1__.:".:.

i du Mg
G DR A R
sl sl v
i _ Wil

U o] B g i
iy el

ML _faiverl R
i el P Q0 e
il zaneFaimilane
e =TT =gl

N R

Frnrvs dets v o o s 2ol L i B
Lipted 15 PO Tl e O W

o i A [g 5 el v v ki

AL rt Ele o 1]

el b i g

phaiactesal

] o AT

le=caminr

* WhdL-arider{]

T miadbezumerig
v aniurEnEn]
prucesmnpinsruchimg g
ol & el sl i)
s ant raizkisppinp(l

T sndElmrEnt]]
v cheEacimsg
T ipEEbEHiEspEca)

v lkn:uﬂEl 10 L

v wei D e i Lo afon] . .

r wiariERmmerddy [e

-

i g8

-

U Wb s B s KWL Hamd oy

+ [ER B E])

+ anFsanci=d])
+ zisElamsi
+ mred 2 s R

+ ChEracisEa

= T Wb B v B e e XML Haeito
LT

= 1eFasiiciad{j
= maiResinctsd
= pbardE kmani]
a gndElermanif]

TS v FEITrT R . h i
gL _Deeabdraiaba G S e o i H i r e KWL Bl o =il ol
. |,Il'!'l:'=h'll::..'mr\ne-.l_lnl-g.|:. PerAElarm ™.,
e L So e Pt e PoridElim AcceuntlassurcaXMLH a2
. petibdL S vl nnd e FrarnSuppor kel em - mPeEmssnrd
- pebiFL_FM o Paitiioean - Magircas - mAdmin
-tk B i T 0 R e] v wlEiElrmerig = hamMaEsvend
- mackd pewr i) r greiERmmen) - anddmm
o LE TG B SR T T T characisrsd - =tmin
- kT onePariion) gt e g sl s by - pampward
. D esriny S g v iasd R eaace ks) v geteE i G = flaHElarant]|
—

= pndEl gl

= iar=tiing]l
= gl Sudevd i)
+ gl P Sraegaa i
= FHSOmEg
= Hrasi P e a1
- x B
FllieSysismmSsivicec | HTNHaiiies
+ eyminH o preasriwhon ToF e [] gi':.',_-“[.,:":
- AppandrepaiStimami = MTHALHandsi0
+ copyFilaf] = AAddHIG
s+ deloielafl s S dHE
s geiCumankDand & Al HE
= manlreeCommard) s AAHHAS
+ zpdim = AddHsads
v (ushd + unlipd = AddPrssklinsd
v p ol 1 el B a e reeri® il e = AddPscagresshil
. 0w D) = AddRe
v putdmh() 4 crestabiral = AddCiLinid
* 3 & Agdliiamf
= pElHTRL Feprs eenisiin

Figure 82: Utility-Subsystem Architecture Overview

Utility XML parsing is based on the Simple API for XML (SAX) parser. As
shown in Figure 82, there are six XML parsing classes extended from class XMLHandler
to process XML documents: (1) The SmulationResourceXMLHandler class: (1.1) It

parses modeler’s messages to manipulate active simulation such as inserting external

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 215

events into active simulation. (1.2) it parses XML simulation messages. Multiple
messages usually received in a single XML document (see algorithms in Chapter 6 and
Chapter 7). Consequently, SmulationResource class (shown Figure 81) can retrieve all
received messages (using operation getMessagesList) and pass them to the proper
simulation manager. (2) The FrameworkResourceXMLHandler class parses simulation
framework XML configuration (see Figure 89 example) and store them in loca java
structures. The class FrameworkResource (shown Figure 81) can then update a
framework configuration using channe updateSmFramework. (3) The
AccountResourceXMLHandler class is used by class AccountResource to process XML
accounts information. (4) The Server ConfigResourceXMLHandler class is used by class
ServerConfigResource to update RISE genera configuration. (5) The
User ServiceResourceXMLHandler class is used by class UserServiceResource to
manipulate a simulation service configuration. (6) The
UserWorkspaceResourceXMLHandler class is used by class UserWorkspaceResource to

manipul ate a workspace configuration.

A.1.5 SimulationAdmin Subsystem

The SmulationAdmin subsystem classes (shown in Figure 83) manage the active
simulation of an experiment (or a simulation partition, if distributed ssimulation). Thisis
what we have been calling simulation manager throughout this thesis (see Chapter 5 and
Chapter 6). First, received simulation messages are captured by URI <../
{framework}/simulation>, which is handled by the SmulationResour ce class (Figure 83).

During simulation initialization, the SmulationResource class (Figure 83) creates a

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 216

Simulation manager (i.e. a classin this discussed SmulationAdmin subsystem) to handle

all received simulation messages during simulation.

g e LTI e = L
B iadie p Mam o o ey o S | _Momngaflispeschar |

T = HIIE DELETE ST
L= L= T o gim Thresd = HIIE ST A TE
Pl e e i & o e i P on g i Treg 2l = HIIPE BT e CThoid

= el il el o 1 | & gimPrarass = HTTE T

& el g g i o ey - gt v 5 e ks e T Emes = IF Fhl T¥vFE

" lﬂ"'"';ﬂ‘m'ﬂ"‘:lm PRI =5 R PP a T e

e e et i SR ELE.,

B - i ECAT At BaiF rATA D T AT A EA

: ;ﬂ;l:p';:r::‘ln'l aps By P el --]H-I'En':inn-- + A R R T e . EErsHEmME

= g T TR BT =T

- wstiylasd s e nitar o S e s A e po HTTTE &t

-'-'.l'\-ltm..u'\-:- : ""I'I::'E""ﬁr;:'iﬂ"fn runrar

i Gy . Al
_H-_Inlwﬂn'll-llull-ﬂnﬂ.drr-l-r -'iﬂﬂlﬂﬂmw_'?‘_x wmiFlaFamma i
" B e D ED
- u.-.E.l.n'u.l.IJD e
Vi b iy g A updsbakisheFila D
: LsnacCrdadaic o T ¥ LT s R]
 priCemnEmTio=]] r,

: Ir:;q:ll.:i'l R ';h"""ﬁ""'“"'"m':' = Fil i o g 4 i ek ch e

A ey b e W g G —~ : _;:‘::‘""":;ﬂ v = el o s LA S AL Oh 90

- wEEE) J "IHH.;THU-W Q = Fel i ww g R e sk)

+ wiopsad = rEgEie

- £ £ e et ek Pl g T) a- - 'ill-"iﬂl,l o

—u% ; v S sl -

A e T ' L] IFika S vic e L= e T
BTl D o o i s e sl i |] Dl npgucal)
== L = FuaEmp o= e o B
= aiaa Ty Uaati (sl Mk ThradPasTh | Bt ven

12 rm st 2 vl s el s [|mmh" 1 e)
E- Popdkiliks(]
sy g by i cehandiade L] ﬁ::::‘hrl::\“u
L RimwdpnmenMemngeg - A — .o
- h'l::lnieryH = ULI‘.'n-!I—HI-IIIvnHunnj_IH '._ -
[P — FiocG sch sl bie 3 upm I =
ExtsanalSimulasest vas il = OCCppSimalnionkanege - Ll
- Por Tme [T =T [] H e = DelierilsfTanbansD
- Tenw Ak b s g prt e Dy P b g 0 A et e - i et B
B 171 Erermeld 1 S e e i i e Pﬁﬁmﬁ?m“-ﬂw-n (=l T T
T T D i B roc i s Fle Rl B DR G ik s e et i o s
+ aEPo HEAE AT oty G D] X = gk B (kw1
+ gETEe() Meridl et ot B i OB i e a0 = el sl
+ pmTima(] P S pp i b = Al S e o e A = gl
BTt T] -]H‘l‘--i.l.'lbii'rfpﬁﬁ 2 PinsdizeSimylgijionGle sl -:ﬂ"ﬂ!ﬂ:-'\."-l_l
T pEiw s un Ak S, S, = Abondmubisng = get Siwi ued od eg)
aeiFann & ST e HODR D e LY
AEPanf & SiopSipp et musiani e T TR b
i vori Fl sl L pa et v e L s) 1 |
B S = rapyraRemoabdessaged L
Qe Tinm() = sorelPamoiekiasespe G 1 T
S Tinmi = HTTF el s s e e e g G B Iﬂ_,_'L_.
ARk Aokl W™= arigin =i .
A akipG o gerSimdlrall 1
usEeFmer = g D g 2 ™ s v OO pGal dimichdon
& sESrcPrackd ELEER_TRE_[H_MAUTES
aeDasPimctdd [||“':':‘""="'“*""'“‘“'- BrriaiFil
e 1 - Aciweie
I|II - I
L Ay I R Dy e W S e s
Jp,.ﬁdmmmu . CheokEyppo e remmd
& e e P R B) Ch sk biain 5 sy
i P iy P et H = RLang
= Eamd
2 il

Figure 83: SimulationAdmin-Subsystem Architecture Overview

The SimulationAdmin subsystem (shown in Figure 83) contains the following
major classes. DCDppGridWatchdog, External S mulationEvent, RESTful ClientWrapper,
MessageDispatcher,

SmulationMessage, SmulationManager sAdmin,

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 217

SmulationManager Proxy (written in C++), SmulationManager, and
DCDppS mulationManager. These classes are discussed in the following.

The DCDppGridWatchdog class implements the watchdog thread to check on the
health of remote simulations resources in the distributed smulation environment. The
watchdog (of the DCD++ main simulation manager) keeps sending periodic messages
(one minute in our case) to check if support simulations are alive. This avoids deadlocks
in the distributed simulation and ensures releasing operating System resources as soon as
possible. On the other hand, support ssmulation managers uses watchdog to watch the
main simulation to ensure releasing system resources, if simulation fails. Each instance of
the DCDppS mulationManager class owns an instance of class DCDppGridwWatchdog.

The ExternalSmulationEvent class holds an external event data received from
modeler to manipulate active simulation dynamicaly. In this case, this event is passed
(by the simulation manager) to the CD++ simulation engine so it can be executed as the
proper simulation time.

The RESTfulClientWrapper class wraps HTTP client implementation. HTTP
client sends an HTTP message to remote HTTP server and waits for its response. It
performs further tasks such as encrypting credentials according to HTTP Basic
authentications and managing connections with TCP layer. This class manages TCP
connections in a pool, alowing connections reuse for multiple messages, since allocating
a TCP connection for each single message is expensive. This wrapper allows HTTP client
communication part to be remplemented or upgraded from a third party easily without

affecting the entire system.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 218

The MessageDispatcher class is used to dispatch messages where each message
transmission lives in a separate thread. In this case, a simulation manager is able to
transmit many messages simultaneously. The MessageDispatcher class relies on the
RESTful ClientWrapper class to handle HTTP client communication details. Therefore,
messages are transmitted using both thread and TCP connection pools.

The SmulationMessage class holds the data of a received simulation messages. In
this case, when multiple simultaneous messages are received in asingle XML document,
they are passed as a list of instances of the SmulationMessage class. This is part of
preparing messages to the simulation engine.

The SmulationManagersAdmin class keeps track of al Simulation manager
instances currently handling active simulations. The SmulationManagersAdmin class
provides a number of tasks that are summarized as follows: (1) it is used as router by the
CD++ simulation engines running on local machine. The CD++ simulation engine sends
remote events via operating system IPC to the SmulationManagersAdmin class, which
then routes to the proper simulation manager associated with that CD++ engine. This
routing is performed (via method sendRemoteMessage) based on the manager 1D sent
along with the event. (2) It provides CD++ engines needed information on-demand such
as the ID of their associated simulation manager (via method getSmulationManager),
and the server ID (via method getServeriD), enabling them to redlize their model
partitions of the entire model hierarchy. (3) It is used by the RISE middleware to create a
new simulation manager (via method register) or to delete a simulation manager (via
method remove). These operations are thread-safe (via private method update), since they

may be performed by multiple threads simultaneoudly. (4) It is used to abort al

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 219

simulations (via method stopAll). This is only used when the middleware is prematurely
shutting down while several active simulation still running. This is important to release
operating system resources, particularly CD++ engines that run as separate processes.

The SmulationManagerProxy class (written in C++) is used by Simulation
manager to manipulate its correspondent CD++ simulation engines. The
SmulationManager Proxy class can be viewed as the C++ side of the Java simulation
manager. The SmulationManager Proxy class handles the IPC communication between a
CD++ engine and its associated simulation manager. Thus, there is an instance of the
SmulationManager Proxy class for each simulation manager instance. Upon a message
receipts (via IPC) from the CD++ engine, the SmulationManagerProxy invokes the
proper method of the simulation manager. This is done through the
SmulationManagersAdmin class as earlier discussed above. On the other hand, a
simulation invokes the proper method of the SmulationManagerProxy to communicate
with its correspondent CD++ engine. For example, the simulation manager invokes
method receiveRemoteMessageByProxy to pass a message to the
SmulationManager Proxy, which then forwards it via IPC. Java and C++ crossing
implementation is based on the Java Native Interface (JNI) [92].

The SmulationManager and DCDppSmulationManager classes implement the
RISE-based Distributed simulation semantics and algorithms, which are aready
discussed in previous chapters.

The SmulationManager class implements the default part of managing a
simulation session. Some of these tasks: (1) it creates the SmulationManager Proxy,

(which isits C++ side) along with the IPC message monitor thread to supervise incoming

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 220

IPC messages from the CD++ engine. (2) It starts the CD++ engine as an operating
system process. This process lives a separate Java thread to avoid blocking the entire
simulation manager. This thread is blocked until the CD++ engine process is completed
or aborted.

The DCDppSmulationManager class is extended from the SmulationManager
class to handle DCD++ simulation management in geographically distributed
environment. The DCDppSmulationManager class keeps track with all information
related to other remote simulations and their model partitions. Some of these tasks are
summarized as follows: (1) it passes received messages from remote simulation to its
correspondent CD++ engine. This is done with the help of the SmulationManager Proxy
class. (2) It creates the communication channels with all remote simulation entities. This
is done with the help of class RESTful ClientWrapper. It further transmits all messages to
remote simulations on behalf of its correspondent CD++ engine. It follows the algorithms
discussed in previous chapters to aggregate (and transmit) simultaneous events in single.
This is done with the help of class MessageDispatcher (to dispatch the message) and
class RESTfulClientWrapper (to handle communication details). (3) It initializes and
starts the distributed ssimulation (via method startSmulationService) at all simulation
partitions. (4) It starts/stops watchdog thread to watch the participant in the distributed
simulation environment. This is done with the help of the DCDppGridWatchdog class.
(5) If it isthe main simulation manager, it starts and stops simulation on all support nodes
(via operation startSupportiveSmulation). It further collects results and debugging data

from support entities.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 221

A.2 Middleware Deployment

The RISE middleware can be deployed in two ways, as shown in Figure 84: Standalone

HTTP server or as a Servlet engine within an HTTP container.

- >
. E
Stamdalone “Eervied
RISE Engine ____ RISEEngme
! Restlet AP i L ResterArt 0 Lo
—| Port |eeeeerae—aaa i
TCP] HTTP Container (g.E.
* .// Tomecat)

S i - __H,

— Internet e User

Figure 84: RISE Type of Deployments

Standalone HTTP server: In this case, the RISE engine relies on Simple
framework [122] to carryout HTTP connections and communications. The
standalone version is an actual HTTP application layer. Therefore, it should have its
own dedicated HTTP port to be able to run it simultaneously with other HTTP
servers on the same machine. This type of deployment provides convenience
particularly when testing distributed simulation on the same physical machine, since
multiple middleware instances may be run simultaneously on the same machine.

Servlet engine running inside any HTTP container such as Tomcat [7]: In this
the HTTP container forwards all URIs starting with “/cdpp” to the RISE Servlet.
This type of deployment takes advantage of Web-services available open source
software for performance issues, since performance often vary between a third-party

software to another (even from arelease to another from the same vendor).

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 222

Both types of deployment are interchangeable. For example, one may deploy the
server as standalone or redeploy it as a Servlet inside an HTTP container without
affecting clients’ services. Thisis because clients always consume services from the same

URIs; hence, they still recelve the same services regardless of the server type of

/

deployment.

==Single Physical Machine==

RISE Engine RISE Engine
TCP TCP
N
oo World Wide Webh —
—_— - ———

Figure 85: Multiple Instances of RISE Running on a Single Machine

The RISE middleware Servlet (Figure 84) is started by starting the HTTP
container (e.g. Tomcat). In this case, the HTTP container routes to the RISE middleware
all received HTTP message with the URIs that start with </cdpp>.

The RISE standalone is ssimply an application layer on top of TCP as shown
Figure 84. This means that severa instances of the RISE may easily run on the same
physical machine, as shown in Figure 85. Simply, copy the RISE files into different
folders and starts each one of them on a different TCP port. This fact is a pulse because
we now only need one physica machine to be able to test the server behavior on any

number of machines, particularly when testing distributed simulation. It is beyond doubt

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 223

that for example running one hundred instances (to test distributed simulation) on the
same physical machine is the same as utilizing one hundred distributed physical machines
(from testing viewpoint). This is because each instance sends/receives messages through
the TCP (which then passesiit to the IP layer to be routed to its destination); hence at this
point it doesn’t matter if the message needs to be routed (by the IP) to the other side of
the world or to the same machine. Note that the RISE uses the Restlet API [114] (which
is realized by the Noelios Restlet Engine (NRE) implementation [104]) to provide set of
APIs, mainly allowing the RISE to access HTTP message contents and to hide the

communication details.

A.3 Interfacing CD++ With RISE

As discussed in Section 6.2, the DCD++ partition (in a simulation experiment) is
reaized between the simulation manager and the CD++ engine. In this case, the
simulation manager and the CD++ exchanges simulation messages via the IPC queues.
This simulation manager is implemented as part of the RISE middleware. This part has
previously discussed in the SmulationAdmin subsystem classes (Section A.1.5). This
subsystem contains the SmulationManagerProxy (written in C++), and
DCDppSmulationManager classes. The DCDppSmulationManager class implements
the DCD++ simulation manager functionalities, while the S mulationManager Proxy class
is the C++ gdide of the simulation manager. In this case, Java and C++ crossing
implementation is based on the Java Native Interface (INI) [92]. In this section, we cross
to the CD++ simulation engine. Figure 86 shows the CD++ Processors hierarchy and the

CPPManager class.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 224

A Precissar Za
___.l" 3 I:l'n'.i'.n'l:t' Mode)
/ - e<Progkle e - ==Prodde= locak proc
* 'Jﬂl * reervel] 7 “gﬂ:;:” m:_d
. iasr + 1) proG (= TR TR,
mﬂlﬁlﬁm * el —— |+ paenibiods
————— it] + -nertChange |
asimuTTime Sfog N * plChange] "‘"«.H e
T e + abenkniahiad) ey |_MessageBag |
-"'r- wesiop | T _xj* pesmpton|) edemalbisys, - ool
o IH. ". ;fm—__ 3 y # pidd(]
.J._a] 5 i ———-.,______ + portHashisps()
A Root il ||I "-.' B bl
| + magsOnPori)
+ k] ! 4 * tiaginj
* simistey] |) + andl)
+ sl Coordinator h
* addE sdermiCmn] - donscoul |
* S| |* <<Prodd== pancntid &l‘“amr CPPManager
» sendbispgTypss}
; fEdemalies=age) it o ‘ i:;‘:‘ﬂ d
e sotEdema o = i
FlatCullC oordinator W soriDutpiMes sage) - I Ensto i)
— Ton - FresEsaga Moo e
| = rrachred
- ==Procd== fokd
‘MessageRdming
Massageddmin & gebCurienimTimel
= _Muneang + insariEdamaEvet)
+ sondl} * S Seasionly)
* ik I&_- —-] eipadol + InitalzalAss ARG
|+ =toply UrpresissadMag)| * Slanidessaiehionilx
L3 e——— + gl
W ; * gesdaclired)
b o : + =endRemalaassanel)
hurgrnressedlme -y LT I R
ctypecl | Mg + gEfreFaminnE}
prcenr s - wuPdides P + adiZonaParino)
* RO + QEFUHN
+ send Tl

* gandRema Tof
+ Iypey] >

.'\. ™
e | IrrlarnaiMassage

Craneidssamge
+ naelChangs])

Figure 86: CD++ Processor s Hierar chy
The CPPManager class (Figure 86) is responsible for interfacing the CD++ simulation
engine with the SmulationManagerProxy class via IPC queues. The CPPManager class

creates two message queues. send queue id (for sending messages to the simulation

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 225

manager) while receive_queue id (for receiving messages from the simulation manager).

The functionality of the CPPManager includes:

Initializing the message queues used for communication with the simulation manager
(initializeMessageQueues).

Querying and retrieving the model partitions from the simulation manager in RISE
side (machineForModel, addZonePartition).

Querying the current execution time and inserting external events while the
simulation is running (getCurrentSmulationTime, insertExter nal Event).

Sending remote messages while running distributed simulations
(sendRemoteMessage). This method takes a C++ message and sends it to the
simulation manager to be sent to the remote machine.

Receiving remote messages while running distributed simulations
(receiveRemoteMessage). This method receives a message from the simulation
manager and constructs a C++ message to be processed by the simulator.

Stopping the simulation when receiving a stop message from the simulation manager
(stop).

Each processor (in the CD++ hierarchy shown in Figure 86) keeps track of the

model that is responsible for executing the model hierarchy described shortly. The

processor class is the parent of all the classes in charge of executing the model. Those

include the Smulator, Coordinator, FlatCellCoordinator, and Root classes. The

Processor class implements the basic functionality required by al simulation classes: (1)

Receiving and processing the different simulation messages, (2) Sending messages and

scheduling simulation events via class MessageAdmin. The Smulator class extends the

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION 226

Processor class and executes the functions of the atomic DEV'S model corresponding to
the type of the received message. For example, when a Smulator receives a collect
message from its parent coordinator, it executes the output function associated with its
atomic model. The Coordinator class is responsible for forwarding messages among the
Smulators and for synchronizing the events taking place during the simulation. The
FlatCellCoordinator classisin charge of executing flat Cell-DEV'S models, which differ
from Cell-DEVS models in that they are executed by one processor instead of using a
processor for each cell in the cell space. The Root coordinator isin charge of starting and
stopping the simulation, interacting with the environment, and clock advancement.
Messages are implemented as separate classes, each representing a message type with all
the classes inheriting the Message class. Different messages have different attributes; for
example, the Done Message class has an extra field (nextChange) to indicate the time of
the next state change.

The model loading mechanism in the original CD++ is based on parsing the
model definition files and creating the corresponding simulator/coordinator for each of
the model components. Those components can be atomic DEV'S models, coupled DEVS
models, atomic Cell-DEV'S models, coupled Cell-DEVS models, and flat-coupled Cell-
DEV S models. However, in DCD++, the model loading mechanism includes loading the
partitioning information as part of the model loading process; the partitioning information
is retrieved from the simulation manager components through the CPPManager class
(was shown in Figure 86). Atomic models are assigned to run on a specific machine and a
coupled model can span different machines with each of its components running on an

individual machine.

APPENDIX-A: RISE MIDDLEWARE IMPLEMENTATION

227

cemepiMachinetd Prockje» mods_paribon | Mosel FINE [Pracdagen |
WedelFarscn R e rrre i |
- o<Proddes ool proc . T =
« w<modeddsr den {FE N b e
| Aramme o =xPyackd=s panenl i B Ciodell sl ! | Y
T = = { it
¥ mtruecrom * addnputPort]) T / fctvics ! _5.:5:' >
i wtamaFunctiong) | e ao0uipr om) VA aidigTine [Ties |, "8,
¥ s .". + ciipulPod sl 7
E onj | cuuaFeneting i i f o ! iy
W_"‘_ !i confisentEinrikon TG Es '.I
» ummgedmidm | 1y oaoProcessai) | [+ asSkngg) —ERp [=etmg==]
= - + ah=ohirhes] * CirkedeE) h__m_n_:_r:._; Modeiist |
fighbor * ingutPorts) * hesi R s L R
+ adliid pchinee) N sadnfuence | | | S '.I
T = + saifachnePoddl # cresteProcess o | [Y
P o T ~|* locaiPod] a7 1
AvgesivLaill * (g ocalaskan | -
N [+ wmher e ' B
| [ee¥el !"' ksl el : ;':F mm """J“ 0 [Coupkacan " [+ aPostong
| I: :fpﬂfu‘:ﬁ"ml # cnsofossa | [+ el QerS0r0on | Collfoamentia
- . |- weappad ——"
| -I,II T ;E._.‘.._._-_-.Ti_
! P o (N k. i + melCeiiahe)
LL ri . e ol P s i)
L § g "-. Ay "‘ln-lrl-:piF‘-arl:Iﬂ. Dot B crealePocessoi) °
TraragonDelayCel| (| b] Porilist w T
® i) Iy) 1 / AT,
plemaiFinckor | | ! - N Nip
oecmalFurchoi) | s g rehtoiGhange ’ [“<hypedet-=
oy |/ Fort | FlatGoupledcel | SerilsE |"=-H1l'-r-ﬂﬂ-'*[
II- + memockeldss |rtrn|-dl: ot R 5 ._--'_- et
[ot Emooa] b e L - [=ttt |
o * T+ Cralocaim i s
{(e, § + seCefimel) P =3
| eeflpplen Fupsalon |I & P "'--___ _ :
|- wcFigaex Aduaheio | nifece] i + [nemaF e E
|® i gnction] | -:«.nﬂhn"j-}':-' + oUuFnchonl
|® iniemaFunchan o ¥ ClealaPTOCessdn|
:: asomalFenction() ———
|l pulpEri-gnch o)

Figure 87: CD++ ModelsHierarchy

Figure 87 shows the relationship between the different classes representing the
model hierarchy in CD++. The figure aso shows that each model keeps track of the
processor that is responsible of executing it (the processor hierarchy shown in Figure 86).
During the simulation initialization, the simulation loads all required models, and create
processors to executed the loaded models (via createProcessor method) along with the
organization of child-parent relationship among the created processors, and it then

assigns those processors to the appropriate machines according to the models that they

responsible to execute (viainvoking addM achine method of the appropriate model).

APPENDIX-B: RISE APPLICATION
PROGRAMMING INTERFACE (API)

This appendix summarizes the RISE Application Programming Interface (API)
with more focus on the simulation blueprint experiment related API, since they form the
URI templates for al simulation experiments. Note that the full RISE APl (i.e. URI
templates) is detailed in the middleware user and developer manuals. This appendix
provides the following information:

e |t providesan overview description of the entire RISE API.

e |t discusses the experiment API (i.e. URI templates) specifications. This discussion is
presented in terms of supported functions via the supported HTTP channels. It further
provides the possible generated faults.

e |t discusses the APl XML description based on WADL standards [144]. This alows
client machines to retrieve standardized XML description of the RISE API at all time.
It is worth to note that RISE always constructs this WADL document upon the client

request receipt to ensure the latest version of the API.

B.1 RISE API Overview

RISE is a URI-oriented (i.e. resource-oriented) middleware where all deployed
services are wrapped in URIs and manipulated via uniform channels. In this case, the AP
is expressed as URI template [62]. URI Templates are URIs with variables (placed
between braces ‘{}’). Variables are substituted with appropriate values to get the actual

URI instances at runtime, which simplifies both clients and servers. Clients can easily

228

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 229

know what part of the URI is under their control. Further, servers can easily verify al the

possible paths that clients can use to manipul ate exposed resources.

4| <Base-URI>/cdpp Ii
[) |—a-| fzim
¥ |
- = - - T Jusil 1 F
Fadmin I—», Flog | | | | I fworkspaces
| foonfig J; l
—l I Fping | | fMusarverkspaca)
1 i 1 I

s

fiservioetypea)

L | | : Pr— 1

[Sfaccounts

[faccountname } | f{ Framauwark) l
| ,-"d.-k:.ug] I Ffrasulbs l | Failmulabian

Figure 88: RISE Resources URI Template Overview

Figure 88 shows RISE APl overview. Each resource (Figure 88) includes a
specification that defines the supported access channels (and their responses); possible
generated errors (e.g. HTTP code 401 for not-found resource), incoming/outgoing
representations (messages) and media type (e.g. XML). The root URI is split into three
subordinate resources (Figure 88): (1) “/admin” resource is used for administrative
services such as creating user accounts, genera middleware configuration and retrieving
middleware logs. For example, sending an XML message via PUT channel to an absent
URI “.../admin/accounts/Bob” creates an account with name Bob according the

privileges set in that XML message. (2) “/util” resource is used for utilities that might be

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 230

helpful for modeler client applications. (3) “/sim” resource is the parent of all simulation
resources regardless of their type, as discussed next.

Resource “/sim/workspaces” contains all modelers’ simulation resources,
organized in different sections. Resource “/sim/workspaces /{userworkspace}” denotes to
a specific modeler workspace that will contain all of his’her experiments resources of any
type. Thus, resource “/sim/workspaces” may contain a number of different workspaces
such as “/sim/workspaces/Bob” and ““/sim/workspaces/Tariq”, €tc. For example, sending
aread request via GET channel to resource “/sim/workspaces” will return an HTML or
XML documents with al user workspaces URIs, as in the case of a regular Web site.
Each of user workspace may contain a number of different simulation environments (e.g.
DCD++) supported by RISE. A ssimulation environment type is wrapped in resource
“/sim/workspaces/{userworkspace}/{servicetype}”’. For instance, “{servicetype}” needs
to be set to “DCDpp” to use the DCD++ simulation environment. In this case, more
simulation service types may easily be added without affecting the entire APl or any
existing modelers’ resources. Typically, each simulation environment (e.g. DCD++) can
contain any number of experiments of any name wrapped in resource
“/sim/workspaces/{userworkspace}/{servicetype}/{framework}” where “{framework}”
represents the experiment name (e.g. fireModel, battleModel, etc.). For example, URI
“/cdpp/sim/workspaces/Bob/DCDpp/FireModel” 1s an experiment (framework) with
FireModdl name, DCD++ simulation environment service which belongs to workspace
Bob. The “/framework}” resource is the parent URI of all of the simulation experiments.

They are discussed next in Section B.2.

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 231

B.2 Experiment URIs Specifications

Resource “{/framework}” is the parents of all resources belong to the same
experiment. Resource “/framework}” aong with its subordinate resources form the
experiment blueprint because the can wrap any experiment, at any state, in any
simulation environment, in any modeler workspace, as discussed in Chapter 5. We
discuss them in this section in terms of their use by client software.

Resource “{framework}” (discussed in Section B.2.1) is used to manipulate an
experiment setup such as distributing model partitions and submodels interconnections,
etc. In Resource “{framework}” URI, POST channel is used to submit/update simulation
model necessary information to a framework. PUT is used to create a framework or to
update simulation configuration settings. DELETE is used to remove a framework. GET
channel is used to retrieve fully/partially a framework state either as an XML or HTML
documents.

Resource “{framework}/simulation” (discussed in Section B.2.2) is used to wrap
active simulation. This URI is used to interoperate with a simulation in progress of an
experiment. This resource must only be active during simulation, and it is automatically
removed by a domain upon completion. DELETE is used to abort simulation. PUT is
used to start ssmulation. POST is used to send simulation synchronization messages and
to manipulate simulation dynamically. GET is used read dynamic results during
simulation or active simulation status. This resource only exists during active simulation,
and it is automatically removed upon completion.

Resource “{framework}/results” (discussed in Section B.2.3) is used to store

simulation results once simulation is completed. Resource “/framework}/debug”

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 232

(discussed in Section B.2.4) is used to store any debugging related information regard the

subject model under simulation.

B.2.1 Experiment Resource: {framework}

URI Template: <...>/{servicetype}/{framework}
Example: <...>/DCDpp/FireModel

This resource holds the experiment settings such as models scripts, distributed
simulation partitions configuration, etc. Thus, all model files submitted by clients are
made to this resource. Note that the simulation-framework is considered restricted (i.e.

read-only by owner) if itself has been restricted or belongsto arestricted URI parent.

Table 14: Specifications Summary for Resour ce {framework}

Operation HTTP HTTP Success Request Response
Channé Response Representation Format | Representation

Code Format
Delete DELETE 200 (OK) None None
Experiment
Submit File POST 200 (OK) e Text file (text/plain) None

e Zipfile (directory)
(application/zip)

Create PUT 201(Created) [Optional] None
Experiment XML (text/xml)
Update PUT 200 (OK) XML (text/xml) None
Experiment
Get GET 200 (OK) None e XML (text/xml)
Experiment e HTML
State (text/html)

Table 14 summarizes the experiment framework resource supported operations.
Table 14 specifies five columns (left to right): The first column indicates the name of the
operations. Those operations classify the purpose of messages requests via a specific
HTTP channel. The second column indicates the operation HTTP channel. The third

column specifies the HTTP response code, if operation succeeded. The forth column

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 233

specifies the allowed data formats (i.e. messages) from clients to RISE via a channel.
This is only applicable for the PUT and POST channels. The fifth column specifies the
data format returned from RISE to clients. Thisis only applicable for the GET channdl.

The first row (Table 14) defines operation Delete Experiment. It uses DELETE
channel to delete a simulation experiment instance along with all related information.
Note that deletion of distributed simulation experiments also leads to the deletion of all
experiments partitions on al machines.

The second row (Table 14) defines operation Submit File. It uses the POST
channel to submit files to the experiment framework. In this case, there are two types of
supported files: text files and zip files. For example, a modeler can submit models scripts
asindividual text files or asasingle zipped file.

The third row (Table 14) defines operation Create Experiment while the fourth
row defines operation Update Experiment. Both operations use the PUT channel to write
the XML configuration document to the experiment framework. In this case, if the
request is received to absent URI, it is treated as the Create operation; otherwise, it is
treated as the Update operation. Figure 89 shows an example of such XML configuration
document for the DCD++ experiment types. In this example, The XML configuration
document is divided into four main sections (Figure 89): General (line #2-3), files (lines
#4-13), CD++ options (lines #14-17) and the DCD++ model partitioning (lines #18-28)
sections. The first three sections are optional where the fourth section is mandatory for
DCD++ experiments frameworks. Lines #2 indicates if the experiment is restricted (i.e.
read-only by owner) or not restricted. Line #3 shows the framework documentation. This

usually states the experiment purpose. Lines #4-13 describes the model files section. Files

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 234

section is mandatory if files are submitted as zipped folder instead of submitting them

individually (see operation Submit File). For example, Lines 5-12 describe the CD++

Barbershop model files. For instance, Line #10 lists the C++ Checkhair.h header file,

which contains the C++ Checkhair class. Lines#14-17 show the CD++ options. Line #15

indicates the simulation stoppage time. Lines #18-28 show the DCD++ model partitions

section. In this example, the Barbershop model atomic models are partitioned between

two RISE servers, as previously discussed in Chapter 6.

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

<Conf i gFr amewor k>
<Restricted>fal se</Restricted>
<Doc> Thi s DEVS nodel sinul ates Barber shop. </Doc>
<Fil es>
<File ftype="ev">barber.ev</Fil e>
<File ftype="m">barber.nna</Fil e>
<File ftype="src">Reception. cpp</Fil e>
<File ftype="hdr" class="Reception">Reception. h</File>
<File ftype="src">Checkhair.cpp</Fil e>
<File ftype="hdr" class="Checkhair">Checkhair.h</File>
<File ftype="src">Cuthair.cpp</Fil e>
<File ftype="hdr" class="Cuthair">Cuthair.h</File>
</Files>
<Opti ons>
<Ti meQp>nul | </ Ti meQp>

</ Opti ons>
<DCDpp>
<Servers>
<Server |P="10.0.40.162" PORT="8080">
<MODEL>r ecept i on</ MODEL>
</ Server >
<Server |P="10.0.40.175" PORT="8282">
<MODEL>cut hai r </ MODEL>
<MODEL>checkhai r </ MODEL>
</ Server >
</ Server s>
</ DCDpp>

</ Conf i gFr amewor k>

Figure 89: DCD++ Experiment XML Configuration Document Example

The second row (Table 14) defines operation Get Experiment state. It uses the

GET channel to read the experiment state. The state is the entire experiment

configuration and any active simulation status within the experiment. The operation

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 235

returns an HTML document by default (making it easier to Web-browser users) or as
XML document (making easier for machines processing). Both of these documents

described next.

PRI W et T2 KURTEEZY E

B [o gyttt D s - il 6D i

fic P vow beeeion e tob

B I o G TR L M Ll IR T T R

FlreSBoaded Frapea el Hare

rrmgmen:
This meded Teralms Fire: wing Cul- D

Erinmieead e

3
L]
i
:‘ b
I
=i
!
'.:
p
?
0

Tewc of Fraecwork’y Chanm Laor Sycteer, XERQOT 38 (& (243
Pravcsa Samabce Hon 1otll P o ties Tasc 18T Sacande
ol e S AT (Pl s dee deioniptiass kel

T e B B i

l. IME mamsirs o oovo ma o o foneemi
=T 'ni.'!:mr\-hrﬂl"::l rd e

b RUONL Brwadeion by corosth nammy m D mareemh

L Lk | '\-\. Srmdisvon o borg MEpped m Ew ek

4 CAONE Provicos soshson n ba cempleed sxoomfls

B AHDATID Fevion arsisica e ws ibaned by Chaser belors complaton
ERROH: Frevicar damlara o sk s EREDR

CH+ Diptbaas

&= Famulaton Stop Teae wd
= Poning fpeed dor dckmprgh bz

finacieed Medal Fllsa:

1 S
1 feval

| DCD— Griiy =

Figure 90: Excerpt of Displayed Framework State Using a Web-browser

Figure 90 shows an example of the returned HTML document displayed by a
Web-browser. This HTML document is sent to a Web-browser by ssimply typing the
experiment framework URI in the Web-browser address bar. This is because Web-
browsers always send their requests via the HTTP channel. The shown document in
Figure 90 displays the experiment information such as the models partitioning, the
simulation status, and the links to download results or debugging files. These links are the

URIs of subordinates resources, discussed in the next subsections.

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 236

1 <?xnml version="1.0" encodi ng="UTF-8" standal one="no" ?>
2 <Confi gFr anewor k>

3 <Nane>Bar ber Model </ Nanme>

4 <Restricted>fal se</Restricted>

5 <Si mul ati on>

6 <St at us>DONE</ St at us>

7 </ Si mul ati on>

8 <Doc>Thi s DEVS nodel sinul ates Barber shop. </ Doc>

9

<Fil es>
10 <File ftype="ma">barber. ma</Fil e>
11 <File ftype="ev">barber.ev</Fil e>

12 <File ftype="sinpl e">Reception. h</Fil e>
13 <File ftype="sinpl e">Reception. cpp</Fil e>
14 <File ftype="sinple">Cuthair.h</File>

15 <File ftype="sinpl e">Checkhair.h</File>
16 <File ftype="si npl e">Checkhair. cpp</Fil e>
17 <File ftype="sinple">Cuthair.cpp</File>
18 </Files>

19 <Options>

20 <Par si ngOp>f al se</ Par si ngQp>

21 </ Options>

22 <DCDpp>

23 <Servers>

24 <Server NAME="10_0_40_66_8282">
25 <Model >cut hai r </ Model >

26 <Model >r ecept i on</ Model >

27 <Mbdel >checkhai r </ Model >

28 </ Server >

29 </ Server s>

30 </ DCDpp>

31 </ Confi gFranewor k>

Figure 91: Example of Experiment Statein XML Representation

Figure 91 shows an example of the returned XML document of an experiment.
Client software reads the XML document (instead of the default HTML document), by
simply setting query variable “fint” to “xml” such as <.../BarberModel?fmt=xml>. The
shown XML document in Figure 91 contains the same information in the XML
configuration document, discussed in Figure 89. However, it aso includes the current
simulation status in lines 5-7 (simulation status are previously discussed in Chapter 6).
Note that the client software can use query variables to return excerpt of the experiment

framework. For example, the simulation status (lines 5-7) can read by clients by setting

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 237

query variable “sim” to “status” such as <.../BarberModel?fmt=xml>. In this example,
Lines 5-7 will only be returned to the client.
Table 15 summarizes the possible generated errors by the experiment framework.

In this case, errors are classified based on the received message channdl.

Table 15: Faults Summary for Resour ce {framework}

HTTP HTTP Response Error Description
Channel Error Code
404 0 Framework does not exist.
(Not Found) 0 Failed Authentication (where Framework is
restricted).
DELETE 403 Simulation is Currently Active (i.e. resource
(Forbidden) {framework} /simul ation exists)
401 Failed Authentication (where Framework is not
(Unauthorized) restricted).
400 0 Request contains bad XML configuration document.

(Bad Request) 0 Request istrying to attach a new framework to
unsupported simulation service.

415 Received unsupported mediatype. XML isthe only
(Unsupported allowed format from clients. DCD++ servers are
Mediatype) allowed to PUT zip files among each other.

PUT 404 0 Failed Authentication (where Framework is
(Not Found) restricted).
0 Framework does not exist (if the request did not
come from the owner).
401 Failed Authentication (where Framework is not
(Unauthorized) restricted).
403 Simulation is Currently Active (i.e. resource
(Forbidden) {framework} /simulation exists)
404 0 Framework does not exist.
(Not Found) 0 Failed Authentication (where Framework is
GET restricted).
401 Missing Authentication (where Framework is

(Unauthorized) restricted). In this case, achallengeis sent to give the
user the chance to provide a username and password.

400 0 Server received empty file.
(Bad Request) 0 Server could not unzip the received file.
POST 0 Server could not read extracted files.

o Errorsin URI query variables.

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 238

HTTP HTTP Response Error Description
Channel Error Code
415 Request contains unsupported mediatype. Text and Zip
(Unsupported are only supported files.
Mediatype)
404 0 Framework does not exist.
(Not Found) o Failed Authentication (where Framework is
restricted).
401 Failed Authentication (where Framework is not
(Unauthorized) restricted).
403 Simulation is Currently Active (i.e. resource
(Forbidden) {framework} /simul ation exists)
501 Request contains Unsupported HTTP channel.
(Not Implemented)
Generd 500 The server encountered an unexpected condition, which
(Internal Server prevented it from fulfilling the request.
Error)

B.2.2 Active-Simulation Resource: {framework}/simulation

URI Template: <...>/{servicetype}/{framework}/simulation
Example: <...>/DCDpp/FireModel/simulation

This resource represents an active simulation with an experiment framework. It is
created when simulation is started and is deleted when the simulation is completed (or
aborted). Therefore, clients use this resource to manipulate active ssmulation such as
inserting an external event, passing simulation messages among distributed servers or
retrieving results during simulation. Table 16 summarizes the active-simulation resource
supported operations. Table 16 specifies five columns (left to right): The first column
indicates the name of the operations. Those operations classify the purpose of messages
requests via a specific HTTP channel. The second column indicates the operation HTTP
channel. The third column specifies the HT TP response code, if operation succeeded. The
forth column specifies the allowed data formats (i.e. messages) from clientsto RISE viaa

channel. This is only applicable for the PUT and POST channels. The fifth column

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API)

239

specifies the data format returned from RISE to clients. This is only applicable for the

GET channdl.

Table 16: Specifications Summary for Resour ce {framewor k}/simulation

Operation HTTP HTTP Success Request Response
Channél Response Representation Format | Representation
Code Format

Start PUT 202 None None

Simulation (Accepted)

Stop DELETE 202 None None

Simulation (Accepted)

Submit POST 202 XML None

Message (Accepted)

Get GET 200 None XML or Zipped

Simulation (OK) file

State

The first row (Table 16) defines operation Start Smulation. It uses the PUT
channel to start the simulation within an experiment instance. This means that the
resource ({framework}/simulation) is created. As aresult, the simulation engine is created
on the local machine. Further, the smulation is started on al other machines, if the
experiment is distributed, as discussed in Chapter 6 and Chapter 8.

The second row (Table 16) defines operation Stop Smulation. It uses the
DELETE channel to delete the resource and abort simulation. Further, if experiment is
distributed, simulation on al machinesis also aborted.

The second row (Table 16) defines operation Submit Message. It uses the POST
channel to submit XML messages. These messages could be XML synchronization
messages exchanged as part of distributed simulation algorithms (see agorithms in
Chapter 6 and 8), or as modelers XML messages to manipulate ssmulation. For example,
Figure 92 shows an example of a simulation event that can be sent by modelers to

manipulate active simulation. In this case, this external event is inserted in the simulation

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 240

event list to be executed as any other event. The XML external event message consists of
the following (Figure 92): Line #2 shows the simulation Time (e.g. 09:53:10:000), Line

#3 shows the Port Name, and Line #5 shows the event Value.

<XEvent >
<Ti me>09: 53: 10: 000</ Ti ne>
<Por t >fi ni shed</ Port >
<Val ue>9</ Val ue>

</ XEvent >

abrhwnN kP

Figure 92: Example of Simulation External Even Message

The second row (Table 16) defines operation Get Smulation Sate. It uses the
GET channél to read information from the active simulation. The returned information is
either an XML document to indicate the ssmulation health or as a zipped file to download
simulation results that are being computed.

To get smulation health, query variable “sim” needs to be set to “status” such as
<.../fireModel/simulation?sim=status>. In this case, the middleware returns a message
similar to the following: <Smulation>ALIVE</Smulation>. This message is mainly
used to check if a simulation partition failed during distributed simulation (see DCD++
watchdog in Chapter 6). Further, to get ssimulation results, query variable “sim” needs to
be set to “results” such as <.../fireModel/simulation?sim=results>. In this case, all
results are returned in asingle zipped file. This prevents, in some cases, clients of waiting
long time until simulation completed to be able to get the entire results.

Table 17 summarizes the possible generated errors by the active simulation within
an experiment framework. In this case, errors are classified based on the received

message channel.

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 241

Table 17: Faults Summary for Resour ce {framework}/simulation

HTTP HTTP Response Error Description
Channel Error Code
404 0 Framework does not exist.
(Not Found) o Failed Authentication for restricted Framework
DELETE o Simulation is not active.
401 Failed Authentication (where framework is not
(Unauthorized) | restricted).
400 o0 Simulation Resource has aready been created.
(Bad Request) | o Server could not Start Simulation Manager.
PUT 404 Failed Authentication (where framework is
(Not Found) restricted).
401 Failed Authentication (where framework is not
(Unauthorized) | restricted).
404 0 Framework does not exist.
(Not Found) o Failed Authentication (where framework is
restricted).
o Simulation isnot active.
GET 401 Missing Authentication (where framework is
(Unauthorized) | restricted). In this case, achallengeis sent to give
the user the chance to provide a username and
password.
400 0 Errorsexistin query variables.
(Bad Request) | o Simulation is not running.
400 0 Request contains bad XML.
(Bad Request) | o Simulation is not running.
o0 Not Allowed to POST received XML Contents.
o0 Errorsin URI query variables.
415 Received unsupported mediatype.
(Unsupported
POST Mediatype)
404 0 Framework does not exist.
(Not Found) o0 Failed Authentication (where framework is
restricted).
401 Failed Authentication (where framework is not
(Unauthorized) | restricted).
501 Reguest contains Unsupported HTTP channel.
(Not
Generdl Implemented)
500 The server encountered an unexpected condition,
(Internal Server | which prevented it from fulfilling the request.

Error)

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 242

B.2.3 Simulation-Results Resource: {framework}/results

URI Template: <...>/{servicetype}/{framework}/results
Example: <...>/DCDpp/FireModel/results

This resource holds the last simulation-run result files. It is automatically created
upon normal simulation completion. Note that results still retrieval during simulation via
resource “/framework}/simulation”, as discussed in section B.2.2. Table 18 shows the
two operations supported by this resource as follows:

e Download Results operation. It uses the GET channel to retrieve all simulation
results files in a single zipped file. Note that this operation allows results to be
downloaded via Web browsers similar to regular Web sites.

e Delete Results operation. It uses DELETE channel to alow users to force results
deletion URI.

Table 19 summarizes the possible generated errors by the active simulation within
an experiment framework. In this case, errors are classified based on the received

message channel.

Table 18: Specifications Summary for Resour ce {framework}/results

Operation HTTP HTTP Success Request Response
Channel Response Representation Format | Representation
Code Format
Download GET 200 (OK) None Zipped file
Results
Delete DELETE 200 (OK) None None
Results

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 243

Table 19: Faults Summary for Resour ce /{framework}/results

HTTP HTTP Response Error Description
Channel Error Code
404 0 Framework does not exist.
(Not Found) o Failed Authentication for restricted Framework
o0 Simulation iscurrently active.
DELETE 0 Resultsdo not exist.
401 Failed Authentication (where Framework is not
(Unauthorized) | restricted).
404 0 Framework does not exist.
(Not Found) o Failed Authentication (where Framework is
restricted).
0 Resultsdo not exist.
401 Missing Authentication (where Framework is
GET (Unauthorized) | restricted). In this case, achallengeis sent to give
the user the chance to provide a username and
password.
507 Server could not Zip results.
(Insufficient
Storage)
501 Request contains Unsupported HTTP channel.
(Not
General Implemented)
500 The server encountered an unexpected condition,
(Internal Server | which prevented it from fulfilling the request.
Error)

B.2.4 Simulation-Debug Resource: {framework}/debug

URI Template: <...>/{servicetype}/{framework}/debug

Example: <...>/DCDpp/FireModel/debug

This resource holds all debug log files that can be helpful for modelers to debug
their models when there are problems, particularly during ssmulation. For example, a
modeler may decide to place debugging print lines within his CD++ model code to trace
his model behavior. In this case, those debugging print lines are dumped into afilein this

resource, allowing modeler to retrieve this information. Further, for example, compilation

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 244

results are written to a file in this resource, alowing a modeler to figure out any
compiling problems if, for instance, a DEVS model C++ source code fails compilation.
Table 20 shows the two operations supported by this resource as follows:

e Download Debug Files operation: It uses the GET channel to retrieve all ssmulation
debug files in a single zipped file. Note that this operation allows debug files to be
downloaded via Web browsers similar to regular Web sites.

e Delete Debug files operation: It uses DELETE channel to allow users to delete
existing debug files, alowing fresh start, particularly when framework has been used
for along time.

Table 21 summarizes the possible generated errors by the active simulation within
an experiment framework. In this case, errors are classified based on the received

message channel.

Table 20: Specifications Summary for Resour ce {framework}/debug

Operation HTTP HTTP Success Request Response
Channé Response Representation Format | Representation
Code Format
Download GET 200 (OK) None Zipped file
Debug Files
Delete Debug | DELETE 200 (OK) None None
Files

Table21: Faults Summary for Resour ce /{framework}/debug

Channel in | HTTP Response Error Description
Request Status
404 0 Framework does not exist.
(Not Found) 0 Failed Authentication for restricted Framework
DELETE o Simulationisstill in progress.
401 Failed Authentication (where Framework is not
(Unauthorized) | restricted).

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 245

Channel in | HTTP Response Error Description
Request Status
404 0 Framework does not exist.
(Not Found) 0 Failed Authentication (where Framework is
restricted).
401 Missing Authentication (where Framework is
GET (Unauthorized) | restricted). In this case, achallengeis sent to give
the user the chance to provide a username and
password.
507 Server could not Zip results.
(Insufficient
Storage)
501 Request contains Unsupported HTTP channel.
(Not
General Implemented)
500 The server encountered an unexpected condition,
(Internal Server | which prevented it from fulfilling the request.
Error)

B.3 API XML Description

Describing RISE URI template in a standardized XML description is important.
This alows this information to be consumed and processed automatically by machines.
In our case, the RISE middleware provides XML description for the entire APl based on
the Web Application Description Language (WADL) [144]. This WADL document is
dynamically constructed by the server and sent back to the client in response to a request
via the HTTP OPTIONS channel to the root URI (“/cdpp” in our case). The returned
WADL document is always up-to-date since it is constructed dynamically by the
software. Sun Microsystems NetBeans IDE [103] and WADL 2Java [144] are examples
of tools that support WADL standards.

Figure 93 shows an example of the overall WADL document generated by the
RISE. Lines 1-3 show the document header. Line #4 indicates the RISE base URI address

(http://localhost: 8282/cdpp/), which means that each resource’s URI starts with this base

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 246

address followed by its path as defined in the WADL document. For example, Line #5
starts the description of the first resource with path “accounts”. Therefore, the URI of this
resource becomes (http://localhost: 8282/cdpp/accounts). Line #9 starts the description of
a template resource where the value of { accountname} must be supplied at runtime (e.g.
http://local host: 8282/cdpp/accounts/bob). Lines 5-15 show the description for each

resource supported in the API.

1 <%xml wversion="1. 0" stapdalopes '}"'E'El' P
z ':?HJ'I'IJ.'ﬁtjrl'E'E-]'I'E"Et t}T’E‘I"tE'Itu'rIE-l : nl'e-f-'wadl_dﬂcwentatlcnn HEL"Fm
3 <application sxmins="http;//research.san. com/wadl /2008 /107>

4 <rasources bass="http://localbkost B282 S odpps ">
5 Cresoirce path="admi Bfaccoanks® >

[

T

a </ resoIroes

9 <resource pathe'admindaccounts) |accountname) ">
10

11

12 Ll =N (]]

13

14

15 < /rasouncass
16 <fapplication

Figure 93: RISE WADL Document Structure Example

WADL describes the specification of each resource such as the supported uniform
interface channels (HTTP channels in our case), the request/response requirements and
list al possible generated faults. It also allows documentation to be added to the
document. For example, Figure 94 shows the full description of the resource that was
originaly shown within Lines 5-8 in Figure 93. The resource shown in Figure 94
supports only HTTP GET channel. Thus, this read-only resource, hence al other
channels are disabled. In this example, Lines #9 shows that the server respond is returned

as XML document while lines 10-18 list all possible errors.

APPENDIX-B: RISE APPLICATION PROGRAMMING INTERFACE (API) 247

l <rexourae path="admin/ascount=s">

2 cmethod ids"GatfoccountsList” names"GET" >

3 Crequest:

4 cparam style="header” name="futhorization" remirved="trua'>
5 Cdoorhuthentiocated Call wikh HTTE Basic M=thod</ doo>

& < S params

7 Tl reguests

a CESEROTIE R

9 <representation mediaType="text /xml" s>

10 “fault mediaType="text /html" status="401">

11 CAaaHMINAFTHORIZIED: Aubthentisakisn nok pn:r'-.-idedﬂ..r'd.uq:.'-
12 <SFanl e>

13 “fault mediaType="text /html"” status="401">

14 oo INAUTHORIZEDR: Wrong Authentication Frovided</docs
15 </ faulke>

La <fault mdj.n‘l'ypu="tnxt.-"ht11ﬂ" status="40&" >

i e <doo>H0T ACCEPTABLE: User need=s Adein Privileges</doc>
13 < ffaulcs

18 <) e E e

20 « /mathod>

21 < /resouros

Figure 94: RISE WADL Resource Description Example

